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For indistinguishable itinerant particles subject to a superselection rule fixing their total number, a portion of
the entanglement entropy under a spatial bipartition of the ground state is due to particle fluctuations between
subsystems and thus is inaccessible as a resource for quantum information processing. We quantify the remaining
operationally accessible entanglement in a model of interacting spinless fermions on a one-dimensional lattice
via exact diagonalization and the density matrix renormalization group. We find that the accessible entanglement
exactly vanishes at the first-order phase transition between a Tomonaga-Luttinger liquid and phase separated
solid for attractive interactions and is maximal at the transition to the charge density wave for repulsive
interactions. Throughout the phase diagram, we discuss the connection between the accessible entanglement
entropy and the variance of the probability distribution describing intrasubregion particle-number fluctuations.
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I. INTRODUCTION

The entanglement of a quantum mechanical system can be
exploited as a resource, allowing spatially separated parties
to perform protocols (e.g., dense coding [1], teleportation [2],
and quantum cryptography [3]) not feasible in a classical set-
ting. The quantification of the exact amount of entanglement
encoded in a given state is thus an important task that can be
accomplished by studying the von Neumann entropy of a sub-
system [4,5]. The situation can become more complicated in a
condensed matter setting [6], especially when considering an
eigenstate of some physical Hamiltonian governing a system
of indistinguishable and itinerant interacting particles, whose
total number is fixed. Unlike an optical system of photons,
conservation of total particle number N for atoms or electrons
may restrict the set of possible local operations, often referred
to as a superselection rule (SSR) [7], and can potentially
limit the amount of entanglement that can be physically
accessed [8—13]. This can be understood as originating from
the fundamental inability to create coherent superposition
states with different particle number in a subsystem. As a
result, entanglement due to particle fluctuations alone cannot
be utilized without access to a global phase reference [14]. In
a pioneering work, Wiseman and Vaccaro [15] demonstrated
that by averaging the von Neumann entanglement entropy of
spatial modes over sectors corresponding to all possible num-
bers of particles in the subsystem defining those modes, they
could place an upper bound on the amount of entanglement
that could be transferred to a quantum register using local
operations and classical communication. This quantity, known
as the accessible entanglement entropy, has been previously
studied for few-particle [15-20] or noninteracting [21,22]
systems. However, the interplay between interactions and
an SSR fixing the total particle number has yet to be fully
explored. This is especially acute as many of the proposed
or currently implemented quantum simulators [23], including
those employing ultracold atoms [24], trapped ions [25], and
electrons [26,27], are subject to fixed total N.
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In this paper, we perform a systematic study of the ac-
cessible entanglement in an interacting model of spinless
fermions, (the “¢-V model”), on a one-dimensional lattice,
which is known to exhibit a host of interesting behavior [28],
including first- and second-order quantum phase transitions
between both classically ordered and quantum disordered
phases. We employ large-scale exact diagonalization (ED) to
study the ground-state entanglement as a function of interac-
tion strength for systems including up to 32 sites at different
filling fractions. We compute both the originally defined von
Neumann measure of accessible entanglement [15], as well
as its recently introduced Rényi generalization [22]. In order
to investigate the finite-size scaling of the accessible entangle-
ment near the quantum phase transition to the localized charge
density wave state, we perform density matrix renormalization
group (DMRG) calculations using the ITENSOR library [29].

In the limits of infinitely strong repulsive and attractive
interactions, we derive analytical results for the accessible
entanglement and find that in the thermodynamic limit, the
accessible entanglement is constant and equal to In 2 at half-
filling. At the interaction strength corresponding to the first-
order phase transition, the ground state is “flat” with all
possible spatial occupations of the fermions contributing with
equal weight. Here, the accessible entanglement is identically
zero at all filling fractions. This result indicates that all of the
entanglement between spatial subsystems at the transition is
purely due to classical particle-number fluctuations between
subregions and thus the entanglement entropy is equivalent to
the Shannon entropy of the corresponding probability distri-
bution [21]. This is a fermionic example of what was previ-
ously found in Bose-Einstein condensates and squeezed states
of the Dicke model [30]. In the intervening quantum liquid,
where the microscopic system is described at low energies
by Tomonaga-Luttinger liquid (TLL) theory, the accessible
entanglement is reduced from the spatial entanglement for
a spatial subregion of length £ by a subleading double log:
~In(K1In¢) where K is the Luttinger parameter. We con-
firm this asymptotic scaling [21] for finite-sized systems by
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exploiting the exact solution of the 7#-V model to obtain K
and determine that this behavior is predicated on the rapid
convergence of the subsystem particle-number probability
distribution to a continuous Gaussian. The discreteness of
the local number of particles introduces corrections that are
exponentially small in the width of the distribution which is
substantial within the quantum liquid. The accessible entan-
glement is maximal at the quantum phase transition between
the TLL and charge density wave and appears to diverge in the
thermodynamic limit signaling its potential use as a diagnostic
measure more akin to a susceptibility than an order parameter.

The generalization of the operationally accessible entan-
glement to the Rényi entropies described by an integer index «
is of considerable interest, as these are amenable to measure-
ment without access to the complete density matrix [31,32].
Recent work identified the unique Rényi generalization of ac-
cessible entanglement [22] and we have measured it via exact
diagonalization for the ground state of the -V model. We find
that the reduction of entanglement due to the superselection
rule fixing the total number of particles is well described
by the classical Rényi entropy of the subsystem particle-
number distribution. This is not true in general, but approx-
imately holds here due to a near proportionality between
rescaled and bare number fluctuations. This proportionality is
quantified and it is eventually violated for sufficiently large
Rényi indices. In the TLL phase where particle fluctuations
between subregions are expected to be Gaussian, we explore
the validity of a recent prediction for symmetry-resolved
entanglement [33] and find deviations that can be attributed
to the amplification of finite-size and ultraviolet cutoff effects
for large Rényi index o ~ 10.

The main contributions of this work include the follow-
ing: (1) confirmation that a system of fermions with fixed
total particle number may act as a substantial entanglement
resource for quantum information applications; (2) the iden-
tification of putative power-law scaling of the exponential
of the accessible entanglement entropy near the continuous
quantum phase transition from a Tomonaga-Luttinger liquid
to an insulator; this transition thus identifies a critical coupling
strength between fermions where the maximal amount of
entanglement can be transferred to a quantum register; (3) by
quantifying the role of the classical probability distribution
governing the number of particles in a spatial subregion in
placing a bound on the von Neumann and Rényi generalized
accessible entanglement entropies, we open up experimen-
tal and computational avenues for the analysis of fermionic
many-body phases as candidate resource states.

In the remainder of this paper, we provide a careful defini-
tion of the accessible entanglement entropy and discuss a few
physical situations where its behavior is currently understood.
We then move on to the definition of the model in question,
the -V model, and derive a number of exact results in some
analytically tractable limits. The full phase diagram is then
explored via ED and DMRG, where we answer the question of
the exact amount of entanglement that can be extracted from
a finite-size system of interacting lattice fermions. We iden-
tify the importance of the probability distribution controlling
subsystem particle-number occupation and conclude with a
brief discussion on the effects of the finite system sizes under
investigation and the role of the filling fraction.

II. ACCESSIBLE ENTANGLEMENT

A. Rényi entanglement entropy

The amount of entanglement that exists between some
partition A and its complement A of a quantum many-body
system in pure state |W) can be quantified via the Rényi
entanglement entropy, which depends on an index o:

1
Sa(pa) = 7 InTr pg, (1)

-«
where p4 is the reduced density matrix of partition A obtained
by tracing out all degrees of freedom in A from the full density
matrix:

pa =Tz p = Trz| W) (¥]. )

The Rényi entropy is a nonincreasing function of « and for
o > 1 is bounded from above by the von Neumann entropy
S1(pa) = —Trpaln ps.

For a quantum many-body system subject to physical laws
conserving some quantity (particle number, charge, spin, etc.),
the set of local operations on the state |W) is limited to those
that do not violate the corresponding global superselection
rule. For the remainder of this paper, we will focus on our
discussion on the case of fixed total N and thus we are
restricted to only those operators which locally preserve the
particle number in A. The effect this has on the amount of
entanglement that can be transferred to a qubit register is
apparent from the simple example (adapted from Ref. [16])
of one particle confined to two spatial modes A and A cor-
responding to site occupations. Then, for the state |V) =
(114 ® 10)5 4+ |04 ® [1)5)/+/2, Eq. (1) gives that §; = In2.
However, this entanglement cannot be transferred to a register
prepared in initial state |0)g via a SWAP gate:

SWAP|0)z ® (|1)4 ® 10)4 + 1004 ® |1)4)/v/2
1

2

where the first term is not physically allowable due to the

restriction that the number of particles in the system is fixed to

be one. The post-SWAP result remains in a product state and
the amount of transferable entanglement is identically zero.

(IDr ®10)4 ®10)z 4 10) ® [0)4 ® [1) ),

B. von Neumann accessible entanglement: o = 1

Thus, Eq. (1), which includes the effects of nonlocal
number fluctuations between A and A, overcounts the amount
of entanglement that can be accessed from the system. To
quantify the physical reduction, Wiseman and Vaccaro [15]
suggested that, for the case of @ = 1, a more appropriate
measure should weight contributions to the entanglement
coming from each superselection sector corresponding to the
number of particles n in A:

N

Si%(pa) = ZPnS] (pa,)- )

n=0

Here, py4, is defined to be the reduced density matrix of A,
projected onto the subspace of fixed local particle number n,

1
Pa, = P_PA,, 0aPa,, 4
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accomplished via a projection operator P4, that acts locally in
partition A fixing the number of particles in it to » and the con-
servation of the total number of particles N guarantees N — n
particles in its complement A. The probability of finding n
particles in A is given by

By =Tt Py, paPa, = (V|Pa,|¥). ®)

As the projection constitutes a local operation which can
only decrease entanglement, it is clear that S{°(p4) < S1(pa).
Moreover, the difference

ASi(pa) = Si(pa) — Si(pa) (6)

can be determined by noting that the superselection rule
guarantees that [pa, 1] = 0 where 7 is the number operator
acting in partition A. Thus, p4 is block diagonal in # and it
can be shown [21] that

AS1(pa) = Hi({B,}), (7N

where

N
1 1
mww=—2ﬁm&<5m@m#+§)<&
n=0

is the Shannon entropy of the number probability distribution
where

N N 2

o’ = () — () =Y n’P, — (ZnP,,) ()
n=0 n=0

If P, is a discrete Gaussian distribution, P,  exp[—(n —

(n)?)/(26%)] with (n) > o > 1, then the von Neumann en-

tanglement entropy is reduced by an amount which only

depends on the variance AS; = 1 In(27eo?).

C. Rényi accessible entanglement: o # 1

Computing the accessible entanglement for a many-body
system is a difficult task for o« = 1, as full state tomography
is required to reconstruct the density matrix p. However,
for integer values with & > 1 a replica trick can be used to
recast Trpg as the expectation value of some local operator
[31]. This advance has led to a boon of new entanglement
results using both computational [19,34—37] and experimental
[32,38—42] methods. Motivated by this progress, two of us
recently generalized the accessible entanglement to the case
of Rényi entropies with o # 1 and found that [22]

s =25, (pay)
—n |:;Pne @ SalPn, ] (10)

which reproduces Eq. (3) in the limit o« — 1. While not
physically transparent in this form, the modification from
the o = 1 case results from replacing the geometric mean in
Eq. (3) with a general power mean whose form is constrained
by the physical requirement that

0< ASy <In(N + 1), Y

Sa“(pa) =

where the upper bound is equal to the support of P,. Equation
(10) can also be interpreted as the quantum generalization of
the conditional classical Rényi entropy [43-47], subject to
physical constraints [22]. The arguments leading to Eq. (7)

can then be generalized (see the Supplemental Material of
Ref. [22]) leading to

ASy =S, _Sgcc :Hl/a({Pn,a})» (12)

where we introduce the classical Rényi entropy of P,
1

H,({P,}) = 1 P, 13
(B =) R (13)
and
Tr | Pa, pSP, P¥Tr p¢
Pn!a — [ AnIOA An] — n pA,, (14)
Tr pff Tr pff

can be interpreted as a normalization of partial traces of
P4, where the SSR fixing the total particle number leads
to Trp§ =Y, Tr[Pa,piPa,] and thus guarantees the nor-
malization of P, . Note that we have defined P, = P, for
notational consistency. For brevity, let H,({P,}) = H, from
here onward.

Writing the difference AS,, as the classical Rényi entropy
of the fictitious probability distribution P, ., simplifies the
calculation of AS, and clarifies its properties, e.g., the fact
that H, is positive and bounded from above by Hy = In(N +
1) guarantees that AS, satisfies the physical requirement in
Eq. (11) [22]. In addition, P, 4 is fully determined by P, and
the full and the projected traces of pj, i.e., Tr p§ and Tr pz‘”,
which can be measured using the experimental and numerical
methods mentioned above.

Before proceeding to a discussion of previous results
for the accessible entanglement entropy, let us consider the
special case where the probability distribution P, o, o< (P,)*.
Then, using Eq. (12) we have

1 pr '
1 n
l—o! HXn:<ZnPV?)

= H,, (15)

AS, =

which reproduces the von Neumann result in Eq. (7).

D. Previous results

While the accessible entanglement entropy can be used
to diagnose the feasibility of using a many-body state of
quantum matter as an entanglement resource, exact results are
mostly limited to noninteracting systems. For a condensate
of free bosons, the projected reduced density matrix p4, is
always pure for any n and thus the accessible entanglement
is zero [19]. For free fermions, early calculations [18] found
S 20 in a thermal state under a noncontiguous spatial
bipartition of two sites on a one-dimensional lattice. More
recent work on noninteracting spinless fermions [21,22] found
that the SSR fixing the total particle number reduces the
accessible entanglement by an amount that is subleading in the
size of the spatial bipartition £ when € >> 1. This result hinges
on the realization that the probability distribution P, ,, defined
in Eq. (14) is Gaussian with an average that is independent
of @ and a variance o> that scales as ¢Y~!In€/a in d spatial
dimensions. This was recently confirmed on lattice in d =
1 [48]. As the spatial entanglement S, scales as £¢~!In¢
[49], AS./Se ~In(¢4'In€)/(£?'In¢) which vanishes
as £ — oo.
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For critical systems in one dimension (1D) described by
Luttinger liquid theory [or more generally any conformal field
theory with a conserved U(1) current], the particle-number
probability distribution P, is also asymptotically Gaussian
with a variance 0> = K In¢/7? in the limit £ > 1 [21,50—
52], where K is the Luttinger parameter. Here, a result by
Goldstein and Sela [33] can be employed to investigate P, o,

which is Gaussian, having the same average as P, but with

. . e>1
modified variance: 0} = 0%/a > K/am?Int. As aresult,

AS01|TLL = Hl/ot({Pn,ot}) = HD!
=1Ino? + L n[2mwa'/ D). (16)

Equation (16) can be combined with the known result for
the spatial entanglement entropy of a critical 1D system
[31,53,54]

c 1 14
Selipcrr = —(1+—) In — + O(1), 17
6 o ap

where c is the central charge and qy is a short-distance cutoff,
to see that the fraction of nonaccessible entanglement entropy
AS, /Sy vanishes asymptotically as In(In£)/In €.

Studies of the interaction dependence of S have been
previously limited to bosonic systems in 1D. Quantum Monte
Carlo simulations of harmonically trapped and harmonically
interacting bosons identified maxima in the accessible en-
tanglement as a function of interaction strength [19]. Exact
diagonalization of the 1D Bose-Hubbard model at unit filling
for systems of up to N = 16 demonstrated that S5° vanishes
in the limit of strong and weak interactions [20]. Interest-
ingly, S$5°° was maximal near the superfluid-insulator phase
transition and appeared to obey phenomenological scaling
for the limited system sizes that could be studied. For an
extended Bose-Hubbard model of four modes that includes
pair-correlated hopping, exact diagonalization and variational
calculations identified an interesting regime with strong pair-
correlations where a matter wave beam-splitter operation on
the ground state results in all entanglement being accessible
[55].

Missing from this list is any system of interacting fermions
and we now present numerical results for spinless fermions in
one spatial dimension.

III. THE ¢-V MODEL OF INTERACTING
SPINLESS FERMIONS

A. Description and solution

To investigate the behavior of accessible entanglement in
an interacting fermionic system, we consider the -V model
defined by a one-dimensional lattice of L sites occupied by N
spinless fermions and governed by the Hamiltonian

.
i

H=—tY (cje, +clc)+V Y mni, (18)

where cjf and ¢; denote the fermionic creation and annihilation
operators at site i, {c;, c';} =4 j,and n; = cj'cl.. Here,r > 0
and V represent the nearest-neighbor hopping amplitude and
interaction strength, respectively. We consider a half-filled
lattice (L = 2N), unless mentioned otherwise and we use

periodic boundary conditions (PBC) for an odd N, while for
even N we use antiperiodic boundary conditions (APBC) to
avoid complications arising from the degenerate ground state.
Equation (18) can be mapped onto the XXZ spin-% chain
(at fixed magnetization) which is exactly solvable via Bethe
ansatz [28,56,57] (see, e.g., [58] for a recent pedagogi-
cal review). For —2 < V/f < 2, at low energies and long
wavelengths, the system can be understood as a Tomonaga-
Luttinger liquid where the TLL parameter K at half-filling is
[59]
b4
K=—7r———.
2 cos~ 1 [—V/(21)]

In this language, 0 < K < 1 corresponds to repulsive (V > 0)
interactions, K > 1 to attractive (V < 0) interactions, and
noninteracting fermions (V = 0) have K = 1. By increasing
the relative interaction strength |V/¢|, the system undergoes
two phase transitions, a first-order phase transition to a single
fermionic cluster phase at V/t = —2, (K = c0) and a con-
tinuous one at V/t =2, (K = 1/2) to charge density wave
(CDW) phase. A schematic phase diagram is shown in Fig. 1.

19)

B. Exact ground-state results for accessible entanglement

In this section we derive a number of exact and asymp-
totic results for the accessible entanglement entropy of the
t-V model using insights gained from the structure of the
ground states depicted in Fig. 1. Results for the von Neumann
accessible entanglement are summarized in Table I.

1. V[t > oo

In the limit V/t — oo and at half-filling, the system re-
duces its energy by separating every two fermions by at
least one empty site and thus the ground state |Wy/ o) =
(|Weven) + |Wodd))/ V2 is an equal superposition of two occu-
pation states. In one state the fermions occupy sites with only
even indices (|Yeven) = [0101...0101)) and in the other they
occupy sites with only odd indices |Y¥oqq) = |1010...1010)).

If we now consider spatial bipartition A consisting of ¢
consecutive sites, we can write

1
|\I"V/t—>oo) = Ehﬁeven)A ® |¢‘even>/§

1
+ El‘ﬁodd)A ® [Vodd) 4» (20)

resulting in the reduced density matrix

P4 = 3 Weven)a (Weven| + 3 1Woda)a (Vodal-

For even £, both of |Yeven)a and |Y¥oaq)a represent £/2
fermions as the number of sites with odd indices is equal to
the number of sites with even indices. Therefore, the number
of particles in partition A is fixed to £/2 and the entanglement
entropy of the projected state Pa,_, , |Wv/i—o0) 18 S (04,_,,) =
In2 with P,_y/, = 1 resulting in an overall accessible entan-
glement entropy S3°°(p4) = In2. The picture is different for
odd ¢ where the number of sites with odd indices differs from
the number of sites with even indices by 1. In this case, one
of the states |VYeven)a and |Wodq)a will represent (£ — 1)/2
fermions while the other represents (¢ + 1)/2 fermions and
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FIG. 1. Phase diagram of the #-V model accompanied by pictures of candidate ground states for N = 2 fermions on a L = 4 site lattice
with antiperiodic boundary conditions. For the purposes of measuring accessible entanglement, the lattice has been bipartitioned into spatial
subregions A (blue) and A (red), each of size £ = 2. In the limit of strong attractive interactions where V/t < —2, the particles cluster together
and there are L equally probable configurations corresponding to all translations of the cluster. At the first-order phase transition where
V/t = =2, all (If,) configurations are equally probable resulting in a flat state. In the TLL phase with |V/#| < 2, particles are delocalized and
we have included a characteristic state corresponding to free fermions (V = 0). In the limit of strong repulsive interactions where V/t > 2,
fermions maximize their distance from each other resulting in a charge density wave (CDW) phase. The open and closed circles on the V/¢

axis denote a first-order and continuous phase transition, respectively.

therefore the projected state Pa,_.,,,|\Wv/;i—co) is a separable
state yielding zero entanglement entropy S5°°(p4) = 0. For
any partition size ¢, regardless of its parity, the spectrum
of p4 consists of two equal eigenvalues fixing the spatial
entanglement entropy S, (04) to In 2.

2.Vt > —o0

In the other extreme, V/t — —oo and for any number
of fermions 0 < N < L, the system minimizes its energy by
forming a cluster of fermions that extends over any consec-
utive N sites. The ground state of the system, in this case, is
an equal superposition of all L possible clusters. Once more,
considering a partition A of £ consecutive sites, we can write
the ground state as

1
Wy —oo) = —= n,i)a ®|N —n, j)z, 21
Wy s o) ﬁZZJ| Ja® | i @D

where |n, i), is the ith configuration having n particles in
partition A and [N — n, j) is the jth configuration with N — n
particles in its spatial complement A. Since the state is a
superposition of L particle configuration states, p4 can have
at most L nonzero eigenvalues. This defines an upper bound
on Se(pa) <InL.

TABLE 1. Analytical results for the accessible entanglement in
the ground state of the -V model with N fermions on L sites under
a spatial bipartition consisting of £ = L/2 contiguous sites. Symbols
indicate approximations or generalizations with § marking that the
expression is asymptotically valid in the limit L >> 1, § means ¢ <
L, and ¥ that the result is true for any filling fraction N < L.

Interaction S (pa) AS

i i
V/t — oo M+ (=D)]n2 11— (=1)]In2
V/t - —oc0 %MZ In %u
Vit =-2 0’ $InLf

The simplicity of the state |Wy/_, ) allows us to clas-
sify the projected state Py, |Wy/—_oo) that corresponds to
having n particles in partition A as follows. If the state
Pa,|Wy/i——oo) has partition A or its complement A either
empty or fully occupied, then [Wy,_, _,) must be a separa-
ble state with S,(p4,) = 0. What remains are the projected
states Py, |Wy/1—_oo) in which both of A and A have at
least one empty and one occupied site. Due to the existence
of the fermion cluster, knowing the configuration of the n
particles in partition A fully determines the configuration of
the N — n particles in partition A. Moreover, there can be
only two such configurations that correspond to the fermionic
cluster emerging into the partition A, either from its left or
right end, such that Py, |Wy;, o) = ﬁ 7 I ia®IN —
n, i)z, where (n,1|n,2)4 = (N —n, 1|N —n,2); = 0. This
gives Sq(pa,) =In2 and P, = 2/L. A simple counting then
gives the number of projected states m that yield nonzero
entanglements as min{¢, L — £, N, L — N} — 1. The resulting
accessible entanglement is given by

ace o 2m i-a 2m
S, (pA)Zl_aln 72“+1—T, (22)

which simplifies to

. 2m
S1%(pa) = A In2, (23)
in the von Neumann case o = 1. From Eq. (22) we see that
Si(pa) is an increasing function of m. For a given L, the
maximum value of m is L/2 — 1 which is achieved for £ =
N = L/2. In this case, $9(p4) = £2In2 and for L > 1 we
can write S5°(p4) ~ In 2.

To calculate the spatial entanglement entropy of this state,
in general, we need the full spectrum of ps. Based on the
above there will be 2m eigenvalues of py4 that are equal to 1 /L.
In addition, there are two more eigenvalues which correspond
to one of the partitions being either empty or fully occupied.
Counting the number of such occupation states gives the
eigenvalues ([{ — N|+ 1)/L and (|£ +N — L|+ 1)/L. Now,
if we consider the conditions for maximizing S5°(p4), i.e., at
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half-filling and with half-partition, we find that p4 has a flat
spectrum with L eigenvalues and thus S,(p4) is saturated at
its upper bound S, (04) = In L, and therefore AS, ~ In (L/2),
for L > 1.

3Vjit=-2
Now, we turn our attention to the very interesting case of
the first-order phase transition at V/t = —2, where the ground

state |Wy/—_») is an equal superposition of all (%) possible

configurations of N fermions on L sites (see Appendix for
proof). In the language of the X XZ model, this corresponds to
the isotropic ferromagnetic point [60]. If we project |Wy/;—_»)
into a state with n particles in partition A and in one of its
(ﬁ) possible configurations, we get an equal superposition of

(5~*) occupation states which differ only by the configuration
of the N — n particles in A. Therefore, we can immediately

construct the desired Schmidt decomposition by inspection:

1 L\ (L—-¢
[Wyji——2) = \/@ Xn: (n> (N B n) |n)a ® IN — n)j.

24
Here, each of the normalized states |n)4 and [N — n); is an
equal superposition of all of the possible configurations of n
and N — n particles in partitions A and A, respectively.

For the state above, the projected reduced density ma-
trix pa, = |n)a(nls is a pure state and, thus, for any
n, Se(pa,) =0. As a result, for any partition size ¢, the
accessible entanglement S3°°(p4) = 0. Moreover, the spec-
trum of p4 is given by the particle-number probability dis-
tribution P, = (%) (+~!)/(5) where we have used the fact
that the block-diagonal structure of ps in n allows us to
write ps = Zn P,pa,. Furthermore, for this state, Sy(pa) =
Hl/ot({Pn,ot}) = H,({P.}).

Let us consider the behavior of S,(p4) in the limit L > 1
and, for clarity, we focus on an equal bipartition at half-filling:

¢ =N =L/2. Here, P, = (f;)z /() and asymptotically it is a

Gaussian distribution in n with variance 0> = L/16 and thus
Sa(pa) = ASy = L In2ro?a@ )y~ LinL.

IV. NUMERICAL RESULTS

To test the validity of the predictions in the previous sec-
tion, we calculate the accessible entanglement in the ground
state of the 7-V model, defined in Sec. III, via numerical
exact diagonalization for small systems (up to 32 sites) and
using DMRG for larger systems (up to 98 sites), where the
calculations are performed using the ITENSOR C++ library
[29]. All data, code, and scripts used in this paper, including
that needed to regenerate all figures, can be found online [61].

Before proceeding to an exposition of our numerical re-
sults, we summarize the main findings of this section: (1) at
half-filling (N = L/2) and with a spatial partition size of £ =
L/2 contiguous sites, the numerically determined accessible
entanglement confirms the asymptotic analytical predictions
given in Table I and appears to be maximal at the phase
transition between the quantum liquid and insulating CDW
phases. (2) The reduction of entanglement due to the restric-
tion of a fixed total number of particles can be understood in
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FIG. 2. Accessible entanglement entropy Si°(¢) for o = 1,2
in the ground state of the 7-V model as a function of interaction
strength V/¢t at half-filling, N = L/2. The top panel shows the
results for an odd number of total particles: N = 11, 13, 15 and the
bottom, for even: N = 12, 14, 16. The solid and dashed gray vertical
lines indicate the locations of the known phase transitions for the
model V/t = £2. For N = 15, 16 the asymptotic results computed
in Sec. IIl in the limits V/t — $o00 for ${ are shown as solid black
lines.

terms of the variance of the local particle-number distribution
P,, which is well characterized by a Gaussian distribution
throughout the TLL phase. (3) This is approximately true
even at Rényi index @ > 1 due to an emergent proportionality
P, o< P where P, , is the renormalized distribution defined
in Eq. (14). (4) An analysis of subleading corrections in the
partition size ¢ is needed to capture the interaction dependence
of the variance of the particle-number distribution in the TLL
phase. Finally, (5) the asymptotic effects of changing both
the filling fraction and partition size can be captured by a
universal scaling function.

A. Accessible entanglement

Figure 2 shows the von Neumann and second Rényi acces-
sible entanglement entropies, ${° and S5, as a function of the
dimensionless interaction strength —100 < V/¢ < 100 for the
six largest systems studied by ED. To illustrate the effects that
the parity of N has on S5, the top and bottom panels of Fig. 2
correspond to odd and even N, respectively. This represents

the primary raw data set on which we base our analyses below.

B. Phase transitions and limiting cases of V /¢

Starting from the regime of strong attractive interactions
V/t = —100, in Fig. 2, we see that S%(ps) is rapidly
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converging to the expected value (1 — 1/N)In2 in the limit
V/t - —oo [Egs. (22) and (23)]. This asymptotic result
persists down to nearly V/t = —10 for large system sizes.
Increasing V/t further, S3°°(ps) decreases slowly until we
get closer to the first-order phase transition at V/t = —2
(see Sec. III B 3), where S;(04) decreases rapidly until it
vanishes exactly at the transition point. This result holds for
all N. As we increase V/t beyond —2, S3°(p4) grows in the
TLL regime, as interaction-driven liquid correlations build
up, until it eventually peaks in the vicinity of the infinite
system critical point (V/t = 2) and eventually saturate to its
limiting V/t — oo value by V/t ~ 100 which depends on
the particle-number parity: §5° — 0 for N odd and S5 —
In2 for N even. Exact diagonalization results up to L = 32
sites indicate that finite-size effects are most visible in the
Tomonaga-Luttinger liquid phase and this is especially true as
we approach the continuous phase transition at V/¢t = 2 where
a maximum begins to develop in the accessible entanglement
entropy.

Quantum information measures have been known for some
time to show signatures at continuous and discrete phase
transitions, both at 7 =0 and finite temperature [62-75],
including the case of spinless fermions under consideration
here [64,76—79]. A commonality amongst these studies is that
the information quantity in question (entanglement entropy,
negativity, concurrence, purity, etc.) develops some feature
akin to an order parameter. Here, an analysis of the exact
diagonalization data shows that the accessible entanglement
develops a maximum at a coupling strength ¥|max ~ 0(1).
Making the empirical observation that the accessible entan-
glement appears to behave like a susceptibility, we perform
an analysis of how the distance of the maximum from the
infinite system size critical point (§ = ¥|max — 2) depends on
the system size L to search for power-law scaling.

In order to investigate the existence of such scaling using
larger system sizes than are possible with ED, we employ
DMRG where the total number of particles N is fixed and
the resulting entanglement spectrum can be sorted according
to the corresponding numbers of particles n and N —n in
the two partitions of the system [29]. This allows for the
analysis of up to L = 98 sites at half-filling with the results
shown in Fig. 3 where the DMRG is benchmarked against
ED for N = 15 (periodic boundary conditions). Performing a
two-parameter fit of the DMRG data to ¥|max =24+ AN~V
supports a finite-size scaling form § ~ L~V (L = 2N), with
exponent 1/v >~ 0.3.

C. Reduction of entanglement due to particle fluctuations
between subsystems

The difference between the full and accessible von Neu-
mann entanglement entropies S; — i = AS| = H, is equal
to the Shannon entropy H, = — ), P, In P, of the particle-
number distribution [21]. From the asymptotic results in
Table I we expect AS; to be maximal in the limit of strong
attractive interactions where it behaves like In L as extensive
particle fluctuations between spatial subsystems contribute
to the entanglement. In the opposite limit V/t — oo, we
expect the difference to converge to a constant (N odd) or
zero (N even) where repulsion strongly suppresses number

3.50

2.00 | | | | | | |

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
;‘?\770‘3042

FIG. 3. Interaction strength at which the maximum S occurs
as a function of the total number of particles N. Filled shapes (N <
15) were computed with exact diagonalization while the remaining
symbols for N > 15 are the result of density matrix renormalization
group calculations. Finite-size corrections are investigated via a two-
parameter fit of InN vs In(V/t — 2) and support scaling toward
the infinite-size phase transition at V/t = 2. Inset: The interaction
dependence of ${° for various N in the neighborhood of % | max Shows
an evolving peak.

fluctuations. This behavior is confirmed in Fig. 4 where we
show the interaction dependence of AS; computed via exact
diagonalization for N = 15, 16 (large circles). Figure 4 also
includes the entanglement reduction computed from the nu-
merically determined variance of P, (small circles) under the
assumption that P, is a continuous Gaussian distribution with
mean (n) described by

P, =~

2
¢
>

ge]

—} = N((n),c?)  (25)
o

with associated Shannon entropy [see Eq. (16)]
Hy = AS; ~ 1 In(2mes?).

The resulting agreement between the exact AS; with the
asymptotic large-N result is surprisingly good over the entire
range of |V/t| < 2 where P, might still be expected to retain
strong signatures of discreteness at these finite values of N.
This is confirmed in the inset of the lower panel for N = 16
where we compare the exact finite-size probabilities P, with
a Gaussian distribution A/({n), 6?) having the same mean (n)
and variance o2 for a particular coupling V/t = —1.5.

Moreover, we can quantitatively capture the interaction
dependence of AS; (solid lines in Fig. 4) using the predicted
Gaussian form and variance of the number distribution at low
energies within the TLL regime (in the thermodynamic limit)
using oc2=K U}EF [21,50,51] where the Luttinger parameter K
is computed using Eq. (19) and o7 is the variance of P, for
free fermions. We note that we do not include a subleading
interaction-dependent term in o2 to prevent overfitting.

To better understand the highly Gaussian nature of the sub-
system particle-number probability distribution, we restrict to
the case of even N, where the symmetry of P, at half-filling
guarantees that (n) = N/2 is an integer such that 6n = n — (n)
is also an integer. Using the Poisson summation formula for a
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FIG. 4. Difference between the von Neumann and accessible
entanglement entropies AS; = S, — S (large circles) and the Shan-
non entropy of a Gaussian distribution %ln 2mea? (small circles)
as functions of interaction strength V/z. Results were determined
via exact diagonalization for the ground state of Eq. (18) with N =
15, 16. The observed agreement between the large and small symbols
demonstrates the rapid convergence of P, to a Gaussian distribution
as seen in the inset for V/t = —1.5 where N'({(n), 0'?) is a normal
distribution with the same mean and variance as P,. Solid lines are
computed from the theoretical variance of the number of fermions
in region A inside the Tomonaga-Luttinger liquid phase 0> = Ko,
where K is the Luttinger parameter computed via Eq. (19) and o7 is
the exact variance for free fermions (V/t = 0).

Gaussian function we find

3 o 27702[1 +2Ze‘2”2”2<5")2}, (26)

Sn=—00 Sn=1

where the summation on the right-hand side represents the
error in the normalization of P, which decreases with increas-
ing variance o2 (the odd N case is analogous'). For the data
presented in the inset of Fig. 4, the value of 62 is 0.772 (N =
16) leading to a corresponding error of ~107°. Taking the
derivative of both sides of Eq. (26) with respect to o> shows
that the variance of P, calculated using its expression in
Eq. (25) is well approximated by o2 in the same limits.

We can extend this analysis to the case of Rényi indices
o > 1 with exact digonalization results shown in Fig. 5. Here,

'For odd N, the relevant Poisson summation formula is
> e oexpl—(n+1/2)?/(20%)] = V2mo2{1+2> 5 (—1)™
exp[—2m202(8n)?]).

N =15
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FIG. 5. Interaction dependence of the difference between the
Rényi and accessible entanglement entropy AS, = S, — S5°°. Large
symbols are computed via exact diagonalization for the ground state
of the -V model at half-filling with a spatial partition corresponding
to L/2 sites. Small symbols are the classical Rényi entropies H,
computed from P,, the probability of finding n particles in the spatial
subregion. We observe H, < AS, with the lower bound being nearly
saturated over a wide range of interactions, but is worse for even
N and as « is increased from 2 to 10. This is quantified in the inset
which compares H,, computed from the exact probability distribution
P, at V/t = —1.5 with that obtained from a Gaussian with the same
mean and variance as P, for N = 16.

the difference between the spatial and accessible entangle-
ment is no longer exactly equal to H,, the classical Rényi
entropy of P,, but is instead given by the modified expres-
sion Hy;o({P, o)) as defined in Egs. (12)—(14). However, a
comparison of the large and small symbols in Fig. 5 indi-
cates that AS, ~ H, for |V/t| < 2. This can be understood
using our observation from Fig. 4 that P, is well approx-
imated by a continuous Gaussian distribution in the TLL
phase. In this case, the renormalized probability distribution
Pyo = (P)*/ Y, (P)* is also Gaussian with variance a(f =
o?/a. As shown in Eq. (15), this has the consequence that
Hyo({Py}) = H, and thus the difference AS, >~ H,. For
larger values of «, increased deviations between AS, and Hy
are observed which are quantified in the inset of of the lower
panel of Fig. 5 that compares H, computed for the exact P, at
V/t = —1.5 with that determined from a continuous normal
distribution having the same mean and variance as P, for N =
16. For o = 10, the effects of discreteness are amplified which
can be understood by returning to Eq. (26) with 02 = 0%/«
such that the correction term on the right-hand side becomes
more important as the width of the distribution is squeezed.
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FIG. 6. Rescaling the effective probability distribution defined
in Eq. (14) for the ground state of the 7-V model at half-filling
demonstrates the approximate proportionality relation P, ~ (P, )"/*
for interaction strengths corresponding to the charge density wave
(top row, V/t = 10), Tomonaga-Luttinger liquid (middle row, V/t =
—1.5), and cluster phases (bottom row, V/t = —10) for Rényi indices
a=1,2,510 A'= Zn(P,w)]/"‘ is a normalization constant and
P, is defined in Eq. (14). The shape of the distributions and
their connection to the physical ground states of the -V model are
discussed in the text.

D. Local particle-number distribution

The preceding analysis of the accessible entanglement
entropy has demonstrated the importance of the specific form
of the probability distribution P, and in Fig. 6 we examine it
more closely in the three phases of the -V model. For large
repulsive interactions where the system is in the CDW phase
(top panel, V/t =10), P, is dominated by configurations
where n = N/2 for N even and n = (N £ 1)/2 for N odd.
In the TLL phase where |V/t| < 2, we have already found
that P, is well described by a normal distribution (middle
row, V/t = —1.5). Finally, for strong attractive interactions
(bottom row, V/t = —10), P, is nearly flat, as the ground state
is a superposition of all spatial translations of the cluster of N
particles. Figure 6 also explains the empirical observation of
the semiequality AS, =~ H, for all interaction strengths as a
consequence of the proportionality P, , ~ Py by demonstrat-
ing the collapse of A,P,/* to P, for different values of «,
where A, is a normalization factor.

Motivated by the observation of the « collapse of the effec-
tive probability distribution P, ,, we test another asymptotic
result: in the TLL phase the variance o is expected to ap-

o
proach the value of Ko /. This means that for a fixed o, we
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FIG. 7. The effective probability distribution P,,—, for the
ground state of the #-V model at half-filling and for different inter-
action strengths V/¢ in the TLL phase is rescaled as [P, ], were K
is the corresponding Luttinger parameter computed from Eq. (19).
While the probabilities seem to show collapse near the middle of
the distribution where n >~ N/2, the inset shows strong additional K
dependence of the probability for fixed particle number n = 8 in A.
As discussed in the text, this lack of collapse is due to the subleading
interaction-dependent corrections to the asymptotic scaling of the
variance o2 in Eq. (27).

expect the asymptotically Gaussian distribution P, ,(K) for a
given interaction strength K to be proportional to [P, ,(K =
1)]'/K. This prediction is investigated in Fig. 7, where we
set @ = 2 and consider different interaction strengths in the
TLL phase where we have used Eq. (19) to convert between
V/t and the Luttinger parameter K. On a semilogarithmic
scale, the results suggest data collapse to P, (K = 1) near the
middle of the distributions corresponding to n >~ N/2 particles
in the subregion. However, a linear-linear analysis at n = N/2
exposes deviations, as illustrated in the inset of Fig. 7 (bottom
panel). This can be understood by considering higher-order
corrections to the asymptotic dependence of o2 on K, e.g., for
o = 1, the variance of P, is given by [50]

ar(=1)

7 27)

2 K
0" x — Inl +a; —

bid
where a; and a, are K-dependent constants and ¢ is the
macroscopic size of the spatial subregion. We have tested
that a more faithful rescaling of the distributions with o2 /0%
instead of K leads to improved data collapse, especially if
0% and o7 are calculated by fitting the middle portion of the
distribution to a Gaussian function, instead of requiring them

to be the variance of the corresponding distribution.
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FIG. 8. The filling fraction dependence of the variance o2 (black
dots) of the particle-number distribution P, compared to that com-
puted from the difference between the (exponentiated) accessible
and spatial entanglement entropies for o = 1 (large circles) and
o = 2 (small circles) using Eq. (29). Exact diagonalization results
in the ground state of the #-V model with V/t = —1.5 and L =
28 demonstrate consistency with the predicted asymptotic scaling
function F(N, £) given in Eq. (27) where we have fixed £ = L/2
(left panel) or set £ = N (right panel) and changed N from 2. .. 14.
In order to reduce finite-size effects, both of the partition size ¢ and
the total number of particles N are replaced by their corresponding
chord length X (¢) = (L/m)sin(w¢/L) and X (N), respectively. The
constants B; = (we)™' and B, = (27)~! are used to rescale the

entanglement reduction to obtain a prediction for the variance 2.

E. Results away from half-filling

Until now, we have focused on the case of a half-filled
lattice: N = L/2. A more general result for the scaling of the
variance of the particle-number distribution o2 (fluctuation
entanglement) in the TLL phase for a system of size L, N > 1
but with a finite filling fraction N/L is given by [51,80]

2 _ K | (mNey
o ~.7-"(N,£)_2n2ln|:( I ) +1}. (28)

In order to compute K above we note that when N/L # %
Eq. (19) is no longer valid and the V/t dependence of the
Luttinger parameter must be determined via a full numerical
solution of the Bethe ansatz equations for the corresponding
X XZ model at each filling fraction N/L. For £ >> 1, the above
expression simplifies to the known asymptotic result o2 ~
(K/m?) In(kplag)[21], where kg = mN/(Lay) is the Fermi
momentum and ay is a microscopic length scale.

In Fig. 8, we explore the scaling prediction of Eq. (28).
In the left panel we increase the number of fermions N in
a system with a fixed system size L = 28 and partition size
£ =L/2 = 14, while in the right panel we set L = 28 but
grow N and ¢ together, i.e., £ = N. To take into account
the finite-size and periodic boundary conditions in our ex-
act diagonalization calculations we replace ¢ with the chord
length X (¢) = (L/7)sin(xw€/L) and similarly N with X (N).
We observe that the numerical results are consistent with with
Eq. (28) for a modest system size.

We also investigate the prediction that P, should remain a
Gaussian distribution, even away from half-filling by solving

for o2 using Eq. (16) we find
0% = By exp(2AS,), (29)

where B, =o' ' /7 and taking the appropriate limit
yields B; = (e)~!. Fora = 1, we expect that Eq. (29) should
asymptotically hold, as long as P, is a Gaussian distribution
with variance 2. This is confirmed by the agreement between
the large circles and filled black dots in Fig. 8.

For o # 1, the validity of Eq. (29) requires that both P, ,, is
Gaussian, and that its variance o, behaves as 62 = o%/a. In
Fig. 8 we see that this is almost the case for @ = 2, where the
small deviations can be attributed to the squeezed variance
of 0} = 0%/2 compared to o* as discussed above. In other
words, even if the most relevant part of P, takes the form of
a discrete Gaussian distribution, the value of the parameter
o? in the exponent of exp[—(8n)?/(202)] can only approxi-
mately represent the variance of the true distribution, with an
accuracy that increases with o2 as derived from Eq. (26). The
weak oscillations which appear in Fig. 8 for « = 2 are due
to the same anomalous scaling corrections that appear in the
Rényi entanglement entropy with o > 1 [81].

V. DISCUSSION

In this paper we have presented a systematic study of
how nearest-neighbor interactions affect the amount of op-
erationally accessible entanglement that could be extracted
from the ground state of a system of one-dimensional spinless
lattice fermions where the total number of particles is fixed.
The existence of this superselection rule (fixed N) limits the
set of physical operations that can be performed with the
result that the entanglement entropy under a spatial mode bi-
partition provides an absolute upper bound on the accessible
entanglement. We have derived analytic results for the von
Neumann (¢ = 1) and generalized Rényi (« # 1) accessible
entanglement in a few special cases (see Table I). In the limit
of strong attractive interactions, the ground state is a super-
position of all translations of a single cluster of N fermions
and the accessible entanglement is reduced by In N from the
spatial entanglement saturating at a constant for large N. For
strong repulsive interactions at half-filling, the ground state is
a superposition of possible density waves commensurate with
the number of sites and the accessible entanglement is equal
to the spatial entanglement for even N (no reduction), while
it is reduced by a constant term to zero for odd N. Finally,
exactly at the first-order phase transition at V/t = —2, the
ground state is an equal weight superposition of all possible
fermion occupation states and the accessible entanglement is
identically zero for all filling fractions and system sizes. This
constitutes the maximal possible reduction, with all of the
spatial entanglement entropy, which scales as the logarithm
of the subsystem size, being due to particle fluctuations. This
result highlights the importance of understanding the role of
classical number fluctuations in itinerant many-body systems
when using entanglement entropy as a phase diagnostic. The
drastic reduction in entanglement after projection into fixed
particle-number subsectors is reminiscent of Yang’s n-paired
state [82] under the quantum disentangled liquid diagnostic
[83—85] which involves a partial projection onto spin degrees
of freedom.
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Within the Tomonaga-Luttinger liquid phase |V/t| < 2 the
asymptotic form of the particle-number distribution P, is
known to be Gaussian with a variance that scales as o> ~
(K/m*)Int for € > 1 [21,50]. o2 is parametrically large
enough within the quantum liquid (especially for attractive
interactions) that the discreteness of the underlying P, dis-
tribution can be neglected. Fluctuations in this regime are
not the only factor controlling entanglement, and the pres-
ence of interactions ensures that the spatial entanglement
entropy is reduced by the superselection rule only by a
subleading double logarithm. Thus, the fermionic Luttinger
liquid at half-filling can be considered a useful entanglement
resource.

At the continuous quantum phase transition between the
TLL and charge density wave, we observe a global maxima in
the accessible entanglement which demonstrates a susceptibil-
itylike scaling consistent with the known thermodynamic limit
critical value of V/t = 2. Confirmation of this scaling, espe-
cially away from half-filling, would require studying larger
system sizes than considered here. Ultimately, we are limited
by the well-known difficulties of DMRG when investigating
ground states with a large amount of entanglement [here
scaling like ~1In(L/2) for £ = L/2] near the critical point,
especially with periodic boundary conditions as considered
here. There are many natural extensions of this work utilizing
DMRG with access to quantum numbers describing subre-
gion particle occupation numbers, including investigating the
effects of boundary conditions, different partition sizes, and
extended range interactions.

The difference between the von Neuman (¢ = 1) accessi-
ble and spatial entanglement entropies, ASj, is exactly given
by the Shannon entropy H; of the corresponding particle-
number distribution P, [21]. A direct Rényi generalization
of this relation to o # 1 is not true [22], i.e., AS, # H,.
However, a sufficient condition for such a generalization is
that P, , o< (P,)* where the constant of proportionality can be
dependent on « but not on n. This is equivalent to requiring
that the trace of the projected reduced density matrix raised to
the power «, Tr pj , be independent of n. This is always the
case asymptotically for £ >> 1 when the number fluctuations
are Gaussian with a variance o2 that is inversely proportional
to o, (|V/t| < 2), but we find it to be approximately satisfied
throughout the phase diagram, even away from half-filling.
However, deviations occur in the limit of strong attractive
interactions, or when « >> 1. In this case, large o always tends
to reduce the variance of the effective distribution P, , and
thus for finite-size systems, the discreteness of the physical
number of particles in spatial subregion A can further spoil the
semiequality between AS, and H,. The fact that AS, =~ H,
when V/t > 1 is a consequence of the separation of scales
in this limit where P, is dominated by configurations with
n>~N/2.

This result accentuates the importance of the superselec-
tion rule in reducing accessible entanglement and provides
a direct route toward the experimental measurement of AS,
in systems of ultracold atoms via a quantum gas microscope
[86]. The required experimental protocol is discussed in detail
in Ref. [20] and an effective measurement of the fluctuation
entanglement for a single site has already been reported in a
quantum simulator of the Bose-Hubbard model [39]. Moving

to fermions is more challenging, although similar replica-
based methods have been previously employed [41].

Many open questions remain, and having demonstrated
the utility of the operationally accessible entanglement in an
exactly solvable model, it is natural to ask what this quantity
can tell us about nonintegrable models in one dimension
as well interacting fermions and soft-core bosons in higher
dimensions. In the latter case, the support of P, is no longer
bounded by the number of sites in the spatial subregion, and
the study of large systems could be performed via quantum
Monte Carlo simulations [19]. Recent work validating the
connection between subregion particle fluctuations and spatial
entanglement in a nonequilibrium setting [87] could also be
extended to probe how superselection rules may affect the
dynamics of accessible entanglement after a quantum quench.

From a quantum information perspective, it seems im-
portant to further explore how the accessible entanglement
relates to the plethora of measures [88-92] which do not
directly include physical restrictions on N, but aim to quantify
the technologically useful quantum correlations encoded in
interacting and indistinguishable itinerant quantum particles.
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APPENDIX: GROUND STATE OF THE ¢-V
MODEL FOR V/t = =2

Consider the Hamiltonian of the #-V model given in
Eq. (18) at the special interaction strength V = —2¢ corre-
sponding to the first-order phase transition:

L L
H=—t 2:(c:ci+1 +cj+lci)—2t2n,~n,-+1, (A1)

i=1 i=1

where we assume periodic boundary conditions for N even
and antiperiodic boundary conditions for N odd.

1. Fermion occupation basis

We study the effect of H in the N fermion occu-
pation basis {|y,)}, where the index a runs over all
of the (r) possible configurations. For example, for
N =2 and L =4 there are six such states: |y,) €
{1100}, 1010y}, |1001), |0110}), |0101), |0011)}.

Starting with the potential operator V = —2¢ ZiL:I NNy
which is diagonal in this basis, we have

Vi) = =2t n'V|y,),

where n{!" counts the number of bonds connecting two
occupied sites in the state |y,). The hopping operator T =
—t Z,-L:1(C,Tci+1 + Cj+1ci) turns |v,) into a superposition of
all the states |y,) connected to |,) by moving one particle to

(A2)
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a neighboring empty site. We can write

Tlya) ==t ) 1¥s),

beS,

(A3)

where S, is the resulting index set of occupation states |1,),
ie,beS, < (Yp|T|¥.) # 0. The cardinality of S, is

card(S,) = Zl

beS,

— ,(10) o1
=n, + n,

= 2N —2n{'V, (A4)
where n{!” (nV) counts the number of occupied-empty
(empty-occupied) bonds in |¥,) and in the last line we have
used the fact that the total number of particles on a ring is
(independent of the index a)

N =n{"" + (n{'” +n) /2. (A5)
A general matrix element in the fermion occupation basis is
given by

1, ceS,
Vel Ta) = —t{o’ otherwise (A6)
which is guaranteed to be real, thus,
Vel TWra) = WalTIe) = c €S, <= aecS.. (A7)

This is a useful result that can be used to swap the order of
restricted and unrestricted summations.
Let us now consider the action of 7 on a general state

=, Cal¥y,) where C, € C:

TI) =1 Ca) I¥n)

a beS,

=—rZ|wc D Ca Y (el

a beS,

——er D Cad s

a beS,

(A8)

where we have inserted a resolution of the identity operator
Yo W) (¥l =1 into the second line. Now, } . o 8.5 #

0 < c € S, and using Eq. (A7) we can write

D Ca) der=7) Ca

a beS, acs,

(A9)

Substituting into Eq. (A8) above and relabeling a <> ¢ leads

to the general result
TIW) =—t Y > Celvra). (A10)
a ceS,

Written in this form, we can combine Eq. (A10) with
Egs. (A2) and (A4) to compute the action of the full Hamilto-
nian at V = —2¢ on |W):

—IZ > Ce+2n0VC, (1)

ceS,

= —2N|W) =1 Y > " (Cc = Ca)lVa)-

a ceS,

H|V) =

(Al1)

2. Flat state
From Eq. (A11) it is immediately apparent that the flat state

/»Zm

is an eigenstate of H with energy —2¢N. To prove that |\Wy)
is indeed the ground state, we consider matrix elements of
the shifted operator H' = H + 2¢tN for a general state |W)
expanded in the fermion occupation basis:

|Wo) = (A12)

(WIH' W) = =t YY" (Ce — Ca) (¥l ¥a)Cy
a,b ceS,
=1y Y (C* = CiCo)
a ce§,
=1y Y (C)* = CrCy), (A13)
a ceS,

where we have swapped the summations (and relabeled) in
the last line making use of Eq. (A7). Now, we can rewrite the
matrix element as

(WIH'| ) = Z Y (Cul* = CiCe + IC* = C2Ca)
a ceS,
=%ZXS:|Q,—CZ (A14)
a ce§,

Thus, H' is a positive operator and the flat state |Wy) is the
ground state of H at V = —2¢ for fixed N.
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