

30 **Abstract**

31 Despite the fact that type III collagen is the second most abundant collagen type in the body, its
32 contribution to the physiologic maintenance and repair of skeletal tissues remains poorly understood. This study
33 queried the role of type III collagen in the structure and biomechanical functions of two structurally distinctive
34 tissues in the knee joint, type II collagen-rich articular cartilage and type I collagen-dominated meniscus.
35 Integrating outcomes from atomic force microscopy-based nanomechanical tests, collagen fibril nanostructural
36 analysis, collagen cross-linking analysis and histology, we elucidated the impact of type III collagen
37 haplodeficiency on the morphology, nanostructure and biomechanical properties of articular cartilage and
38 meniscus in *Col3a1^{+/−}* mice. Reduction of type III collagen leads to increased heterogeneity and mean thickness
39 of collagen fibril diameter, as well as reduced modulus in both tissues, and these effects became more
40 pronounced with skeletal maturation. These data suggest a crucial role of type III collagen in mediating fibril
41 assembly and biomechanical functions of both articular cartilage and meniscus during post-natal growth. In
42 articular cartilage, type III collagen has a marked contribution to the micromechanics of the pericellular matrix,
43 indicating a potential role in mediating the early stage of type II collagen fibrillogenesis and chondrocyte
44 mechanotransduction. In both tissues, reduction of type III collagen leads to increased collagen cross-linking
45 despite the decrease in modulus. This suggests that the disruption of matrix structure due to type III collagen
46 deficiency **outweighs** the stiffening of collagen fibrils by increased cross-linking, leading to a net negative
47 impact on tissue modulus. Collectively, this study is the first to highlight the crucial structural role of type III
48 collagen in both articular cartilage and meniscus extracellular matrices. We expect these results to expand our
49 understanding of type III collagen across various tissue types, and to uncover critical molecular components of
50 the microniche for regenerative strategies targeting articular cartilage and meniscus repair.

51

52

53 **Keywords:** Type III collagen, collagen fibrils, aggrecan, pericellular matrix, atomic force microscopy.

54 **1. Introduction**

55 Type III collagen (collagen III) is the second most abundant collagen type in human body [1], and a
56 crucial structural constituent of fibrillar collagen organization. Collagen III frequently co-assembles with
57 collagen I to form heterotypic type I/III fibrils in many collagen I-dominant fibrous tissues [2], and has been
58 attributed to controlling fibril diameter and involving in collagen cross-linking [3, 4]. A major role of collagen
59 III in human health is supported by phenotypes of individuals who possess an autosomal dominant mutation of
60 the human *COL3A1* gene. These vascular Ehlers-Danlos Syndrome (vEDS) patients are at increased lethal risk
61 of vascular and organ rupture, and exhibit signs associated with premature aging as well as degeneration of
62 musculoskeletal tissues [5-7]. Similarly, haplodeficiency of collagen III in mice (*Col3a1*^{+/−}) leads to the
63 development of vascular lesions reminiscent of human lesions [8] and diminished quality of cutaneous wound
64 repair during aging [9]. In the *Col3a1*^{+/−} model, reduction of collagen III also shows marked impacts on
65 neocortical development [10, 11], development and repair of the skeleton [12, 13], and tumor microenvironment
66 [14]. Homozygous ablation of collagen III in mice (*Col3a1*^{−/−}) results in a low survival rate (< 3.5%) to weaning,
67 with the few surviving adults succumbing to catastrophic failure of vascular and intestinal tissues [4]. Despite
68 long-standing recognition of collagen III's importance in tissue development, maintenance and repair, the
69 contribution of collagen III to the matrix collagen fibril structure and biomechanical properties of tissue remain
70 poorly defined [15]. While collagen III has been shown to frequently co-exist with collagen I [4, 16, 17],
71 previous studies also suggest that it interacts with collagen II [18, 19], the major collagen type in hyaline
72 cartilage. However, whether it plays a role as a crucial structural constituent of cartilage is unknown.

73 In this study, we queried the contribution of collagen III to the structure and biomechanics of knee
74 articular cartilage. Meanwhile, to compare the activities of collagen III in tissues consisting of collagen I versus
75 those of collagen II, we also studied the meniscus, a collagen I-dominated fibrocartilage. In the knee joint, the
76 two tissues work in concert to enable everyday activities. Articular cartilage provides compressive load bearing
77 [20], shock absorption through poroviscoelastic energy dissipation [21] and lubrication [22]. These functions
78 are endowed by its specialized extracellular matrix (ECM) consisting of collagen II/IX/XI fibrillar network

79 entrapping the highly negatively charged proteoglycan, aggrecan [23]. Meniscus mainly sustains the tensile
80 “hoop” stress to provide joint stability and facilitate load transmission and redistribution [24]. The meniscal
81 ECM consists of circumferentially oriented collagen I fiber bundles wrapped in radially oriented superficial
82 layer and radial tie fibers, with much lower proteoglycan content [25-27]. Despite the distinct structure and
83 mechanical functions of the two tissues, collagen III is present in both [19, 28, 29]. In human articular cartilage,
84 collagen III content increases in the territorial matrix of aging individuals, although it remains unclear whether
85 this increase represents a protective response to cartilage degeneration or a contributor to the pathological
86 process [30]. While the overall collagen III content (~ 1-5% of total) is low compared to other ECM
87 components in articular cartilage, its concentrated distribution surrounding the cellular microenvironment
88 suggests that collagen III could play a profound role in regulating cell activities. In addition, unlike collagen II
89 fibrils, collagen III undergoes highly dynamic metabolic turnover *in vivo*, as evidenced by the high
90 concentration of collagen III N-propeptides in urine [31]. The content of collagen III thus could vary markedly
91 at different stages of development and disease. In human OA, collagen III is significantly up-regulated in
92 cartilage [30] and its degradation neo-epitopes could potentially serve as a biomarker of cartilage degeneration
93 [32]. In healthy meniscus, collagen III is expressed throughout the tissue although more concentrated along the
94 exterior peripheral border, on the surface, and in the vessels of the outer zone. In degenerative meniscus,
95 collagen III content decreases proportionately to the degree of degradation [33]. Determination of the role of
96 collagen III in regulating the matrix structure and biomechanical functions of these tissues would have
97 tremendous implications for the development of preventative and therapeutic strategies to improve the health of
98 articular cartilage and meniscus [34, 35].

99 The objective of this study was to determine if collagen III is a key constituent in the structural integrity
100 and biomechanical functions of articular cartilage and meniscus. To achieve this goal, using *Col3a1^{+/−}* mice, we
101 studied the impact of collagen III reduction on the structure and biomechanical properties of both tissues.
102 Applying electron microscopy, we measured the nanostructure of collagen fibrils on tissue surfaces and in the
103 matrix interior. Applying our recently established AFM nanomechanical tests [36-39], we evaluated the impact

104 of collagen III reduction on the biomechanical properties of both tissues. In cartilage, the pericellular matrix
105 (PCM) has distinct composition and structure from the territorial/interterritorial domains (T/IT-ECM) that are
106 further-removed from cells [40, 41], and collagen III is preferentially distributed in the PCM [30, 42]. We thus
107 also studied the role of collagen III in the micromechanics of cartilage PCM. Further, since collagen III actively
108 participates in cartilage collagen cross-linking [19], we analyzed the changes in collagen cross-links upon
109 collagen III reduction. Outcomes showed that the reduction of collagen III leads to substantial alteration of
110 collagen fibril architecture, cross-linking as well as biomechanical properties of both tissues. These evidences
111 highlighted collagen III as an indispensable matrix constituent in both collagen II-rich articular cartilage and
112 collagen I-dominated meniscus.

113 2. Results

114 2.1 Reduction of collagen III does not result in gross-level phenotype in articular cartilage.

115 In *Col3a1*^{+/−} mice, the expression of *Col3a1* was reduced in both cartilage and meniscus by ≈ 50% in
116 comparison to the wild-type (WT) control, while other major matrix genes were not significantly altered, as
117 shown by qPCR (Fig. 1a, *n* = 4 biological repeats for WT control, *n* = 3 for *Col3a1*^{+/−}). We then investigated the
118 presence and distribution of collagen III via immunohistochemistry (IHC). At 2-week age, we did not detect a
119 clear distribution pattern of collagen III throughout the matrix (Fig. 1b). At 2-month age, collagen III became
120 more concentrated in the PCM (Fig. 1b), similar to that of healthy adult human cartilage [30, 42]. At the protein
121 level, *Col3a1*^{+/−} cartilage showed reduced immunostaining of collagen III, but retained its spatial distribution
122 (Fig. 1b). Here, we validated the specificity of collagen III antibody by western blot analysis on recombinant
123 human collagen I and III, as well as collagen II extracted from human cartilage (Fig. 1c). Despite the reduction
124 of collagen III, *Col3a1*^{+/−} mice did not show noticeable gross defects in cartilage, as signified by similar
125 histological staining of sulfated glycosaminoglycans (sGAGs) (Fig. 1d), cartilage thickness and total amount of
126 sGAGs (Fig. 1e).

127 2.2 Reduction of collagen III leads to reduced modulus of cartilage and meniscus.

128 In young adult mice, despite a lack of obvious histological phenotype of the knee joint, both articular
129 cartilage and meniscus showed significantly lower moduli associated with the reduction in collagen III (Fig. 2).
130 In 2-month-old mice, the modulus of cartilage in *Col3a1^{+/−}* mice (0.9 ± 0.6 MPa, mean \pm 95% CI, $n = 7$) was
131 lower than WT (2.3 ± 0.6 MPa, $n = 7$) by 59 ± 4 % ($p = 0.011$, Fig. 2a). Since cartilage modulus is directly
132 governed by two major ECM constituents, the aggrecan aggregates and collagen fibrillar network [43], we
133 delineated the impact of collagen III deficiency on each constituent by testing the tissue after enzymatic
134 removal of the sGAGs on aggrecan. The removal of sGAGs, as expected, significantly reduced cartilage moduli
135 in both genotypes. Further, after sGAG removal, the modulus of *Col3a1^{+/−}* cartilage (0.2 ± 0.1 MPa, $n = 5$),
136 which is now dominated by the collagen fibrillar network, remained to be lower than that of the WT (0.7 ± 0.2
137 MPa, $n = 6$) by 72 ± 7 % ($p < 0.001$). Interestingly, at 2-week age, cartilage from *Col3a1^{+/−}* mice also had
138 reduced modulus (0.7 ± 0.5 MPa versus 1.3 ± 0.2 MPa in WT, $n = 5$, $p = 0.016$), albeit to a lesser extent ($45 \pm$
139 6 %). Comparing the two ages, we found an age-associated modulus increase in WT cartilage (1.7 ± 0.1 fold
140 from 2-week to 2-month age, $p < 0.01$), illustrating the expected matrix stiffening during skeletal maturation
141 [20]. However, such trend was absent in *Col3a1^{+/−}* cartilage ($p = 0.876$), suggesting that collagen III may be
142 critical for the post-natal maturation of cartilage. For the meniscus, *Col3a1^{+/−}* tissues also had lower modulus
143 than that of WT at 2-month age (2.1 ± 0.8 MPa versus 3.7 ± 1.2 MPa, $n = 7$, $p = 0.028$), but not at 2-week age
144 (0.9 ± 0.5 MPa versus 1.1 ± 0.2 MPa in WT, $n = 5$, $p = 0.548$, Fig. 2b).

145 Given that collagen III is more concentrated in cartilage PCM (Fig. 1b), we further tested if collagen III
146 deficiency impaired the local micromechanical properties of the PCM in 2-month-old cartilage, using our
147 recently established, immunofluorescence (IF)-guided AFM nanomechanical mapping in combination with
148 Kawamoto's film-assisted cryo-sectioning [44, 45]. Here, reduction of collagen III did not significantly change
149 the thickness of the PCM (Fig. 3a, b, ≥ 120 cells from $n = 6$ animals, $p = 0.448$), as measured from the IF
150 images of collagen VI, one biomarker of cartilage PCM [46, 47]. Guided by the IF-labelling of collagen VI, we
151 separated the micromodulus of the PCM and the T/IT-ECM (Fig. 3c). In both genotypes, as expected [48], the
152 PCM had lower modulus than the T/IT-ECM. Also, consistent with the contrast observed at the tissue-level,

153 cartilage of *Col3a1*^{+/−} mice showed significantly lower micromodulus than that of WT mice in both the PCM
154 and T/IT-ECM (≥ 12 regions of interest (ROIs) from $n = 6$ animals, > 600 locations for PCM, $p = 0.004$; $>$
155 2,800 locations for T/IT-ECM, $p = 0.015$, Fig. 3d).

156 **2.3 Reduction of collagen III leads to thickened collagen fibrils with increased heterogeneity.**

157 We also detected significant changes in collagen fibril nanostructure on the surface (Fig. 4) and in the
158 matrix interior of both articular cartilage (Fig. 5) and meniscus (Fig. 6) in *Col3a1*^{+/−} mice. Consistent with the
159 literature, the cartilage surface in both genotypes was characterized by transversely random fibrils [49], while
160 the meniscus surface was dominated by circumferentially aligned fibrils [36] (Fig. 4a). On the surface of
161 *Col3a1*^{+/−} cartilage, there was a significant increase in fibril diameter at 2-month age ($p < 0.001$, ≥ 200 fibrils by
162 SEM from $n = 5$ animals), but not at 2-week age ($p = 0.257$), as measured by SEM (Fig. 4; Table 1). On the
163 other hand, we did not detect significant changes in fibril heterogeneity on the surface (*F*-test, $p = 0.539$ for 2-
164 week age, $p = 0.060$ for 2-month age, data not shown). This thickening effect was also observed in the
165 middle/deep zone interior, and present in both the PCM and the T/IT-ECM, as measured by TEM ($p < 0.001$, \geq
166 130 fibrils from $n = 4$ animals for each domain, Fig. 5a, b; Table 2). Meanwhile, reduction of collagen III also
167 significantly increased fibril heterogeneity in both the PCM and T/IT-ECM (*F*-test, $p < 0.001$, Fig. 5c). In 2-
168 month-old WT cartilage, the T/IT-ECM had significantly thicker collagen fibrils compared to the PCM, as
169 expected ($p < 0.001$), while such contrast was absent in *Col3a1*^{+/−} cartilage ($p = 0.170$), illustrating the impaired
170 fibril growth from the PCM to the T/IT-ECM in the deficiency of collagen III (Table 2).

171 Similar to the case of cartilage, *Col3a1*^{+/−} meniscus at 2-month age also exhibited fibril thickening both
172 on the surface ($p < 0.001$, ≥ 200 fibrils, $n = 5$, Fig. 4) and in the interior ($p < 0.001$, ≥ 600 fibrils, $n = 4$, Fig. 6a,
173 b). On the surface, there was no significant change in the fibril heterogeneity (*F*-test, $p = 0.133$, data not
174 shown). However, in the interior, there was a substantial increase in fibril diameter heterogeneity ($p < 0.001$,
175 Fig. 6c) and decrease in fibril number ($p < 0.001$, Fig. 6d). Moreover, the distribution of *Col3a1*^{+/−} meniscus
176 collagen fibrils showed a distinctive bimodal distribution (bimodality coefficient $b = 0.57 > 0.55$, the threshold

177 for bimodality [50]), whereas the second frequency peak signified substantially thickened fibrils ($\mu_2 = 158.3$
178 nm, Fig. 6b). This was different from the collagen fibril diameter distributions of in the meniscus of WT mice (b
179 = 0.44) and in the cartilage of both genotypes, all of which could be described by the unimodal normal
180 distribution.

181 **2.4 Reduction of collagen III leads to increased amount of collagen cross-links.**

182 According to the amino acid analysis, WT and *Col3a1*^{+/−} tissues had similar total collagen content (Fig.
183 7a) and the extent of lysine hydroxylation of collagen (data not shown). From the collagen cross-link analyses,
184 three major cross-link types were identified in articular cartilage, one immature, reducible type,
185 dihydroxylysinonorleucine (DHLNL), and two mature, non-reducible types, pyridinoline (Pyr, or hydroxylysyl
186 pyridinoline) and deoxypyridinoline (d-Pyr, or lysyl pyrodinoline). In the meniscus, DHLNL and Pyr were also
187 detected, while d-Pyr was absent. For articular cartilage, *Col3a1*^{+/−} tissue had significantly higher amount of
188 both reducible (DHLNL) and non-reducible (d-Pyr) cross-links than WT ($n = 4$ biological repeats, $p < 0.05$, Fig.
189 7b), but similar amount of Pyr cross-links ($p = 0.250$). For the meniscus, *Col3a1*^{+/−} tissue had significantly
190 higher amount of both DHLNL and Pyr cross-links ($p < 0.01$, $n = 3$, Fig. 7b). Collectively, *Col3a1*^{+/−} tissues had
191 higher amount of total aldehydes, which are required for the formation of collagen intermolecular cross-links,
192 and are generated by the action of lysyl oxidase (LOX) [51]. Interestingly, despite this increase in total
193 aldehydes and collagen cross-links, we did not detect significant changes in the overall LOX content in both
194 articular cartilage ($p = 0.112$) and the meniscus ($p = 0.779$) in comparison to the WT control, as measured by
195 western blot (Fig. 7c).

196 **2.5 Reduction of collagen III does not markedly alter subchondral bone structure.**

197 Given the importance of the subchondral bone in maintaining joint health [52], we assessed the structure
198 of subchondral bone plate (SBP) and subchondral trabecular bone (STB) using micro-computed tomography
199 (μ CT, $n = 5$) (Fig. 8). We did not find significant differences in their structural parameters, including SBP
200 thickness, STB bone volume fraction (BV/TV), trabecular number (Tb.N), thickness (Tb.Th) and separation

201 (Tb.Sp). The absence of structural phenotype in the regions of SBP and STB suggests that reduction of collagen
202 III does not directly affect the formation of bony tissues in these specific regions of young male mice examined
203 in this study. Therefore, the observed phenotype in articular cartilage and meniscus is less likely to be a
204 secondary effect arising from subchondral bone abnormalities.

205 **3. Discussion**

206 **3.1 Role of collagen III in cartilage matrix structure and mechanical properties**

207 This study shows that type III collagen is a crucial matrix constituent for the establishment of normal
208 cartilage ECM. According to the outcomes from sGAG-removed cartilage, which represents mechanical
209 properties associated with the collagen fibrillar network, the lower modulus of *Col3a1*^{+/−} tissue (Fig. 2a)
210 signifies the impairment of collagen fibril structural integrity with the deficiency of collagen III. The
211 biomechanical outcomes (Fig. 2a) thus provide direct evidence supporting the hypothesis proposed by Eyre and
212 co-workers, that is, collagen III functions as a covalent fibril network modifier that strengthens the collagen II
213 fibrillar network [19]. In cartilage, most collagen III molecules retain the cysteine-rich N-propeptides during
214 post-translational modification [19] (Fig. 9a). The pN-collagen III molecules primarily co-assemble on the
215 surfaces of collagen II fibrils, and form covalent cross-links with both collagen II and other collagen III
216 molecules at the N- and C-telopeptides as well as the triple helix domain (Lys⁸⁷ and Lys⁹³⁰) [19]. It is suggested
217 that in cartilage, collagen III also exists in the form of thin filamentous polymers of pN-collagen III molecules
218 cross-linked head-to-tail at 4D-staggered sites, which are cross-linked laterally with collagen II fibril surfaces to
219 act as a “molecular glue”, thereby enhancing inter-fibrillar cohesion [19]. Moreover, our observation on the
220 nanostructural phenotype of *Col3a1*^{+/−} cartilage (Figs. 4, 5) suggests that collagen III not only acts to strengthen
221 the collagen fibrillar network, but also maintains the fibril homogeneity and limits aberrant fibril thickening. It
222 is possible that by covalently cross-linking with collagen II on fibril surfaces, collagen III effectively inhibits
223 further lateral growth of fibrils. In addition, the non-helical N-propeptides could accumulate on fibril surfaces to
224 provide steric hindrance, further limiting fibril lateral growth [53] (Fig. 9a). Collectively, collagen III mediates

225 the assembly of collagen II fibrils in a manner similar to its canonical function in limiting the formation of
226 thickened collagen I fibrils in other fibrous tissues [4, 16, 17], and its contribution is crucial to establishing the
227 structural integrity and biomechanical functions of normal cartilage ECM during post-natal growth (Fig. 9b).

228 In addition to its influence on the collagen fibrillar network, collagen III also impacts the contribution of
229 aggrecan and its sGAGs to cartilage biomechanics. While collagen III does not directly influence the sGAG
230 content (Fig. 1c, d), the magnitude of modulus contributed by sGAGs to cartilage ($E_{\text{ind, sGAGs}} \approx E_{\text{ind, untreated}} - E_{\text{ind, C}^{\text{ABC}}}$) is decreased with the reduction of collagen III (≈ 0.63 MPa for $Col3a1^{+/-}$ versus ≈ 1.60 MPa for WT, Fig.
231 2). This effect can also be attributed to the impairment of collagen fibril structure. In cartilage, the GAG-GAG
232 spacing of aggrecan ($\approx 2-5$ nm) is comparable to the Debye length (≈ 1 nm), which renders the molecular
233 mechanics of aggrecan to be highly sensitive to its nanoscale conformation [54, 55]. In the ECM, the porous
234 collagen fibrillar network entraps the aggrecan-HA aggregates to establish the highly compressed aggrecan
235 conformation, i.e., a $\approx 50\%$ compressive molecular strain even in unloaded cartilage [20]. The weakened
236 collagen fibrillar network due to collagen III deficiency could have decreased capability of confining the highly
237 compressed aggrecan molecules (Fig. 9b). Here, our results show that the altered conformation of aggrecan, as a
238 result of collagen III deficiency, leads to largely reduced $E_{\text{ind, sGAGs}}$ (Fig. 2a), supporting the hypothesis that
239 aggrecan possibly experiences lower molecular compressive strain in $Col3a1^{+/-}$ cartilage.
240

241 **3.2 Contribution of collagen III to the micromechanics of cartilage pericellular matrix**

242 In cartilage matrix, the PCM is the structurally distinctive, $\sim 2-5$ μm -thick microdomain that is in
243 immediate contact with chondrocytes [40]. Being the ECM-cell interface, the PCM plays pivotal roles in
244 sequestering growth factors [56], transducing mechanochemical signals [57, 58] and protecting cells
245 from overloading [59, 60], which together regulate the homeostasis of healthy cartilage. In healthy cartilage,
246 collagen III is more concentrated in the PCM [30, 42] (Fig. 1b). Since the PCM is also where the initial matrix
247 molecular assembly occurs [61], collagen III is poised to play a role in mediating the initial stage of collagen
248 II/IX/XI fibril formation. Here, reduction of collagen III significantly decreases the micromodulus of the PCM

249 (Fig. 3), and has a more pronounced impact on the fibril nanostructure in the PCM ($48 \pm 9\%$ increase in d_{col})
250 than in the T/IT-ECM ($16 \pm 7\%$ increase) (Fig. 5). On the other hand, since the formation of the T/IT-ECM
251 depends on the initial fibril assembly in the PCM, the disrupted fibril structure of the PCM in *Col3a1*^{+/−} mice
252 thus also alters the fibril structure in the T/IT-ECM (Figs. 3, 5). Moreover, the PCM has higher concentrations
253 of proteoglycans such as aggrecan, decorin, biglycan and perlecan [62], indicating that the PCM has higher
254 local molecular compression and osmotic swelling pressure than the T/IT-ECM. The higher concentration of
255 collagen III in the PCM could thus strengthen the collagen II fibril network's capability of confining and
256 retaining the highly compressed proteoglycans, overcoming the challenge that collagen II fibrils are thinner and
257 weaker in the PCM. Given the fast turnover of collagen III in vivo [31], its possible involvement in OA
258 pathology [30, 32] and its preferential distribution in the PCM (Fig. 1b), collagen III could potentially function
259 as a transient repair collagen, which temporarily stiffens the PCM in OA or regeneration. This role can protect
260 chondrocytes from overloading and influence the homeostatic balance of chondrocyte metabolic activities in
261 response to their micromechanical niche, i.e., the PCM. We thus hypothesize that a more comprehensive
262 description of the collagen fibrillar network in cartilage ECM is a collagen II/III/IX/XI heterotypic network
263 (Fig. 9), in which, the content and participation of collagen III could vary markedly with development and
264 disease. We further hypothesize that the role of collagen III is to regulate collagen II fibril structural integrity,
265 aggrecan molecular conformation, and thus, normal cartilage biomechanical functions and chondrocyte
266 mechanotransduction.

267 **3.3 Comparison of collagen III contributions to the matrices of articular cartilage and meniscus**

268 For the meniscus, the increase in fibril diameter and heterogeneity, and decrease in fibril density and
269 tissue modulus with collagen III reduction (Figs. 2, 4, 6), are in alignment with the known activities of collagen
270 III in mediating collagen I fibrillogenesis [4, 16, 17]. Notably, the appearance of much thickened fibrils ($\mu_2 =$
271 158.3 nm in the bimodal distribution) and the substantial reduced amount of thinner fibrils (< 30 nm) in
272 *Col3a1*^{+/−} meniscus (Fig. 6b) highlight the role of collagen III in limiting aberrant fibril thickening. In

273 comparison, while cartilage also shows reduced amount of thin fibrils, the much thickened fibrils are absent in
274 cartilage matrix (Fig. 5b). This could be attributed to the lower inherent capability of collagen II in forming
275 dramatically thickened fibrils [63], as well as the presence of highly concentrated proteoglycans that provide
276 interfibrillar spacing and limit fibril overgrowth [62]. In addition, while the hypothesized collagen III thin
277 filamentous network is originally proposed in cartilage [19], it is possible that collagen III also plays a similar
278 role in strengthening the collagen I fibers, given its ability of retaining the N-propeptides and forming covalent
279 cross-links on collagen I fibril surfaces [16]. Therefore, in both articular cartilage and meniscus, collagen III
280 limits fibril thickening during development in both cartilage and meniscus, and has a more pronounced impact
281 on the biomechanics of articular cartilage (Fig. 2). One possible explanation is that in cartilage, collagen III
282 could impact not only the collagen fibril nanostructure, but also the molecular conformation of aggrecan
283 integrated within the collagen fibrillar network.

284 **3.4 Correlation between collagen cross-linking and tissue modulus**

285 In both articular cartilage and meniscus, we show that reduction of collagen III leads to decreased tissue
286 modulus (Fig. 2), despite the increase in collagen cross-link density (Fig. 7b). Here, the increased cross-linking
287 in collagen III-deficient tissues potentially relates to its effect on fibril thickening. Cross-linking of collagen is
288 initiated by the conversion of lysine or hydroxylysine residues in telopeptides to aldehydes catalyzed by the
289 action of LOX and its isoforms [51]. A previous study showed that LOX is active on the aggregate of collagen
290 molecules on fibrillar surfaces, but not on collagen monomers [64]. The thickening of fibrils, as a result of
291 collagen III deficiency, could increase the binding of LOX, and thus, LOX-mediated conversion of aldehydes
292 and subsequent formation of cross-links. It is also possible for collagen III to undergo different paths of post-
293 translational modifications from collagen II, thereby leading to a change in the cross-link pattern within the
294 fibril network. Meanwhile, the absence of changes in LOX protein level under collagen III deficiency (Fig. 7c)
295 supports that collagen III regulates the activities of LOX by mediating fibril structure, organization and possibly
296 cross-linking pattern, rather than by increasing the level of LOX proteins.

297 The finding that tissue modulus does not positively correlate with cross-link density may seem counter
298 intuitive. However, it emphasizes that tissue mechanical properties are an integrated manifestation of both the
299 composition and hierarchical structure of the matrix [65]. The moduli of both cartilage and meniscus are
300 governed by not only the amount of collagen cross-links, but many other factors, such as cross-linking pattern
301 (e.g. molecular distribution, intra- versus inter-fibrillar cross-links), fibril organization, packing and collagen-
302 proteoglycan integration. Under the deficiency of collagen III, although increased cross-link density may stiffen
303 individual collagen fibrils, many other phenotypic changes could contribute to the reduced tissue modulus.
304 These include the disruption of collagen fibril nanostructure, impairment of cross-linking patterns, possible
305 reduction of the strengthening effect from the collagen III filamentous network, and in cartilage, possible
306 decrease of aggrecan molecular strain. All these changes can alter matrix deformation modes at the nanoscale,
307 such as fibril bending, uncrimping, sliding, and in cartilage, electrical double layer repulsion associated with
308 aggrecan compression. Thus, with regards to the net impact of collagen III deficiency on tissue biomechanics,
309 our results show that these structural defects outweigh the effect of increase in cross-linking.

310 Our results corroborate with the literature suggesting that while collagen cross-linking is an important
311 determinant of tissue integrity, the cross-link density alone is not a direct indicator of tissue modulus. Amongst
312 different connective tissues, the ones with highest collagen cross-link densities do not have the highest modulus,
313 i.e., the nucleus pulposus [66]. Here, we also show that articular cartilage has lower modulus than the meniscus,
314 despite having higher cross-link density (Figs. 2, 7). Within the same tissue type, cross-link density alone also
315 does not positively correlate with tissue modulus. For example, fibromodulin-null tendon develops weakened
316 tensile modulus despite having increased collagen cross-linking than the WT control. This is attributed to the
317 altered cross-linking pattern, where under the loss of fibromodulin-modulated site-specific collagen cross-
318 linking, a higher portion of cross-links are formed at the C-telopeptide, resulting in impaired integrity of cross-
319 links [67]. To this end, although a clear, positive correlation between modulus and cross-linking is reported in
320 developing embryonic tendon [68], this stiffening effect is also accompanied with other structural changes
321 during development, such as increased collagen deposition and organization. In adult tendons, even without

322 genetic perturbation of matrix structure, correlation between modulus and cross-linking is weak and
323 inconclusive [69, 70].

324 **3.5 Limitations and outlook**

325 It is worth noting that we did not detect marked gross-level phenotype in *Col3a1*^{+/−} cartilage via
326 histology (Fig. 1d), despite the significant changes in matrix nanostructure and biomechanical properties. This
327 could be attributed to the fact that this study mainly focuses on young mice (up to 2-month age). It is possible
328 that longer term studies in aged mice will reveal the development of gross pathology associated with the
329 disturbances in tissue structure and biomechanics. In fact, vEDS patients without a familial history are typically
330 not diagnosed until the fourth decade of life [71]. Furthermore, while this study did not detect significant
331 phenotype in the subchondral bone of young male mice (Fig. 8), given that subchondral bone development is
332 sex-dependent [52], we cannot rule out the possibility that loss of collagen III could affect the subchondral bone
333 in female mice or at older ages. In fact, female *Col3a1*^{+/−} mice are known to develop significant structural
334 defects in the distal femur trabecular bone at both young adult and old ages [12]. Moreover, while this study
335 focuses on normal joint maturation, collagen III could play an even more substantial role in tissue remodeling
336 and degeneration during aging and post-traumatic disease progression [32, 42, 72]. Our ongoing studies thus
337 aim to establish tissue-specific *Col3a1* knockout mice, which will enable us to delineate collagen III activities at
338 different ages, and to separate its roles in normal homeostasis, disease and associated repair processes.

339 **4. Conclusions**

340 This study highlights that type III collagen is a crucial structural constituent of both collagen I-
341 dominated meniscus and collagen II-rich articular cartilage. In both tissues, collagen III maintains fibril
342 homogeneity and limits aberrant fibril thickening, and in cartilage, such effect could also influence the
343 integration of aggrecan network (Fig. 9). In cartilage, the influence of collagen III is more pronounced in the
344 PCM, which indicates potential roles of collagen III in early fibrillogenesis, as well as in chondrocyte
345 mechanotransduction. Notably, while reducing collagen III increases collagen cross-link density, it decreases

346 tissue modulus resulting from the pronounced structural defects. In summary, our results extend current
347 understanding of collagen III structural roles in matrix assembly, as well as the composition-structure-function
348 relationships of articular cartilage and meniscus. Building on this study, we expect that an in-depth
349 understanding of collagen III will provide a new basis for improving cartilage and meniscus regeneration by
350 modulating collagen III-directed molecular and cellular responses.

351 **5. Methods**

352 *5.1 Animal model*

353 Animal use and care were approved by the Institutional Animal Care and Use Committee (IACUC) at
354 the University of Pennsylvania, following the NIH Guide for the Care and Use of Laboratory Animals. All mice
355 used in this study were generated from the breeding pairs of *Col3a1* heterozygous (*Col3a1*^{+/−}) mice in the
356 BALB/c strain (Jackson Laboratories, Bar Harbor, ME). These mice were generated by homologous
357 recombination via replacing the promoter region and first exon of the *Col3a1* gene with a 1.8-kb PGK neo-
358 cassette [4], generating a global knockout of *Col3a1*. All the animals used here were genotyped for *Col3a1* by
359 PCR of DNA extracted from tail biopsy specimens and were microchipped for identification (AllflexFDX-B
360 transponders, Allflex, Dallas, TX).

361 Two-week and two-month old wild-type (WT) and *Col3a1*^{+/−} male mice were chosen for this study. The
362 null mice (*Col3a1*^{−/−}) were not included due to their high perinatal lethality [4, 14]. For morphological analyses,
363 for each mouse, either the left or the right side of the hind knee joint was chosen for µCT scanning after
364 fixation, then processed for histology. Articular cartilage and meniscus were harvested from the other side of
365 the knee joint. They were first used for AFM-nanomechanical tests, and then, processed for surface collagen
366 fibril structure analysis via scanning electron microscopy (SEM). Femoral head cartilage from the same mice
367 was used for sGAG content quantification. Additional mice were used for transmission electron microscopy
368 (TEM), quantitative RT-PCR (qPCR) analysis, western blot and collagen cross-linking analyses. For qPCR,
369 sGAG, western blot and cross-linking analyses, each biological repeat consists of 6 femoral head cartilage
370 tissues or the non-ossified central region of 12 menisci pooled from 3 mice of the same age and genotype.

371 5.2 Histology, immunohistochemistry and sGAG analysis

372 Knee joints were fixed in 4% paraformaldehyde (PFA) for 24 hrs, decalcified in 10% EDTA for 7 days
373 for 2-week-old joints and 21 days for 2-month-old joints. Paraffin-embedded samples were sectioned into 6-
374 μm -thick slices at the sagittal plane, then stained by Safranin-O/Fast Green to assess the joint and cell
375 morphology as well as gross-level staining of sGAGs ($n \geq 6$). The thicknesses of uncalcified and total cartilage
376 were quantified from Safranin-O/Fast Green images with a distinctive tidemark. In brief, for each section, a
377 region of interest (ROI) was defined in the each of the anterior, middle and posterior regions of both femur and
378 tibia joints. For each ROI, the uncalcified and total cartilage thicknesses were measured within an $\sim 100 \mu\text{m}$ -
379 long cartilage surface using ImageJ. The mean cartilage thickness of each animal was calculated by averaging
380 measurements from three sections spaced $\sim 50 \mu\text{m}$ apart [73]. For immunohistochemistry (IHC) ($n = 5$),
381 paraffin-embedded sections were incubated in 60°C for 1 hr, deparaffinized and rehydrated with xylene and
382 series-diluted ethanol-water solutions, treated with 0.1% pepsin (P7000, Sigma, Milwaukee, WI) at 37°C for 10
383 min to retrieve antigen, quenched endogenous peroxidase activity with 3% H₂O₂ in methanol, blocked with 5%
384 BSA, 1% Goat Serum in PBS, followed by avidin-biotin blocking (SP-2001, Vector Laboratories, Burlingame,
385 CA), then incubated with primary antibody (collagen III: AB7778, Lot #GR191100-2, 1:1000 dilution, Abcam,
386 Cambridge, MA) at 4°C overnight. Next day, sections were washed with PBS, then incubated with secondary
387 antibody (65-6120, 1:1000 dilution, ThermoFisher, Foster City, CA) at room temperature for 1 hr and vectastain
388 ABC (PK-7200, Vector Laboratories) at room temperature for 30 min, respectively. Sections were then
389 incubated with DAB (ImmPACT SK-4105, Vector Laboratories) for 5-10 min, counter-stained with
390 hematoxylin, and dehydrated with series-diluted ethanol-water solutions and xylene, prior to mounting and
391 imaging. Internal negative control was prepared following the same procedures except without the primary
392 antibody incubation. For sGAG quantification, femoral head cartilage was digested overnight at 60°C in papain
393 mixture (2% papain, 10 mM Cysteine HCl, 63.6 mM EDTA, 0.1M sodium acetate trihydrate), and analyzed via
394 the standard dimethylmethylene blue dye assay (DMMB) [74].

395 5.3 Quantitative RT-PCR

396 Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR, or qPCR) was performed on
397 both femoral head cartilage and meniscus from 2-month old mice. RNA extraction was performed by
398 homogenizing tissue in TRI-reagent and phase-separated in 1-bromo-3-chloropropane. RNA quality was
399 assessed using the NanoQuant Plate (Tecan, Switzerland) with the Infinite 200 plate reader. Total RNA (3 ng
400 per well) was subjected to reverse transcription using the TaqMan reverse transcription kit (N8080234,
401 ThermoFisher), with amplification carried out via the PowerUp SYBR Green Master Mix (A25742,
402 ThermoFisher) on a RealPlex 4S master cycler (Eppendorf AG, Hamburg, Germany). The primer sequences
403 used in this study were listed in Table 3.

404 5.4 Biomechanical analyses via AFM-nanoindentation

405 To quantify the tissue-level modulus of articular cartilage and meniscus, AFM-nanoindentation was
406 performed on the surfaces of freshly dissected medial condyle cartilage, and the non-ossified, central region of
407 medial meniscus. All the tests were performed via colloidal microspherical tips ($R \approx 5 \mu\text{m}$, nominal $k \approx 5.4$
408 N/m, HQ: NSC35/tipless/Cr-Au, cantilever B, NanoAndMore, Lady's Island, SC) and a Dimension Icon AFM
409 (Bruker Nano, Santa Barbara, CA). For each sample, at least 10 different locations on the load bearing regions
410 were randomly tested to account for spatial heterogeneity. At each location, an indentation force versus depth
411 (F - D) curve was obtained at the indentation rate $\approx 10 \mu\text{m/s}$. The effective indentation modulus, E_{ind} , was
412 calculated by fitting the entire loading portion of each F - D curve to the Hertz model [49] with the Poisson's
413 ratio assumed to be 0.1 for cartilage [75] and 0 for meniscus [76]. To assess the direct contribution of sGAGs on
414 aggrecan to cartilage modulus, additional freshly dissected joints were treated with 0.1 U/mL chondroitinase-
415 ABC (C962T85, Sigma) for 48 hrs [77] at 37°C to remove GAGs and non-fibrillar proteins and tested under
416 AFM. Throughout the AFM experiments, samples were immersed in phosphate buffered saline (PBS) with
417 protease inhibitors (Pierce 88266, Fisher Scientific, Rockford, IL) at room temperature to minimize post-
418 mortem degradation.

419 To quantify the micromechanical properties of cartilage PCM and T/IT-ECM, freshly dissected tibia
420 joints were embedded in optimal cutting temperature medium, and cryotomed to produce \approx 6- μ m-thick, unfixed
421 sagittal cryo-sections via Kawamoto's film method [44]. Each cryo-section was immuno-labelled with collagen
422 VI, the biomarker of cartilage PCM [46]. Briefly, cryo-sections were washed by PBS to remove surrounding
423 OCT, blocked with 5% BSA and 1% Goat Serum for 30 min, incubated with collagen VI primary antibody
424 (1:50, 70R-CR009X, Fitzgerald, Acton, MA) for 20 min at room temperature, followed by incubation of
425 secondary antibody (1:200, A-11037, ThermoFisher) for 20 min at room temperature, and then, immediately
426 used for AFM tests. Guided by the collagen VI IF-imaging, AFM-nanomechanical mapping was performed
427 using microspherical tips ($R \approx 2.25\mu$ m, $k \approx 1$ N/m, HQ:NSC36/tipless/Cr-Au, NanoAndMore) and an MFP-3D
428 AFM (Asylum Research, Santa Barbara, CA) in PBS with protease inhibitors. For each map, a 40×40
429 indentation grid was acquired over a $20 \times 20 \mu$ m² ROI containing well-defined, circular PCM terrains [45]. The
430 effective indentation modulus, E_{ind} , was calculated via the finite thickness-corrected Hertz model [78]. In
431 addition, the thickness of PCM was measured on the collagen VI IF images using ImageJ ($n = 6$ mice per
432 genotype, ≥ 20 cells per animal).

433 *5.5 Collagen nanostructural analysis*

434 To assess the collagen fibril nanostructure on tissue surfaces, immediately after AFM test, femoral
435 condyle and meniscus were treated with 0.1% trypsin (T7409, Sigma) and 0.1% hyaluronidase (H3506, Sigma)
436 at 37°C for 24 hrs, respectively. Samples were then fixed with fresh Karnovsky's fixative (Electron Microscopy
437 Sciences, Hatfield, PA) at room temperature for 3 hrs, dehydrated in a series of graded water-ethanol
438 (water/ethanol ratio: 3/1 to 1/1 to 1/3 to 0/1) and ethanol-hexamethyldisilazane (HMDS, A15139, Alfa Aesar,
439 Tewksbury, MA) (ethanol/HMDS ratio: 3/1 to 1/1 to 1/3 to 0/1) mixtures, and air dried overnight [79]. SEM
440 (Zeiss Supra 50VP, Germany) images were acquired on samples coated with \approx 6 nm thick platinum.

441 To quantify the collagen fibril nanostructure in matrix interior, freshly dissected tibia and meniscus were
442 fixed in fresh Karnovsky's fixative for 15 min in room temperature, then placed on orbital shaker with gentle

443 movement for 2 hrs at 4°C. Samples were sent to the University of South Florida (USF) for TEM imaging via
444 overnight shipping. During shipment, menisci were kept in fixation solution on ice, while tibias were transferred
445 during the decalcification process, which started 10 days before the shipping. Upon arrival, samples were rinsed
446 with sodium cacodylate buffer and post-fixed for 1 h with 1% osmium tetroxide, dehydrated in an ethanol series
447 followed by 100% propylene oxide, infiltrated and embedded over a 3 day period in a mixture of Embed 812,
448 nadic methyl anhydride, dodecenylsuccinic anhydride and DMP-30 (EM Sciences, Fort Washington, PA) and
449 polymerized overnight at 60 °C. Ultra-thin, approximately 90 nm, cross-sections were prepared using a Leica
450 ultramicrotome and post-stained with 2% aqueous uranyl acetate and 1% phosphotungstic acid, pH 3.2. The
451 sections were examined and imaged at 80 kV using a JEOL 1400 TEM (JEOL, Tokyo, Japan) equipped with a
452 Gatan Orius widefield side mount CCD camera (Gatan Inc., Pleasanton, CA) [80]. Based on the SEM and TEM
453 images, collagen fibril diameter, heterogeneity and density were quantified via ImageJ by two independent
454 researchers.

455 *5.6 Amino acid and collagen cross-linking analysis*

456 Femoral head cartilage and the central, non-mineralized region of meniscus (with the two mineralized
457 horns removed) of mice were stored in dry ice and used for amino acid analysis and cross-linking analysis,
458 following established procedures [81]. In brief, samples were pulverized, reduced with standardized NaB³H₄,
459 hydrolyzed with 6N HCl and subjected to amino acid and cross-link analyses. Collagen content was calculated
460 as a percentage of total proteins based on the value of 100 residues of hydroxyproline per 1,000 total amino
461 acids in collagen. The extent of lysine hydroxylation of collagen was calculated on the basis of 300
462 hydroxyproline residues per collagen. For cross-link analysis, the reducible cross-links/aldehydes were
463 measured as their reduced forms, e.g. dehydrodihydroxylysionorleucine (deH-DHNL)/its ketoamine as
464 DHNL by radioactivity, and non-reducible cross-links pyridinoline (Pyr) and deoxypyridinoline (d-Pyr), by
465 fluorescence. The amount of cross-links was quantified and expressed as mol per mol of collagen via

466 normalization to hydroxylproline content. The total number of aldehydes involved in the detected cross-links
467 was calculated as the sum of (DHLNL + 2 × Pyr + 2 × d-Pyr) [82].

468 *5.7 Western blot analyses*

469 Femoral head cartilage and meniscus from 2-month old mice were used to assess the level of LOX in
470 both genotypes. Protein extraction was performed by homogenizing tissue in TRI-reagent and phase-separated
471 in 1-bromo-3-chloropropane. BCA Assay Kit was used to quantify the protein concentration. Tissue lysates
472 with 10 µg protein mixed with reducing agent and LDS sample buffer were loaded on a 4-12% Bis-Tris gel.
473 Separated protein was transferred onto a polyvinylidene fluoride (PVDF) membrane (IB401002, ThermoFisher)
474 with an iBlot mini transfer stack (IB401002, ThermoFisher). The PVDF membrane was blocked for 1 hr in
475 TBST with 5% non-fat milk and 1% BSA. The membrane was then incubated with primary antibodies (LOX:
476 NBP2-24877, 1:100 dilution, Novus Biologicals, Centennial, CO; GAPDH: 14C10, 1:500, Cell Signaling
477 Technology, Danvers, MA) in the same blocking buffer at 4°C overnight, followed by the incubation of
478 secondary antibody (65-6120, 1:1,000 dilution, ThermoFisher) for 1 hr at room temperature. The development
479 was performed with the Pierce ECL Plus Western Blotting Substrate (32132, ThermoFisher) and imaged with a
480 FluorChem M system (ProteinSimple, San Jose, CA). Densitometry was quantified using Image Studio Lite,
481 and the level of each LOX content was normalized to its internal control, GAPDH. In addition, to validate the
482 specificity of the collagen III antibody, recombinant human collagen I (C7624, Sigma) and collagen III
483 (ab73160, Abcam), extracted human collagen II from articular cartilage (009-001-104, Rockland, Limerick,
484 PA) were subjected to western blot analysis. In brief, after BCA assay, 1, 2, and 5 µg of each collagen type
485 respectively mixed with reducing agent and LDS sample buffer were loaded on a 4-12% Bis-Tris gel,
486 transferred to PVDF membrane, blocked by non-fat milk, and incubated with primary antibody (Abcam 7778,
487 1:500, Lot #GR3261539-1), following the same procedure.

488 *5.8 Micro-computed tomography (µCT)*

489 The same knee joints purposed for histology were scanned by ex vivo μ CT (microCT 35, Scanco
490 Medical AG, Brüttisellen, Switzerland) in 4% PFA solution before decalcification. A \sim 3 mm region from the
491 distal femur and the proximal tibia were scanned at a 6- μ m isotropic voxel size. All images were smoothed by a
492 Gaussian filter (sigma = 1.2, support = 2.0) and the threshold corresponding to 30% of the maximum available
493 range of image gray scale values. For subchondral bone plate (SBP) analysis [83], SBP at the load bearing
494 region in sagittal images were contoured to calculate the SBP thickness (SBP.Th). For subchondral trabecular
495 bone (STB) analysis on the medial side of tibia, bone volume fraction (BV/TV), trabecular number (Tb.N),
496 trabecular bone thickness (Tb.Th) and separation (Tb.Sp) were calculated by the standard 3D microstructural
497 analysis [84].

498 *5.9 Statistical analysis*

499 To compare the tissue biomechanical properties between the two genotypes, Mann-Whitney U test was
500 applied to the average E_{ind} values of each animal, for both whole-tissue tests and IF-guided micromechanical
501 tests. In addition, unpaired two sample student's t -test was applied to examine the differences in cartilage
502 thicknesses, sGAG amount, collagen and collagen cross-linking contents, LOX content, PCM thickness, as well
503 as μ CT outcomes. For collagen structural data, since ≥ 200 fibrils were measured for each region and each
504 genotype, based on the central limit theorem, two-sample z -test was applied to compare the mean fibril
505 diameters, and F -test was applied to compare the fibril diameter variances. In addition, bimodality coefficient
506 was estimated to determine if each fibril sample conformed to a unimodal or bimodal distribution at the
507 threshold of 5/9 [50]. In all the tests, the significance level was set at $\alpha = 0.05$.

508 **Author Contributions**

509 Conceptualization, L.H., S.V.W. and C.W.; Supervision, L.H., S.V.W. and M.Y.; Data Collection and
510 Analysis, C.W., B.K.B., M.T., Q.L., K.H., B.H., A.M.G. and M.E.-I.; Data Interpretation: C.W., B.K.B., M.T.,
511 X.S.L., M.S.M., M.E.-I., M.Y., S.V.W. and L.H.; Writing, C.W., B.K.B., M.Y., S.V.W. and L.H.; Funding
512 Acquisition: L.H. and S.V.W. All authors intellectually contributed and provided approval for publication.

513 **Acknowledgments**

514 This work was financially supported by the National Science Foundation (NSF) Grant CMMI-1751898
515 (to LH), Drexel Area of Research Excellence (DARE) Award (to MSM and LH), National Institutes of Health
516 (NIH) Grant R01GM124091 (to SWV), the Penn Center for Musculoskeletal Disorders (PCMD) Pilot Grant (to
517 SWV and LH), as well as NIH Grant P30AR069619 to the PCMD. We thank Dr. David E. Birk and Sheila M.
518 Adams (University of South Florida) for the kind help with the TEM imaging, Dr. David R. Eyre (University of
519 Washington) for insightful discussions, as well as the Singh Center for Nanotechnology at the University of
520 Pennsylvania for the use of TIRF MFP-3D.

521 **Abbreviations Used**

522 3D, Three dimensional; AFM, atomic force microscopy; C'ABC, chondroitinase ABC; deH-DHLNL,
523 dehydrodihydroxylysinonorleucine; de-Pyd, deoxy-pyrodinoline; DHLNL, dihydroxylysinonorleucine; DMMB,
524 dimethylmethylene blue; ECM, extracellular matrix; HMDS, hexamethyldisilazane; IF, immunofluorescence;
525 IHC, immunohistochemistry; OA, osteoarthritis; LOX, lysyl oxidase; MFP, molecular force probe; PBS,
526 phosphate buffered saline; PCM, pericellular matrix; PFA, paraformaldehyde; PVDF, polyvinylidene fluoride;
527 Pyd, pyrodinoline; qRT-PCR, quantitative reverse transcriptase polymerase chain reaction; SBP, subchondral
528 bone plate; SEM, scanning electron microscopy; sGAG, sulfated glycoaminoglycan; STB, subchondral
529 trabecular bone; T/IT-ECM, territorial/interterritorial extracellular matrix; TEM, transmission electron
530 microscopy; TIRF, total internal reflection fluorescence; vEDS, vascular Ehlers-Danlos syndrome; WT, wild-
531 type; μ CT, micro-computed tomography.

References

[1] S.P. Boudko, J. Engel, K. Okuyama, K. Mizuno, H.P. Bachinger, M.A. Schumacher, Crystal structure of human type III collagen Gly⁹⁹¹-Gly¹⁰³² cystine knot-containing peptide shows both 7/2 and 10/3 triple helical symmetries, *J. Biol. Chem.* 283 (47) (2008) 32580-32589.

[2] K. Niederreither, R. D'Souza, M. Metsaranta, H. Eberspaecher, P.D. Toman, E. Vuorio, B. De Crombrugghe, Coordinate patterns of expression of type I and III collagens during mouse development, *Matrix Biol.* 14 (9) (1995) 705-713.

[3] W. Henkel, R.W. Glanville, Covalent crosslinking between molecules of type I and type III collagen. The involvement of the N-terminal, nonhelical regions of the alpha 1 (I) and alpha 1 (III) chains in the formation of intermolecular crosslinks, *Eur. J. Biochem.* 122 (1) (1982) 205-213.

[4] X. Liu, H. Wu, M. Byrne, S. Krane, R. Jaenisch, Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development, *Proc. Natl. Acad. Sci. U. S. A.* 94 (5) (1997) 1852-1856.

[5] P.H. Byers, J. Belmont, J. Black, J. De Backer, M. Frank, X. Jeunemaitre, D. Johnson, M. Pepin, L. Robert, L. Sanders, N. Wheeldon, Diagnosis, natural history, and management in vascular Ehlers-Danlos syndrome, *Am. J. Med. Genet. C Semin. Med. Genet.* 175 (1) (2017) 40-47.

[6] P.H. Byers, Vascular Ehlers-Danlos Syndrome. 1999 Sep 2 [Updated 2019 Feb 21], in: M.P. Adam, H.H. Arlinger, R.A. Pagon, S.E. Wallace, L.J.H. Bean, K. Stephens, A. Amemiya (Eds.), *GeneReviews®* [Internet]. Seattle (WA), University of Washington, Seattle, 1993-2019. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK1494/>.

[7] F. Malfait, Vascular aspects of the Ehlers-Danlos Syndromes, *Matrix Biol.* 71-72 (2018) 380-395.

[8] T.K. Cooper, Q. Zhong, M. Krawczyk, H.J. Tae, G.A. Muller, R. Schubert, L.A. Myers, H.C. Dietz, M.I. Talan, W. Briest, The haploinsufficient *Col3a1* mouse as a model for vascular Ehlers-Danlos syndrome, *Vet. Pathol.* 47 (6) (2010) 1028-1039.

[9] S.W. Volk, Y. Wang, E.A. Mauldin, K.W. Liechty, S.L. Adams, Diminished type III collagen promotes myofibroblast differentiation and increases scar deposition in cutaneous wound healing, *Cells Tissues Organs* 194 (1) (2011) 25-37.

[10] R. Luo, S.J. Jeong, Z. Jin, N. Strokes, S. Li, X. Piao, G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination, *Proc. Natl. Acad. Sci. U. S. A.* 108 (31) (2011) 12925-12930.

[11] S.J. Jeong, S. Li, R. Luo, N. Strokes, X. Piao, Loss of *Col3a1*, the gene for Ehlers-Danlos syndrome type IV, results in neocortical dyslamination, *PLoS One* 7 (1) (2012) e29767.

[12] S.W. Volk, S.R. Shah, A.J. Cohen, Y. Wang, B.K. Brisson, L.K. Vogel, K.D. Hankenson, S.L. Adams, Type III collagen regulates osteoblastogenesis and the quantity of trabecular bone, *Calcif. Tissue Int.* 94 (6) (2014) 621-631.

[13] E.L. Miedel, B.K. Brisson, T. Hamilton, H. Gleason, G.P. Swain, L. Lopas, D. Dopkin, J.E. Perosky, K.M. Kozloff, K.D. Hankenson, S.W. Volk, Type III collagen modulates fracture callus bone formation and early remodeling, *J. Orthop. Res.* 33 (5) (2015) 675-684.

[14] B.K. Brisson, E.A. Mauldin, W. Lei, L.K. Vogel, A.M. Power, A. Lo, D. Dopkin, C. Khanna, R.G. Wells, E. Pure, S.W. Volk, Type III collagen directs stromal organization and limits metastasis in a murine model of breast cancer, *Am. J. Pathol.* 185 (5) (2015) 1471-1486.

[15] D.E. Birk, P. Brückner, Collagens, Suprastructures, and Collagen Fibril Assembly, in: R.P. Mecham (Ed.), *The Extracellular Matrix: an Overview. Biology of Extracellular Matrix*, Springer, Berlin, Heidelberg, 2011, pp. 77-115.

[16] R. Fleischmajer, E.D. MacDonald, J.S. Perlish, R.E. Burgeson, L.W. Fisher, Dermal collagen fibrils are hybrids of type I and type III collagen molecules, *J. Struct. Biol.* 105 (1-3) (1990) 162-169.

[17] S. D'Hondt, B. Guillemin, D. Syx, S. Symoens, R. De Rycke, L. Vanhoutte, W. Toussaint, B.N. Lambrecht, A. De Paepe, D.R. Keene, Y. Ishikawa, H.P. Bachinger, S. Janssens, M.J.M. Bertrand, F. Malfait, Type III collagen affects dermal and vascular collagen fibrillogenesis and tissue integrity in a mutant *Col3a1* transgenic mouse model, *Matrix Biol.* 70 (2018) 72-83.

581 [18] R.D. Young, P.A. Lawrence, V.C. Duance, T. Aigner, P. Monaghan, Immunolocalization of collagen types
582 II and III in single fibrils of human articular cartilage, *J. Histochem. Cytochem.* 48 (3) (2000) 423-432.

583 [19] J.J. Wu, M.A. Weis, L.S. Kim, D.R. Eyre, Type III collagen, a fibril network modifier in articular cartilage,
584 *J. Biol. Chem.* 285 (24) (2010) 18537-18544.

585 [20] A.K. Williamson, A.C. Chen, R.L. Sah, Compressive properties and function-composition relationships of
586 developing bovine articular cartilage, *J. Orthop. Res.* 19 (6) (2001) 1113-1121.

587 [21] V.C. Mow, S.C. Kuei, W.M. Lai, C.G. Armstrong, Biphasic creep and stress relaxation of articular
588 cartilage in compression? Theory and experiments, *J. Biomech. Eng.* 102 (1) (1980) 73-84.

589 [22] H. Forster, J. Fisher, The influence of loading time and lubricant on the friction of articular cartilage, *Proc.*
590 *Inst. Mech. Eng. [H]* 210 (2) (1996) 109-119.

591 [23] A. Maroudas, Physicochemical Properties of Articular Cartilage, in: M.A.R. Freeman (Ed.), *Adult*
592 *Articular Cartilage*, Pitman, England, 1979, pp. 215-290.

593 [24] E.A. Makris, P. Hadidi, K.A. Athanasiou, The knee meniscus: structure-function, pathophysiology, current
594 repair techniques, and prospects for regeneration, *Biomaterials* 32 (30) (2011) 7411-7431.

595 [25] D.L. Skaggs, W.H. Warden, V.C. Mow, Radial tie fibers influence the tensile properties of the bovine
596 medial meniscus, *J. Orthop. Res.* 12 (2) (1994) 176-185.

597 [26] W. Petersen, B. Tillmann, Collagenous fibril texture of the human knee joint menisci, *Anat. Embryol.* 197
598 (4) (1998) 317-324.

599 [27] Q. Li, F. Qu, B. Han, C. Wang, H. Li, R.L. Mauck, L. Han, Micromechanical anisotropy and heterogeneity
600 of the meniscus extracellular matrix, *Acta Biomater.* 54 (2017) 356-366.

601 [28] D. Eyre, Collagen of articular cartilage, *Arthritis Res.* 4 (1) (2002) 30-35.

602 [29] H.S. Cheung, Distribution of type I, II, III and V in the pepsin solubilized collagens in bovine menisci,
603 *Connect. Tissue Res.* 16 (4) (1987) 343-356.

604 [30] S. Hosseiniinia, M.A. Weis, J. Rai, L. Kim, S. Funk, L.E. Dahlberg, D.R. Eyre, Evidence for enhanced
605 collagen type III deposition focally in the territorial matrix of osteoarthritic hip articular cartilage,
606 *Osteoarthr. Cartilage* 24 (6) (2016) 1029-1035.

607 [31] A.M. Teppo, T. Tornroth, E. Honkanen, C. Gronhagen-Riska, Urinary amino-terminal propeptide of type
608 III procollagen (PIIINP) as a marker of interstitial fibrosis in renal transplant recipients, *Transplantation* 75
609 (12) (2003) 2113-2119.

610 [32] Y. Wang, Y. Li, A. Khabut, S. Chubinskaya, A.J. Grodzinsky, P. Önnerfjord, Quantitative proteomics
611 analysis of cartilage response to mechanical injury and cytokine treatment, *Matrix Biol.* 63 (2017) 11-22.

612 [33] T. Mine, K. Ihara, H. Kawamura, R. Date, K. Umehara, Collagen expression in various degenerative
613 meniscal changes: an immunohistological study, *J. Orthop. Surg.* 21 (2) (2013) 216-220.

614 [34] R.V. Iozzo, M.A. Gubbiotti, Extracellular matrix: the driving force of mammalian diseases, *Matrix Biol.*
615 71-72 (2018) 1-9.

616 [35] Y. Krishnan, A.J. Grodzinsky, Cartilage diseases, *Matrix Biol.* 71-72 (2018) 51-69.

617 [36] Q. Li, B. Doyran, L.W. Gamer, X.L. Lu, L. Qin, C. Ortiz, A.J. Grodzinsky, V. Rosen, L. Han,
618 Biomechanical properties of murine meniscus surface via AFM-based nanoindentation, *J. Biomech.* 48 (8)
619 (2015) 1364-1370.

620 [37] B. Doyran, W. Tong, Q. Li, H. Jia, X. Zhang, C. Chen, M. Enomoto-Iwamoto, X.L. Lu, L. Qin, L. Han,
621 Nanoindentation modulus of murine cartilage: a sensitive indicator of the initiation and progression of post-
622 traumatic osteoarthritis, *Osteoarthr. Cartilage* 25 (1) (2017) 108-117.

623 [38] B. Han, H.T. Nia, C. Wang, P. Chandrasekaran, Q. Li, D.R. Chery, H. Li, A.J. Grodzinsky, L. Han, AFM-
624 nanomechanical test: an interdisciplinary tool that links the understanding of cartilage and meniscus
625 biomechanics, osteoarthritis degeneration and tissue engineering, *ACS Biomater. Sci. Eng.* 3 (9) (2017)
626 2033-2049.

627 [39] B. Han, Q. Li, C. Wang, P. Patel, S.M. Adams, B. Doyran, H.T. Nia, R. Oftadeh, S. Zhou, C.Y. Li, X.S.
628 Liu, X.L. Lu, M. Enomoto-Iwamoto, L. Qin, R.L. Mauck, R.V. Iozzo, D.E. Birk, L. Han, Decorin regulates
629 the aggrecan network integrity and biomechanical functions of cartilage extracellular matrix, *ACS Nano*
630 (2019) In press, doi: 10.1021/acsnano.1029b04477.

631 [40] F. Guilak, R.J. Nims, A. Dicks, C.L. Wu, I. Meulenbelt, Osteoarthritis as a disease of the cartilage
632 pericellular matrix, *Matrix Biol.* 71-72 (2018) 40-50.

633 [41] W. Knudson, S. Ishizuka, K. Terabe, E.B. Askew, C.B. Knudson, The pericellular hyaluronan of articular
634 chondrocytes, *Matrix Biol.* 78-79 (2019) 32-46.

635 [42] S.F. Wotton, V.C. Duance, Type III collagen in normal human articular cartilage, *Histochem. J.* 26 (5)
636 (1994) 412-416.

637 [43] L. Han, A.J. Grodzinsky, C. Ortiz, Nanomechanics of the cartilage extracellular matrix, *Annu. Rev. Mater.
638 Res.* 41 (2011) 133-168.

639 [44] T. Kawamoto, K. Kawamoto, Preparation of Thin Frozen Sections from Nonfixed and Undecalcified Hard
640 Tissues Using Kawamot's Film Method (2012), in: M. Hilton (Ed.), *Skeletal Development and Repair.
641 Methods in Molecular Biology*, Humana Press, Totowa, NJ, 2014, pp. 149-164.

642 [45] D.R. Chery, S.J. Rozans, B. Han, L. Qin, D.E. Birk, R.V. Iozzo, M. Enomoto-Iwamoto, L. Han, Direct
643 investigation of the roles of decorin in cartilage pericellular matrix via immunofluorescence-guided AFM,
644 *Trans. Orthop. Res. Soc.* 63 (2017) 165.

645 [46] C.A. Poole, S. Ayad, J.R. Schofield, Chondrons from articular cartilage: I. Immunolocalization of type VI
646 collagen in the pericellular capsule of isolated canine tibial chondrons, *J. Cell Sci.* 90 (4) (1988) 635-643.

647 [47] S.R. Lamande, J.F. Bateman, Collagen VI disorders: insights on form and function in the extracellular
648 matrix and beyond, *Matrix Biol.* 71-72 (2018) 348-367.

649 [48] R.E. Wilusz, L.E. DeFrate, F. Guilak, Immunofluorescence-guided atomic force microscopy to measure
650 the micromechanical properties of the pericellular matrix of porcine articular cartilage, *J. R. Soc. Interface* 9
651 (76) (2012) 2997-3007.

652 [49] M.A. Batista, H.T. Nia, P. Önnerfjord, K.A. Cox, C. Ortiz, A.J. Grodzinsky, D. Heinegård, L. Han,
653 Nanomechanical phenotype of chondroadherin-null murine articular cartilage, *Matrix Biol.* 38 (2014) 84-90.

654 [50] J.B. Freeman, R. Dale, Assessing bimodality to detect the presence of a dual cognitive process, *Behav.
655 Res. Methods* 45 (1) (2013) 83-97.

656 [51] M. Yamauchi, M. Sricholpech, Lysine post-translational modifications of collagen, *Essays Biochem.* 52
657 (2012) 113-133.

658 [52] F.W. Roemer, M. Jarraya, J. Niu, J. Duryea, J.A. Lynch, A. Guermazi, Knee joint subchondral bone
659 structure alterations in active athletes: a cross-sectional case-control study, *Osteoarthr. Cartilage* 23 (12)
660 (2015) 2184-2190.

661 [53] D.F. Holmes, K.E. Kadler, The 10+4 microfibril structure of thin cartilage fibrils, *Proc. Natl. Acad. Sci. U.
662 S. A.* 103 (46) (2006) 17249-17254.

663 [54] M.D. Buschmann, A.J. Grodzinsky, A molecular model of proteoglycan-associated electrostatic forces in
664 cartilage mechanics, *J. Biomech. Eng.* 117 (2) (1995) 179-192.

665 [55] D. Dean, J. Seog, C. Ortiz, A.J. Grodzinsky, Molecular-level theoretical model for electrostatic interactions
666 within polyelectrolyte brushes: applications to charged glycosaminoglycans, *Langmuir* 19 (13) (2003) 5526-
667 5539.

668 [56] T.L. Vincent, C.J. McLean, L.E. Full, D. Peston, J. Saklatvala, FGF-2 is bound to perlecan in the
669 pericellular matrix of articular cartilage, where it acts as a chondrocyte mechanotransducer, *Osteoarthr.
670 Cartilage* 15 (7) (2007) 752-763.

671 [57] F. Guilak, A. Ratcliffe, V.C. Mow, Chondrocyte deformation and local tissue strain in articular cartilage: a
672 confocal microscopy study, *J. Orthop. Res.* 13 (3) (1995) 410-421.

673 [58] J.B. Choi, I. Youn, L. Cao, H.A. Leddy, C.L. Gilchrist, L.A. Setton, F. Guilak, Zonal changes in the three-
674 dimensional morphology of the chondron under compression: the relationship among cellular, pericellular,
675 and extracellular deformation in articular cartilage, *J. Biomech.* 40 (12) (2007) 2596-2603.

676 [59] R. Madden, S.K. Han, W. Herzog, Chondrocyte deformation under extreme tissue strain in two regions of
677 the rabbit knee joint, *J. Biomech.* 46 (3) (2013) 554-560.

678 [60] B.V. Nguyen, Q. Wang, N.J. Kuiper, A.J. El Haj, C.R. Thomas, Z. Zhang, Strain-dependent viscoelastic
679 behaviour and rupture force of single chondrocytes and chondrons under compression, *Biotechnol. Lett.* 31
680 (6) (2009) 803-809.

681 [61] R.J. Wenstrup, J.B. Florer, E.W. Brunskill, S.M. Bell, I. Chervoneva, D.E. Birk, Type V collagen controls
682 the initiation of collagen fibril assembly, *J. Biol. Chem.* 279 (51) (2004) 53331-53337.

683 [62] D. Heinegård, Proteoglycans and more – from molecules to biology, *Int. J. Exp. Pathol.* 90 (6) (2009) 575-
684 586.

685 [63] D.E. Birk, F.H. Silver, Collagen fibrillogenesis in vitro: comparison of types I, II, and III, *Arch. Biochem.
686 Biophys.* 235 (1) (1984) 178-185.

687 [64] R.C. Siegel, J.C. Fu, N. Uto, K. Horiuchi, D. Fujimoto, Collagen cross-linking: lysyl oxidase dependent
688 synthesis of pyridinoline in vitro: confirmation that pyridinoline is derived from collagen, *Biochem.
689 Biophys. Res. Commun.* 108 (4) (1982) 1546-1550.

690 [65] C.T. Hung, G.A. Ateshian, Grading of osteoarthritic cartilage: correlations between histology and
691 biomechanics, *J. Orthop. Res.* 34 (1) (2016) 8-9.

692 [66] D.R. Eyre, M.A. Paz, P.M. Gallop, Cross-linking in collagen and elastin, *Annu. Rev. Biochem.* 53 (1984)
693 717-748.

694 [67] S. Kalamajski, C. Liu, V. Tillgren, K. Rubin, A. Oldberg, J. Rai, M. Weis, D.R. Eyre, Increased C-
695 telopeptide cross-linking of tendon type I collagen in fibromodulin-deficient mice, *J. Biol. Chem.* 289 (27)
696 (2014) 18873-18879.

697 [68] J.E. Marturano, J.D. Arena, Z.A. Schiller, I. Georgakoudi, C.K. Kuo, Characterization of mechanical and
698 biochemical properties of developing embryonic tendon, *Proc. Natl. Acad. Sci. U. S. A.* 110 (16) (2013)
699 6370-6375.

700 [69] G.Y. Ng, B.W. Oakes, O.W. Deacon, I.D. McLean, D.R. Eyre, Long-term study of the biochemistry and
701 biomechanics of anterior cruciate ligament-patellar tendon autografts in goats, *J. Orthop. Res.* 14 (6) (1996)
702 851-856.

703 [70] P. Hansen, B.T. Haraldsson, P. Aagaard, V. Kovanen, N.C. Avery, K. Qvortrup, J.O. Larsen, M.
704 Krogsgaard, M. Kjaer, S. Peter Magnusson, Lower strength of the human posterior patellar tendon seems
705 unrelated to mature collagen cross-linking and fibril morphology, *J. Appl. Physiol.* 108 (1) (2010) 47-52.

706 [71] S. Shalhub, J.H. Black, 3rd, A.C. Cecchi, Z. Xu, B.F. Griswold, H.J. Safi, D.M. Milewicz, N.B.
707 McDonnell, Molecular diagnosis in vascular Ehlers-Danlos syndrome predicts pattern of arterial
708 involvement and outcomes, *J. Vasc. Surg.* 60 (1) (2014) 160-169.

709 [72] P. Panwar, G.S. Butler, A. Jamroz, P. Azizi, C.M. Overall, D. Bromme, Aging-associated modifications of
710 collagen affect its degradation by matrix metalloproteinases, *Matrix Biol.* 65 (2018) 30-44.

711 [73] M. Nomura, N. Sakitani, H. Iwasawa, Y. Kohara, S. Takano, Y. Wakimoto, H. Kuroki, H. Moriyama,
712 Thinning of articular cartilage after joint unloading or immobilization. An experimental investigation of the
713 pathogenesis in mice, *Osteoarthr. Cartilage* 25 (5) (2017) 727-736.

714 [74] R.W. Farndale, D.J. Buttle, A.J. Barrett, Improved quantitation and discrimination of sulphated
715 glycosaminoglycans by use of dimethylmethylen blue, *Biochim. Biophys. Acta.* 883 (2) (1986) 173-177.

716 [75] M.D. Buschmann, Y.J. Kim, M. Wong, E. Frank, E.B. Hunziker, A.J. Grodzinsky, Stimulation of aggrecan
717 synthesis in cartilage explants by cyclic loading is localized to regions of high interstitial fluid flow, *Arch.
718 Biochem. Biophys.* 366 (1) (1999) 1-7.

719 [76] M.A. Sweigart, C.F. Zhu, D.M. Burt, P.D. DeHoll, C.M. Agrawal, T.O. Clanton, K.A. Athanasiou,
720 Intraspecies and interspecies comparison of the compressive properties of the medial meniscus, *Ann.
721 Biomed. Eng.* 32 (11) (2004) 1569-1579.

722 [77] H.T. Nia, S.J. Gauci, M. Azadi, H.H. Hung, E. Frank, A.J. Fosang, C. Ortiz, A.J. Grodzinsky, High-
723 bandwidth AFM-based rheology is a sensitive indicator of early cartilage aggrecan degradation relevant to
724 mouse models of osteoarthritis, *J. Biomech.* 48 (1) (2015) 162-165.

725 [78] E.K. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, R.S. Chadwick, Determination of elastic moduli of
726 thin layers of soft material using the atomic force microscope, *Biophys. J.* 82 (5) (2002) 2798-2810.

727 [79] D.F. Bray, J. Bagu, P. Koegler, Comparison of hexamethyldisilazane (HMDS), Peldri II, and critical-point
728 drying methods for scanning electron microscopy of biological specimens, *Microsc. Res. Tech.* 26 (6)
729 (1993) 489-495.

730 [80] H.L. Ansorge, X. Meng, G. Zhang, G. Veit, M. Sun, J.F. Klement, D.P. Beason, L.J. Soslowsky, M. Koch,
731 D.E. Birk, Type XIV collagen regulates fibrillogenesis: premature collagen fibril growth and tissue
732 dysfunction in null mice, *J. Biol. Chem.* 284 (13) (2009) 8427-8438.

733 [81] M. Yamauchi, Y. Taga, S. Hattori, M. Shiiba, M. Terajima, Analysis of collagen and elastin cross-links,
734 *Methods Cell Biol.* 143 (2018) 115-132.

735 [82] M. Terajima, Y. Taga, W.A. Cabral, M. Nagasawa, N. Sumida, S. Hattori, J.C. Marini, M. Yamauchi,
736 Cyclophilin B deficiency causes abnormal dentin collagen matrix, *J. Proteome Res.* 16 (8) (2017) 2914-
737 2923.

738 [83] H. Huang, J.D. Skelly, D.C. Ayers, J. Song, Age-dependent changes in the articular cartilage and
739 subchondral bone of C57BL/6 mice after surgical destabilization of medial meniscus, *Sci. Rep.* 7 (2017)
740 42294.

741 [84] Y.H. Sniekers, F. Intema, F.P. Lafeber, G.J. van Osch, J.P. van Leeuwen, H. Weinans, S.C. Mastbergen, A
742 role for subchondral bone changes in the process of osteoarthritis; a micro-CT study of two canine models,
743 *BMC Musculoskelet. Disord.* 9 (2008) 20.

744

745 **FIGURE LEGENDS**

746 **Figure 1** Distribution of collagen III in articular cartilage and the impact of collagen III on cartilage gross-level
747 morphology. a) Quantitative PCR (qPCR) showed that in *Col3a1*^{+/−} (+/−) mouse, the expression of *Col3a1* gene
748 was significantly reduced by $\approx 50\%$ in both articular cartilage and meniscus ($n = 4$ for wild-type (+/+/+), $n = 3$
749 for +/−, mean \pm SEM, $p < 0.01$), while other major matrix genes were not significantly affected (*Col2a1*, *Acan*
750 in articular cartilage and *Colla1*, *Col2a1* in meniscus). b) Immunohistochemistry (IHC) of collagen III in
751 murine articular cartilage did not show clear distribution pattern of collagen III at 2-week age, but detected
752 intense localization in the PCM at 2-month age, and reduced staining in *Col3a1*^{+/−} cartilage. Shown together is
753 the negative internal control of WT cartilage stained without primary antibody. c) Western blot on recombinant
754 human collagen I, III and collagen II extracted from human articular cartilage validated the specificity of the
755 antibody for collagen III, AB7778. d) Safranin-O/Fast Green histology illustrated no appreciable differences in
756 the staining of sGAGs or joint morphology between +/+/+ and +/− mouse knee articular cartilage at both 2-week
757 and 2-month ages. e) No significant differences were found in the thicknesses of uncalcified or total cartilage
758 and the amount of sGAGs between 2-month-old +/+/+ and +/− cartilage (mean \pm 95% CI, $n \geq 6$ for each
759 genotype).

760 **Figure 2** Impact of collagen III reduction on the whole tissue modulus of a) articular cartilage and b) meniscus,
761 as measured by AFM-nanoindentation using microspherical tips ($R \approx 5 \mu\text{m}$) in PBS (mean \pm 95% CI, $n \geq 5$).
762 Each data point represented the average modulus of ≥ 10 indentation locations from one animal. Different
763 letters indicated significant age-dependent differences within the same genotype, $p < 0.05$. *: $p < 0.01$ between
764 untreated and chondroitinase ABC (C'ABC)-treated groups within the same genotype at 2-month age.

765 **Figure 3** Impact of collagen III reduction on the micromechanical properties of articular cartilage PCM and
766 T/IT-ECM. a) Representative collagen VI IF images of 2-month-old wild-type (+/+/+) and *Col3a1*^{+/−} (+/−) tibia
767 cartilage sagittal sections. b) Box-and-whisker plots of the distribution of cartilage PCM thickness (≥ 120 cells
768 from $n = 6$ animals for each genotype, p -value was obtained via unpaired two-sample student's *t*-test on the
769 PCM thickness values pooled from the six animals). c) Schematics of collagen VI IF-guided AFM-
770 nanoindentation mapping experimental set-up and representative map of indentation modulus, E_{ind} , from 2-
771 month-old WT cartilage, which illustrated the separation of the PCM and T/IT-ECM microdomains. d) Box-
772 and-whisker plot of E_{ind} distribution on the PCM (≥ 600 locations from $n = 6$ animals for each genotype) and
773 T/IT-ECM ($\geq 2,800$ locations, $n = 6$, p -values were obtained via Mann-Whitney test on the averaged modulus
774 from each animal). Panels b, d: Each data point represents the average value measured from one animal.

775 **Figure 4** Impact of collagen III reduction on the nanostructure of collagen fibrils on the surfaces of articular
776 cartilage and meniscus. a) Representative SEM images of collagen fibril structure on the surfaces of 2-month-
777 old wild-type (+/+/+) and *Col3a1*^{+/−} (+/−) cartilage and meniscus. b) Box-and-whisker plot of fibril diameter
778 distributions (≥ 200 fibrils from $n = 4$ animals for each genotype and tissue type at each age).

779 **Figure 5** Impact of collagen III reduction on the nanostructure of collagen fibrils in the PCM and T/IT-ECM of
780 articular cartilage. a) Representative TEM images of collagen fibril structure on the sagittal sections of 2-
781 month-old wild-type (+/+/+) and *Col3a1*^{+/−} (+/−) cartilage PCM and T/IT-ECM. b) Histogram of fibril diameter
782 distribution (> 130 fibrils from $n = 4$ animals for each genotype in each region). Shown together were the
783 normal distribution, $N(\mu, \sigma^2)$, fits to fibril diameters (for each fit, values of μ and σ correspond to the mean and
784 standard deviation of fibril diameters shown in Table 2). c) Comparison of fibril diameter heterogeneity
785 (variance) between the two genotypes (mean \pm 95% CI, > 130 fibrils, $n = 4$).

786 **Figure 6** Impact of collagen III reduction on the nanostructure of collagen fibrils in the ECM of the meniscus
787 tissue interior. a) Representative TEM images of collagen fibril structure on the sagittal sections of 2-month-old
788 wild-type (+/+/+) and *Col3a1*^{+/−} (+/−) meniscus ECM. b) Histogram of fibril diameter distribution (> 600 fibrils
789 from $n = 4$ animals for each genotype). Shown together were the normal distribution fits to fibril diameters,

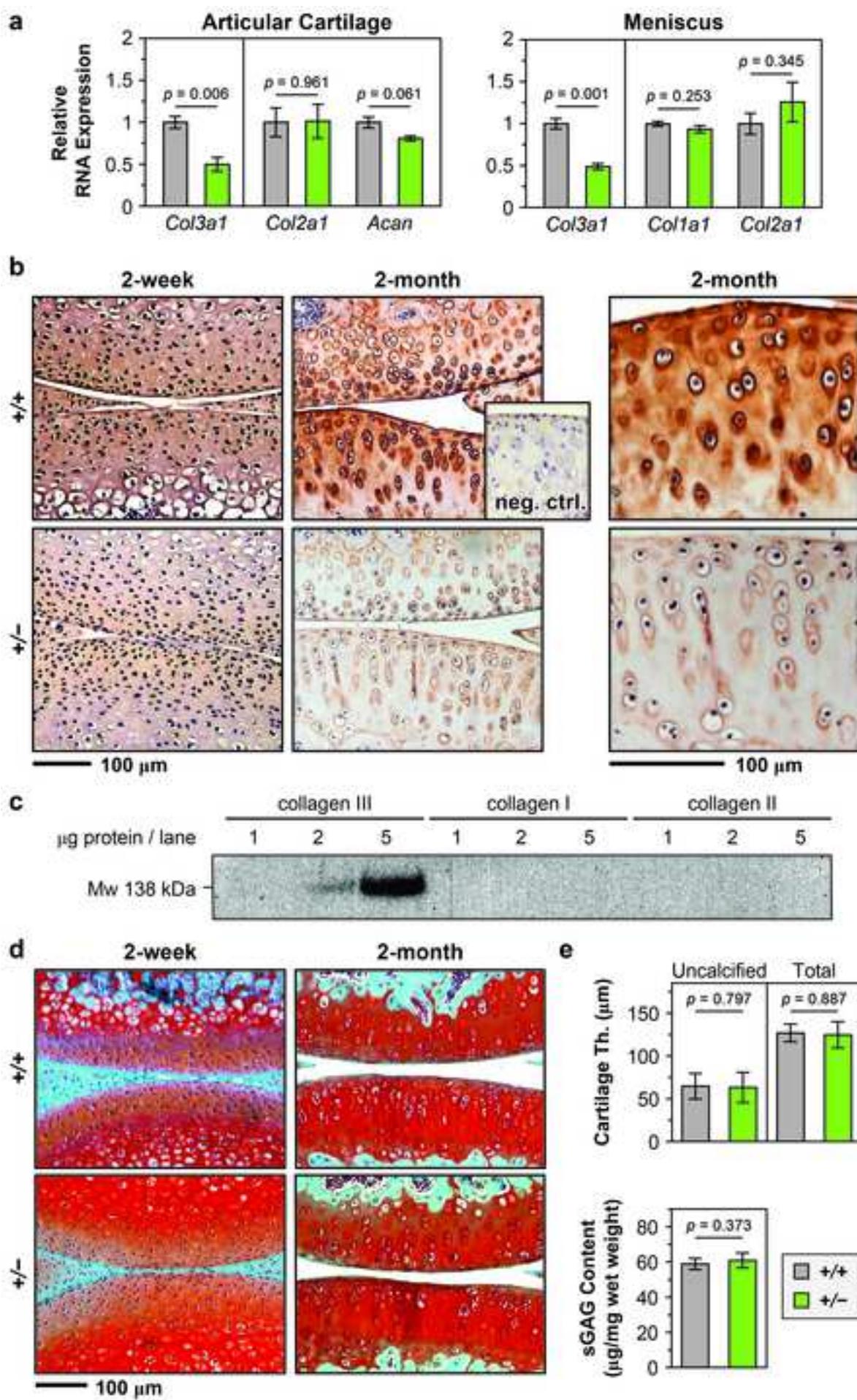
790 unimodal for $+/+$ ($N(\mu, \sigma^2)$, $\mu = 72.6$, $\sigma = 28.3$) and bimodal for $+/-$ ($p \cdot N(\mu_1, \sigma_1^2) + (1 - p) \cdot N(\mu_2, \sigma_2^2)$, $p = 0.87$,
791 $\mu_1 = 69.2$, $\sigma_1 = 23.8$, $\mu_2 = 158.3$, $\sigma_2 = 29.5$). c,d) Comparisons of c) fibril diameter heterogeneity (variance) and
792 d) fibril packing density between the two genotypes (mean \pm 95% CI, calculated from > 600 fibrils in ≥ 16
793 ROIs, $n = 4$ animals).

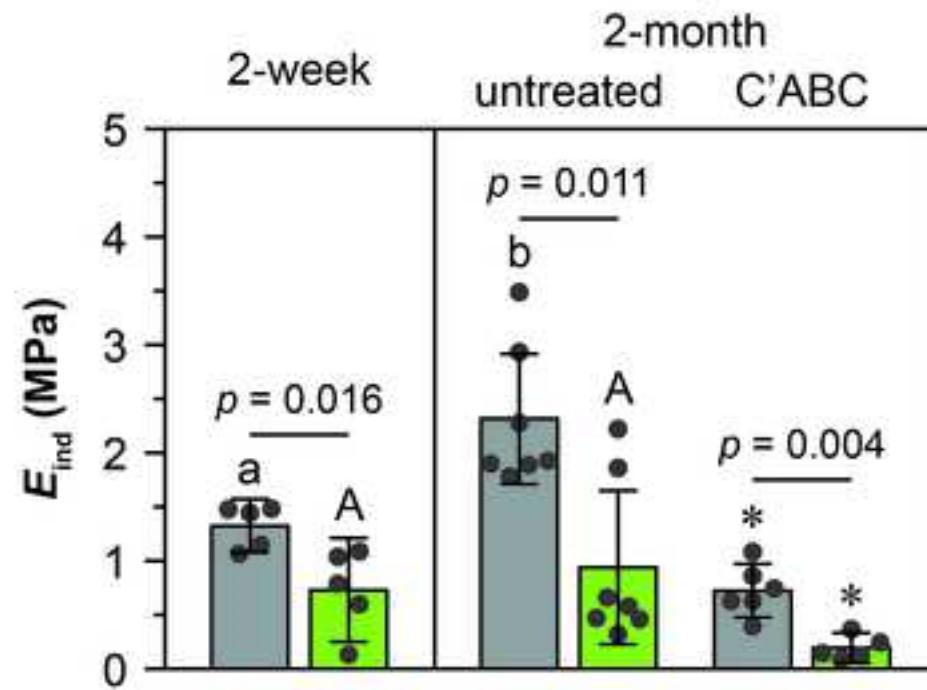
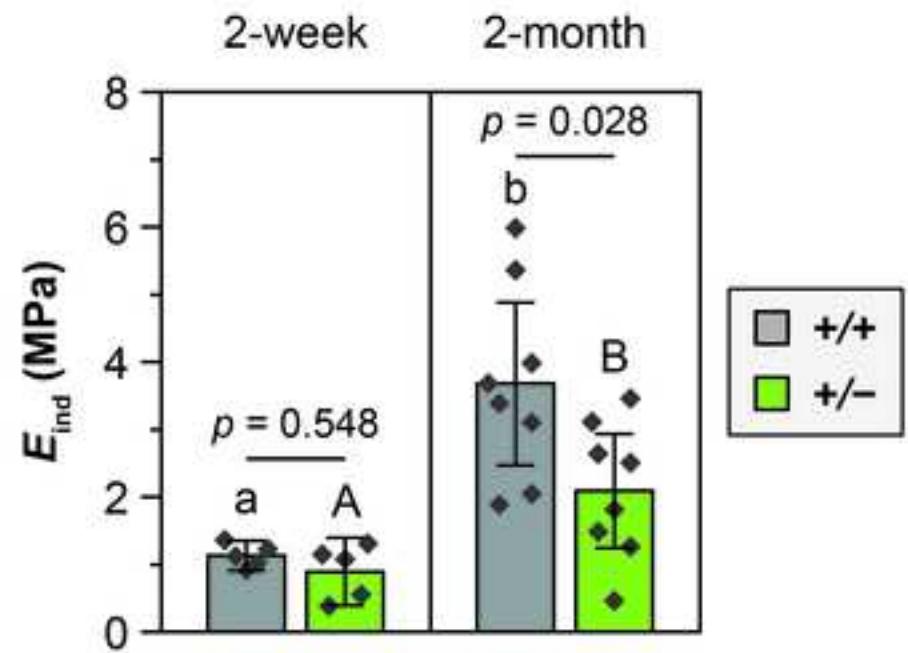
794 **Figure 7** Impact of collagen III reduction on the covalent cross-linking in the collagen fibrils of articular
795 cartilage (AC) and meniscus (M). a,b) Comparisons of collagen amount and cross-linking between wild-type
796 (+/+) and *Col3a1*^{+/−} (+/−) tissues, a) total collagen amount, and b) cross-linking analysis of the immature cross-
797 link dihydroxylysinonorleucine (DHLNL), mature cross-link pyrodinoline (Pyd) and deoxy-pyrodinoline (de-
798 Pyd) and total LOX-mediated aldehyde densities. c) Western blot on the expression of LOX and associated
799 semi-quantitative levels of LOX content, as normalized to the internal GAPDH control. All the results were
800 obtained from 2-month-old tissues (mean \pm SD, $n = 4$ biological repeats for articular cartilage, and $n = 3$ for
801 meniscus). Each data point represents one biological repeat measured from tissues pooled from 3 animals.

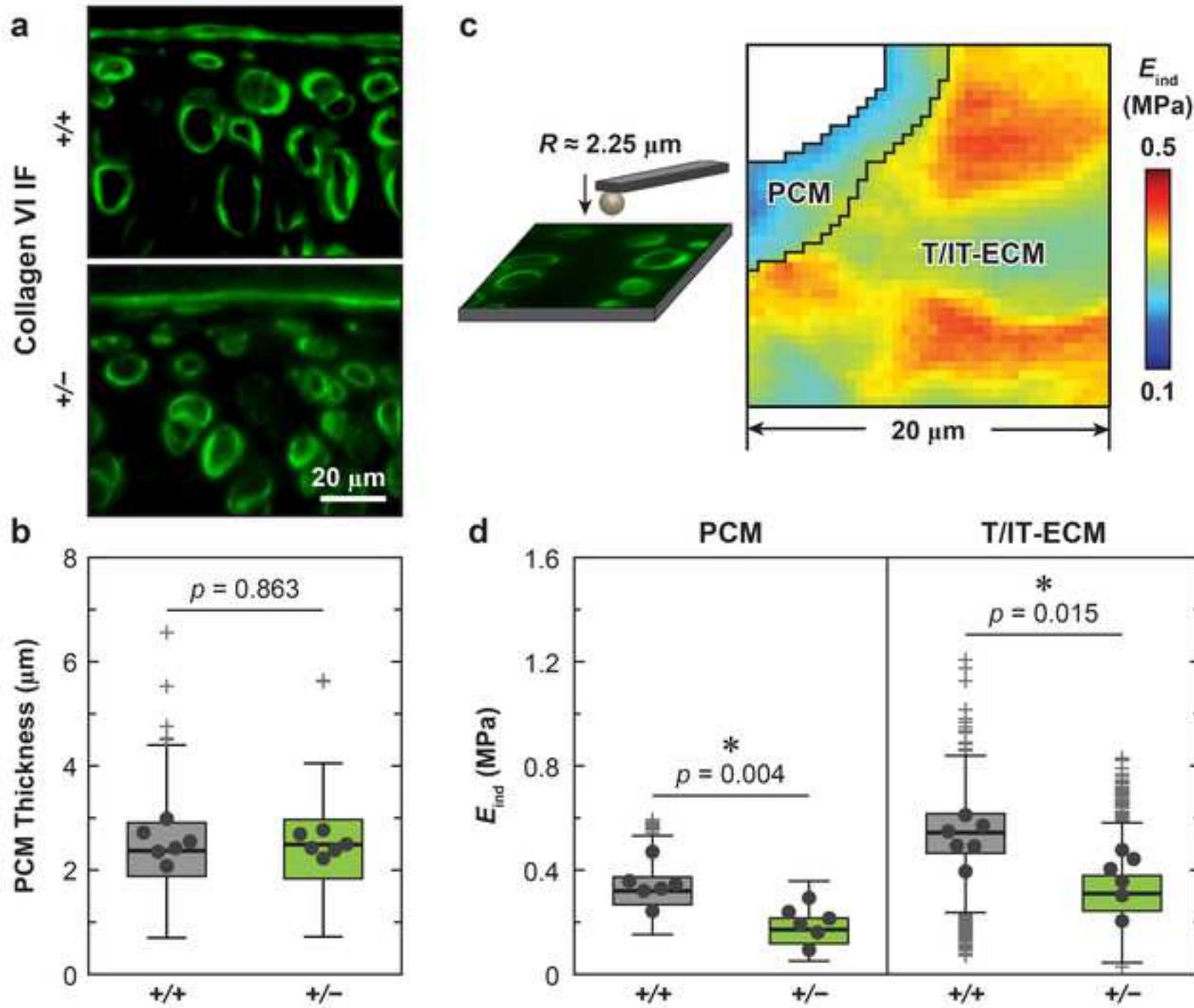
802 **Figure 8** Impact of collagen III reduction on the subchondral bone structure. a) Representative frontal plane of
803 μ CT image (L: lateral, M: medial). b,c) Comparison of subchondral bone structural parameters between 2-
804 month-old wild-type (+/+) and *Col3a1*^{+/−} (+/−) mice, including b) Subchondral bone plate thickness (SBP Th.),
805 and c) Subchondral trabecular bone (STB) structural characteristics, including bone volume fraction (BV/TV),
806 trabecular number (Tb.N), trabecular thickness (Tb.Th) and trabecular separation (Tb.Sp). No significant
807 difference was detected between the two genotypes (mean \pm SD, $n = 5$). Each data point represents the average
808 value measured from one animal.

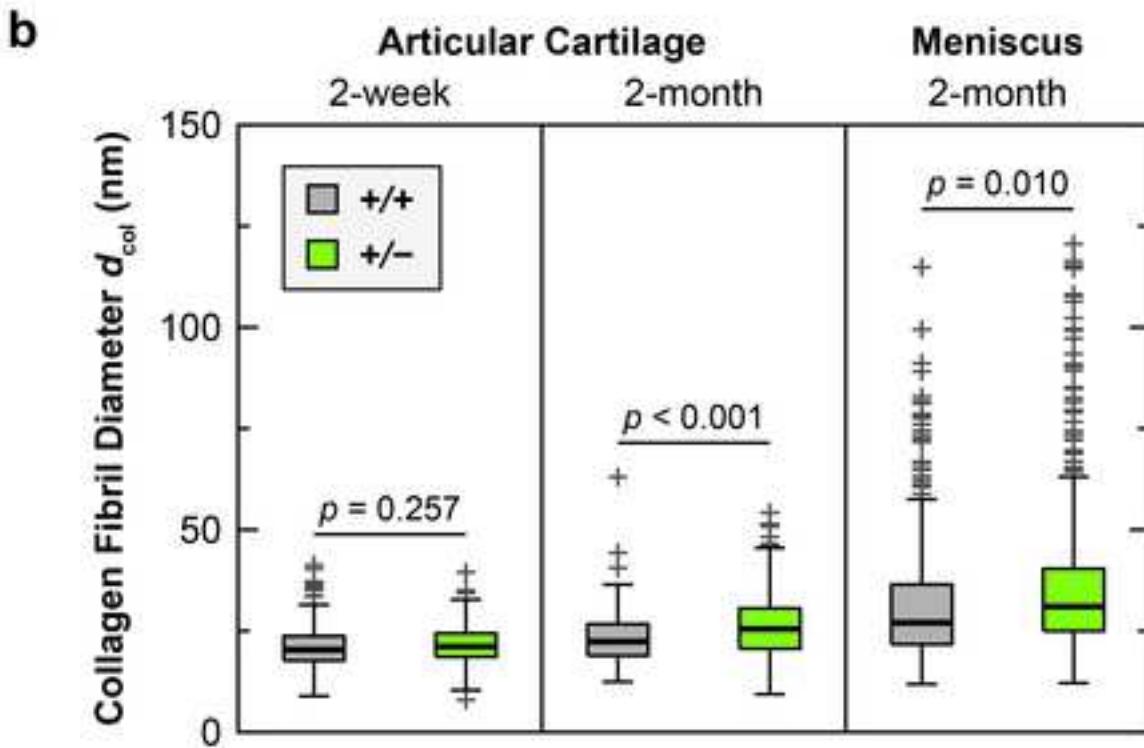
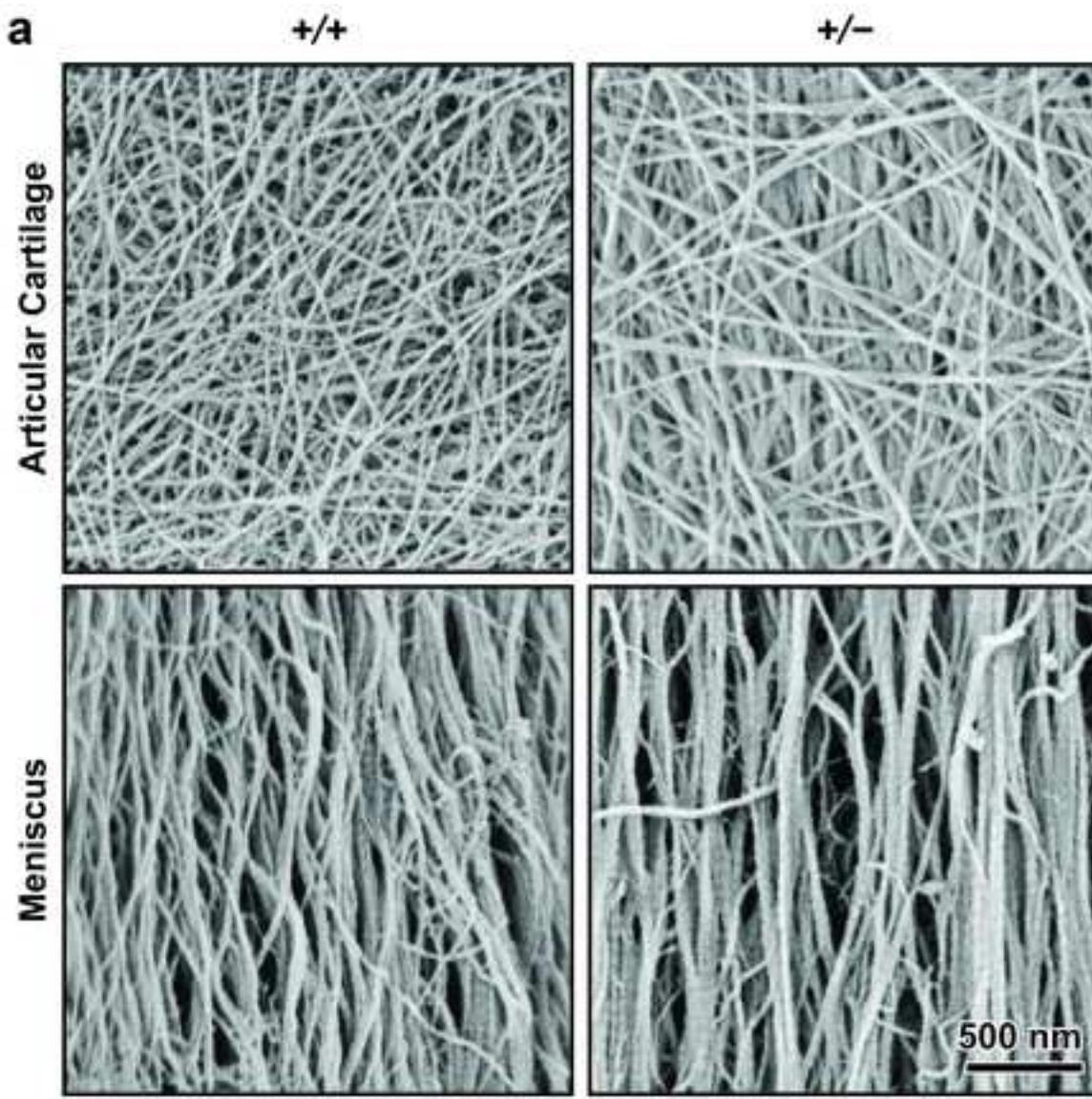
809 **Figure 9** Schematic illustration of the working hypothesis on the structural role of collagen III in articular
810 cartilage ECM, inspired by [19, 40, 62]. a) Upper panel: Collagen III co-assembles with collagen II on fibrillar
811 surfaces during the initial phase of collagen fibrillogenesis in the PCM, and forms covalent cross-links with
812 collagen II and other collagen III molecules. The un-processed N-propeptide limits the lateral growth of
813 collagen II fibrils (collagens IX and XI are not shown to increase clarity). Lower panel: The PCM has
814 distinctive structure and composition in comparison to the further-removed T/IT-ECM, as characterized by the
815 localization of collagen VI, perlecan and biglycan. In the PCM, collagen III could play a role in regulating the
816 initial stage of collagen II fibrillogenesis. b) Reduction of collagen III increases the fibril diameter and
817 heterogeneity in cartilage matrix, and alters the covalent cross-linking patterns of the fibrillar network. This
818 could potentially alter the molecular conformation of aggrecan aggregates. In the schematics, the packing
819 densities of collagen fibrils and aggrecan networks are reduced to increase clarity.

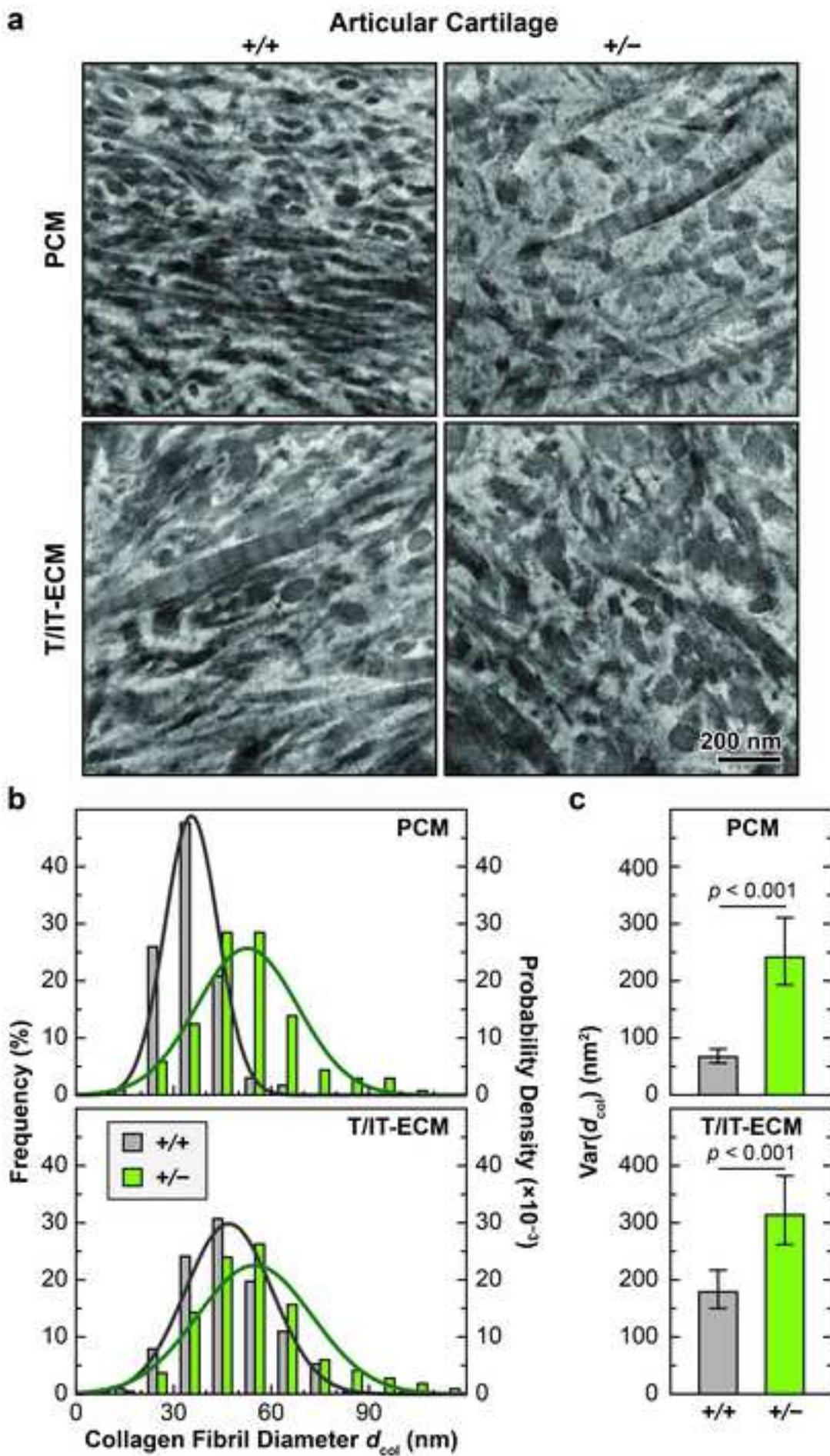
821 **TABLES**822 **Table 1** Summary of collagen fibril diameter distributions on the surface of articular cartilage and meniscus,
823 measured by scanning electron microscopy (SEM)

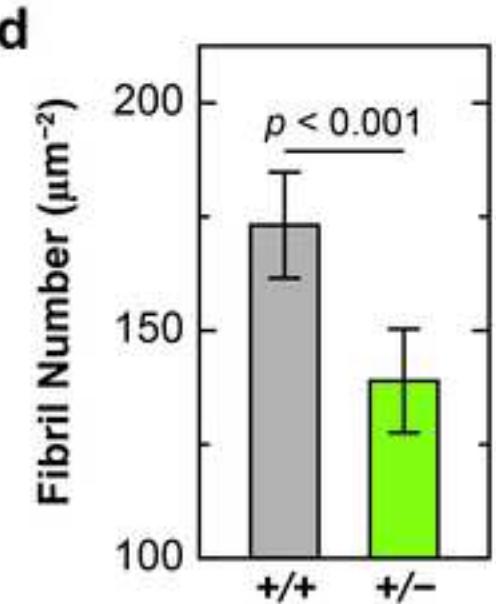
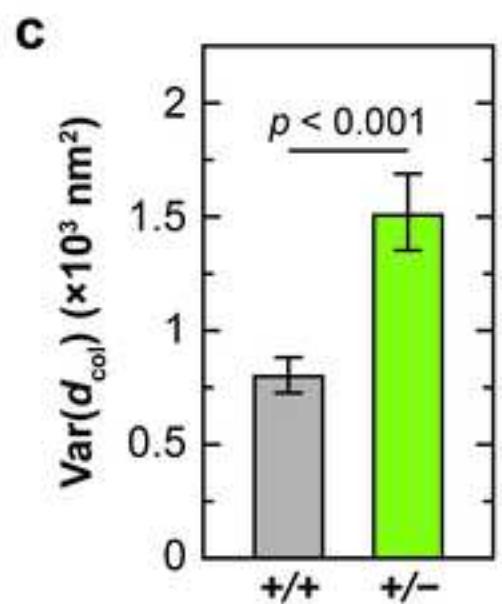
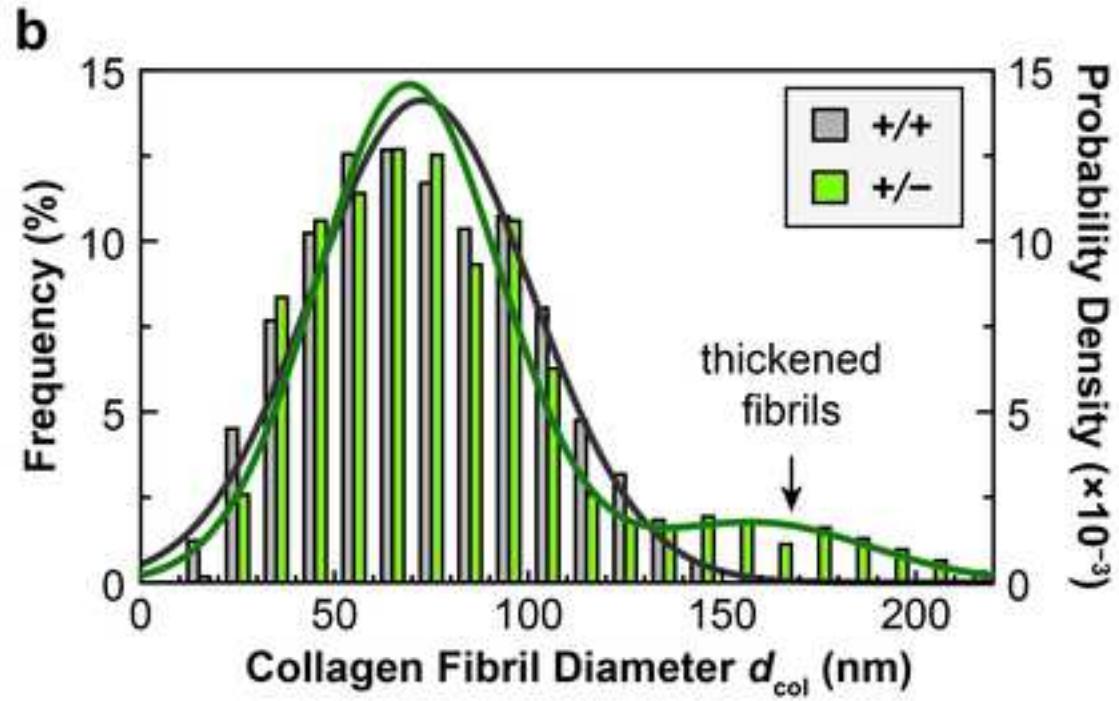
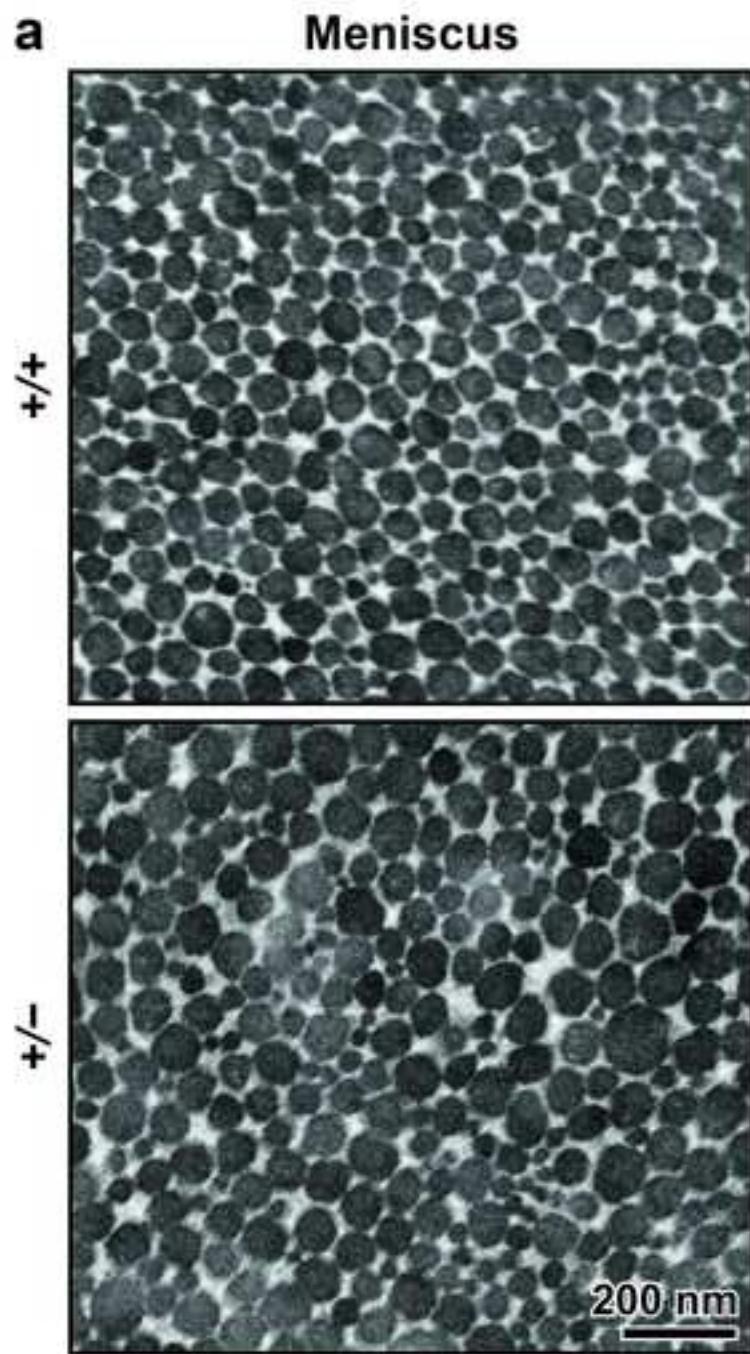

unit (nm)	Articular Cartilage				Meniscus	
	2-week		2-month		2-month	
	+/+	+/-	+/+	+/-	+/+	+/-
mean	21	22	23	27	33	36
std	5	5	7	9	17	18
Q_1	18	19	19	21	22	25
Q_2	20	21	22	25	27	31
Q_3	24	24	27	31	36	40
min	9	8	12	9	12	12
max	41	40	63	54	115	121
n_{fibrils}	300	300	210	210	290	442

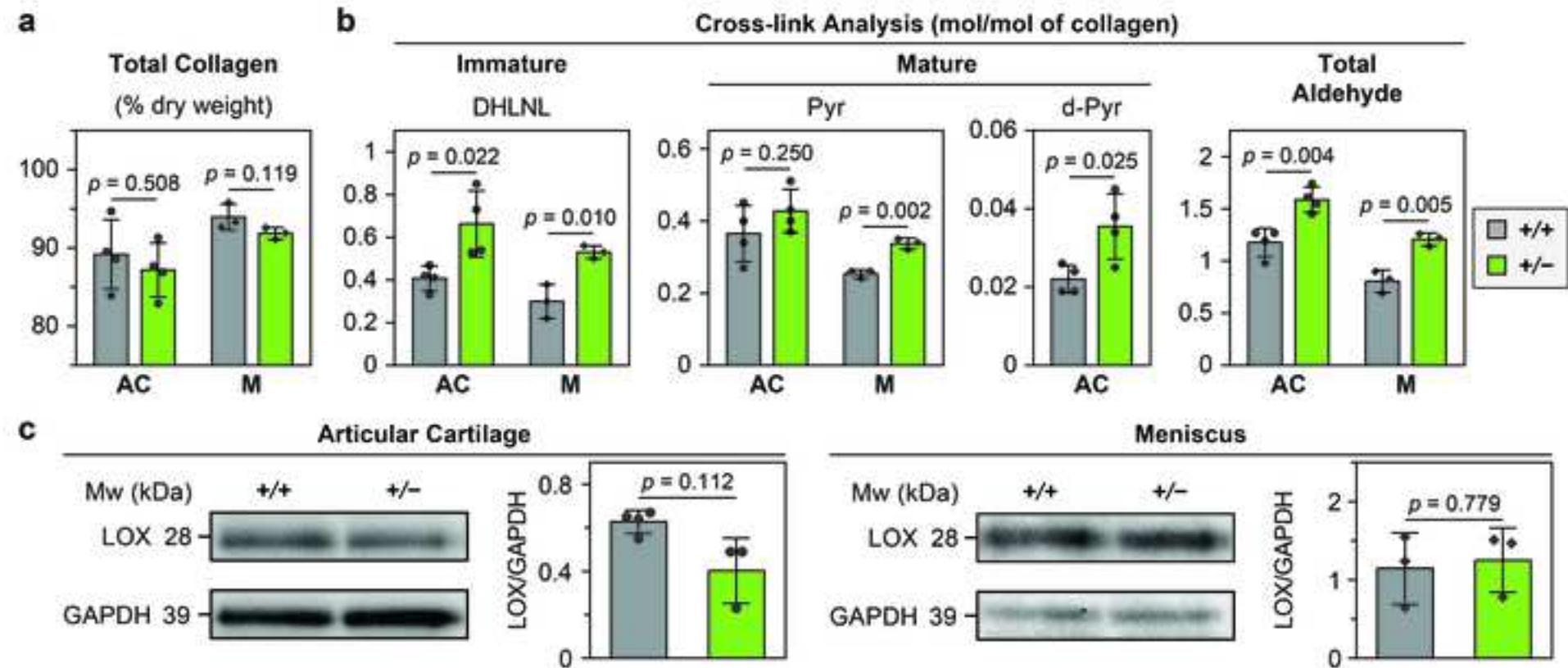


824 **Table 2** Summary of collagen fibril diameter distributions in the matrix interior of 2-month-old articular
825 cartilage and meniscus, measured by transmission electron microscopy (TEM)
826

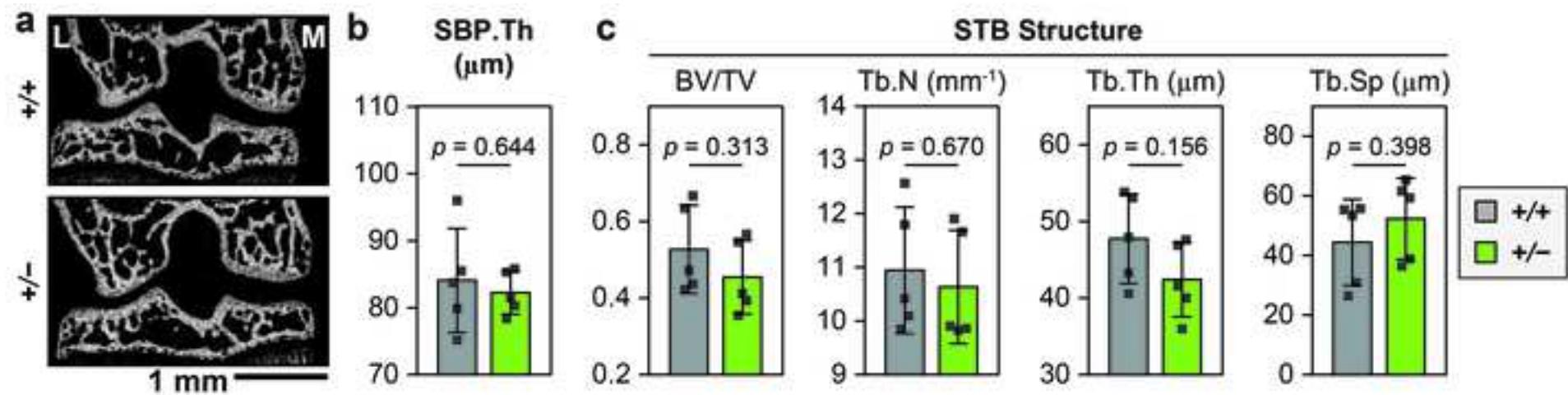

unit (nm)	Articular Cartilage				Meniscus	
	PCM		T/IT-ECM		ECM	
	+/+	+/-	+/+	+/-	+/+	+/-
mean	35	53	47	55	73	81
std	8	16	13	18	28	39
Q_1	30	43	38	44	51	53
Q_2	35	51	45	53	71	74
Q_3	40	60	56	64	93	97
min	18	25	16	18	13	18
max	69	107	83	113	148	220
n_{fibrils}	235	137	228	217	821	624

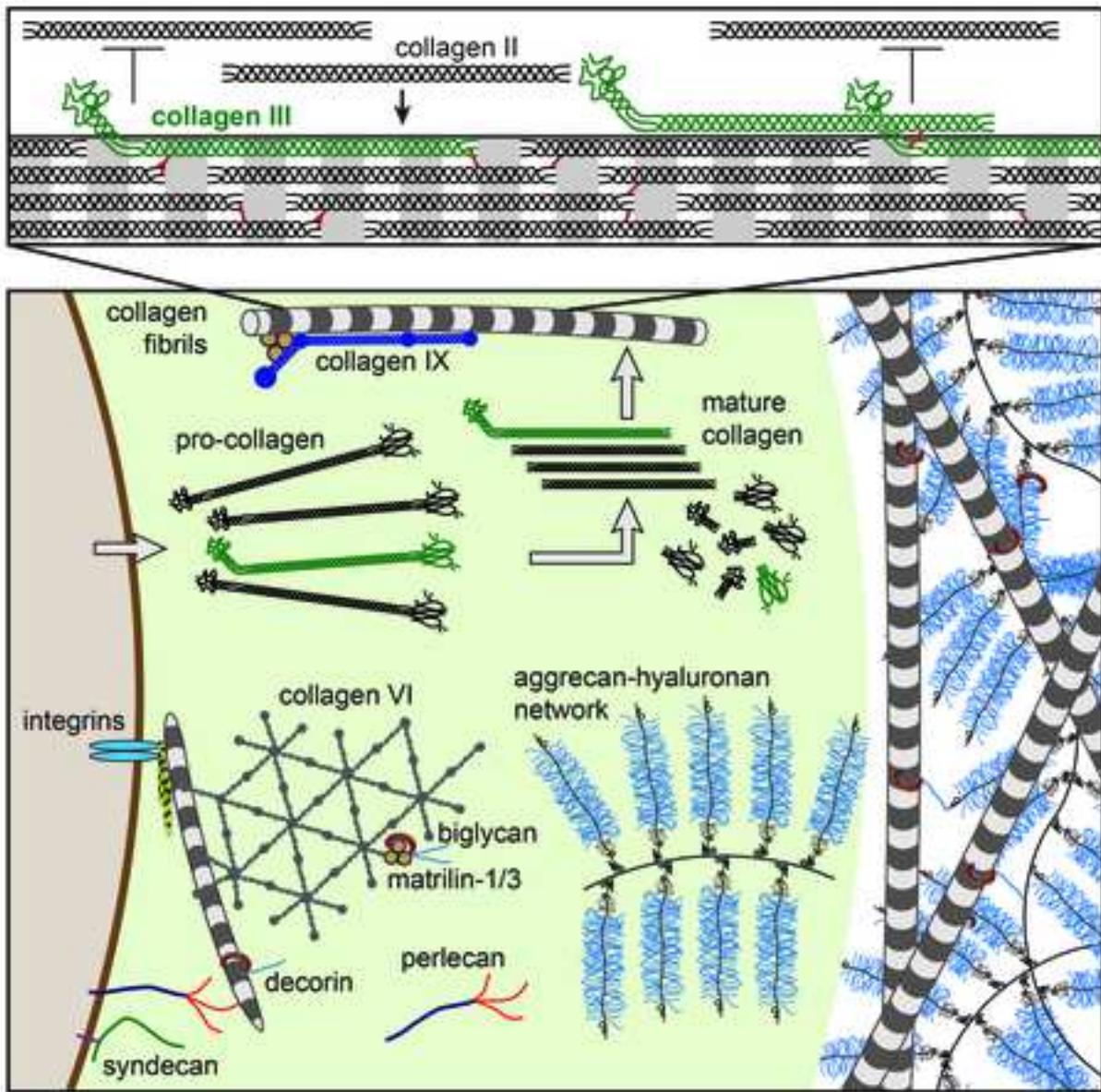
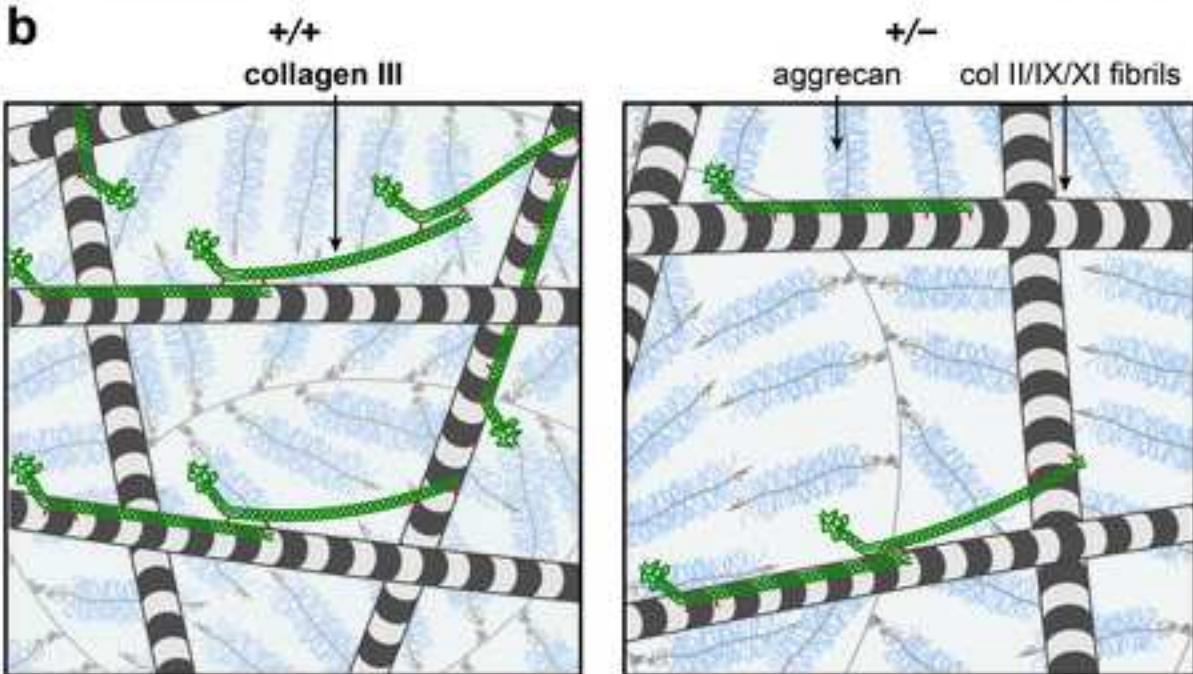


827 **Table 3** List of primers used for quantitative RT-PCR
828


Gene	Forward Primer	Reverse Primer
<i>Col1a1</i>	5'-TTCTCCTGGCAAAGACGGACTCAA-3'	5'-AGGAAGCTGAAGTCATAACCGCCA-3'
<i>Col2a1</i>	5'-GCTGGTGCACAAGGTCCTAT-3'	5'-ACCTCTGCAGTCCAGTGAAAC-3'
<i>Col3a1</i>	5'-TGGTCCTCAGGGTGTAAAGG-3'	5'-GTCCAGCATCACCTTTG GT-3'
<i>Acan</i>	5'-GACTGTGTGGTGATGATCTG-3'	5'-CTCGTAGCGATCTTCTTCTG-3'
β -actin	5'-AGATGACCCAGATCATGTTGAGA-3'	5'-CACAGCCTGGATGGCTACGT-3'
<i>Gapdh</i>	5'- TCAACAGCAACTCCCCTCTTCCA-3'	5'-ACCTGTTGCTGTAGCCGTATTCA-3'


a**Articular Cartilage****b****Meniscus**



a**b**