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ABSTRACT: Low energy antideuteron detection presents a unique channel for indirect de-
tection, targeting dark matter that annihilates into hadrons in a relatively background-free
way. Since the idea was first proposed, many WIMP-type models have already been disfa-
vored by direct detection experiments, and current constraints indicate that any thermal
relic candidates likely annihilate through some hidden sector process. In this paper, we
show that cosmic ray antideuteron detection experiments represent one of the best ways to
search for hidden sector thermal relic dark matter, and in particular investigate a vector
portal dark matter that annihilates via a massive dark photon. We find that the parameter
space with thermal relic annihilation and m, > mas 2 20 GeV is largely unconstrained,
and near future antideuteron experiment GAPS will be able to probe models in this space
with m, ~ m4 up to masses of O(100 GeV). Specifically the dark matter models favored
by the Fermi Galactic center excess is expected to be detected or constrained at the 5(3) —o
level assuming a optimistic (conservative) propagation model.
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1 Introduction

The search for dark matter (DM) is one of the defining challenges of contemporary particle
physics, and although interesting anomalies have been seen throughout the multi-decade ef-
fort, no definitive evidence of a measurable particle interaction has yet been found. Though
the current models in consideration cover a vast expanse of parameter space, the old idea of
the Weakly Interacting Massive Particle (WIMP)-type thermal relic dark matter remains
compelling, as a weak-scale O(pb) annihilation cross-section provides a natural origin for
the present day dark matter abundance. However, direct detection experiments in particu-
lar are pushing constraints of DM-proton scattering to approaching ten orders of magnitude
below that [1-5], and the scenario of simplistic weak-scale couplings to the visible sector is
no longer viable.

This is not to say that thermal relic dark matter scenario has been ruled out. Hidden
sector dark matter, a class of models where DM annihilates to other dark sector particles,
which in turn couple to the Standard Model (SM), is perhaps the most straightforward
way to realize the WIMP scenario consistently with present-day constraints. These models
can quite generally arise from the introduction of dark gauge fields. An annihilation cross
section may be potentially detectable even though direct coupling to the light sector can
be arbitrarily small. One particularly well-motivated type of DM, which we will consider
in this work, is dark photon dark matter (DPDM), where DM particles are charged under
a massive dark U(1) and the dark photon kinetically mixes with the SM photon. Here,
cascade annihilation is permitted as long as the dark photon is less massive than the dark



matter particle. Dark photon dark matter and similar models have also been previously
considered in e.g. Refs. [6-14].

If the DM abundance is indeed set by thermal annihilation freeze-out, assuming no
lighter particles in the dark sector, the energy density carried by the annihilated particles
must be injected into either radiation, leptons, or a baryonic component of the universe.
In the former case, measurements of N,s¢ from the Cosmic Microwave Background (CMB)
as probed by experiments like CMB-S4 [15] are expected to detect or rule out this type of
thermal relic. In the latter, if DM annihilates eventually into matter but direct coupling
to the visible sector is to be sufficiently suppressed, indirect detection may be the best way
to detect these models.

Indirect detection efforts in the past years, measurements of CMB anisotropies [16],
and of gamma ray [17] and cosmic ray antiparticle [18] fluxes, have provided insightful
constraints and even some intriguing excesses that could possibly point to a DM origin,
such as the Galactic center excess (GCE) seen by the Fermi collaboration [19-26] and the
anitproton excess seen by the Alpha Magnetic Spectrometer (AMS-02) [27-29]. Indeed,
10-40 GeV models of DPDM has been shown to be favored by the GCE if a modified
NFW may be assumed for the galactic halo [30]. The origins of these excesses are still
debated, the uncertainty of which dominantly arises from their relatively high astrophysical
backgrounds. This necessitates accurate priors on poorly-understood quantities, such as
secondary antiproton fluxes or distributions of millisecond pulsars, to identify a definitive
excess.

Cosmic ray antideuterons have not yet been confirmed by current running experiments,
but they are attractive as a DM annihilation channel precisely because of their astrophys-
ical rarity, particularly at low energy. They are generically produced by kinematically
viable annihilating DM models (m, > mg) that couple to quarks, albeit typically with
low branching ratios. This potential downside is counterbalanced by the low expected sec-
ondary flux particularly at low kinetic energies, which is so low that experiments searching
for cosmic ray antideuterons are virtually background free, and signals from annihilating
DM can easily be orders of magnitude larger [31]. The General AntiParticle Spectrometer
(GAPS) [32], scheduled to launch in 2020-2021, is a balloon borne experiment using novel
detection methods involving the decay of exotic atoms, designed particularly to search for
antideuterons at low kinetic energies.

In conjunction with the A MS-02 experiment currently in operation, GAPS has exciting
potential to probe compelling DM models that may be difficult to study through other
channels [33-38]. Indeed, the potential of detecting DM via cosmic ray antihelium has
entered the discussion, motivated in part by eight antihelium events recorded recently
by AMS-02 [39]-though they are difficult to explain with known astrophysical or dark
processes consistent with existing bounds [40-42].

In this article we describe dark photon dark matter and assess the prospects of detect-
ing this type of dark matter via cosmic ray antideuterons with ongoing and near future
experiments. In section 2 we describe the details of the model; in section 3 we discuss
constraints on the parameter space from previous experiments; in section 4 we study the
injection of antideuterons from DM annihilation into the galactic halo, and in section 5



the propagation of injected antideuteron through the interstellar medium and the solar
environment. In section 6 we present the main results for this paper: the expected top-of-
atmosphere antideuteron flux for DPDM annihilation and the prospects of detection via
GAPS and AMS-02. In section 7 we discuss briefly the prospects of detecting antihelium
from annihilated DPDM; in section 8 we summarize and conclude.

2 Dark Photon Dark Matter

In this work, we consider a simple vector portal model in which DM consists of one flavor
of Dirac fermion (x, x) with mass m,, charged under a dark U(1),

LD —gpx " A x + %mi;’gx + %mi,A;LA’“. (2.1)
The dark photon has Stiickelberg mass m 4/ and kinetically mixes with the SM photon,
governed by parameter e,

1
4
Here AL and F /;l, are the dark counterparts to the SM U(1) gauge terms A, and F),,. The
mixing between the dark and SM photons is expected for any separate U(1) symmetry

1 €
LD — FWF“” — —F F'* _ iFﬁyF“”. (2.2)

4

in the universe [43], so it is not an additional requirement of the model. This mixing is
diagonalized under the rotation

Ay = Ay +ed, A = A, (2.3)

which then manifests as an interaction between the dark photon and standard model
fermions with coupling eey, where ey is the fermion’s SM electric charge,

LD —Eeflzf’y“A;L’(ﬁf. (2.4)

As shown in Fig. 1, the elastic scattering of y,x with SM particles, the s-channel
direct annihilation of DM particles into the SM, as well as production of dark sector par-
ticles via collisions are quadratically dependent on €. If the mixing is small, the processes
probed by direct detection and collider searches are both suppressed and occur inefficiently.
Conversely, if annihilation occurred only along this channel, such as would be the case if
m, < my, cross sections allowed by existing direct detection constraints would be gener-
ically unobservable by indirect experiments and the thermal relic scenario would likewise
be ruled out without further model building.

However in the case that m, > m 4/, the t-channel annihilation of DM into on-shell dark
photons, as shown in Fig. 2, is also kinematically allowed. These dark photons are allowed
to propagate and decay into SM particles over a longer characteristic time, and in this
way the annihilation into the light sector circumvents the suppression of the mixing. The
annihilation of DM, dominated by this process, is therefore much more efficient than elastic
scattering or collider production. This type of hidden sector mechanism thus allows in a
natural way the realization of a thermal relic abundance in light of increasingly stringent
direct detection constraints, and it naturally follows that indirect detection is the most
advantageous way to search for this type of dark matter.
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Figure 1: Relevant Feynman diagrams for SM-DM interactions: elastic scattering (left),
s-channel annihilation of DM to SM (middle), s-channel production of DM from SM (right).
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Figure 2: Feynman diagrams for the cascade annihilation of dark matter into on-shell
dark photons (left) and subsequent decay of dark photons to SM fermions (right).

3 Constraints from Previous Experiments

The most direct constraints on the parameter space of this model derive from previous
indirect detection experiments and limits on CMB energy injection or fluxes of other cosmic
ray species. These constraints are analyzed in [44-46] and are shown for the specific case
of DPDM in Fig. 3a. Here, we have assumed mys/m, = 0.5, though the constraints are
not particularly sensitive to this mass ratio. As shown, DPDM annihilating at thermal
relic cross sections is ruled out for m, < 40 GeV. Constraints become significantly weaker
for heavier particle masses.

While the signatures of DPDM are most readily seen via indirect detection, the annihi-
lation channel is ill-equipped to probe the kinetic mixing precisely because it is insensitive
to the suppressed coupling. In this case, direct detection and collider searches potentially
offer the means to measure and constrain the mixing parameter € once the annihilation
cross section is measured by indirect experiments. Assuming that m, > ma/ and the
two-step annihilation process is allowed to occur, the cross section is given by

2
T D mp

ann = 2 |1 — A (3.1)
mX mX

where ap = g% /4m. The DM-proton elastic scattering however, is quadratically suppressed

by e,
2.2 2,2
dape‘e mymy,

= . 3.2
Oxp mj/ (mx+mp)2 ( )

Taking a fiducial thermal relic cross section o4,, = 1pb, constraints on o, as obtained
from direct detection translate to constraints on € given choices of my, mar. Constraints
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Figure 3: Constraints on dark photon dark matter parameter space from previous exper-
iments.

on dark photon couplings have also been measured directly by collider experiments, and
are independent of thermal relic assumptions.

On the other hand, lower-bound constraints for e are set such that the mixing and
decay of dark photons into the light sector occur sufficiently quickly so as not to interfere
with Big Bang neucleosynthesis (BBN),

262mA/)_1 <tppn ~ ls. (3.3)

TA! ™ (6

A summary of these constraints, which yield both upper- and lower-bound on €, are

given in Fig 3b for various choices of m 4 < m,. These constraints become less stringent,

particularly for direct detection contours, as m 4/ approaches m,, but in all cases there are

roughly six orders of magnitude of unconstrained choices of €, demonstrating significant
remaining freedom in the parameter space of DPDM.

4 Coalescence and Injection into the Halo

While compared to heavier nuclei a substantial amount of data on antideuteron production
at colliders has been recorded [54-56], the process of antideuteron formation is not well
known, and the common practice is a phenomenological parameterization of coalescence
calibrated to match experimental results. The dependence of this formation process on
the content of background particles and on the center of mass energy is still unknown and
constitutes an active field of study. Thus, the coalescence model is an important source of



V5 [GeV] | 9.46 10.58 53 91.19

Experiment | CLEO (T resonance) BaBar (ete™) ISR (pp) ALEPH (Z resonance)
po [MeV] 133 135 152 192

Table 1: Coalescence momenta for antideuteron formation as fit using Pythia 8 from
experimental data. Taken from [34, 36]

uncertainty in antideuteron predictions, and best-fit parameters to different datasets may
induce a difference in production efficiency by a factor of a few.

For this work, we will use the step-function coalescence criterion: the approximation
that a nucleus is formed if the constituent nucleons are formed within a sphere in momen-
tum space of diameter pg, in the center-of-mass frame [33]. In the case of antideuteron
production, a d is formed if a produced p, @ pair have a center-of-mass momentum separa-
tion less than py.

The coalescence momentum is set to match anti-nuclei production observed in collider
experiments [34, 36] and the best-fit values for modeling antideuteron production using
Pythia 8 listed in Table 1. The coalescence criterion is then applied on a per-event basis
in a Monte Carlo analysis with Pythia to determine the injection spectra from the decay
A" — dX in the rest frame of the dark photon, shown for example dark photon masses in
Fig. 4. The branching ratios of the dark photon are inherited from the couplings of the
SM photon with which it mixes. Assuming the dark matter annihilations occur in the rest
frame of the galaxy, and the dark photons are produced isotropically, the boosted injection
spectrum into the galactic halo per dark matter annihilation is given for sample dark matter
masses in Fig. 5. Experimental searches focused on low kinetic energy events, where the
background is most subdominant, will be most sensitive to models with m, ~ m 4/, though
models with extremely close masses may be less generic. We choose as a benchmark a
model with m, = 50GeV, my = 30GeV, and investigate the detection prospects for the
satellite experiments GAPS and AMS-02.

5 Propagation through the Galaxy and Heliosphere

After coalesced antideuterons are injected into the galaxy, the transport of the cosmic ray
to the detector is described by two components: the propagation through the interstellar
medium (ISM) to the Solar System, and the propagation through the heliosphere to the top
of the Earth’s atmosphere (TOA). Galactic transport in particular constitutes a significant
source of uncertainty in this analysis, since as with the coalescence picture, parameters of
the transport model are phenomenological. They are calibrated to match cosmic ray fluxes
measured by experiments, and different supported choices for parameters may result in
differences in the derived flux of close to an order of magnitude [33, 35].

The galactic propagation of cosmic ray antinuclei is described by a two-zone diffusion
model [57-59]: production and transport is assumed to occur within a cylinder axis-aligned
with the axis of the galactic plane, of radius R and half-height L above and below the
galactic plane. The ISM where disintegration of the antinuclei can occur is confined to a
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Figure 4: Injection spectra obtained with Pythia 8 for various choices of dark photon
mass mys. The shaded region shows a range of coalescence momenta pg = 150 £ 25 MeV;
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Figure 5: Similar to Fig. 4, but isotropically boosted to the dark matter (halo) rest frame
assuming m, = 2m/,.



thin disk of half-height h above and below this plane. As done in Refs. [57-59], we set
R = 20kpc,h = 100pc, and take L as a transport parameter. The number density of
antinuclei n(r, z,T) at position (r,z) and kinetic energy 7' is governed by the transport
equation

— V- [K(r, 2, T)Vn(r, 2, T) + Vin(r, z, T)] + 216 (2)T% n(r, 2, T) = Q%(r, 2, T),  (5.1)

whose terms we will now detail below. Q%(r,z,T) is the source term of antideuteron
production, which in the case of DM annihilation is quadratically dependent on the halo

_ _ r. 2
Qr,,T) = o) 4 <”(m’x )> . (5.2)

Here, dNj/dT is the injection spectrum computed in Section 4, and (ov) is the thermal

profile:

average annihilation cross section. To realize thermal relic dark matter, we take (ov) = 1pb.
We assume a spherical NF'W profile for the galactic halo

_ pore(l+1o/rs)?
VrZ 4+ 22(14+ V1?2 + 22/7“8)2’

The final observed flux has some dependence on the choice of halo profile, but the sensitivity

p(r, z) rs = 20kpc. (5.3)

is small compared to uncertainties in transport parameters. To demonstrate this we will
also consider a spherical Einasto profile,

p(r,z) = pe exp <—i [<M> — <7«®>0‘]> , rs =20kpe, a=0.17, (5.4)

Ts Ts
and a cored isothermal profile

o) = LT
’ 14+ (r2+22)/r%’

rs = bkpec, (5.5)

all of which are fixed such that the density is po = 0.39 GeV/cm?. at 7o = 8.5kpc. We
find that overall the Einasto profile gives a slightly optimistic flux compared to the NF'W
case, and the isothermal gives a slightly conservative one.

The annihilation of antideuterons in the ISM is governed by the term

I, = (n + 42y ol 7>, (5.6)

3

where ng = lem ™3, nge = 0.1cm ™3 are the number densities of hydrogen and helium in

dp—X
ine  has

not been measured, so we will follow the approximation scheme developed in [37] using
dp

the ISM, and vy is the velocity of the cosmic ray d. The inelastic cross section o

measured values for the charge conjugate processes o

Finally, the first term governs the diffusion and convection of the cosmic ray density.
The convection wind is taken to be constant in magnitude pointing away from the galactic
plane, V, = sgn(2)V,2, and the diffusion coefficient is parameterized as

R

K(r,z,T) = v7Ko <1GV>6 (5.7)



| Llkpe] Ve[km/s| Ko [kpe®/Myr] 6
MED | 4 12 0.0112 0.70
MAX | 15 5 0.0765 0.46

Table 2: Galactic transport model parameters for the MED and MAX scenarios.

where R = p/(Ze) is the cosmic ray rigidity in units of Gigavolts. Thus, the model for
galactic transport is encoded in the choice of parameters {L, V., K¢, ¢}, which are in turn
determined by boron-to-carbon (B/C) cosmic ray ratios [60-62] as so-called MIN, MED,
and MAX propagation models. The first of these has recently become disfavored by more
recent measurements [49, 63] so we will only consider the MED and MAX scenarios in this
work. These parameter choices are independent of cosmic ray species and are tabulated in
Table 2.

The galactic propagation and dependencies on transport models can be encoded in an
function R4(T) [35], which is independent of the choice of halo profile and DM model, for
all annihilating DM scenarios. The interstellar flux can then be written as

d vi, ANg (p(r2)\? L
hsar.2.7) = o) Gt (22 ) R, (5.5)
and we solve for this propagation function numerically in a Bessel expansion. We note
that more sophisticated propagation models have been developed [64, 65] and reserve the
inclusion of additional astrophysical effects for future work. The transport of cosmic rays
in the solar environment, on the other hand, is governed by the modulation and structure
of the solar magnetic field. We use the force field approximation [66] to model this effect,
writing the observed antideuteron flux at the top of the Earth’s atmosphere as

T2 + 2myT

B —— T =T +|Z|ed 5.9
T/2—|—27TLJT/’ +‘ ‘6 ) ( )

d d
r04(T) = $1s0 (10, 0,T")
and we take ® = 500 MV, which reproduces the correct energy shift on average. It is shown
in Ref [35] sensitivity of the predicted flux to this approximation is subdominant to the
uncertainties in coalescence momentum and galactic propagation parameters.

6 Detection Prospects

We consider experimental efforts to detect cosmic ray antideuterons, and specifically the
current ongoing experiment AMS-02 and the near future experiment GAPS, and evalu-
ate the prospects of detecting antideuterons from DPDM annihilation. Identification of
antideuteron particles by cosmic ray detectors consists of three main components: mea-
surement of the particles’ charge, sign of charge, and mass. The last measurement is the
most difficult. Due to their abundance, a major source of detection uncertainty derives
from mislabeling of antiproton cosmic rays.

AMS-02 is a general high-energy cosmic ray experiment that centers around a 0.14 T
permanent magnet [33, 67]. A silicon tracker, time-of-flight detector, transition radiation



detector, and ring imaging Cherenkov detector each measure the charge of the cosmic
ray, while curvature of the trajectory induced by the magnet indicates the sign of the
charge. The mass is derived from measurements of rigidity and charge. For the purposes
of antideuterons, the time-of-flight detector was planned to measure low energy particles
with a sensitivity of

$hs—02 1ow = 2.1 x 1070 m2ssrGeV] ™t T €[0.2,0.8 GeV, (6.1)

while the ring imaging Cherenkov detector was planned to measure particles with higher
kinetic energy at a sensitivity of

S50z high = 2.1 X 1070 [m2ssrGeV] ™! T € [2.2,4.2] GeV, (6.2)

both for a five year observation period. However, this calculation is based on the originally
planned 0.86 T super-conducting magnet. Actual sensitivities based on the magnet in use
are not known, though it is safe to assume the reported numbers are an upper-bound.
The GAPS experiment on the other hand is focused specifically on antiparticle cosmic
rays at low kinetic energies, exploring a parameter space complementary to AMS-02 [33,
68]. The instrument contains a time-of-flight detector and layers of semiconducting targets.
Antiparticles will be trapped to form short-lived exotic atoms which then decay. For the
anticipated three flights totaling a period of 105 days, GAPS reports a projected sensitivity
of
P& aps =2 x 1075 m2ssrGeV]™t T € [0.05,0.25] GeV. (6.3)

We include additionally the upper bound of antideuteron fluxes reported by the Balloon-
borne Experiment with Superconducting Spectrometer ( BESS) experiment for reference [33,
69] i

Phpes < 1.8 x 1074 [m%ssrGeV]™t T €[0.17,1.15] GeV. (6.4)

The production of secondary antideuterons, from the spallation of the ISM from cosmic
rays (and subdominantly from supernovae remnants), occurs at a higher threshold energy
of 17m,, (as opposed to 7m, for secondary antiprotons). As a result, the secondary an-
tideuteron spectrum is highly suppressed at low kinetic energies; in contrast, dark matter
particles annihilate effectively at rest, dominating the background in this regime, where
experiments like GAPS are most sensitive. In this work we take the computed secondary
flux from Ref. [70] as our expected background.

For our benchmark model of m, = 50GeV,my = 30GeV, assuming a coalescence
momentum of pg = 150 MeV and an NFW halo profile, the projected antideuteron flux from
a thermal relic annihilation is shown in Fig 6. The shaded region denotes the uncertainty
in propagation model. We see that the annihilation flux is several orders of magnitude
above the expected secondary. Fig 7 shows the change in expected flux with variation of
coalescence momenta (left) and halo profiles (as described in Egs. 5.3 - 5.5, right). The
uncertainty in flux from these two sources are each less than but comparable to that from
the MED and MAX propagation models, each inducing a change of ~ 20%. Dependence
on annihilation cross section is multiplicative and is not shown.
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Figure 6: The antideuteron flux spectrum of a thermal relic dark photon dark matter
with m, = 50 GeV and m 4 = 30 GeV. We take here pg = 150 MeV and assume an NF'W
profile for the halo; the shaded region represents uncertainty between MED and MAX
propagation models. Reported sensitivities of GAPS [68], BESS [69], and AMS-02 [67]
(with superconducting magnet), as well as the projected astrophysical antideuteron flux [70]

are shown for reference.
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Figure 8: The dependence of expected antideuteron flux for various choices of m 4/ (left)
and m, (right). As shown, the expected flux at low energies in particular is quite sensitive
to the mass difference between these two particles, and the antideuteron injection is much
less efficient for low dark photon masses.

While this is the benchmark mass model we have chosen, a large range of dark matter
and dark photon masses are potentially accessible by antideuteron experiments. Fig 8
shows the change in flux spectrum for various dark photon masses, holding m, = 50 GeV
(left), and various dark matter masses, holding ma = 30GeV. As these experiments,
GAPS particularly, focuses on low kinetic energy cosmic rays, they are optimally suited
for discovering moderately light m, < 100 GeV' DM models where m 4 = m,,.

To quantify the detectability of DPDM with the GAPS detector, we evaluate the
expected number of signal and background events seen by the experiment. This number is
given by

Nevents = /qubJ(T)T(FS(T) + T, (T)), (6.5)

where 7 denotes the total flight time of 105 days, and I's and T', are taken from Ref. [68]
and represent the experimental reaches for stopped events and in-flight annihilation events
respectively.

The projected secondary flux for antideuterons yields an expected b = 0.038 back-
ground events for the entire flight time, and the experiment is thus virtually background-
free. We take N, to be the critical number of Poissonian events necessary to make an xo

detection:
N3o'_1 NSa'_l
> P(n,b) > 0.997, > P(n,b) > 0.9999994. (6.6)
n=0 n=0

We find that (with GAPS ) N3, = 2 events are sufficient for a 30 detection, and N5, = 4
events are sufficient for a 50 discovery.

Fig. 9 shows the expected number of events seen by GAPS for a range of models in the
mar — m, parameter space, assuming MAX (left) and MED (right) propagation models.
A thermal relic cross section of (ov) = 1 pb is assumed, and coalescence and halo profiles
are taken as in Fig. 6, though we note that for m, < 40GeV this cross section is challenged

~12 -
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Figure 9: The expected number of events observable by GAPS over the parameter space
of DPDM model assuming MAX (left) and MED (right) cosmic ray propagation. A NFW
profile as in Eq. 5.3 and coalescence momentum of pg = 150MeV are assumed. The
contours represent 3o (N = 2) and 50 (N = 4) detection thresholds respectively. Our
chosen benchmark model predicts a > 50 detection in the most optimistic scenario and a
2 — 30 detection in the most conservative.

by bounds discussed in Sec. 3. The region enclosed by the black contours shows the mass
ranges detectable by GAPS at a 3— and 50 level respectively. As shown, the measurability
of a large portion of this parameter space depends greatly on the propagation model, but
even in the least optimistic scenario 30 measurements can be made of DM masses of up to
80GeV for m 4 sufficiently close to m,.

In complementarity with other indirect searches, the excess of gamma rays in the
Galactic center observed by Fermi-LAT has been robustly established, but a consensus on
its origins has yet to be reached [19-26]. The excess of gamma ray flux can be modeled
with dark matter that annihilates into quarks or leptons

1 = (ov) dN,

2
- 167['771?(% los di p (’l“, Z), (67)

where the DM distribution in the line of sight is integrated over, and the measurement is
in fact consistent with DM annihilating at a thermal relic cross section [23, 25]. The excess
may also be attributed to unresolved point sources, most likely millisecond pulsars [21, 22],
and the preference of the signal to one scenario or the other is still hotly debated. Previous
work has suggested that if the GCE observed by Fermi indeed has dark matter origins
then a vector portal DM model provides a good candidate for observed signal [30]. For
this analysis a steeper modified NFW is assumed for the galactic halo is assumed

(r,z) = po(l+ TQ/TS)Q(TQ/\/W)’Y
P (1+ V2 + 22/r)3—7 ,

Fig 10 shows the expected number of events detected by GAPS for DPDM distributed
in a modified NFW, with the region highlighted region being favored by the GCE at the

rs = 20kpc v = 1.26. (6.8)
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Figure 10: Similar to Fig. 9, the expected number of events observable by GAPS for the
DPDM model in a modified NFW with v = 1.26 assuming MAX (left) and MED (right)
cosmic ray propagation. The region favored by the GCE measurement is highlighted and
taken from [30].

68% and 95% CL assuming MAX (left) and MED (right) propagation parameters. Thus,
a DPDM model origin for the Fermi Galactic center excess is expected to be detected or
constrained by GAPS at the 50 level in the optimistic, or the 3o level for the conservative
case.

7 Antihelium flux

In this section we discuss the potential for annihilating DPDM to generate antihelium
events that could be seen by GAPS or AMS-02 , in light of the recently reported eight
antihelium events by AMS-02 [39], which consists of six Heg and two Hey events. These
events, if confirmed, would represent a signal highly discrepant with astrophysical expec-
tations, but also difficult to explain with dark matter within current experimental bounds.
An annihilating dark matter model that produces detectable antihelium flux is in general
expected to also produce antiprotons and antideuterons at large fluxes, the first of which
has not been reported in great excess and the second of which has not been reported at
all [40-42, 71, 72]. However, these tentative events have motivated an interest in antihelium
cosmic ray detection, and while projected sensitivities have not been reported by either
experiment, it may still be informative to set theoretical expectations.

The coalescence process of antihelium formation is understood even less well than
that of antideuterons, as very little collider data has been reported on antihelium forma-
tion. Currently, only the ALICE experiment has published antihelium events, at /s = 7
TeV [54]. Various coalescence models have been proposed [40, 72], but here we adopt the
afterburner formulation: an antinucleus is formed if the constituent antinucleons all lie
within a sphere in momentum space of radius pp/2 around the center-of-mass. Under this
formulation fits to ALICE antihelium spectra using Pythia 8 have yielded pg ~ 225 MeV.
However, as we are considering center-of-mass energies much lower than these, we will
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Figure 11: Injection spectra of antihelium for various dark photon masses, boosted to the
rest frame of DM assuming my4s/m, =1 (top left), 2/3 (top right), 1/2 (bottom left), and
1/3 (bottom right). The line is evaluated at py = 225MeV and the shaded regions denote
the range of injection spectra given by 125 < py < 325 MeV.

study antihelium injection spectra for coalescence momenta 125 < py < 325 MeV. Due to
computational cost, we simulate 10® events for each center-of-mass energy (m:) we study,
and report the cases with no antihelium events with an upper-bound. Figure 11 shows the
injection spectra for various choices of m 4/ and m,. As expected, the antihelium injection
is much weaker than antideuterons, by over three orders of magnitude.

The transport of antihelium cosmic rays through the ISM is modeled in a similar way
to the antideuteron case, though cross-sections for antinuclei disintegration from collisions
must be modified. We use the ISM propagation functions Ry, presented in Ref. [72] to
obtain the expected antihelium cosmic ray flux at the top of the atmosphere from DPDM
annihilations. These are shown for various choices of m, and m 4/ in Fig. 12. The expected
antihelium secondary is shown for a range of coalescence momenta [41], and as shown the
flux from DM annihilation is several orders of magnitude larger than the astrophysical
background. However, the antihelium flux from DPDM is also shown to be comparable
or lower than the expected antideuteron secondary in Fig. 6. While the GAPS detection
sensitivities for antihelium are not well known, we expect them to be comparable to that
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Figure 12: Predicted antihelium flux spectra of DPDM for various choices of m s (left)
and m,, (right). The antihelium secondary is taken from [41], where the shaded region
represents a range of coalescence momenta and the MED propagation parameters have
been assumed.

for antideuteron, and we remind the reader that the expected secondary contribution there
is < 0.04 events. Fig. 13 further shows the expected number of events for a range of
masses assuming a thermal relic annihilation cross section in the conservative (right) and
optimistic (left) propagation scenarios, and assuming antideuteron detection sensitivities.
If GAPS sensitivities for antihelium detection are comparable to that of antideuteron de-
tection, to obtain a O(10) He event measurement with annihilating DPDM one would
need a cross section two orders of magnitude above thermal relic for the most optimistic
propagation model, which is difficult to realize particularly in absence of corresponding
antideuteron events. Thus, we do not expect DPDM to be able to explain the tenta-
tive AMS-02 detections. However, if the antihelium detection occurs with larger efficiency
than that of antideuterons, an O(1) event measurement is conceivable within this model
and would still be significantly in excess of the astrophysical expectation.

8 Conclusions

Thermal relic freeze-out remains the easiest way to explain the abundance of dark matter in
the present day universe. However, increasingly stringent constraints from direct detection
experiments exclude naive WIMP-type models and indicate that any accurate thermal relic
model must annihilate via a hidden sector, such as dark photon dark matter, or otherwise
have direct coupling with baryons greatly suppressed. Thus, the remaining viable way to
search for these models is indirect detection. In contrast with indirect channels such as
gamma rays and cosmic ray positrons or antiprotons, low energy cosmic ray antideuterons
represent a unique probe of dark matter annihilations due to its very low astrophysical
background.

In this work we investigate the detection prospects of dark matter annihilating through
a massive dark photon with cosmic ray antideuterons. The dominant source of uncertainty
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Figure 13: Expected number of antihelium events seen by GAPS during the 105-day
flight period, assuming the most optimistic MAX (left) and conservative MED (right)
propagation model. As shown, the O(10) events reported by AMS-02 is highly unrealizable
with thermal relic cross sections.

from this analysis derives from the choice of cosmic propagation and coalescence models,
each of which induce an uncertainty of a factor of a few. The choice of halo profile in
the propagation analysis represents a subdominant source of error. We show that for both
optimistic and conservative propagation, for thermal relic dark matter (o|v|)ann = 1pb,
near-future experiment GAPS is expected to measure signals from annihilating dark photon
dark matter at the 3 — 50 level for m, ~ 10 — 100 GeV for m, = mu. The region of
parameter space mchi = my ~ 10 — 40 GeV favored by the Fermi Galactic center excess
measurement in particular is expected to be detected or ruled out at the 3o level by GAPS.
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