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ABSTRACT 12 

Azoarcus sp. DD4 can cometabolically degrade 1,4-dioxane and 1,1-dichloroethylene when grown 13 

with propane and other substrates. The complete genome sequence of DD4 reveals a diverse 14 

collection of bacterial monooxygenase genes which may contribute to its versatility of degrading 15 

commingled groundwater pollutants.  16 



Azoarcus sp. DD4 is a propanotrophic bacterium isolated from an activated sludge sample 17 

collected at a municipal wastewater treatment plant in Northern New Jersey (1). Notably, DD4 18 

presents a synchronic degradation ability on 1,4-dioxane and 1,1-dichloroethylene (1,1-DCE) via 19 

cometabolism with the induction of propane and some other substrates (1). Like other Azoarcus 20 

strains, DD4 is also a diazotroph that can assimilate atmospheric nitrogen (1-3). The growth and 21 

activity of DD4 can be sustained under a wide variety of aquifer-relevant conditions (1), suggesting 22 

its potential as an effective inoculum for in situ or ex situ bioaugmentation to treat the commingled 23 

contamination of 1,4-dioxane and 1,1-DCE. Therefore, the whole-genome sequence of DD4 24 

provide insights into the genetic relevance regarding its lifestyle and degradation capabilities, 25 

which are valuable to optimize and assess its field applications. 26 

DD4 cells were harvested at its exponential phase after grown in nitrate mineral salts (NMS) 27 

medium with propane (0.1% v/v in the headspace) as the sole carbon and energy source. Total 28 

genomic DNA of DD4 was extracted using the MagAttract HMW DNA Kit (Qiagen, Hilden, 29 

Germany) according to the manufacturer’s instruction. The extract DNA was purified with 30 

AMPure PB magnetic beads and further used for the library preparation using the combination of 31 

the SMRTbell Damage Repair Kit and Barcoded Adapter Complete Prep Kit (Pacific Biosciences, 32 

Menlo Park, CA). The genome of DD4 was sequenced using the Pacbio Sequel™ System (Pacific 33 

Biosciences, Menlo Park, CA), which generated approximately 1.69 Gbp long-read sequencing 34 

data. The average length of raw sequences for sample DD4 is estimated as 2.1 kb as the final 35 

number of raw reads is 802,558. Following the hierarchical genome-assembly process (HGAP), 36 

DD4 genome of high quality and accuracy was assembled using the RS_HGAP_Assembly.3 37 

protocol and polished by Quiver in SMRT Portal v2.3.0 with default parameters (4). For genome 38 

component prediction, the GeneMarkS+ program (5) was employed to retrieve the related coding 39 



genes. Seven databases were then used for the annotation of gene functions (e-value less than 1e-40 

5, minimal alignment length percentage greater than 40%) (6), including respective GO (Gene 41 

Ontology) (7), KEGG (Kyoto Encyclopedia of Genes and Genomes) (8), COG (Clusters of 42 

Orthologous Groups) (9), NR (Non-Redundant Protein Database databases) (10), TCDB 43 

(Transporter Classification Database) (11), and Swiss-Prot and TrEMBL (12).  44 

There exists one single circular chromosome in DD4 without circular or linear plasmids. 45 

The genome size of DD4 is 5,400,077 bp with a GC content of 66.7%. A total of 5001 putative 46 

genes are annotated covering approximately 90.1% of the genome. The genome of DD4 contains 47 

57 tRNA genes and 4 rRNA gene clusters (5S, 16S, and 23S). Four gene clusters encoding the 48 

soluble di-iron monooxygenases (SDIMOs) (13, 14) are found on the chromosome. Based on the   49 

phylogenetic analysis of the amino acid sequences of their hydroxylase alpha subunits, these four 50 

SDIMOs are categorized as a group-1 phenol hydroxylase, a group-2 toluene monooxygenase, a 51 

group-3 butane monooxygenase, and a group-5 propane monooxygenase. In addition, genes 52 

encoding a copper membrane particulate monooxygenase (15) and a cytochrome P450 CYP153 53 

alkane hydroxylase are identified. One or more of these monooxygenases in DD4 may be 54 

responsible for initiating the oxidation of propane, 1,4-dioxane, 1,1-DCE, and other environmental 55 

pollutants (1, 16-19).  56 

Accession number(s). The whole-genome sequence of Azoarcus sp. DD4 has been deposited in 57 

the GenBank with the accession number CP022958 58 

(https://www.ncbi.nlm.nih.gov/nuccore/CP022958). The raw reads have been deposited in the 59 

SRA with the accession number PRJNA398544 60 

(https://www.ncbi.nlm.nih.gov/sra/PRJNA398544).  61 
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