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ABSTRACT

Azoarcus sp. DD4 can cometabolically degrade 1,4-dioxane and 1,1-dichloroethylene when grown
with propane and other substrates. The complete genome sequence of DD4 reveals a diverse
collection of bacterial monooxygenase genes which may contribute to its versatility of degrading

commingled groundwater pollutants.
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Azoarcus sp. DD4 is a propanotrophic bacterium isolated from an activated sludge sample
collected at a municipal wastewater treatment plant in Northern New Jersey (1). Notably, DD4
presents a synchronic degradation ability on 1,4-dioxane and 1,1-dichloroethylene (1,1-DCE) via
cometabolism with the induction of propane and some other substrates (1). Like other Azoarcus
strains, DD4 is also a diazotroph that can assimilate atmospheric nitrogen (1-3). The growth and
activity of DD4 can be sustained under a wide variety of aquifer-relevant conditions (1), suggesting
its potential as an effective inoculum for in situ or ex situ bioaugmentation to treat the commingled
contamination of 1,4-dioxane and 1,1-DCE. Therefore, the whole-genome sequence of DD4
provide insights into the genetic relevance regarding its lifestyle and degradation capabilities,

which are valuable to optimize and assess its field applications.

DD4 cells were harvested at its exponential phase after grown in nitrate mineral salts (NMS)
medium with propane (0.1% v/v in the headspace) as the sole carbon and energy source. Total
genomic DNA of DD4 was extracted using the MagAttract HMW DNA Kit (Qiagen, Hilden,
Germany) according to the manufacturer’s instruction. The extract DNA was purified with
AMPure PB magnetic beads and further used for the library preparation using the combination of
the SMRTbell Damage Repair Kit and Barcoded Adapter Complete Prep Kit (Pacific Biosciences,
Menlo Park, CA). The genome of DD4 was sequenced using the Pacbio Sequel™ System (Pacific
Biosciences, Menlo Park, CA), which generated approximately 1.69 Gbp long-read sequencing
data. The average length of raw sequences for sample DD4 is estimated as 2.1 kb as the final
number of raw reads is 802,558. Following the hierarchical genome-assembly process (HGAP),
DD4 genome of high quality and accuracy was assembled using the RS HGAP_ Assembly.3
protocol and polished by Quiver in SMRT Portal v2.3.0 with default parameters (4). For genome

component prediction, the GeneMarkS+ program (5) was employed to retrieve the related coding
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genes. Seven databases were then used for the annotation of gene functions (e-value less than Ie-
5, minimal alignment length percentage greater than 40%) (6), including respective GO (Gene
Ontology) (7), KEGG (Kyoto Encyclopedia of Genes and Genomes) (8), COG (Clusters of
Orthologous Groups) (9), NR (Non-Redundant Protein Database databases) (10), TCDB

(Transporter Classification Database) (11), and Swiss-Prot and TTEMBL (12).

There exists one single circular chromosome in DD4 without circular or linear plasmids.
The genome size of DD4 is 5,400,077 bp with a GC content of 66.7%. A total of 5001 putative
genes are annotated covering approximately 90.1% of the genome. The genome of DD4 contains
57 tRNA genes and 4 rRNA gene clusters (5S, 16S, and 23S). Four gene clusters encoding the
soluble di-iron monooxygenases (SDIMOs) (13, 14) are found on the chromosome. Based on the
phylogenetic analysis of the amino acid sequences of their hydroxylase alpha subunits, these four
SDIMOs are categorized as a group-1 phenol hydroxylase, a group-2 toluene monooxygenase, a
group-3 butane monooxygenase, and a group-5 propane monooxygenase. In addition, genes
encoding a copper membrane particulate monooxygenase (15) and a cytochrome P450 CYP153
alkane hydroxylase are identified. One or more of these monooxygenases in DD4 may be
responsible for initiating the oxidation of propane, 1,4-dioxane, 1,1-DCE, and other environmental

pollutants (1, 16-19).

Accession number(s). The whole-genome sequence of Azoarcus sp. DD4 has been deposited in
the GenBank with the accession number CP022958

(https://www.ncbi.nlm.nih.gov/nuccore/CP022958). The raw reads have been deposited in the

SRA with the accession number PRJNA398544

(https://www.ncbi.nlm.nih.gov/sra/PRINA398544).


https://www.ncbi.nlm.nih.gov/nuccore/CP022958
https://www.ncbi.nlm.nih.gov/sra/PRJNA398544
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