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Improving Predictions 
of the Urban 
Wind Environment 
Using Data

Analysis of the urban wind environment can play an important 
role in the design of sustainable urban areas. The wind pat-
terns in the urban canopy can affect citizen comfort, safety, 
and health, as well as building energy consumption. For exam-
ple, local accelerations of wind flow around high-rise buildings 
can create uncomfortable or even dangerous conditions for 
pedestrians; interference effects between different buildings 
can generate complex wind loading phenomena that compro-
mise resilience to extreme wind events; the local wind field can 
influence the capability to use air flow driven by natural wind 
and buoyancy to ventilate or cool buildings and reduce building 
energy consumption; and wind patterns will affect the transport 
of pollutants and heat, potentially generating local hot spots 
with high concentrations. Computational fluid dynamics (CFD), 
which numerically solves the governing equations for fluid flow 
and heat transfer, can provide predictions for the complete 
three-dimensional flow and temperature field in the urban can-
opy. In theory, this could provide invaluable information for the 
design of buildings and urban areas; in practice, there are several 
challenges when using CFD in the design process.

An important challenge has been that the simulation process, 
which includes model setup, execution of the simulation, and 
post-processing of the results, can be a very time-consuming 
task that demands a skilled CFD engineer. Significant advanc-
es in CFD software packages and high-performance computing 
capabilities are increasingly alleviating this problem; current sim-
ulation turnaround times are catching up with industry demands. 
Consequently, more fundamental challenges become the limit-
ing factors: the complexity of the urban geometry, the variabil-
ity in the atmospheric conditions, and the turbulent flow physics 
push the state-of-the-art in terms of the predictive capabilities 
of CFD, and engineers have only limited confidence in the accu-
racy of the simulation results. To efficiently address these chal-
lenges and provide results that can be used to quantitatively 
inform design, we need novel probabilistic modeling strategies 
that can quantify and reduce the uncertainty in the predictions. 

Limitations to the Predictive Capabilities of CFD
Urban flows are highly turbulent: the velocity field is charac-
terized by fluctuations that cover a large range of spatial and 
temporal scales. This range of scales cannot be fully resolved 
in a numerical simulation; some form of turbulence modeling is 
needed to parameterize the effect of the unresolved turbulence 
scales on the solution. The traditional view has been that the 
primary reason for the limited accuracy of CFD results for urban 
canopy flows is the use of engineering turbulence models. This, 
however, fails to recognize the high variability, and correspond-
ing uncertainty, in the boundary and operating conditions that 
determine how wind flows through buildings and cities. To eval-
uate the limitations to the predictive capabilities of CFD, both 
these aspects must be carefully considered.

Turbulence Modeling
Two main approaches to turbulence modeling exist: Reynolds-
averaged Navier-Stokes (RANS) simulations parameterize the 
entire range of velocity fluctuations to obtain a solution for the 
time-averaged flow field; large-eddy simulations (LES) solve the 
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“The complexity of the urban 
environment and the governing 
flow physics prohibits accurate 
predictions with deterministic 
modeling strategies. To effectively 
use [computational fluid dynamics] 
for the design and management 
of sustainable urban spaces, a 
paradigm shift from deterministic to 
probabilistic modeling is needed.”
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filtered, unsteady Navier-Stokes equations and parameterize 
only the sub-filter scale velocity fluctuations. RANS simulations 
remain the most common approach for engineering applications, 
primarily because they require only a fraction of the computa-
tional time of LES, with simulation times on the order of hours 
versus several weeks for LES. 

Figure 1 shows an example of the detailed solution that can 
be obtained with LES for the flow around a single high-rise 
building: instantaneous snapshots of the velocity field (Figure 
1a) reveal the velocity fluctuations in the flow and can be post-
processed to visualize turbulent structures (Figure 1b). The 
solution can also be averaged over time to provide a mean flow 
prediction. RANS simulations provide a prediction for these 
time-averaged quantities only, and the need for a model that 
represents the entire range of turbulence scales tends to dete-
riorate the prediction. It is, for example, known that RANS tends 
to overpredict the size of the wake region, i.e., the region imme-
diately downstream of a building with low-velocity, recirculat-
ing flow (see Figure 1a). This type of deficiency also negatively 
influences the accuracy of other quantities of interest, such as 
pollutant concentrations or wind loads. Many wind tunnel vali-
dation studies have explored comparisons and calibration of 
different RANS turbulence models with varying success; the 
converging opinion is that we need LES for consistent improve-
ments in accuracy.1 From an engineering point of view, the cor-
responding increase in computational time poses a limitation to 
the integration of CFD in the design process.

Variability in Boundary or Operating Conditions
Before drawing the general conclusion that the higher compu-
tational cost of LES is justified by the corresponding increase in 
accuracy, it is worth noting that the importance of turbulence 
model deficiencies has been emphasized by the use of wind 
tunnel data in most validation studies. Wind tunnel modeling 
is considered the standard design method in wind engineering; 
given the wind tunnel baseline, the rationale has been that CFD 
simulations should be validated against wind tunnel experiments 
before using them for design. In this type of validation study, 

the wind tunnel flow conditions and building geometries can be 
accurately reproduced in the CFD model, leaving the turbulence 
model as the main source of uncertainty in the prediction. The 
wind tunnel is, however, also a simplified model of a complex 
reality. Flows in cities or buildings have highly variable bound-
ary and operating conditions, for example due to larger-scale 
variability in the atmospheric boundary layer wind2 or due to 
continuous changes in building occupancy and correspond-
ing heat gains. Even if we use an expensive turbulence model 
that can accurately reproduce a wind tunnel experiment, these 
uncertainties would not be eliminated when comparing predic-
tions against full-scale measurements. This was, for example, 
demonstrated in simulations of the wind flow in downtown 
Oklahoma City.3 Compared to RANS results, a more expensive, 
detailed LES (Figure 2) did not consistently improve the com-
parison between the mean velocity prediction and the corre-
sponding full-scale velocity measurements in the urban canopy. 
An interesting observation was that the LES prediction for the 
mean velocity was less accurate in stations where the solution 
had been shown to be sensitive to the inflow boundary condi-
tions. These results indicate that, independent of the turbulence 
model used, the variability in the simulation inputs should be 
characterized and propagated to the simulation outputs to truly 
ensure predictive capabilities. 

CFD Predictions with Confidence Intervals
Recent progress in methods for uncertainty quantification 
supports efficient propagation of uncertainties in model input 
parameters to predict probability distributions (instead of deter-
ministic values) for the quantities of interest. This enables us to 
define confidence intervals for the predictions, reflecting the 
previously identified limitations of the predictive capabilities. 
Generally, a distinction is made between aleatory and epis-
temic uncertainties. Aleatory uncertainties are inherent to the 
system being solved; they cannot be reduced. In urban canopy 
flow, these would be the boundary and operating conditions, 
related to, for example, variability in the atmospheric boundary 
layer wind or building occupancy. Epistemic uncertainties result 

v Figure 1. Large-eddy (LES) 
and Reynolds-averaged (RANS) 
simulation results for the flow 
around a high-rise building. 
(a) contours of the non-
dimensional velocity field U/
Uref at the building mid height 
for an instantaneous snapshot 
of the LES, the time-averaged 
LES and RANS. The highest 
nondimensional velocity 
magnitudes are shown in dark red 
and correspond to an increase 
in the wind speed by a factor 
of 1.4 or more compared to the 
wind speed in the upstream 
undisturbed atmospheric 
boundary layer at the same height. 
(b) iso-surface of Q-criteria to 
visualize turbulent structures in 
the flow, colored by pressure 
coefficient Cp, which provides a 
nondimensional representation 
of the wind pressure. (Credit: 
Giacomo Lamberti).
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from simplifications and assumptions in the model; they could 
potentially be reduced by using a more accurate (i.e., expensive) 
model, or by obtaining more data. The turbulence model is the 
primary source of epistemic uncertainty in simulations of urban 
canopy flow. The different nature of these two types of uncer-
tainties implies that different strategies are needed when propa-
gating them to the quantities of interest.

Quantifying Uncertainties in Boundary or Operating Conditions
Aleatory uncertainties are typically cast in a probabilistic frame-
work: the input parameters are assumed to be random variables 
with corresponding probability distributions, and the uncer-
tainty in these parameters is propagated to the quantities of 
interest. Hence, the quantities of interest also become random 
variables, and the objective is to calculate their probability den-
sity functions. The definition of the distributions for the input 
parameters is essential to this process, since it can strongly influ-
ence the predictions.

In simulations of urban canopy flow, definition of the prob-
ability distributions for the boundary conditions can either be 
based on local field measurements of the relevant quantities, 
such as the wind direction and magnitude, or based on simula-
tions of the larger-scale environment, such as weather forecast-
ing simulations. Both methods have challenges in terms of the 
amount, resolution, and accuracy of data that can be obtained 
to determine the probability distributions for the input param-
eters, but initial studies have successfully explored their applica-
tion to provide urban flow predictions with confidence intervals. 
Especially when performing time-averaged simulations, the ben-
efits of accounting for the larger-scale variability in the flow can 
be significant. This was, for example, shown in predictions of 
pollutant concentrations during the Oklahoma City Joint Urban 
2003 field experiment. Figure 3 shows that the time-averaged 
values from the field experiment are within the 95% confi-
dence interval of the CFD prediction in five of the six measure-
ment stations where significant concentrations (K > 0.01) were 
detected. The mean concentration predicted by the CFD also 
compares well to measurement values.4 

Quantifying Uncertainties Due to Reduced-Order Turbulence 
Models
The quantification of turbulence model uncertainties is challeng-
ing because they are caused by a nominal lack of knowledge. 
Ensemble methods, similar to those used in weather forecast-
ing, offer a standard approach to analyze these uncertainties, 
but the predictive capability remains limited by the assump-
tions made in the different models used for the ensemble. 
Alternatively, a physics-based approach to quantify the uncer-
tainty by introducing perturbations into the modeled quanti-
ties, independent of the initial model form, has been explored.5 
Application of this method to wind engineering flows has shown 
promising capabilities,6 but also indicates a potential limitation 
of a purely physics-based approach: the predicted uncertainty 
intervals might be too large to use the results as a basis for 
design decisions.

Data-Informed Modeling to Reduce Uncertainties
The proposed modeling frameworks with uncertainty quanti-
fication provide a natural pathway to data-informed modeling. 
Continuous improvements in urban and building sensing net-
works, and in high-fidelity simulation capabilities, will provide 
an unprecedented amount of high-quality data. Combined 
with recent progress in data assimilation and machine learning 
algorithms, this offers a unique opportunity for improving the 
predictive capability of CFD. The most effective approaches, 
in terms of the sources and types of data, and in terms of the 
methods to integrate the data in the models, will be different for 
the two types of uncertainties. 

Reducing Uncertainties in Boundary or Operating Conditions 
Using Data
Considering the prediction of urban canopy flow, simulations 
of the wind flow on Stanford’s campus have shown that an 
ensemble Kalman filter7 can be used to infer the uncertain 
inflow boundary conditions based on measurement data from 
wind sensors located inside the urban canopy. In this initial test 
case, six carefully calibrated anemometers were deployed in 

v Figure 2. Large-eddy simulation 
result of the flow in Oklahoma City, 
showing iso-contours of Q-criteria 
colored by nondimensional velocity 
magnitude U/Uref to visualize 
turbulent structures in the flow. The 
highest nondimensional velocity 
magnitudes are shown in purple 
and correspond to an increase in 
the wind speed by a factor of 1.7 
or more compared to the wind 
speed in the upstream undisturbed 
atmospheric boundary layer at 
10 m height. (Credit: Clara García-
Sánchez)
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a 2.5 square mile [4 km2] area; two were used for the infer-
ence process, while four were used for validation of the pre-
dictions obtained from subsequent forward propagation of the 
inferred, uncertain, inflow boundary conditions. This resulted 
in significantly improved predictions compared to the tradi-
tional method of using data from a nearby weather station: the 
hit rate, which quantified the percentage of data points that 
fall within 20% of the measured data, increased by a factor of 
two.8 Additional measurements of, for example, the tempera-
ture and humidity within the urban canopy, wind pressures on 
building facades, or indoor temperature measurements, could 
similarly be used to reduce uncertainty in predictions of these 
quantities. This type of data assimilation could quite easily be 
incorporated in the design process: measurements from a lim-
ited number of urban sensors can be combined with available 
weather station data to infer probability distributions for the 
boundary conditions for simulations of a specific area of inter-
est. Subsequently, this information can be used when evaluat-
ing the effects of a new building design on the surrounding 
wind environment, or when evaluating structural wind loads or 
potential for natural ventilation. 

Reducing Uncertainties Due to Reduced-Order Turbulence 
Models Using Data
To obtain a more accurate characterization of turbulence 
model uncertainties, it is useful to isolate this problem by 
considering simplified test cases in which the data is not 
affected by other uncertainties. A promising approach is to 
use data from a small number of high-fidelity simulations with 
well-defined boundary conditions, potentially for a simpler 
but similar flow configuration. This has, for example, been 
done to define the perturbations that should be introduced 
in Reynolds stress models when modeling flow over a hill,9 
and considerably improved predictions were obtained. While 
this approach remains to be explored for wind engineering 
problems, it can be expected that this type of multi-fidelity 
framework will be essential in our efforts to reduce model 
uncertainties at an acceptable computational cost.

Summary
The complexity of the urban environment and the governing 
flow physics prohibits accurate predictions with determinis-
tic modeling strategies. To effectively use CFD for the design 

and management of sustainable urban spaces, a paradigm 
shift from deterministic to probabilistic modeling is needed. 
Tools for uncertainty quantification and data assimilation 
should be leveraged to integrate information from a variety of 
computational models, wind tunnels, and field experiments, 
and to provide predictions with confidence intervals, as 
shown in Figure 4. The resulting high-resolution predictions 
for the local wind field, and, by extension, temperature or pol-
lutant concentration field, could inform how different build-
ings or urban designs perform in terms of pedestrian wind and 
thermal comfort, air quality, and potential for natural building 
ventilation. 

The development of these methods should strongly consid-
er fitness for purpose. For example, a fast model with higher 
model-form uncertainties could support initial design choices 
by evaluating different designs and their sensitivity to alea-
tory uncertainties. During detailed design phases, this model 
could be refined or complemented by a higher-fidelity, more 
computationally expensive model to reduce the model-form 
uncertainties. In both of these phases, data from carefully cal-
ibrated urban sensor networks, including sensors within the 
urban canyon and at roof height, can be used to characterize 
the conditions at the site of interest in terms of wind condi-
tions, temperature, humidity, or air quality. Finally, during the 
operational phase, data from sensor networks can provide 
valuable information on the actual system behavior, thereby 
enabling us to further reduce the uncertainty in model pre-
dictions and create digital twins that can be used to investi-
gate adaptation or control strategies. The optimal number and 
location of sensors for informing the models, measuring, for 
example, local temperatures and flow magnitudes inside and 
outside of a new building, can be determined based on the 
models used during the design phase. 

Frequent communication and collaboration between the 
researchers developing the tools and the designers and engi-
neers who will use them will be essential to refine, and prog-
ress toward realizing, our goal. On the research side, this 
interaction should support identifying the quantities of inter-
est, and corresponding acceptable levels of uncertainty, that 
are most relevant for design. On the designers’ side, it should 
inform the deployment of carefully designed and calibrated 
sensor networks that can provide the necessary high-quality 
data to improve the predictive capabilities of CFD.

v Figure 3. Reynolds-averaged predictions 
with uncertainty quantification for dispersion 
in Oklahoma City; comparison of the predicted 
mean and 95% confidence interval for the 
nondimensional tracer concentration K to time-
averaged measurements from the Joint Urban 
2003 measurement campaign. The results 
are compared at eight measurement stations, 
labeled m1–m9; data for m5 was not available. 
(Credit: Clara García-Sánchez)
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