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Improving Predictions
of the Urban

Wind Environment
Using Data

“The complexity of the urban
environment and the governing
flow physics prohibits accurate
predictions with deterministic
modeling strategies. To effectively
use [computational fluid dynamics]
for the design and management

of sustainable urban spaces, a
paradigm shift from deterministic to
probabilistic modeling is needed.”

Catherine Gorlé
Stanford University
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Analysis of the urban wind environment can play an important
role in the design of sustainable urban areas. The wind pat-
terns in the urban canopy can affect citizen comfort, safety,
and health, as well as building energy consumption. For exam-
ple, local accelerations of wind flow around high-rise buildings
can create uncomfortable or even dangerous conditions for
pedestrians; interference effects between different buildings
can generate complex wind loading phenomena that compro-
mise resilience to extreme wind events; the local wind field can
influence the capability to use air flow driven by natural wind
and buoyancy to ventilate or cool buildings and reduce building
energy consumption; and wind patterns will affect the transport
of pollutants and heat, potentially generating local hot spots
with high concentrations. Computational fluid dynamics (CFD),
which numerically solves the governing equations for fluid flow
and heat transfer, can provide predictions for the complete
three-dimensional flow and temperature field in the urban can-
opy. In theory, this could provide invaluable information for the
design of buildings and urban areas; in practice, there are several
challenges when using CFD in the design process.

An important challenge has been that the simulation process,
which includes model setup, execution of the simulation, and
post-processing of the results, can be a very time-consuming
task that demands a skilled CFD engineer. Significant advanc-
es in CFD software packages and high-performance computing
capabilities are increasingly alleviating this problem; current sim-
ulation turnaround times are catching up with industry demands.
Consequently, more fundamental challenges become the limit-
ing factors: the complexity of the urban geometry, the variabil-
ity in the atmospheric conditions, and the turbulent flow physics
push the state-of-the-art in terms of the predictive capabilities
of CFD, and engineers have only limited confidence in the accu-
racy of the simulation results. To efficiently address these chal-
lenges and provide results that can be used to quantitatively
inform design, we need novel probabilistic modeling strategies
that can quantify and reduce the uncertainty in the predictions.

Limitations to the Predictive Capabilities of CFD

Urban flows are highly turbulent: the velocity field is charac-
terized by fluctuations that cover a large range of spatial and
temporal scales. This range of scales cannot be fully resolved
in a numerical simulation; some form of turbulence modeling is
needed to parameterize the effect of the unresolved turbulence
scales on the solution. The traditional view has been that the
primary reason for the limited accuracy of CFD results for urban
canopy flows is the use of engineering turbulence models. This,
however, fails to recognize the high variability, and correspond-
ing uncertainty, in the boundary and operating conditions that
determine how wind flows through buildings and cities. To eval-
uate the limitations to the predictive capabilities of CFD, both
these aspects must be carefully considered.

Turbulence Modeling

Two main approaches to turbulence modeling exist: Reynolds-
averaged Navier-Stokes (RANS) simulations parameterize the
entire range of velocity fluctuations to obtain a solution for the
time-averaged flow field; large-eddy simulations (LES) solve the
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filtered, unsteady Navier-Stokes equations and parameterize
only the sub-filter scale velocity fluctuations. RANS simulations
remain the most common approach for engineering applications,
primarily because they require only a fraction of the computa-
tional time of LES, with simulation times on the order of hours
versus several weeks for LES.

Figure 1 shows an example of the detailed solution that can
be obtained with LES for the flow around a single high-rise
building: instantaneous snapshots of the velocity field (Figure
1a) reveal the velocity fluctuations in the flow and can be post-
processed to visualize turbulent structures (Figure 1b). The
solution can also be averaged over time to provide a mean flow
prediction. RANS simulations provide a prediction for these
time-averaged quantities only, and the need for a model that
represents the entire range of turbulence scales tends to dete-
riorate the prediction. It is, for example, known that RANS tends
to overpredict the size of the wake region, i.e., the region imme-
diately downstream of a building with low-velocity, recirculat-
ing flow (see Figure 1a). This type of deficiency also negatively
influences the accuracy of other quantities of interest, such as
pollutant concentrations or wind loads. Many wind tunnel vali-
dation studies have explored comparisons and calibration of
different RANS turbulence models with varying success; the
converging opinion is that we need LES for consistent improve-
ments in accuracy.! From an engineering point of view, the cor-
responding increase in computational time poses a limitation to
the integration of CFD in the design process.

Variability in Boundary or Operating Conditions

Before drawing the general conclusion that the higher compu-
tational cost of LES is justified by the corresponding increase in
accuracy, it is worth noting that the importance of turbulence
model deficiencies has been emphasized by the use of wind
tunnel data in most validation studies. Wind tunnel modeling
is considered the standard design method in wind engineering;
given the wind tunnel baseline, the rationale has been that CFD
simulations should be validated against wind tunnel experiments
before using them for design. In this type of validation study,
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<] Figure 1. Large-eddy (LES)
and Reynolds-averaged (RANS)
simulation results for the flow
around a high-rise building.

(a) contours of the non-
dimensional velocity field U/

Cp Uref at the building mid height
for an instantaneous snapshot
1.8 of the LES, the time-averaged
I LES and RANS. The highest
nondimensional velocity

magnitudes are shown in dark red
-0.16 and correspond to an increase
in the wind speed by a factor
of 1.4 or more compared to the
wind speed in the upstream
-2.1 undisturbed atmospheric
boundary layer at the same height.
(b) iso-surface of Q-criteria to
visualize turbulent structures in
the flow, colored by pressure
coefficient Cp, which provides a
nondimensional representation
of the wind pressure. (Credit:
Giacomo Lamberti).

the wind tunnel flow conditions and building geometries can be
accurately reproduced in the CFD model, leaving the turbulence
model as the main source of uncertainty in the prediction. The
wind tunnel is, however, also a simplified model of a complex
reality. Flows in cities or buildings have highly variable bound-
ary and operating conditions, for example due to larger-scale
variability in the atmospheric boundary layer wind? or due to
continuous changes in building occupancy and correspond-
ing heat gains. Even if we use an expensive turbulence model
that can accurately reproduce a wind tunnel experiment, these
uncertainties would not be eliminated when comparing predic-
tions against full-scale measurements. This was, for example,
demonstrated in simulations of the wind flow in downtown
Oklahoma City.® Compared to RANS results, a more expensive,
detailed LES (Figure 2) did not consistently improve the com-
parison between the mean velocity prediction and the corre-
sponding full-scale velocity measurements in the urban canopy.
An interesting observation was that the LES prediction for the
mean velocity was less accurate in stations where the solution
had been shown to be sensitive to the inflow boundary condi-
tions. These results indicate that, independent of the turbulence
model used, the variability in the simulation inputs should be
characterized and propagated to the simulation outputs to truly
ensure predictive capabilities.

CFD Predictions with Confidence Intervals

Recent progress in methods for uncertainty quantification
supports efficient propagation of uncertainties in model input
parameters to predict probability distributions (instead of deter-
ministic values) for the quantities of interest. This enables us to
define confidence intervals for the predictions, reflecting the
previously identified limitations of the predictive capabilities.
Generally, a distinction is made between aleatory and epis-
temic uncertainties. Aleatory uncertainties are inherent to the
system being solved; they cannot be reduced. In urban canopy
flow, these would be the boundary and operating conditions,
related to, for example, variability in the atmospheric boundary
layer wind or building occupancy. Epistemic uncertainties result
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from simplifications and assumptions in the model; they could
potentially be reduced by using a more accurate (i.e., expensive)
model, or by obtaining more data. The turbulence model is the
primary source of epistemic uncertainty in simulations of urban
canopy flow. The different nature of these two types of uncer-
tainties implies that different strategies are needed when propa-
gating them to the quantities of interest.

Quantifying Uncertainties in Boundary or Operating Conditions
Aleatory uncertainties are typically cast in a probabilistic frame-
work: the input parameters are assumed to be random variables
with corresponding probability distributions, and the uncer-
tainty in these parameters is propagated to the quantities of
interest. Hence, the quantities of interest also become random
variables, and the objective is to calculate their probability den-
sity functions. The definition of the distributions for the input
parameters is essential to this process, since it can strongly influ-
ence the predictions.

In simulations of urban canopy flow, definition of the prob-
ability distributions for the boundary conditions can either be
based on local field measurements of the relevant quantities,
such as the wind direction and magnitude, or based on simula-
tions of the larger-scale environment, such as weather forecast-
ing simulations. Both methods have challenges in terms of the
amount, resolution, and accuracy of data that can be obtained
to determine the probability distributions for the input param-
eters, but initial studies have successfully explored their applica-
tion to provide urban flow predictions with confidence intervals.
Especially when performing time-averaged simulations, the ben-
efits of accounting for the larger-scale variability in the flow can
be significant. This was, for example, shown in predictions of
pollutant concentrations during the Oklahoma City Joint Urban
2003 field experiment. Figure 3 shows that the time-averaged
values from the field experiment are within the 95% confi-
dence interval of the CFD prediction in five of the six measure-
ment stations where significant concentrations (K > 0.01) were
detected. The mean concentration predicted by the CFD also
compares well to measurement values.*
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<] Figure 2. Large-eddy simulation
result of the flow in Oklahoma City,
showing iso-contours of Q-criteria
colored by nondimensional velocity
magnitude U/Uref to visualize
turbulent structures in the flow. The
highest nondimensional velocity
magnitudes are shown in purple
and correspond to an increase in
the wind speed by a factor of 1.7
or more compared to the wind
speed in the upstream undisturbed
atmospheric boundary layer at

10 m height. (Credit: Clara Garcia-
Sénchez)
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Quantifying Uncertainties Due to Reduced-Order Turbulence
Models

The quantification of turbulence model uncertainties is challeng-
ing because they are caused by a nominal lack of knowledge.
Ensemble methods, similar to those used in weather forecast-
ing, offer a standard approach to analyze these uncertainties,
but the predictive capability remains limited by the assump-
tions made in the different models used for the ensemble.
Alternatively, a physics-based approach to quantify the uncer-
tainty by introducing perturbations into the modeled quanti-
ties, independent of the initial model form, has been explored.”
Application of this method to wind engineering flows has shown
promising capabilities,® but also indicates a potential limitation
of a purely physics-based approach: the predicted uncertainty
intervals might be too large to use the results as a basis for
design decisions.

Data-Informed Modeling to Reduce Uncertainties

The proposed modeling frameworks with uncertainty quanti-
fication provide a natural pathway to data-informed modeling.
Continuous improvements in urban and building sensing net-
works, and in high-fidelity simulation capabilities, will provide
an unprecedented amount of high-quality data. Combined
with recent progress in data assimilation and machine learning
algorithms, this offers a unique opportunity for improving the
predictive capability of CFD. The most effective approaches,
in terms of the sources and types of data, and in terms of the
methods to integrate the data in the models, will be different for
the two types of uncertainties.

Reducing Uncertainties in Boundary or Operating Conditions
Using Data

Considering the prediction of urban canopy flow, simulations
of the wind flow on Stanford’s campus have shown that an
ensemble Kalman filter’ can be used to infer the uncertain
inflow boundary conditions based on measurement data from
wind sensors located inside the urban canopy. In this initial test
case, six carefully calibrated anemometers were deployed in
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<] Figure 3. Reynolds-averaged predictions
with uncertainty quantification for dispersion

in Oklahoma City; comparison of the predicted
mean and 95% confidence interval for the
nondimensional tracer concentration K to time-
averaged measurements from the Joint Urban
2003 measurement campaign. The results

are compared at eight measurement stations,

x labeled m1-m9; data for m5 was not available.
(Credit: Clara Garcia-Sanchez)
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a 2.5 square mile [4 km2] area; two were used for the infer-
ence process, while four were used for validation of the pre-
dictions obtained from subsequent forward propagation of the
inferred, uncertain, inflow boundary conditions. This resulted
in significantly improved predictions compared to the tradi-
tional method of using data from a nearby weather station: the
hit rate, which quantified the percentage of data points that
fall within 20% of the measured data, increased by a factor of
two.® Additional measurements of, for example, the tempera-
ture and humidity within the urban canopy, wind pressures on
building facades, or indoor temperature measurements, could
similarly be used to reduce uncertainty in predictions of these
quantities. This type of data assimilation could quite easily be
incorporated in the design process: measurements from a lim-
ited number of urban sensors can be combined with available
weather station data to infer probability distributions for the
boundary conditions for simulations of a specific area of inter-
est. Subsequently, this information can be used when evaluat-
ing the effects of a new building design on the surrounding
wind environment, or when evaluating structural wind loads or
potential for natural ventilation.

Reducing Uncertainties Due to Reduced-Order Turbulence
Models Using Data

To obtain a more accurate characterization of turbulence
model uncertainties, it is useful to isolate this problem by
considering simplified test cases in which the data is not
affected by other uncertainties. A promising approach is to
use data from a small number of high-fidelity simulations with
well-defined boundary conditions, potentially for a simpler
but similar flow configuration. This has, for example, been
done to define the perturbations that should be introduced
in Reynolds stress models when modeling flow over a hill?
and considerably improved predictions were obtained. While
this approach remains to be explored for wind engineering
problems, it can be expected that this type of multi-fidelity
framework will be essential in our efforts to reduce model
uncertainties at an acceptable computational cost.

Summary

The complexity of the urban environment and the governing
flow physics prohibits accurate predictions with determinis-
tic modeling strategies. To effectively use CFD for the design

and management of sustainable urban spaces, a paradigm
shift from deterministic to probabilistic modeling is needed.
Tools for uncertainty quantification and data assimilation
should be leveraged to integrate information from a variety of
computational models, wind tunnels, and field experiments,
and to provide predictions with confidence intervals, as
shown in Figure 4. The resulting high-resolution predictions
for the local wind field, and, by extension, temperature or pol-
lutant concentration field, could inform how different build-
ings or urban designs perform in terms of pedestrian wind and
thermal comfort, air quality, and potential for natural building
ventilation.

The development of these methods should strongly consid-
er fitness for purpose. For example, a fast model with higher
model-form uncertainties could support initial design choices
by evaluating different designs and their sensitivity to alea-
tory uncertainties. During detailed design phases, this model
could be refined or complemented by a higher-fidelity, more
computationally expensive model to reduce the model-form
uncertainties. In both of these phases, data from carefully cal-
ibrated urban sensor networks, including sensors within the
urban canyon and at roof height, can be used to characterize
the conditions at the site of interest in terms of wind condi-
tions, temperature, humidity, or air quality. Finally, during the
operational phase, data from sensor networks can provide
valuable information on the actual system behavior, thereby
enabling us to further reduce the uncertainty in model pre-
dictions and create digital twins that can be used to investi-
gate adaptation or control strategies. The optimal number and
location of sensors for informing the models, measuring, for
example, local temperatures and flow magnitudes inside and
outside of a new building, can be determined based on the
models used during the design phase.

Frequent communication and collaboration between the
researchers developing the tools and the designers and engi-
neers who will use them will be essential to refine, and prog-
ress toward realizing, our goal. On the research side, this
interaction should support identifying the quantities of inter-
est, and corresponding acceptable levels of uncertainty, that
are most relevant for design. On the designers’ side, it should
inform the deployment of carefully designed and calibrated
sensor networks that can provide the necessary high-quality
data to improve the predictive capabilities of CFD.
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<] Figure 4. A computational
framework that uses
uncertainty quantification and
data assimilation to provide
predictions with confidence
intervals.
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