

Distinct Catalytic Behaviors between Two 1,4-Dioxane Degrading Monooxygenases: Kinetics, Inhibition, and Substrate Range

Fei Li, Daiyong Deng, Mengyan Li*

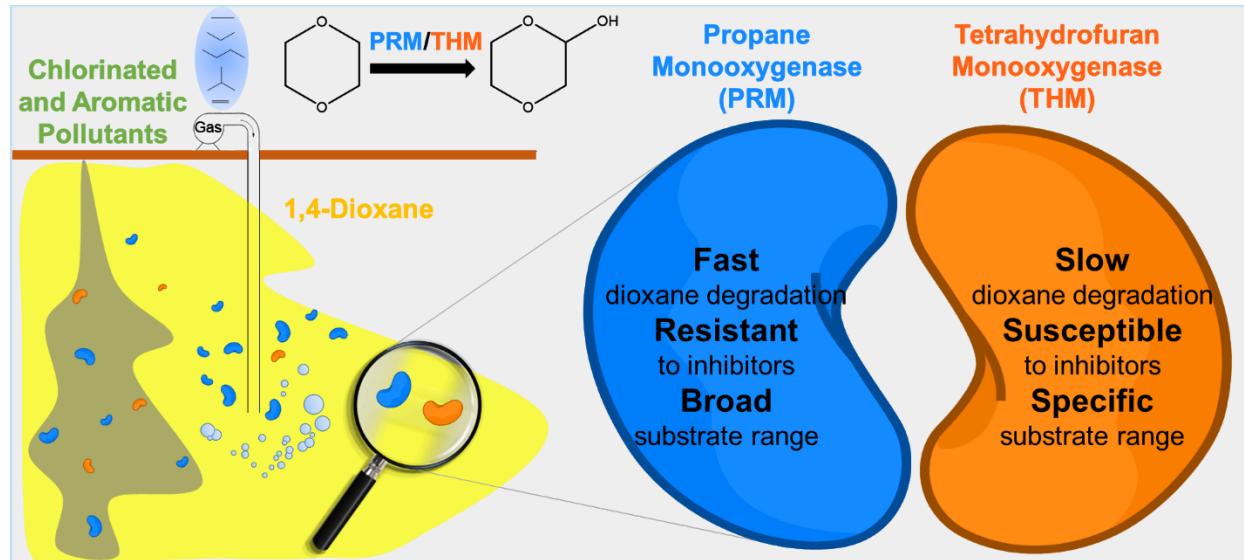
6 Department of Chemistry and Environmental Science, New Jersey Institute of Technology,
7 Newark, NJ, USA 07102

8

⁹ *Address correspondence to Dr. Mengyan Li (mengyan.li@njit.edu)

10 Phone: +1-973-642-7095

11 Fax: +1-973-596-3586


12 **Abstract**

13 Monitored natural attenuation (MNA) and engineered bioremediation have been
14 recognized as effective and cost-efficient *in situ* treatments to mitigate 1,4-dioxane (dioxane)
15 contamination. Dioxane metabolism can be initiated by two catabolic enzymes, propane
16 monooxygenase (PRM) and tetrahydrofuran monooxygenase (THM), belonging to the group 6
17 and 5 of soluble di-iron monooxygenase family, respectively. In this study, we comprehensively
18 compared catalytic behaviors of PRM and THM when individually expressed in the heterologous
19 host, *Mycobacterium smegmatis* mc²-155. Kinetic results revealed a half-saturation coefficient (K_m)
20 of 53.0 ± 13.1 mg/L for PRM, nearly four times lower than that of THM (235.8 ± 61.6 mg/L),
21 suggesting PRM has a higher affinity to dioxane. Exposure with three common co-contaminants
22 (1,1-dichloroethene, trichloroethene, and 1,1,1-trichloroethane) demonstrated PRM was also more
23 resistant to their inhibition than THM. Thus, dioxane degraders expressing PRM may be more
24 physiologically and ecologically advantageous than those with THM at impacted sites, where
25 dioxane concentration is relatively low (e.g., 250 to 1,000 µg/L) with co-occurrence of chlorinated
26 solvents (e.g., 0.5 to 8 mg/L), underscoring the need of surveying both PRM and THM encoding
27 genes for MNA potential assessment. PRM is also highly versatile, which breaks down cyclic
28 molecules (dioxane, tetrahydrofuran, and cyclohexane), as well as chlorinated and aromatic
29 pollutants, including vinyl chloride, 1,2-dichloroethane, benzene, and toluene. This is the first
30 report regarding the ability of PRM to degrade a variety of short-chain alkanes and ethene in
31 addition to dioxane, unraveling its pivotal role in aerobic biostimulation that utilizes propane,
32 isobutane, or other gaseous alkanes/alkenes (e.g., ethane, butane, and ethene) to select and fuel
33 indigenous microorganisms to tackle the commingled contamination of dioxane and chlorinated
34 compounds.

36 **Keywords**

37 1,4-Dioxane, Chlorinated Solvents, Soluble Di-iron Monooxygenase, Alkanes, Bioremediation,
38 Monitored Natural Attenuation

39 **TOC**

40

41 **Introduction**

42 1,4-Dioxane (dioxane) has been widely used as a stabilizer for chlorinated solvents
43 particularly 1,1,1-trichloroethane (1,1,1-TCA)¹. Dioxane has been classified as a possible human
44 carcinogen by USEPA^{2, 3} and listed as a “high priority” pollutant in the 2016 amendment of the
45 Toxic Substance Control Act (TSCA)^{4, 5}. As a cyclic ether, dioxane exhibits high mobility and
46 persistency once released to the environment. It is recognized as one of the most frequently
47 detected nonregulated pollutants in our water supplies and sources based on the national survey
48 for the Third Unregulated Contaminant Monitoring Rule (UCMR3)⁶. Dioxane’s extreme
49 hydrophilicity and water miscibility may also lead to the formation of large dilute plumes with
50 trace concentrations (e.g., < 1 mg/L⁷) in the subsurface^{1, 8}. To date, pump-and-treat followed by
51 carbon adsorption or advanced oxidation is a common practice to clean up dioxane in groundwater⁹.
52 However, such *ex situ* remedial efforts are unremitting (e.g., for decades until the closure of the
53 site cleanup) and costly considering the tremendous volume (e.g., over hundred million liters¹⁰) of
54 polluted water and associated energy input for pumping and operation.

55 Monitored natural attenuation (MNA) and bioremediation, mainly relying on
56 biodegradation by microorganisms, are cost-efficient and eco-friendly techniques for remediation
57 of dioxane. A number of bacteria have been isolated and identified given their ability of growing
58 with dioxane as their sole carbon and energy source via metabolism¹¹⁻¹³. *Mycobacterium*
59 *dioxanotrophicus* PH-06^{11, 14} and *Pseudonocardia dioxanivorans* CB1190^{12, 15} are two archetypic
60 dioxane degrading strains. In both strains, dioxane degradation is initiated via a critical step named
61 2-hydroxylation, which inserts a hydroxyl group to the carbon adjacent to the oxygen and forms
62 unstable intermediates that undergo a chain of biotic or abiotic reactions^{11, 16}. Key dioxane

63 metabolites were found identical, PH-06 and CB1190 use two different enzymes to catalyze this
64 2-hydroxylation step for the initial ring cleavage of dioxane. In PH-06, we recently uncovered and
65 verified the dioxane catalytic function of a novel propane monooxygenase (PRM)^{14, 17} encoded by
66 the gene cluster *prmABCD* located on a linear plasmid. In contrast, CB1190 expresses
67 tetrahydrofuran monooxygenase (THM)¹⁶ encoded by *thmADBC* to oxidize dioxane and
68 tetrahydrofuran (THF). Though with relatively low sequence identity (< 40% for α subunits) and
69 different arrangement of core gene components, PRM and THM are phylogenetically related, both
70 belonging to the multi-component bacterial enzyme family, soluble di-iron monooxygenases
71 (SDIMOs)^{14, 18, 19}. PRM and THM are categorized as subgroups 6 and 5 SDIMOs^{14, 20, 21},
72 respectively, reflecting the potential divergence of their enzyme structures and catalytic behaviors.

73 Genes encoding THM (e.g., *thmA* and *thmB*) have been detected at sites historically
74 impacted by dioxane, indicating the existence of indigenous dioxane degrading microorganisms
75 by use of modern biotechnologies (e.g., quantitative PCR [qPCR]²¹⁻²⁴ and microarray²⁵).
76 Abundance of *thm* genes was positively correlated with the dioxane removal observed in bench-
77 scale microcosm and *in situ* Biotrap assays^{21, 22, 24}, supporting the significant contribution of
78 bacteria expressing THM to intrinsic dioxane attenuation in the field. The discovery of dioxane
79 degrading propanotrophs and the essential PRM enzyme in recent field demonstration studies
80 assayed and validated the dominance of *prm* genes after biostimulation with propane²⁶ and
81 bioaugmentation of some propanotrophs²⁷. qPCR²⁰ and targeted gene sequencing²⁸ were used to
82 monitor the dioxane degradation by *prm*-harboring *Mycobacterium* spp. in non-contaminated
83 garden soil enrichments. These lines of evidence corroborate the prevalence of bacteria expressing
84 PRM in engineered or enriched environments with or without previous exposure of dioxane.

85 However, the contribution of naturally occurring bacteria expressing PRM to the overall dioxane
86 attenuation at impacted sites remained unknown.

87 To discern dioxane degradation capabilities and influence of environmental factors,
88 previous studies have been centered on characterizing type strains (e.g., CB1190²⁹⁻³¹ and PH-06^{11,}
89 ²⁰). By fitting with Michaelis-Menten or Monod model, an array of dioxane degradation kinetic
90 parameters (Table S1) have been generated, including the half-saturation coefficients (K_m) and
91 maximum degradation velocities (V_{max}), as well as the inhibition constants (K_I) for common co-
92 occurring chlorinated solvents. However, to interpret the dioxane attenuation naturally occurring
93 in the field, these kinetic parameters may be of limited value for direct implication because (1) the
94 data lack consistency due to variances in experimental operations among different research
95 laboratories and (2) indigenous dioxane-degrading microbes living in the field may behave
96 differently compared to these isolates grown in laboratory culture media. Though expressing the
97 same enzymes (i.e., PRM and THM) to degrade dioxane, indigenous degraders may not only be
98 phylogenetically and functionally disparate, but also display varied physiologies (e.g., biomass
99 growth, nutrient assimilation, membrane transport, and stress resilience) that affect the overall
100 catabolism effectiveness. An additional important impediment is the practice of normalizing the
101 rate of compound removal to the amount of protein associated with the active cells (e.g., V_{max}
102 values in Table S1). Wilson *et al.* suggested that the lab-derived kinetic parameters could be used
103 along with data on the abundance of catabolic biomarkers to screen for intrinsic degradation
104 activity³². Thus, normalization of degradation rates to the abundance of gene or transcript copies
105 measured by quantitative polymerase chain reaction (qPCR) or reverse transcription- quantitative
106 polymerase chain reaction (RT-qPCR) analyses can be extrapolated to the field system within
107 some useful level of agreement.

108 To circumvent discrepancies derived from experimental operations and physiological
109 differences among hosting bacteria, we heterologously expressed PRM and THM in competent
110 cells *Mycobacterium smegmatis* mc²-155 and compared their kinetic performance at the enzymatic
111 level, which excludes other potentially interfering biological factors (e.g., molecular transport,
112 gene regulation, global stress response). We further investigated the inhibitory effects of three
113 chlorinated compounds (1,1-dichloroethene [1,1-DCE], trichloroethene [TCE], and 1,1,1-
114 trichloroethane [1,1,1-TCA]) given their high co-occurrence frequency with dioxane at impacted
115 sites^{5, 33, 34}. In this study, substrate range of both dioxane degrading enzymes was surveyed to
116 investigate their catalytic versatility, particularly toward prevailing chlorinated and aromatic
117 pollutants, as well as short-chain alkane/alkene gases given their association with the success of
118 biostimulation. We hypothesize distinct performances between PRM and THM in regard of
119 dioxane degradation kinetics, susceptibility to environmental inhibitors, and catalytic versatility
120 given their sequence dissimilarity and evolutionary divergence. The expression of both enzymes
121 is unified in an identical heterologous system and monitored by RT-qPCR, thus allowing kinetic
122 parameters to be normalized based on the transcript copy numbers of their encoding genes,
123 providing useful quantitative data for field assessment. This research is of critical value to advance
124 our fundamental understanding of dioxane degrading enzymes and enable the prediction of their
125 environmental behaviors and contributions to dioxane biotransformation naturally occurring in the
126 field or stimulated with auxiliary substrates.

127 **Materials and Methods**

128 ***Chemicals and Cultures***

129 Propane, butane, isobutane, ethane, and ethene were purchased from Airgas (Radnor, PA)
130 with the purity of 99.5% or higher. Dioxane, THF, trichloroethene (TCE), 1,1-dichloroethene (1,1-
131 DCE), *cis*-1,2-dichloroethene (cDCE), *trans*-1,2-dichloroethene (tDCE), vinyl chloride (VC), 1,2-
132 dichloroethane (1,2-DCA), toluene, benzene, methyl tert-butyl ether (MTBE), cyclohexane,
133 chloramphenicol, and thiostrepton were purchased from Sigma-Aldrich (St. Louis, MO). Neat
134 1,1,1-trichloroethane (1,1,1-TCA) was bought from Ultra Scientific (North Kingstown, RI) and
135 diluted with HPLC-grade (99.9%) methanol (Sigma-Aldrich). Bacterial strains PH-06 and mc²-
136 155 were originally obtained from Dr. Yoon-Seok Chang (POSTECH, Pohang, South Korea) and
137 Dr. Nicolas Coleman (University of Sydney, Sydney, Australia); CB1190 was bought from DSMZ;
138 *E. coli* DH5 α was purchased from Thermo (Carlsbad, CA), and the plasmid pTip-QC2 was
139 acquired from Dr. Tomohiro Tamura at AIST, Japan.

140 *Heterologous Expression of PRM and THM*

A 4.0 kb fragment of the *prmABCD* cluster and a 4.3 kb fragment of the *thmADBC* cluster were amplified and cloned into the plasmid (pTip-QC2)^{14, 16, 35} via digestion and ligation to generate plasmids pTip-*prmABCD* and pTip-*thmADBC*, respectively. Successfully ligated plasmids were first transformed in *E. coli* DH5 α cells and screened on Luria-Bertani (LB) agar plates with ampicillin (50 μ g/mL). After culturing in LB media for 24 h, *E. coli* transformants were harvested for plasmid extraction using the ZippyTM Plasmid Miniprep Kit (Zymo Research Corp, Irvine, CA). Then, 50 ng of plasmid pTip-*prmABCD*, pTip-*thmADBC*, or empty vector pTip-QC2 was used to transform electrocompetent *Mycobacterium smegmatis* mc²-155 cells via electroporation at 1.8 kV/cm for 4.5 ms using the MicroPulserTM Electroporator (Bio-Rad, Hercules, CA). After screening on LB plate with chloramphenicol (34 mg/L), the successful

151 transformants were designated as mc^2 -155(pTip-*prmABCD*), mc^2 -155(pTip-*thmADBC*), and mc^2 -
152 155(pTip-QC2), respectively. Transformants were then cultured with LB broth dosed with
153 thiostrepton (2 mg/L) to induce the expression for 48 h. Comparable transcription levels (Figure
154 S1) of inserted *prm* and *thm* gene clusters in transformants were checked by reverse transcription
155 quantitative PCR (RT-qPCR) before processing enzyme comparison assays. Detailed
156 transformation procedures can be found in the supporting information (SI) based on the methods
157 developed by Sales *et al.*¹⁶ and Deng *et al.*¹⁴. The heterologous expression procedures were
158 designed and verified to ensure an identical transcription of both PRM and THM expressed with
159 active catalytic functions. First, the sequence accuracy was ensured since high fidelity polymerase
160 was used to amplify the complete *prm* and *thm* gene clusters from the genomic DNA. This greatly
161 reduced the chance of function discrepancies caused by PCR-derived mutations. Second,
162 transcription of the inserted genes was solely regulated by thiostrepton to induce the promoter
163 system embedded on pTip-QC2. Gene clusters were inserted from their start codons (ATG) of *prm*
164 or *thm*'s α -subunits without their original promoters or regulators in wild-type strains PH-06 or
165 CB1190. Third, complete *prm* and *thm* gene clusters were cloned with the same initial restriction
166 site, *Nde*I, at their 5' ends into the expression shutter vector, pTip-QC2. Thus, the start of the *prm*
167 and *thm* transcripts were identical, allowing the consensus of ribosome binding to initiate the
168 translation. Last but not the least, the gene expression shutter vector, pTip-QC2, plasmid
169 proliferation host (*E. coli* DH5 α), and expression host (*Mycobacterium smegmatis* mc^2 -155), have
170 all been successfully employed to express THM, PRM, and other SDIMOs in our lab and others^{14,}
171 ^{16, 36-38}. This set of expression system enabled effective production of SDIMOs with catalytic
172 functions comparable with wild-type strains.

173 **Enzyme Kinetics and Inhibition Tests**

174 After cultivation and induction as described above, transformant cells were washed twice
175 and re-suspended in phosphate-buffered saline (PBS) to achieve an optical density (OD) of
176 approximately 2.0 at 600 nm. Dioxane was then spiked to achieve the initial concentrations of 10,
177 40, 80, 160, 320, and 640 mg/L to perform the kinetic assays. Such high initial concentrations were
178 used because PRM and THM both exhibited high K_m and V_{max} values, which were in good
179 agreement with previous studies^{20, 29, 31, 39} using wild-type strains (Table S1). Two liquid samples
180 (600 μ L) were collected, including one at the beginning and the other after 3 h of the enzymatic
181 reaction in each batch test. Samples were then filtered using 0.22 μ m Nylon syringe filters and
182 kept in glass vials at 4 °C prior to the gas chromatograph (GC) analysis. Instant degradation rates
183 were calculated by averaging dioxane disappearance in triplicate within the first 3 h, which were
184 further normalized by the initial protein concentration³⁰ measured by the Bradford Assay⁴⁰. In
185 addition, to evaluate dioxane degradation kinetics under environment-relevant dioxane
186 contaminations, resting cells were exposed to 1.0 and 0.2 mg/L of dioxane, respectively. All
187 treatments were conducted in triplicate and negative controls were prepared with autoclaved
188 biomass. The significance level among different treatments was statistically determined using the
189 Student's *t*-test.

190 To assess the inhibition effects from the presence of chlorinated solvent compounds (i.e.,
191 1,1-DCE, TCE, and 1,1,1-TCA), harvested transformant cells were first exposed to the desired
192 concentrations (0-8 mg/L in the aqueous phase) of inhibitors for 20 min, allowing complete
193 portioning of volatile inhibitors in the batch setup and sufficient contact between enzymes and
194 inhibitors. Based on our preliminary tests with varying pre-exposure durations (data not shown),
195 pre-exposure of 20 min is optimal to prevent rapid dioxane degradation by inhibitor-free enzymes
196 without significant impact to enzyme activities, which could greatly affect the estimation of

197 degradation rates. After the pre-exposure, dioxane was spiked at varying initial concentrations and
198 its disappearance was measured at 3 h. Calculation of the concentrations of chlorinated solvents in
199 aqueous phase were based on the mass balance and Henry's law equilibrium using the following
200 equation.

$$201 \quad V_{stock} \times C_{stock} = V_{aq} \times C_{aq} + V_{gas} \times \frac{C_{aq}}{H_c}$$

202 Where, C_{stock} and C_{aq} are the concentrations of chlorinated compounds in stock solution
203 and aqueous phase; V_{stock} , V_{aq} , and V_{gas} are the volumes of stock solution, aqueous phase, and
204 headspace, respectively. H_c is the dimensionless Henry's constant of a specific chlorinated
205 compound⁴¹. All dioxane degradation rates were first fitted to the non-linear Michaelis-Menten
206 model (Equation S1) to compute apparent kinetic values, which were then fitted with three
207 inhibition equations (Equation S2-S7) (i.e., competitive, noncompetitive, and uncompetitive) to
208 estimate their inhibition factors and distinguish the dominant inhibition mechanism.

209 ***Substrate Range Characterization***

210 Three transformants, mc^2 -155(pTip-*prmABCD*), mc^2 -155(pTip-*thmADBC*), and mc^2 -
211 155(pTip-QC2), were harvested using the procedures as mentioned above. Five milliliters of
212 resuspended cells were transferred to 35-mL sealed serum bottles and then exposed to 19 selected
213 compounds individually to assess if significant degradation occurs in comparison with abiotic
214 controls prepared with PBS with 0.1% Tween 80 as the medium. These tested compounds are
215 categorized into four groups, embracing (1) cyclic and branched ethers (dioxane, THF, MTBE)
216 and a structural analogue (cyclohexane), (2) short-chain alkane/alkene gases (ethane, propane,
217 butane, isobutane, and ethene), (3) aromatic compounds (e.g., toluene, benzene), and (4)

218 chlorinated aliphatic hydrocarbons (1,1-DCE, tDCE, cDCE, 1,1-DCA, 1,2-DCA, VC, TCE, and
219 1,1,1-TCA). The exposure dosage of each compound is listed in Table S2. MTBE, cyclohexane,
220 alkanes, aromatic compounds, and chlorinated solvents were detected in the headspace; dioxane
221 and THF were measured in the filtered aqueous solutions. Concentrations of these compounds
222 were monitored by GC coupled with a flame ionization detector (FID) detector or mass
223 spectrometry (MS) with key analytical details (e.g., retention time and target ions) indicated in
224 Table S2. As concentrated non-growing transformant cells were used in these assays, degradation
225 rates were estimated based on the disappearance of each tested compound with the first 4 h of
226 incubation. Samples were also collected at 24 h after the exposure, which were analyzed to verify
227 the occurrence and extent of degradation. All experiments were conducted in triplicate to avoid
228 discrepancy among individual tests and minimize system errors. Significant degradation was only
229 recognized by the Student's *t*-test when the substrate disappearance in clones expressing PRM or
230 THM within first 4 h is statistically greater (*p* < 0.05) than (1) the abiotic loss observed in negative
231 controls and (2) the biotic loss in mc²-155(pTip-QC2) transformant cells which contain the empty
232 vector. The degradation ability was verified based on the observation of (1) continuous substrate
233 depletion at 24 h and (2) degradation exhibited by the wild type strains, PH-06 and CB1190. PH-
234 06 and CB1190, which were grown with 50 mL of ammonium mineral salts (AMS) and 500 mg/L
235 of dioxane as a growing substrate in 160 mL serum bottles. Cells were harvested at their
236 exponential phase and diluted to OD₆₀₀ around 1.0 by PBS with 0.1% Tween-80.

237 ***Genomic Comparison***

238 Genomes of 10 Actinomycetes in the genera of *Mycobacterium*, *Pseudonocardia*, and
239 *Rhodococcus* that carry complete genes clusters of *prmABCD* or *thmADBC* were retrieved from

240 National Center for Biotechnology Information (NCBI). The sequence alignment was conducted
241 using Mauve 2.4.0⁴² with the default parameters.

242 **Results and Discussion**

243 ***PRM Exhibits Higher Affinity to Dioxane than THM***

244 In comparision with THM, PRM exhibited a higher affinity to dioxane since the K_m of
245 PRM (53.0 ± 13.1 mg/L) was significantly lower ($p < 0.05$) than that of THM (235.8 ± 61.6 mg/L)
246 (Figure 1, Table S1). The V_{max} values for PRM and THM were estimated as 0.040 ± 0.003 and
247 0.055 ± 0.007 mg-dioxane/h/mg-protein, respectively. On the basis of our RT-qPCR analysis
248 (Figure S1), V_{max} of PRM and THM can be converted to $(9.52 \pm 0.71) \times 10^{-12}$ and $(1.13 \pm 0.14) \times$
249 10^{-11} mg dioxane/h/transcript copy, respectively. These values may be of significant value to
250 evaluate real-time dioxane degradation activities in the field when total RNA is recovered from
251 environmental samples³². V_{max} of PRM is significantly smaller than THM ($p < 0.05$), indicating
252 PRM has a relatively lower maximum catalytic capacity for dioxane transformation. However,
253 when dioxane concentration is lower than 430 mg/L, PRM surpasses THM in dioxane degradation
254 rate, primarily due to its greater affinity to dioxane. This was evident by the faster dioxane
255 biotransformation observed under two environment-relevant dioxane concentrations commonly
256 found in the field (Figure 1B). When the transformant cells exposed to an initial dioxane
257 concentration of 1082.5 ± 29.3 μ g/L, the dioxane biotransformation rate by PRM was 0.42 ± 0.01
258 μ g dioxane/h/mg protein, equivalent to $(1.00 \pm 0.02) \times 10^{-13}$ mg dioxane/h/transcript copy. This
259 was two times as high as that of THM (0.20 ± 0.01 μ g dioxane/h/mg protein, equivalent to $(4.12$
260 $\pm 0.21) \times 10^{-14}$ mg dioxane/h/transcript copy). When we lowered the initial dioxane concentration
261 to around 250 μ g/L, PRM (0.11 ± 0.01 μ g dioxane/h/mg protein, equivalent to $(2.62 \pm 0.23) \times 10^{-$

262 14 mg dioxane/h/transcript copy) retained higher efficiency in dioxane degradation than THM (0.04
263 ± 0.01 μ g dioxane/h/mg protein, equivalent to $(0.82 \pm 0.21) \times 10^{-14}$ mg dioxane/h/transcript copy).
264 Since dioxane concentration is generally lower than 1 mg/L in groundwater³³ and rarely exceeds
265 100 mg/L at impacted sites, it can be speculated that bacteria that express PRM are more
266 advantageous compared to those with THM given their higher efficiency in exploiting low or trace
267 levels of dioxane for metabolism (Figure 1).

268 Our enzymatic kinetic results are in good agreement with some previous dioxane
269 degradation kinetic studies using wild type model dioxane degraders that actively express these
270 two enzymes essential for dioxane metabolism (Table S1). For instance, He *et al.*²⁰ observed a
271 stronger affinity for dioxane in PH-06 that expresses PRM than CB1190 that expresses THM.
272 Relatively high K_m and V_{max} values were also reported in an early study that characterize dioxane
273 degradation kinetics in CB1190³¹. However, results from some other investigations^{29, 30, 39} in
274 CB1190 dioxane degradation kinetics were at variance (Table S1). The variation in kinetic
275 coefficients among studies is attributed, at least in part, to the differences in (1) culturing
276 conditions and (2) dioxane exposure duration in the degradation tests^{39, 43}. Different culturing
277 media, temperatures, and initial biomass concentrations may affect overall microbial activities and
278 induction of the specific degradation enzyme(s). Dioxane exposure duration is also a critical
279 parameter for the estimation of the kinetic coefficients. These reported studies exposed cells to
280 dioxane for a period ranging from 0.5 to 8 h. Short exposure time may result in an underestimation
281 of degradation rates as cells may take time to acclimate to a new environment. However, long
282 exposure time may cause unwanted biomass growth, as CB1190 cells can grow with dioxane,
283 particularly in the high concentrations dosed in the testing system. In this case, dioxane
284 degradation rates could be overestimated, introducing the extrapolation inaccuracy of V_{max} and K_m

285 using the Michaelis-Menten model that assumes non-growth condition. In our study, we employed
286 expressing cells that do not grow with dioxane and a median exposure duration of 3 h to improve
287 the measurement consistency for dioxane degradation rates.

288 ***1,1-DCE Is the Most Potent Inhibitor to Both PRM and THM***

289 For both PRM and THM, the inhibitory effects of three tested chlorinated compounds were
290 ranked as: 1,1-DCE > TCE > 1,1,1-TCA (Figure 2). The dioxane removal efficiency of PRM
291 dropped from $85.3 \pm 12.9\%$ in inhibitor-free PBS solution to $45.8 \pm 15.4\%$ with the presence of 2
292 mg/L of 1,1-DCE. TCE also significantly reduced the dioxane removal efficiency to $52.0 \pm 4.1\%$
293 ($p < 0.05$). However, the influence of 1,1,1-TCA to PRM-catalyzed dioxane degradation was
294 negligible when dosed with the same concentration (i.e., 2 mg/L). A similar inhibitory order of
295 these three chlorinated compounds was also observed in transformant cells expressing THM
296 (Figure 2). In PBS solution without any chlorinated inhibitors, cells expressing THM can eliminate
297 $81.2 \pm 6.0\%$ of the initial dioxane after 3 h. The addition of 2 mg/L of 1,1-DCE, TCE, and 1,1,1-
298 TCA greatly inhibited the dioxane degradation by THM and reduced the removal efficiencies to
299 20.0 ± 9.7 , 24.0 ± 2.8 , and $49.5 \pm 8.2\%$, respectively. This inhibitory order is in concert with
300 previous inhibition tests using growing cells of CB1190 by Zhang²⁹. The consensus between our
301 enzyme study and their pure culture assay suggest the observed inhibition of chlorinated
302 compounds to dioxane degradation is dominantly governed by the direct interaction between
303 inhibitory molecules and catalytic enzymes, though these inhibitors may also negatively affect the
304 degrading bacteria by inducing universal stress, repressing gene expression, impeding substrate
305 transport, and/or interrupting membrane integrity²⁹.

306 1,1-DCE has been well recognized as a potent inhibitor to SDIMOs, such as group-3
307 methane monooxygenase^{44, 45}, group-3 butane monooxygenase⁴⁶, and group-2 toluene-4-
308 monooxygenase³⁰, as well as many other bacterial catabolic enzymes (e.g., ammonium
309 monooxygenase⁴⁷). 1,1-DCE can incur an irreversible loss of butane monooxygenase activity in
310 alkane degrading *Pseudomonas butanovora*⁴⁶. Our study using heterologous expression cells
311 provides the first evidence unequivocally revealing the inhibition of 1,1-DCE to group-6 and
312 group-5 SDIMOs that are responsible for dioxane metabolism. The inhibition of 1,1-DCE may be
313 attributed to its steric and chemical properties (e.g. polarity and degree of unsaturation and
314 chlorination). The double bond in 1,1-DCE confers to a greater reactivity compared to 1,1,1-TCA.
315 Furthermore, 1,1-DCE has a carbon with two chlorine atoms paired with a carbon with no chlorine.
316 In contrast, TCE has a carbon with two chlorine atoms paired with a carbon with one chlorine
317 atom. Such asymmetry of the double bound in 1,1-DCE may result in a higher reactivity than
318 TCE²⁹.

319 ***PRM Is Less Susceptible to Chlorinated Solvent Inhibition than THM***

320 Based on the best fitness (i.e., highest coefficient of determination [R^2]) with the nonlinear
321 Michaelis-Menten model and its derived equations, negative effects of 1,1-DCE and 1,1,1-TCA
322 on dioxane degradation by PRM and THM might be dominated by noncompetitive inhibition
323 (Figure 3, Table S3, and Figure S2). Previous investigation by Mahendra³⁰ also revealed
324 noncompetitive inhibition for 1,1-DCE and 1,1,1-TCA on dioxane degradation kinetics using live
325 cells of CB1190 (Table S4). Thus, 1,1-DCE and 1,1,1-TCA may bind to an allosteric site (non-
326 active site) on PRM and THM and trigger desensitization of the active site, conducive to the
327 decrease in overall catalytic performance⁴⁸. Unlike 1,1-DCE and 1,1,1-TCA, TCE was inclined to

328 inhibit both enzymes via competitive inhibition (Figure 3, Table S3, and Figure S2). The presence
329 of TCE may compete with dioxane for the active sites on PRM and THM, resulting in a decreased
330 affinity. Such inhibition may be alleviated when dioxane concentrations are sufficiently high to
331 outcompete TCE. Over the course of dioxane kinetic assays, no significant change was observed
332 in concentrations of three chlorinated compounds (data not shown), precluding negative effects
333 caused by toxic products derived from intracellular reactions of these chlorinated compounds.

334 It is noted that the R^2 values representing the fitness of empirical data to varying inhibition
335 models were close for some cases in this study and in many previous studies^{29, 30, 49-52}. This
336 insufficient resolution inherently presented in kinetic studies may result from the mixed inhibitory
337 mechanisms, systematic errors, and unweighted regression approaches. Our experiments were
338 carried out with whole cells that actively express enzymes of interest, rather than purified enzymes
339 considering the technical challenges in *in vitro* purification. Substrate transport to enzymes and
340 other cellular dynamic processes may thus influence our inhibition observations⁵³. On the other
341 hand, nonlinear regression with the classic Michaelis-Menten model is quite robust in estimating
342 apparent K_m and V_{max} values and can work fairly well even when the errors are not Gaussian-
343 distributed⁵⁴. Comprehensively weighing the shifting of these kinetic parameters in response to a
344 series of inhibitor concentrations, the fitness with different inhibition models is the most frequently
345 used and well-received approach to interpret enzyme-substrate inhibition mechanisms and
346 estimate inhibition constants providing implications for scaling the inhibition potencies.

347 Remarkably, PRM is less susceptible than THM to the inhibition of all three chlorinated
348 solvents tested in this study. As depicted in Figure 2, under a same concentration of any chlorinated
349 solvent (i.e., 2 mg/L), the initial 10 mg/L of dioxane was removed in a significantly greater extent

350 in transformant cells expressing PRM than those that express THM. This was also echoed by the
351 computed inhibition constants K_I based on our experimental results (Table S3). For each
352 chlorinated solvent, the best described inhibition mechanism was identical for PRM and THM
353 (Table S4); further, K_I values were always greater for cells expressing PRM. These results
354 suggested that PRM is more resistant to the inhibition of chlorinated solvents than THM.
355 Considering that chlorinated solvents are common co-contaminants of dioxane^{33, 55},
356 microorganisms expressing PRM may be catalytically more active and enduring in the proximity
357 of the source zone where dioxane and chlorinated solvents co-occur.

358 ***PRM Has a Broader Substrate Range than THM***

359 As expected, PRM and THM are both efficient in transforming cyclic ethers, including
360 dioxane (0.287 ± 0.010 and 0.171 ± 0.042 $\mu\text{mol}/\text{h}/\text{mg}$, respectively) and THF (0.368 ± 0.055 and
361 0.497 ± 0.036 $\mu\text{mol}/\text{h}/\text{mg}$) (Table 1). Additionally, both PRM and THM can degrade cyclohexane,
362 a structural analog of dioxane. This is the first report that aligns PRM and THM with cyclohexane
363 degradation, which was previously observed in wild type dioxane degrader PH-06¹¹. However,
364 degradation of this 6-membered carbocyclic alkane was much slower (0.098 ± 0.001 and $0.066 \pm$
365 0.011 $\mu\text{mol}/\text{h}/\text{mg}$ for PRM and THM, respectively) in comparison to the 6-membered heterocyclic
366 dioxane. It is also interesting to notice that PRM exhibited significantly higher degradation rates
367 ($p < 0.05$) for six-membered ring compounds (dioxane and cyclohexane) than THM. Reversibly,
368 THM is faster in degrading the five-membered ring THF. The varied degradation efficiencies on
369 different substrates could partially result from the fitness of substrate molecules with the active
370 site or the transport channel of the catalytic enzyme. MTBE is a highly branched ether pollutant

371 of emerging water concern, since it has been widely used as oxygenate for gasoline⁵⁶. However,
372 neither PRM nor THM can degrade MTBE.

373 Short-chain (C1-C4) alkanes and alkenes are primary substrates of many subgroups of
374 SDIMOs⁵⁷. They also play an important role in the regulation of SDIMO expression in bacteria.
375 In our transformation surveys (Table 1), PRM exhibited exceptional ability to degrade all alkanes
376 (C2-C4) and the C2 alkene (i.e., ethene) tested in this study. Ethene showed the highest degradation
377 rate ($0.487 \pm 0.047 \mu\text{mol/h/mg}$), followed by propane ($0.307 \pm 0.045 \mu\text{mol/h/mg}$), butane (0.246
378 $\pm 0.050 \mu\text{mol/h/mg}$), isobutane ($0.208 \pm 0.084 \mu\text{mol/h/mg}$), and ethane ($0.127 \pm 0.053 \mu\text{mol/h/mg}$).
379 Homologues to the PH-06 group-6 PRM have been previously identified in dioxane
380 cometabolizers that grow on propane or isobutane, such as *Mycobacterium* sp. ENV421⁵⁸ and
381 *Rhodococcus rhodochrous* 21198^{59, 60} (Table 2). Further, the presence of propane can also
382 upregulate the polycistronic transcription of the *prmABCD* clusters in PH-06¹⁴ and ENV421^{61, 62},
383 which subsequently promoted the activity of dioxane biotransformation. Our study revealed this
384 single PRM enzyme can degrade both dioxane and gaseous alkanes. This novel finding unveiled
385 the plausible linkage between propane/isobutane assimilation and dioxane degradation as evident
386 in the mentioned wild-type strains.

387 Besides propane and isobutane, PRM can oxidize a greater range of short-chain alkanes
388 and alkenes, including ethene, ethane, and butane. This is in concert with the previous observations
389 that some *prmABCD*-harboring microorganisms can grow on a wide variety of alkane/alkene gases
390 though their ability to degrade dioxane has yet been characterized (Table 2). For instance,
391 *Rhodococcus* sp. BCP1⁶³ can grow on all C2-C7 linear alkanes, which also induced the expression
392 of its group-6 SDIMO. Similarly, *Mycobacterium chubuense* NBB4 can grow on C2-C4 alkanes

393 and ethene⁵⁷. It is noted that these Actinomycetes express a diversity of SDIMOs and other
394 enzymes (e.g. cytochrome P450 and dehydrogenase) that may also contribute to the observed
395 alkane and alkene oxidation^{57, 64}. However, this is the first study to ascertain the ability of group-
396 6 SDIMO for the oxidation of C2-C4 alkanes (linear or branched) and ethene.

397 Chlorinated solvents and aromatic compounds represent two groups of groundwater
398 pollutants commonly found in contaminated aquifers^{33, 65, 66}. We assessed the capability of PRM
399 and THM of degrading these common co-contaminants. Notably, PRM degrades both VC and 1,2-
400 DCA, though the degradation rates were relatively low (0.060 ± 0.007 and 0.038 ± 0.005
401 $\mu\text{mol/h/mg}$ for VC and 1,2-DCA, respectively) (Table 1). This suggests the active site of PRM can
402 weakly react with VC and 1,2-DCA, despite of low affinity. Particularly, VC is a carcinogenic
403 pollutant commonly accumulated as an undesirable metabolite via anaerobic dehalogenation in
404 TCE-contaminated aquifers^{67, 68}. Thus, presence of bacteria expressing PRM can in addition
405 synchronize the removal of dioxane and VC co-occurring at the chlorinated solvent sites. PRM
406 can also degrade benzene and toluene at the degradation rates of $0.106 \pm 0.011 \mu\text{mol/h/mg}$ and
407 $0.345 \pm 0.039 \mu\text{mol/h/mg}$, respectively. Ability to degrade these two aromatic compounds was
408 validated using PH-06 cells actively expressing PRM as they were grown with propane. As major
409 gasoline constituents, benzene and toluene are contaminants prevalently detected in groundwater.
410 Compared with toluene, benzene is more toxic and recalcitrant with strict regulation by EPA⁶⁹. To
411 break the aromatic ring, dihydroxylation is imperative to insert two hydroxyl groups at adjacent
412 aromatic carbon positions. This can be achieved by two sequential oxidations catalyzed by
413 monooxygenases or a simultaneous oxidation by dioxygenases⁷⁰. This is the first study report that
414 PRM has the capability of degrading aromatic compounds, such as benzene and toluene. Overall,
415 PRM's versatile degradation capability of degrading a broad spectrum of common groundwater

416 pollutants (e.g., benzene, toluene, VC, and 1,2-DCA) underscores its value for environmental
417 remediation.

418 Transformant cells expressing THM did not show degradation capability toward any of the
419 alkanes, alkenes, chlorinated and aromatic compounds in our tests (Table 1). This demonstrates
420 that THM is highly specific to cyclic compounds. In contrast, PRM has a much broader substrate
421 range, unveiling greater potential for *in situ* and *ex situ* treatments of commingled contaminations.
422 Even better, expression of PRM may also enable microorganisms to assimilate other carbon
423 sources, such as propane and isobutane, for cell growth, and support decomposition of a variety of
424 pollutants. Collectively, this group-6 PRM displays unparalleled catalytic versatility towards
425 various types of small molecules including alkane, alkene, cyclic, chlorinated, or aromatic⁷¹. In
426 our previous paper¹⁴, we named this type of group-6 SDIMOs as PRM after its first discovery in
427 the propanotroph, *Mycobacterium* sp. TY-6⁷². They were also designated as “short chain alkane-
428 oxidizing monooxygenase (SCAM)” in other reports⁵⁹. We propose the nomenclature of this
429 group-6 SDIMOs can be unified in the future.

430 ***Environmental Implications for Monitored Natural Attenuation of Dioxane***

431 Besides PH-06 and CB1190, many other Actinomycetes also harbor *prm* and *thm* genes
432 (Table 2). Though not all were verified at the molecular level, it is prudent to assume that these
433 strains can utilize PRM or THM for the initial breakdown of dioxane. It is interesting to note that
434 these *prm* and *thm* harboring bacteria were isolated from geographically disparate locations (e.g.,
435 Asian, Europe, and America). However, sequences of their multicomponent gene clusters
436 *prmABCD* and *thmADBC* are highly conservative with minimum identities of 86% and 94%,
437 respectively, even with the consideration of the spacers and overlaps between gene components.

438 It is also notable that most of these gene clusters are localized on plasmids (Table 2) and/or
439 adjacent to mobile elements. For instance, the *prmABCD* gene cluster in PH-06 is carried by a
440 transposon cassette flanked by insertion sequences¹⁴. The meticulous examination (Figure S3)
441 revealed all gene clusters are intact without noticeable internal rearrangements. In addition,
442 upstream and downstream sequences (the colored blocks shown in Figure S3) of the *prm* or *thm*
443 gene cluster also demonstrated high homology suggesting a consensus origin. These converging
444 lines of evidence corroborate that dioxane degradation genes *prm* and *thm* are disseminated via
445 horizontal gene transfer (HGT), enabling the intercellular spreading of dioxane catabolism across
446 species.

447 In contaminated aquifers, HGT of *prm* and *thm* may occur among indigenous
448 microorganisms at varying frequencies in response to the concentration of dioxane as the selective
449 pressure^{24, 73, 74}. Our enzymatic study suggests that transfer of *prm* may be both physiologically
450 and ecologically more profitable than *thm*. This is because (1) PRM displays a faster dioxane
451 catabolism at field-relevant dioxane concentrations (e.g., < 1 mg/L); (2) such dioxane degradation
452 activity of PRM is also less affected by the inhibition of chlorinated solvents; (3) PRM enables the
453 assimilation of short-chain alkanes and biotransformation of cyclic, chlorinated, and aromatic
454 pollutants which commonly co-occur in the contaminated aquifers. Therefore, it is plausible to
455 postulate that dioxane metabolizing microbes, like PH-06, which express PRM may be more
456 abundant and/or active at sites impacted by commingled contamination of dioxane and chlorinated
457 solvents than those employing THM-mediated catabolism. Note that field environment is
458 staggeringly complexed in comparison with the laboratory condition we conducted in our kinetic
459 assays. For instance, growth substrates other than dioxane may compete with the dioxane
460 degrading enzymes or suppress their expression due to metabolic flux dilution and catabolite

461 repression²⁴. On the other hand, availability of other substrates may promote cellular growth in
462 general. Further, intrinsic activities of these dioxane degrading enzymes may also be regulated by
463 a wide spectrum of environmental factors (e.g., inhibiting compounds, temperatures, pH, nutrient,
464 oxygen availability, presence of competitors). However, considering chronic acclimation, all these
465 factors together will, in return, affect the native abundance of dioxane degrading microbes, as well
466 as the frequency of these key catabolic genes (e.g., *prmA* and *thmA*) carried by them, permitting
467 the use of these genes as effective biomarkers to assess dioxane attenuation potentials.

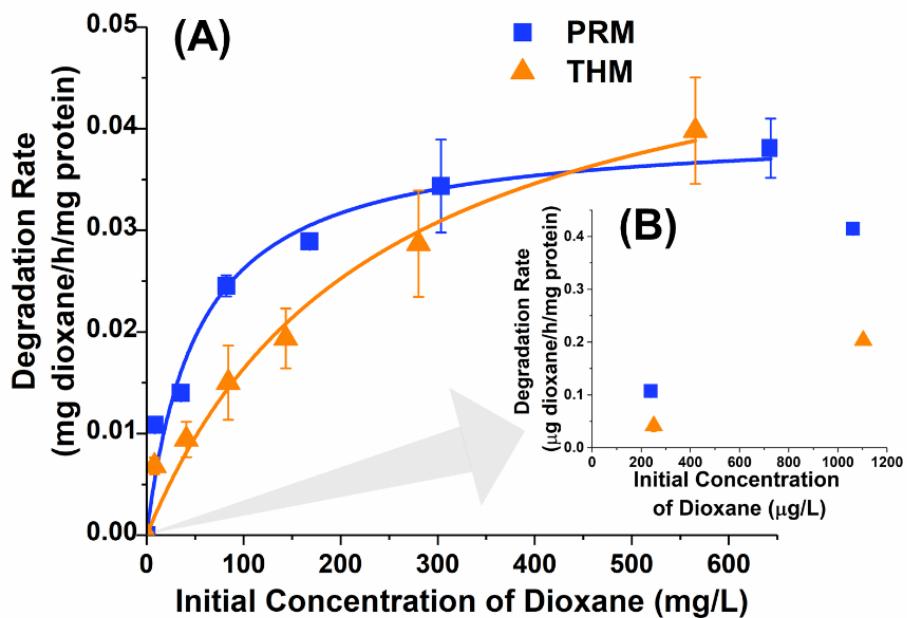
468 Unfortunately, dioxane attenuation potentials may have been long underestimated as
469 previous efforts have merely focused on the quantification of *thm* genes which code for THM.
470 This underscores the need for the complete molecular survey of both *prm* and *thm* genes to assess
471 the abundance and activity of native dioxane degraders in the field. Together with other lines of
472 evidence (e.g., field monitoring, laboratory microcosm assays, isotopic fractionation, and
473 geochemical indication), comprehensive biomarker analysis will facilitate the justification to select
474 or reject MNA for the mitigation of dioxane. This may elicit significant reduction of field
475 remediation efforts and associated costs at sites where pump-and-treat is actively employed.

476 ***Environmental Implications for Biostimulation with Short-Chain Alkane/Alkene Gases***

477 In addition to MNA, biostimulation is an alternative that can effectively accelerate the
478 cleanup of dioxane in the field. A pilot trial lasting over 9 months demonstrated amendment of
479 propane and oxygen into recirculating groundwater sustained an effective removal of dioxane, 1,2-
480 DCA, and other chlorinated compounds at the former air force base site²⁶. Ethane and isobutane
481 were also reported for spurring monooxygenase-driven cometabolism of dioxane in aquifers^{60, 75}.
482 In this study, we unequivocally proved that PRM can degrade both dioxane and short-chain

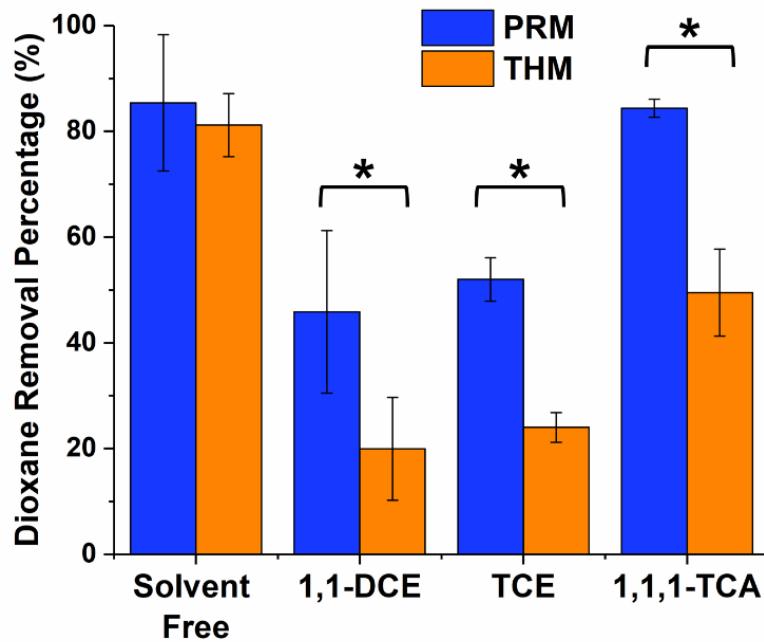
483 alkane/alkene gases, explaining that PRM may contribute to the dioxane cometabolism observed
484 in previous field and microcosm tests for alkane biostimulation^{27, 60, 75}. However, the presence of
485 *prm* genes doesn't guarantee their ability to carry out catabolic dioxane degradation. Dioxane
486 cometabolism can be hindered by field factors, such as the lack of inorganic nutrients or inhibition
487 of the auxiliary substrate⁶⁰. Thus, further investigation regarding the PRM-associated dioxane
488 metabolism or cometabolism are needed to guide for field applications.

489 We also note that, contribution of bacteria expressing THF to short-chain alkane
490 biostimulation should not be precluded. Though THM is highly specific to heterocyclic ethers,
491 many of *thm* harboring bacteria also carry other SDIMOs genes enabling the assimilation of short-
492 chain alkanes/alkenes. Taking the archetypic THM-mediated dioxane degrader CB1190 as an
493 example, it also carries a group-5 propane monooxygenase gene cluster in the chromosome⁷⁶ and
494 its propane degradation capacity was verified in our lab (data not shown). Further investigation is
495 needed to assess the effectiveness of propane and other short-chain alkanes or alkenes for bacteria
496 that carry both *thm* and some other SDIMO genes. However, curing of *thm* carrying plasmids may
497 be of concern. In our previous study, CB1190 tends to lose redundant plasmids (e.g., the plasmid
498 that carries *thm*) when it is fed with substrates that are readily biodegradable (e.g., 1-butanol and
499 acetate)²⁴. Further, in aquifers, the case becomes more intricate, particularly when *prm* harboring
500 bacteria co-exist. Again, this calls for a comprehensive survey of PRM, THM, and other SDIMO
501 genes that are associated with dioxane cometabolism and the assimilation of the selected auxiliary
502 substrate, which facilitate the design and monitoring of the intrinsic biostimulation. Nonetheless,
503 primary attention is recommended to be made to PRM given their unique and synchroic ability
504 of transforming dioxane and other pollutants and assimilating gaseous alkane/alkene substrates.

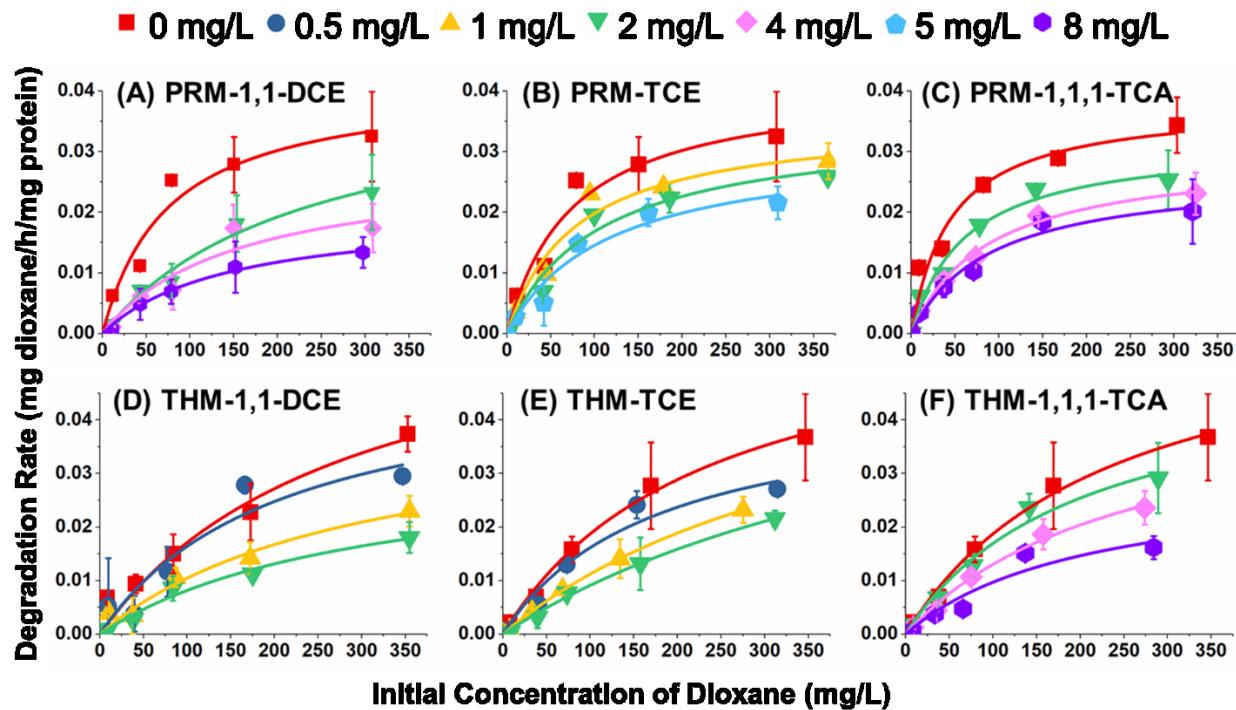

505 **Acknowledgements**

506 This work was funded by National Science Foundation (NSF, CAREER CBET-1846945),
507 United States Geological Survey (USGS) State Water Resources Research Act Program
508 (2018NJ400B), and the start-up fund from the Department of Chemistry and Environmental
509 Science at NJIT. The funders had no role in study design, data collection and interpretation, or the
510 decision to submit the work for publication. We sincerely appreciate the insightful comments and
511 suggestions from all reviewers and the editor and Dr. Joseph Bozzelli for improving the quality of
512 this paper.

513 We declare no competing financial interest.


514 **Supporting Information Available**

515 Experimental details for cloning and induction of PRM and THM, quantitative assessment
516 of gene expression, enzyme kinetic modeling, and analytical methods; tables showing the
517 comparison of dioxane biodegradation kinetic parameters in this study and other previous
518 publications (Table S1), GC-FID and GC/MS analytical details (Table S2), inhibition kinetic
519 parameters for dioxane degradation by PRM and THM expressing transformants with the presence
520 of three chlorinated compounds (Table S3), comparison of inhibition constants and mechanisms
521 between this study and other previous publications (Table S4), and abiotic and biotic loss of
522 selected substrates observed in abiotic control and transformant cells carrying the empty vector,
523 respectively (Table S5); figures depicting uniform gene expression in the heterologous host
524 (Figure S1), best-fitted inhibition regression (Figure S2), and molecular evidence implying shared
525 origins among PRM- or THM-encoding genes (Figure S3).


526

527 **Figure 1.** (A) Michaelis-Menten curves exhibiting dioxane degradation kinetics by transformant
 528 cells expressing PRM (blue square) and THM (orange triangle). Dioxane degradation at
 529 environment-relevant concentrations were shown in the inserted figure (B).

530

531 **Figure 2.** Inhibition of dioxane biodegradation by three chlorinated solvents in transformant cells
 532 expressing PRM and THM. Cells were pre-exposed to 2 mg/L of each chlorinated solvent and then
 533 assessed their dioxane removal efficiencies in the contact time of 3 h with an initial dioxane
 534 concentration of 10.0 mg/L. Error bars represent the standard deviation of triplicates. Asterisk
 535 marks represent significant ($p < 0.05$) dioxane removal differences between PRM and THM.

536

537 **Figure 3.** Enzyme inhibition kinetics by the Michaelis-Menten model for PRM (A, B, C) and THM
 538 (D, E, F) with the presence of 1,1-DCE (A, D), TCE (B, E), and 1,1,1-TCA (C, F). Degradation
 539 rates were estimated as the average of the dioxane disappearance among triplicates within the
 540 contact duration of 3 h and normalized towards the initial protein concentrations. No significant
 541 change in three inhibitor concentrations was observed during these assays.

Table 1. Substrate range of PRM and THM and accordant degradation rates.

Substrate	Degradation Rate (μmol/h/mg protein)	
	PRM	THM
Ethers/Analogs		
Dioxane	0.287 ± 0.010	0.171 ± 0.042
THF	0.368 ± 0.055	0.497 ± 0.036
Cyclohexane ^a	0.098 ± 0.001	0.066 ± 0.011
MtBE	-	-
Short-chain Alkanes/Alkene		
Ethene	0.487 ± 0.047	-
Ethane	0.127 ± 0.053	-
Propane	0.307 ± 0.045	-
Butane	0.246 ± 0.050	-
Isobutane	0.208 ± 0.084	-
Aromatics		
Benzene	0.106 ± 0.011	-
Toluene	0.345 ± 0.039	-
Chlorinated Aliphatic Hydrocarbons		
VC	0.060 ± 0.007	-
1,2-DCA	0.038 ± 0.005	-
1,1-DCE	-	-
cDCE	-	-
tDCE	-	-
TCE	-	-
1,1,1-TCA	-	-

543 Green cells represent significant degradation ($p<0.05$) exhibited by the transformant cells
 544 expressing PRM or THM in comparison with both (1) the abiotic control and (2) biotic control
 545 with transformant cells carrying the empty vector;

546 Red cells represent substrate depletion was not observed or not significantly different from either
 547 abiotic or biotic control treatment.

548 ^a Degradation rates for cyclohexane were calculated based on the concentration difference between
 549 4 and 24 h due to a prolonged equilibrium of this chemical in the sealed bottles.

551 **Table 2.** Bacteria harboring the complete gene clusters of *prmABCD* and *thmADBC*.

Strain Name	Dioxane Degradation	Other Inducible Substrate	Gene Localization	Geographic Location	Gene Cluster Identity (%)	Reference
<i>Prm</i> Harboring Bacteria						
<i>Mycobacterium dioxanotrophicus</i> PH-06	m	propane	plasmid	Pohang, South Korea	100	11
<i>Mycobacterium</i> sp. ENV421	ca	propane	ic	New Jersey, US	88.84	27, 58, 61
<i>Rhodococcus rhodochrous</i> strain 21198	ca	propane/isobutane	ic	Japan	86.24	59, 60, 77
<i>Rhodococcus aetherivorans</i> BCP1	u	C2-C7 alkanes	plasmid	Bologna, Italy	86.24	63, 78
<i>Mycobacterium chubuense</i> NBB4	u	ethene/C2-C4 alkanes	plasmid	New South Wales, Australia	86.51	57, 79
<i>Thm</i> Harboring Bacteria						
<i>Pseudonocardia dioxanivorans</i> CB1190	m	THF	plasmid	South Carolina, US	100	12, 76
<i>Pseudonocardia</i> sp. N23	m	THF	ic	Japan	97.1	80
<i>Pseudonocardia</i> sp. K1	ct	THF	ic	Göttingen, Germany	94.86	81, 82
<i>Pseudonocardia</i> sp. ENV478	ct	THF	ic	New Jersey, US	96.84	83, 84
<i>Rhodococcus ruber</i> YYL	u	THF	plasmid	Zhejiang, China	99.74	85

552 m = metabolism

553 ca = cometabolism with alkane gases

554 ct = cometabolism with THF

555 u = unknown

556 ic = incomplete genome with major gaps (precluding the determination of localization of *prm* or557 *thm* genes)

558 **References**

559 1. Mohr, T. K.; Stickney, J. A.; DiGuiseppi, W. H., *Environmental investigation and*
560 *remediation: 1, 4-dioxane and other solvent stabilizers*. CRC Press: 2016.

561 2. Technical fact sheet-1,4-dioxane. In USEPA, Ed. Office of Land and Emergency:
562 December 2017.

563 3. Toxicological Profile for 1, 4-dioxane. In Registry, A. f. T. S. a. D., Ed. Division of
564 Toxicology and Environmental Medicine/Applied Toxicology Branch: Atlanta, Georgia, April
565 2012.

566 4. Frank R. Lautenberg chemical safety for the 21st century act. In the United States of
567 America, 2016.

568 5. Adamson, D. T.; Piña, E. A.; Cartwright, A. E.; Rauch, S. R.; Hunter Anderson, R.; Mohr,
569 T.; Connor, J. A., 1,4-Dioxane drinking water occurrence data from the third unregulated
570 contaminant monitoring rule. *Science of The Total Environment* **2017**, *596-597*, 236-245.

571 6. The third unregulated contaminant monitoring rule (UCMR 3): data summary. In USEPA,
572 Ed. Office of Water: January 2017.

573 7. Stroo, H.; Ward, C., Future directions and research needs for chlorinated solvent plumes.
574 In *In Situ Remediation of Chlorinated Solvent Plumes*, Springer: 2010; pp 699-725.

575 8. Adamson, D. T.; Mahendra, S.; Walker, K. L.; Rauch, S. R.; Sengupta, S.; Newell, C. J.,
576 A multisite survey to identify the scale of the 1,4-dioxane problem at contaminated groundwater
577 sites. *Environmental Science & Technology Letters* **2014**, *1*, (5), 254-258.

578 9. Chiang, S. Y.; Anderson, R.; Wilken, M.; Walecka-Hutchison, C., Practical perspectives
579 of 1, 4-dioxane investigation and remediation. *Remediation Journal* **2016**, *27*, (1), 7-27.

580 10. Mackay, D. M.; Cherry, J. A., Groundwater contamination: pump-and-treat remediation.
581 *Environmental Science & Technology* **1989**, *23*, (6), 630-636.

582 11. Kim, Y.-M.; Jeon, J.-R.; Murugesan, K.; Kim, E.-J.; Chang, Y.-S., Biodegradation of 1, 4-
583 dioxane and transformation of related cyclic compounds by a newly isolated *Mycobacterium* sp.
584 PH-06. *Biodegradation* **2009**, *20*, (4), 511.

585 12. Parales, R. E.; Adamus, J. E.; White, N.; May, H. D., Degradation of 1,4-dioxane by an
586 actinomycete in pure culture. *Applied and Environmental Microbiology* **1994**, *60*, (12), 4527-4530.

587 13. Li, M.; Yang, Y.; He, Y.; Mathieu, J.; Yu, C.; Li, Q.; Alvarez, P. J. J., Detection and cell
588 sorting of *Pseudonocardia* species by fluorescence in situ hybridization and flow cytometry using
589 16S rRNA-targeted oligonucleotide probes. *Applied Microbiology and Biotechnology* **2018**, *102*,
590 (7), 3375-3386.

591 14. Deng, D.; Li, F.; Li, M., A novel propane monooxygenase initiating degradation of 1, 4-
592 dioxane by *Mycobacterium dioxanotrophicus* PH-06. *Environmental Science & Technology*
593 *Letters* **2017**, *5*, (2), 86-91.

594 15. Mahendra, S.; Alvarez-Cohen, L., *Pseudonocardia dioxanivorans* sp. nov., a novel
595 actinomycete that grows on 1, 4-dioxane. *International Journal of Systematic and Evolutionary*
596 *Microbiology* **2005**, *55*, (2), 593-598.

597 16. Sales, C. M.; Grostern, A.; Parales, J. V.; Parales, R. E.; Alvarez-Cohen, L., Oxidation of
598 the cyclic ethers 1, 4-dioxane and tetrahydrofuran by a monooxygenase in two *Pseudonocardia*
599 species. *Applied and Environmental Microbiology* **2013**, *79*, (24), 7702-7708.

600 17. He, Y.; Wei, K.; Si, K.; Mathieu, J.; Li, M.; Alvarez, P. J., Whole-Genome Sequence of
601 the 1, 4-Dioxane-Degrading Bacterium *Mycobacterium dioxanotrophicus* PH-06. *Genome*
602 *announcements* **2017**, *5*, (35), e00625-17.

603 18. Leahy, J. G.; Batchelor, P. J.; Morcomb, S. M., Evolution of the soluble diiron
604 monooxygenases. *Fems Microbiology Reviews* **2003**, *27*, (4), 449-479.

605 19. Holmes, A. J.; Coleman, N. V., Evolutionary ecology and multidisciplinary approaches to
606 prospecting for monooxygenases as biocatalysts. *Antonie Van Leeuwenhoek* **2008**, *94*, (1), 75-84.

607 20. He, Y.; Mathieu, J.; Yang, Y.; Yu, P.; da Silva, M. L.; Alvarez, P. J., 1, 4-Dioxane
608 biodegradation by *Mycobacterium dioxanotrophicus* PH-06 is associated with a group-6 soluble
609 di-iron monooxygenase. *Environmental Science & Technology Letters* **2017**, *4*, (11), 494-499.

610 21. Li, M.; Mathieu, J.; Liu, Y.; Van Orden, E. T.; Yang, Y.; Fiorenza, S.; Alvarez, P. J. J.,
611 The abundance of tetrahydrofuran/dioxane monooxygenase genes (*thmA/dxmA*) and 1,4-dioxane
612 degradation activity are significantly correlated at various impacted aquifers. *Environmental*
613 *Science & Technology Letters* **2014**, *1*, (1), 122-127.

614 22. Li, M.; Van Orden, E. T.; DeVries, D. J.; Xiong, Z.; Hinchee, R.; Alvarez, P. J., Bench-
615 scale biodegradation tests to assess natural attenuation potential of 1, 4-dioxane at three sites in
616 California. *Biodegradation* **2015**, *26*, (1), 39-50.

617 23. Gedalanga, P.; Madison, A.; Miao, Y. R.; Richards, T.; Hatton, J.; DiGuiseppi, W. H.;
618 Wilson, J.; Mahendra, S., A Multiple Lines of Evidence Framework to Evaluate Intrinsic
619 Biodegradation of 1, 4-Dioxane. *Remediation Journal* **2016**, *27*, (1), 93-114.

620 24. Li, M.; Liu, Y.; He, Y.; Mathieu, J.; Hatton, J.; DiGuiseppi, W.; Alvarez, P. J., Hindrance
621 of 1, 4-dioxane biodegradation in microcosms biostimulated with inducing or non-inducing
622 auxiliary substrates. *Water Research* **2017**, *112*, 217-225.

623 25. Li, M.; Mathieu, J.; Yang, Y.; Fiorenza, S.; Deng, Y.; He, Z.; Zhou, J.; Alvarez, P. J. J.,
624 Widespread distribution of soluble di-iron monooxygenase (SDIMO) genes in arctic groundwater
625 impacted by 1,4-dioxane. *Environmental Science & Technology* **2013**, *47*, (17), 9950-9958.

626 26. Chu, M. Y. J.; Bennett, P. J.; Dolan, M. E.; Hyman, M. R.; Peacock, A. D.; Bodour, A.;
627 Anderson, R. H.; Mackay, D. M.; Goltz, M. N., Concurrent Treatment of 1, 4-Dioxane and
628 Chlorinated Aliphatics in a Groundwater Recirculation System Via Aerobic Cometabolism.
629 *Groundwater Monitoring & Remediation* **2018**, *38*, (3), 53-64.

630 27. Lippincott, D.; Streger, S. H.; Schaefer, C. E.; Hinkle, J.; Stormo, J.; Steffan, R. J.,
631 Bioaugmentation and propane biosparging for *in situ* biodegradation of 1, 4 - dioxane.
632 *Groundwater Monitoring & Remediation* **2015**, *35*, (2), 81-92.

633 28. He, Y.; Mathieu, J.; da Silva, M. L. B.; Li, M.; Alvarez, P. J. J., 1,4-Dioxane-degrading
634 consortia can be enriched from uncontaminated soils: prevalence of *Mycobacterium* and soluble
635 di-iron monooxygenase genes. *Microbial Biotechnology* **2018**, *11*, (1), 189-198.

636 29. Zhang, S.; Gedalanga, P. B.; Mahendra, S., Biodegradation kinetics of 1, 4-dioxane in
637 chlorinated solvent mixtures. *Environmental Science & Technology* **2016**, *50*, (17), 9599-9607.

638 30. Mahendra, S.; Grostern, A.; Alvarez-Cohen, L., The impact of chlorinated solvent co-
639 contaminants on the biodegradation kinetics of 1, 4-dioxane. *Chemosphere* **2013**, *91*, (1), 88-92.

640 31. Mahendra, S.; Alvarez-Cohen, L., Kinetics of 1, 4-dioxane biodegradation by
641 monooxygenase-expressing bacteria. *Environmental Science & Technology* **2006**, *40*, (17), 5435-
642 5442.

643 32. Wilson, J. T.; Mills, J. C.; Wilson, B. H.; Ferrey, M. L.; Freedman, D. L.; Taggart, D.,
644 Using qPCR Assays to Predict Rates of Cometabolism of TCE in Aerobic Groundwater.
645 *Groundwater Monitoring & Remediation* **2019**, *39*, (2), 53-63.

646 33. Adamson, D. T.; Mahendra, S.; Walker Jr, K. L.; Rauch, S. R.; Sengupta, S.; Newell, C. J.,
647 A multisite survey to identify the scale of the 1, 4-dioxane problem at contaminated groundwater
648 sites. *Environmental Science & Technology Letters* **2014**, *1*, (5), 254-258.

649 34. Anderson, R. H.; Anderson, J. K.; Bower, P. A., Co-occurrence of 1, 4-dioxane with
650 trichloroethylene in chlorinated solvent groundwater plumes at US Air Force installations: Fact or
651 fiction. *Integrated environmental assessment and management* **2012**, *8*, (4), 731-737.

652 35. Furuya, T.; Hayashi, M.; Semba, H.; Kino, K., The mycobacterial binuclear iron
653 monooxygenases require a specific chaperonin - like protein for functional expression in a
654 heterologous host. *The FEBS journal* **2013**, *280*, (3), 817-826.

655 36. Furuya, T.; Hirose, S.; Semba, H.; Kino, K., Identification of the regulator gene responsible
656 for the acetone-responsive expression of the binuclear iron monooxygenase gene cluster in
657 mycobacteria. *Journal of bacteriology* **2011**, *193*, (20), 5817-5823.

658 37. Martin, K. E.; Ozsvár, J.; Coleman, N. V., SmoXYB1C1Z of *Mycobacterium* sp. strain
659 NBB4: a soluble methane monooxygenase (sMMO)-like enzyme, active on C₂ to C₄ alkanes and
660 alkenes. *Applied and environmental microbiology* **2014**, *80*, (18), 5801-5806.

661 38. Cheung, S.; McCarl, V.; Holmes, A. J.; Coleman, N. V.; Rutledge, P. J., Substrate range
662 and enantioselectivity of epoxidation reactions mediated by the ethene-oxidising *Mycobacterium*
663 strain NBB4. *Applied Microbiology Biotechnology* **2013**, *97*, (3), 1131-1140.

664 39. Barajas-Rodriguez, F. J.; Freedman, D. L., Aerobic biodegradation kinetics for 1, 4-
665 dioxane under metabolic and cometabolic conditions. *Journal of Hazardous Materials* **2018**, *350*,
666 180-188.

667 40. Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities
668 of protein utilizing the principle of protein-dye binding. *Analytical Biochemistry* **1976**, *72*, (1-2),
669 248-254.

670 41. Gossett, J. M., Measurement of Henry's law constants for C1 and C2 chlorinated
671 hydrocarbons. *Environmental Science & Technology* **1987**, *21*, (2), 202-208.

672 42. Darling, A. C.; Mau, B.; Blattner, F. R.; Perna, N. T., Mauve: multiple alignment of
673 conserved genomic sequence with rearrangements. *Genome Research* **2004**, *14*, (7), 1394-1403.

674 43. Grady Jr, C. L.; Smets, B. F.; Barbeau, D. S., Variability in kinetic parameter estimates: a
675 review of possible causes and a proposed terminology. *Water Research* **1996**, *30*, (3), 742-748.

676 44. Dolan, M. E.; McCarty, P. L., Methanotrophic chloroethene transformation capacities and
677 1,1-dichloroethene transformation product toxicity. *Environmental Science & Technology* **1995**,
678 29, (11), 2741-2747.

679 45. Anderson, J. E.; McCarty, P. L., Effect of three chlorinated ethenes on growth rates for a
680 methanotrophic mixed culture. *Environmental Science & Technology* **1996**, 30, (12), 3517-3524.

681 46. Doughty, D. M.; Sayavedra-Soto, L. A.; Arp, D. J.; Bottomley, P. J., Effects of
682 dichloroethene isomers on the induction and activity of butane monooxygenase in the alkane-
683 oxidizing bacterium "Pseudomonas butanovora". *Applied and Environmental Microbiology* **2005**,
684 71, (10), 6054-6059.

685 47. Ely, R. L.; Williamson, K. J.; Hyman, M. R.; Arp, D. J., Cometabolism of chlorinated
686 solvents by nitrifying bacteria: kinetics, substrate interactions, toxicity effects, and bacterial
687 response. *Biotechnology and bioengineering* **1997**, 54, (6), 520-534.

688 48. Arias, H. R.; Bhumireddy, P.; Bouzat, C., Molecular mechanisms and binding site locations
689 for noncompetitive antagonists of nicotinic acetylcholine receptors. *The International Journal of
690 Biochemistry & Cell Biology* **2006**, 38, (8), 1254-1276.

691 49. Keenan, J.; Strand, S.; Stensel, H., Degradation kinetics of chlorinated solvents by a
692 propane-oxidizing enrichment culture. In *Bioremediation of Chlorinated and Polycyclic Aromatic
693 Hydrocarbon Compounds*, Lewis Publishers: 1994; pp 1-11.

694 50. Grostern, A.; Chan, W. W. M.; Edwards, E. A., 1,1,1-Trichloroethane and 1,1-
695 dichloroethane reductive dechlorination kinetics and co-contaminant effects in a *Dehalobacter*-
696 containing mixed culture. *Environmental Science & Technology* **2009**, 43, (17), 6799-6807.

697 51. Halsey, K. H.; Sayavedra-Soto, L. A.; Bottomley, P. J.; Arp, D. J., Trichloroethylene
698 degradation by butane-oxidizing bacteria causes a spectrum of toxic effects. *Applied microbiology
699 and biotechnology* **2005**, 68, (6), 794-801.

700 52. Lontoh, S.; Semrau, J. D., Methane and trichloroethylene degradation by *Methylosinus
701 trichosporium* OB3b dxpressing particulate methane monooxygenase. *Applied and environmental
702 microbiology* **1998**, 64, (3), 1106-1114.

703 53. Kim, Y.; Arp, D. J.; Semprini, L., Kinetic and inhibition studies for the aerobic
704 cometabolism of 1, 1, 1-trichloroethane, 1, 1 -dichloroethylene, and 1, 1 -dichloroethane by a
705 butane-grown mixed culture. *Biotechnology and Bioengineering* **2002**, 80, (5), 498-508.

706 54. Atkins, G. L.; Nimmo, I. A., Current trends in the estimation of Michaelis-Menten
707 parameters. *Analytical Biochemistry* **1980**, 104, (1), 1-9.

708 55. Adamson, D. T.; Anderson, R. H.; Mahendra, S.; Newell, C. J., Evidence of 1, 4-dioxane
709 attenuation at groundwater sites contaminated with chlorinated solvents and 1, 4-dioxane.
710 *Environmental Science & Technology* **2015**, 49, (11), 6510-6518.

711 56. Belpoggi, F.; Soffritti, M.; Maltoni, C., Methyl-tertiary-butyl ether (MTBE)—a gasoline
712 additive—causes testicular and lympho haematopoietic cancers in rats. *Toxicology and Industrial
713 Health* **1995**, 11, (2), 119-149.

714 57. Coleman, N. V.; Yau, S.; Wilson, N. L.; Nolan, L. M.; Migocki, M. D.; Ly, M.-a.; Crossett,
715 B.; Holmes, A. J., Untangling the multiple monooxygenases of *Mycobacterium chubuense* strain

716 NBB4, a versatile hydrocarbon degrader. *Environmental Microbiology Reports* **2011**, 3, (3), 297-
717 307.

718 58. Steffan, R. J.; McClay, K.; Vainberg, S.; Condee, C. W.; Zhang, D., Biodegradation of the
719 gasoline oxygenates methyl *tert*-butyl ether, ethyl *tert*-butyl ether, and *tert*-amyl methyl ether by
720 propane-oxidizing bacteria. *Applied and Environmental Microbiology* **1997**, 63, (11), 4216-4222.

721 59. Bennett, P.; Hyman, M.; Smith, C.; El Mugammar, H.; Chu, M.-Y.; Nickelsen, M.;
722 Aravena, R., Enrichment with carbon-13 and deuterium during monooxygenase-mediated
723 biodegradation of 1, 4-dioxane. *Environmental Science & Technology Letters* **2018**, 5, (3), 148-
724 153.

725 60. Rolston, H. M.; Hyman, M. R.; Semprini, L., Aerobic cometabolism of 1,4-dioxane by
726 isobutane-utilizing microorganisms including *Rhodococcus rhodochrous* strain 21198 in aquifer
727 microcosms: Experimental and modeling study. *Science of The Total Environment* **2019**, 133688.

728 61. Tupa, P. R.; Masuda, H., Genomic analysis of propane metabolism in methyl *tert*-butyl
729 ether-degrading *Mycobacterium* sp. strain ENV421. *J Genomics* **2018**, 6, 24-29.

730 62. Tupa, P. R.; Masuda, H., Comparative Proteomic Analysis of Propane Metabolism in
731 *Mycobacterium* sp. Strain ENV421 and *Rhodococcus* sp. Strain ENV425. *Journal of molecular
732 microbiology and biotechnology* **2018**, 28, (3), 107-115.

733 63. Cappelletti, M.; Presentato, A.; Milazzo, G.; Turner, R. J.; Fedi, S.; Frascari, D.; Zannoni,
734 D., Growth of *Rhodococcus* sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and
735 transcriptional analysis of two soluble di-iron monooxygenase genes. *Frontiers in microbiology*
736 **2015**, 6, 393.

737 64. Rojo, F., Enzymes for aerobic degradation of alkanes. In *Handbook of hydrocarbon and
738 lipid microbiology*, 2010; pp 781-797.

739 65. Zhou, Y.; Huang, H.; Shen, D., Multi-substrate biodegradation interaction of 1, 4-dioxane
740 and BTEX mixtures by *Acinetobacter baumannii* DD1. *Biodegradation* **2016**, 27, (1), 37-46.

741 66. Paul Hare, M. H. In *Aerobic degradation of 1,4-dioxane in a fixed-film bioreactor with
742 toluene, other volatiles and phenolics as co-contaminants*, Eleventh (11th) International
743 Conference on the Remediation of Chlorinated and Recalcitrant Compounds, Palm Springs,
744 California, 2018; Palm Springs, California, 2018.

745 67. Bartsch, H.; Montesano, R., Mutagenic and carcinogenic effects of vinyl chloride.
746 *Mutation Research/Reviews in Genetic Toxicology* **1975**, 32, (2), 93-113.

747 68. Griffin, B. M.; Tiedje, J. M.; Löffler, F. E., Anaerobic microbial reductive dechlorination
748 of tetrachloroethene to predominately *trans*-1,2-dichloroethene. *Environmental Science &
749 Technology* **2004**, 38, (16), 4300-4303.

750 69. Toxicological profile for benzene. In Services, U. S. D. o. H. a. H., Ed. Atlanta, Georgia,
751 2007.

752 70. Alvarez, P. J.; Illman, W. A., *Bioremediation and natural attenuation: process
753 fundamentals and mathematical models*. John Wiley & Sons: 2005; Vol. 27.

754 71. Holmes, A. J., The diversity of soluble di-iron monooxygenases with bioremediation
755 applications. In *Advances in Applied Bioremediation*, Singh, A.; Kuhad, R. C.; Ward, O. P., Eds.
756 Springer Berlin Heidelberg: Berlin, Heidelberg, 2009; pp 91-102.

757 72. Kotani, T.; Kawashima, Y.; Yurimoto, H.; Kato, N.; Sakai, Y., Gene structure and
758 regulation of alkane monooxygenases in propane-utilizing *Mycobacterium* sp. TY-6 and
759 *Pseudonocardia* sp. TY-7. *Journal of bioscience and bioengineering* **2006**, *102*, (3), 184-192.

760 73. Gaze, W. H.; Zhang, L.; Abdouslam, N. A.; Hawkey, P. M.; Calvo-Bado, L.; Royle, J.;
761 Brown, H.; Davis, S.; Kay, P.; Boxall, A. B., Impacts of anthropogenic activity on the ecology of
762 class 1 integrons and integron-associated genes in the environment. *The ISME journal* **2011**, *5*, (8),
763 1253.

764 74. Gaze, W. H.; Krone, S. M.; Larsson, D. J.; Li, X.-Z.; Robinson, J. A.; Simonet, P.; Smalla,
765 K.; Timinouni, M., Influence of humans on evolution and mobilization of environmental antibiotic
766 resistome. *Emerging infectious diseases* **2013**, *19*, (7).

767 75. Hatzinger, P. B.; Banerjee, R.; Rezes, R.; Streger, S. H.; McClay, K.; Schaefer, C. E.,
768 Potential for cometabolic biodegradation of 1,4-dioxane in aquifers with methane or ethane as
769 primary substrates. *Biodegradation* **2017**, *28*, (5), 453-468.

770 76. Sales, C. M.; Mahendra, S.; Gostern, A.; Parales, R. E.; Goodwin, L. A.; Woyke, T.; Nolan,
771 M.; Lapidus, A.; Chertkov, O.; Ovchinnikova, G., Genome Sequence of the 1, 4-Dioxane-
772 Degrading *Pseudonocardia dioxanivorans* Strain CB1190. *Journal of Bacteriology* **2011**, *193*,
773 (17), 4549-4550.

774 77. Shields-Menard, S. A.; Brown, S. D.; Klingeman, D. M.; Indest, K.; Hancock, D.;
775 Wewalwela, J. J.; French, W. T.; Donaldson, J. R., Draft genome sequence of *Rhodococcus*
776 *rhodochrous* strain ATCC 21198. *Genome Announc.* **2014**, *2*, (1), e00054-14.

777 78. Frascari, D.; Pinelli, D.; Nocentini, M.; Fedi, S.; Pii, Y.; Zannoni, D., Chloroform
778 degradation by butane-grown cells of *Rhodococcus aetherivorans* BCP1. *Applied microbiology*
779 and biotechnology

780 79. Coleman, N. V.; Bui, N. B.; Holmes, A. J., Soluble di-iron monooxygenase gene diversity
781 in soils, sediments and ethene enrichments. *Environmental Microbiology* **2006**, *8*, (7), 1228-1239.

782 80. Yamamoto, N.; Saito, Y.; Inoue, D.; Sei, K.; Ike, M., Characterization of newly isolated
783 *Pseudonocardia* sp. N23 with high 1, 4-dioxane-degrading ability. *Journal of bioscience and*
784 *bioengineering* **2018**, *125*, (5), 552-558.

785 81. Kohlweyer, U.; Thiemer, B.; Schräder, T.; Andreesen, J. R., Tetrahydrofuran degradation
786 by a newly isolated culture of *Pseudonocardia* sp. strain K1. *FEMS microbiology letters* **2000**,
787 *186*, (2), 301-306.

788 82. Thiemer, B.; Andreesen, J. R.; Schräder, T., Cloning and characterization of a gene cluster
789 involved in tetrahydrofuran degradation in *Pseudonocardia* sp. strain K1. *Archives of*
790 *Microbiology* **2003**, *179*, (4), 266-277.

791 83. Masuda, H.; McClay, K.; Steffan, R. J.; Zylstra, G. J., Biodegradation of tetrahydrofuran
792 and 1, 4-dioxane by soluble diiron monooxygenase in *Pseudonocardia* sp. strain ENV478. *Journal*
793 *of Molecular Microbiology and Biotechnology* **2012**, *22*, (5), 312-316.

794 84. Vainberg, S.; McClay, K.; Masuda, H.; Root, D.; Condee, C.; Zylstra, G. J.; Steffan, R. J.,
795 Biodegradation of ether pollutants by *Pseudonocardia* sp. strain ENV478. *Applied and*
796 *Environmental Microbiology* **2006**, 72, (8), 5218-5224.

797 85. Yao, Y.; Lv, Z.; Min, H.; Lv, Z.; Jiao, H., Isolation, identification and characterization of
798 a novel *Rhodococcus* sp. strain in biodegradation of tetrahydrofuran and its medium optimization
799 using sequential statistics-based experimental designs. *Bioresource technology* **2009**, 100, (11),
800 2762-2769.

801