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Abstract
Nowadays, efficient and effective processing over massive stream data has attracted much attention from the database com-
munity, which are useful in many real applications such as sensor data monitoring, network intrusion detection, and so on.
In practice, due to the malfunction of sensing devices or imperfect data collection techniques, real-world stream data may
often contain missing or incomplete data attributes. In this paper, we will formalize and tackle a novel and important prob-
lem, named skyline query over incomplete data stream (Sky-iDS), which retrieves skyline objects (in the presence of missing
attributes) with high confidences from incomplete data stream. In order to tackle the Sky-iDS problem, wewill design efficient
approaches to impute missing attributes of objects from incomplete data stream via differential dependency (DD) rules. We
will propose effective pruning strategies to reduce the search space of the Sky-iDS problem, devise cost-model-based index
structures to facilitate the data imputation and skyline computation at the same time, and integrate our proposed techniques
into an efficient Sky-iDS query answering algorithm. Extensive experiments have been conducted to confirm the efficiency
and effectiveness of our Sky-iDS processing approach over both real and synthetic data sets.

Keywords Skyline query · Incomplete data streams · Sky-iDS

1 Introduction

For decades, efficientmanagement overmassive data streams
has receivedmuch attention inmany real applications such as
IP network traffic analysis [11], network intrusion detection
[25], sensor networks [1], telephone call record management
[22], Web log and clickstream mining [53], and so on. As an
example, Fig. 1 shows an application of the coalmine surveil-
lance [61], where sensors are deployed at different sites in
tunnels of the coal mine and collect data attributes such as
the densities of gas/oxygen/dust and temperature. These sen-
sory samples are periodically obtained from each sensor and
transmitted back to a sink in a streamingmanner for real-time
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analysis, for example, detecting potentially abnormal events
such as fire or gas explosion.

Table 1depicts the sensorydata stream, i DS = (o1, o2, o3,
o4, o5, o6, o1, o2, . . .), collected from sensors and received
by the sink (as shown in Fig. 1) in the order of their arrival
times. Each record with sensor ID oi (for 1 ≤ i ≤ 6) has
four sampled attributes such as temperature and densities of
gas/oxygen/dust, which is associated with record arrival time
and expiration time. For example, sensor (object) o1 sends
a sample record with attributes temperature 100 ◦F, and the
densities of gas, oxygen, and dust all equal to 3, which arrives
at the sink at time stamp1andwill expire at time stamp6,with
a valid duration 5 (= 6−1). Similarly, objects o2 ∼ o6 arrive
at different times in a streaming fashion andmayhave distinct
valid durations (due to different sensor sampling rates).

In order to timely detect dangerous events such as fire or
explosion in the coal mine, one important query type in such
a streaming scenario is the skyline query [7], which returns
those sensors (and their locations in the coal mine) with high
risks of incurring abnormal events (e.g., explosion event with
both high temperature and density of gas). Specifically, given
a database D, a skyline query retrieves those objects o ∈ D
that are not dominated by other objects in D, where we say
an object o dominates another object o′ (denoted as o ≺ o′),
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Fig. 1 An example of the coal mine surveillance

iff two conditions hold: (1) o[Ai ] ≥ o′[Ai ], for all attributes
Ai , and; (2) o[A j ] > o′[A j ], for at least one attribute A j .

Note that, in this example of the coal mine surveillance, to
detect sensors with high risks, one straightforward solution
is to look at sensory values from each sensor using existing
methods [52,63,64]. However, such a solutionmay encounter
the problem of setting the alarming thresholds for differ-
ent attributes, which are difficult to tune by the coal mine
manager. In contrast, our skyline query does not require the
specification of such thresholds and can directly return users
with the most probable objects (i.e., sensor locations) in dan-
ger (e.g., sensors with fire/explosion events). The skyline
considers multiple attributes (rather than just the value of one
single attribute),which can be used formulti-criteria decision
making. For skylines, we can obtain the locations of sensors
that may have the most dangerous events (not dominated by
other sensors). Under the dominance semantics between sen-
sory objects, if a sensor S1 dominates another sensor S2, then

we consider that the location of sensor S1 is more dangerous
than that of sensor S2.

In the previous example of Table 1, object o1 dominates
object o2, since each of the four attributes (i.e., temperature
and densities of gas/oxygen/dust) in object o1 is greater than
that of object o2. Thus, up to time stamp 2, the sink has
only received two objects o1 and o2, and o1 is the skyline
answer (since it is not dominated by other object like o2).
Intuitively, the skyline answers, for example, sensor (object)
o1, indicate high risks of abnormal events (i.e., high temper-
ature and/or density measures compared with other sensors),
which require immediate attentions from the coal mine man-
ager (for potential evacuation to save the lives of workers).
Therefore, it is very critical, yet challenging, to study effi-
cient and effective processing of skyline queries over such
data streams.

Due to transmission errors, packet losses, low battery
power, or environmental factors, some sensory data attributes
may bemissing and thus incomplete. For example, in Table 1,
object o3 has an incomplete attribute, the density of oxygen,
whose missing value is denoted by “−”. Similarly, objects
o4 ∼ o6 contain 1 or 2 missing attributes each. Due to the
missing information, inaccurate skyline answers over incom-
plete streams may lead to wrong decision making about the
coal mine evacuation, or even false alarms that incur losses
of millions of dollars resulting from unnecessary evacuation.
In such a scenario with incomplete data, it is even more chal-
lenging and important to process skyline queries efficiently
and accurately over incomplete data streams.

Table 1 An incomplete data stream, i DS, collected from sensor networks in Fig. 1

Sensor ID (object) Arr. time Exp. time Temperature (◦F) Density of gas Density of oxygen Density of dust

o1 1 6 100 3 3 3

o2 2 6 50 1 1 1

o3 3 9 90 2 − 3

o4 3 9 60 − 1 −
o5 6 11 70 2 2 −
o6 6 10 − 2 3 2

o1 7 12 80 2 2 2

o2 8 12 90 1 3 3

… … … … … … …

Table 2 An incomplete data
stream, i DS, collected from
computer networks

Router ID (object) arr. time exp. time [A] No. of con-
nections (×103)

[B] Connection
duration (min)

[C] Transferred
data size (GB)

T1 1 6 0.5 0.5 0.2

T2 2 6 0.5 0.2 0.5

T3 3 9 0.5 0.5 0.5 (−)

… … … … … …

123



Skyline queries over incomplete data streams 963

Inspired by the example above, in this paper, we will
formally propose the problem of the skyline query over
incomplete data streams (Sky-iDS), which retrieves those
skyline objects from incomplete data streams with high
confidences. TheSky-iDSproblemhasmanyother real appli-
cations such as the network intrusion detection [25].

Specifically, in computer networks, spatially distributed
routers often suffer frommalicious network intrusion, where
each router is connected with a number of servers. Since the
network intrusion may lead to serious consequences such as
virus installation, network congestion, and leakage of users’
information, it is very crucial to online monitor and pre-
vent the network intrusion, based on network statistics such
as No. of connections (denoted as A), connection duration
(denoted as B), and transferred data size (denoted asC) [17]
(as depicted in Table 2). In reality, there are many routers
in IP networks, and a large volume of the collected stream-
ing network statistics arrive at fast speed, which is rather
challenging for network security people to efficiently and
accurately monitor. What is more, some network statistics
may be missing/lost, for reasons such as the network failure,
cyber attacks, or network congestion. Therefore, in this case,
network security users can issue a skyline query over such
incomplete network statistics from the data stream.

As an example in Table 2, for each router, T , we use
T = (A, B,C) to represent its collected network statis-
tics, where A, B, and C are normalized to [0, 1]. At each
time stamp, given the collected network statistics from three
routers, T1 = (0.5, 0.5, 0.2), T2 = (0.5, 0.2, 0.5), and
T3 = (0.5, 0.5, 0.5), network security people can obtain
router T3 as the only skyline router, based on dominance
relationships among T1 ∼ T3. Intuitively, T3 is the router
that may be under attack with the highest probability among
the three routers and should be reported to network security
people. If T3 is safe (i.e., not under attack), then network secu-
rity people may not need to monitor the rest two routers (i.e.,
T1 and T2), since T1 and T2 are dominated by T3. However, in
practice, these network statistics may be potentially unavail-
able (e.g., missing due to the network failure or network
congestion). For instance, when transferred data size (i.e.,
attribute C) of T3 is not available (i.e., T3 = (0.5, 0.5,−)),
it is not trivial how to retrieve skylines over such incomplete
data from the stream. In this scenario, we can exactly issue a
Sky-iDS query to monitor skylines over such a (incomplete)
network data stream, which correspond to the routers with
high risks of being under cyber attacks.

Note that, while prior works [21,27] studied the sky-
line query over static incomplete databases, their proposed
approaches compute skylines by simply ignoring those miss-
ing attributes (when considering dominance relationships),
which may incur biased or wrong skyline results (Please
refer to Sect. 7 for a detailed example). Instead, in this
paper, we will consider the imputation of missing attributes

in data streams via differential dependency (DD) rules [47],
which allows the skyline computation with all (complete or
imputed) attributes and results in unbiased skylines with high
confidences. Moreover, to the best of our knowledge, this is
the first work to study the skyline operator over incomplete
data in the streaming environment.

Specifically, in the streaming scenario, Sky-iDS query
processing requires high efficiency, which is critical and
important in many real applications. For example, as shown
in Fig. 1, the coal mine manager needs to quickly and timely
detect dangerous fire events (i.e., Sky-iDS answers) and
immediately take actions. If Sky-iDS query answering is
slow, then it may lead to enormous economic loss or even
threaten people’s lives. Similarly, in the scenario of network
intrusion detection, high Sky-iDS processing cost may cause
more servers and computers under attack. Therefore, it is
important that we can efficiently retrieve Sky-iDS answers
from incomplete data streams in these scenarios (otherwise,
serious consequences like economic/life losses or network
intrusion may occur). While a straightforward method can
conduct the skyline query after the data imputation, it may
still take a long time to obtain the Sky-iDS answers, which
is not suitable for fast stream processing. Thus, in our work,
we design an efficient Sky-iDS approach that integrates data
imputation and skyline query at the same time, which can
perform much better than the straightforward method.

Therefore, due to stream processing requirements such as
efficient stream processing and limited memory consump-
tion, in this paper, we will design cost-model-based and
space-efficient index structures for both data imputation and
query processing, devise effective pruningmethods to greatly
reduce the Sky-iDS search space, and propose efficient Sky-
iDS answering algorithms to perform the attribute imputation
and incremental skyline computation at the same time (i.e.,
“imputation and query processing at the same time” style).

In this paper, we make the following major contributions.

1. We formalize a novel and important problem of the sky-
line query over incomplete data stream (Sky-iDS) in
Sect. 2.

2. We design effective and efficient data imputation tech-
niques via DD rules in Sect. 3.

3. We propose effective pruning strategies to reduce the
search space of the Sky-iDS problem in Sect. 4.

4. We devise effective indexes and efficient algorithms to
tackle the Sky-iDS problem on incomplete data stream
in Sect. 5.

5. We demonstrate through extensive experiments the effec-
tiveness and efficiency of our Sky-iDS approach in
Sect. 6.

In addition, Sect. 7 reviews related works on stream
processing, differential dependency, skyline queries, stream
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outlier detection and repair, and incomplete data manage-
ment. Section 8 concludes this paper.

2 Problem definition

In this section, we formally define the problem of a skyline
query over incomplete data streams (Sky-iDS), which takes
into account the missing attribute values during the skyline
query processing.

2.1 Incomplete data streams

We first define the data model for incomplete data streams.

Definition 1 (Incomplete Data Streams)An incomplete data
stream, i DS, is an ordered sequence of objects, {o1, o2, o3,
. . . , or , . . .}, where objects oi arrive at time stamp oi .arr
and expire at time stamp oi .exp. Each object oi contains d
attributes A j (for 1 ≤ j ≤ d), some of which have missing
attribute values oi [A j ], represented by “−”.

In Definition 1, an incomplete data stream i DS dynam-
ically keeps in memory all objects that are currently valid
(i.e., not expired). When a new object ot arrives, ot will be
inserted into i DS; whenever, an old object oi ∈ i DS expires
at time stamp oi .exp, it will be evicted from i DS. Each object
oi ∈ i DS has a valid period from time stamp oi .arr to time
stamp oi .exp, with a duration oi .dur (= oi .exp − oi .arr ).

In the example of Fig. 1 and Table 1, the incomplete data
stream is given by i DS = (o1, o2, . . .), in which objects like
o3 contain incomplete attributes (e.g., the missing attribute,
the density of oxygen, for object o3). At time stamp 6, new
objects o5 and o6 are added to i DS; whereas, old expired
objects o1 and o2 are removed from i DS, which results in
valid objects {o3, o4, o5, o6}.

Without loss of generality, in this paper, we use Wt to
denote a set of objects in i DS that are valid (i.e., not expired)
at time stamp t . As shown in the example of Table 1, at time
stamp t = 2,wehaveW2 = {o1, o2}.At time stamp t = 6,we
have W6 = {o3, o4, o5, o6}. Similarly, at time stamp t = 8,
we haveW8 = {o3, o4, o5, o6, o1, o2}. Note that, here objects
o1 and o2 inW8 are new updates at time stamp 8 from sensors
o1 and o2, respectively, which are different from that in W2

at time stamp 2.

2.2 Imputation over incomplete data stream

Imputed data stream To leverage the processing on incom-
plete data streams, in this paper, we will impute and model
incomplete data stream i DS by probabilistic data stream
[18], by estimating possible values of missing attributes in
objects from i DS.

Definition 2 (Imputed Data Stream) Given an incomplete
data stream i DS = (o1, o2, . . . , or , . . .), its imputed (com-
plete) data stream, pDS, is given by an ordered sequence of
objects, (op1 , op2 , . . . , opr , . . .).

Each object opi ∈ pDS, obtained from object oi ∈ i DS
with missing attribute(s) oi [A j ] (=“−”), is a probabilistic
object, which consists of instances oil (with the imputed
attribute values). Each instance oil is associated with an exis-
tence probability oil .p, where

∑
∀oil∈opi oil .p = 1.

Definition 2 defines a probabilistic data stream pDS,
imputed from incomplete data stream i DS. Specifically, we
can estimate and impute possible values of each missing
attribute oi [A j ] in objects oi ∈ i DS, and represent the result-
ing probabilistic object opi by several instances oil . Each
instanceoil contains complete/imputed attribute values, asso-
ciated with an existence probability oil .p ∈ (0, 1], which
indicates the confidence that instance oil actually exists in
reality (i.e., truly representing object oi ).

Table 3 shows an example of the imputed data stream
pDS at time stamp t = 6 (i.e., W6 = (op3 , op4 , op5 , op6 )),
obtained from incomplete data stream i DS in Table 1. As an
example, probabilistic object op3 has two instances o31 and
o32, with the imputed possible values 2 and 3 for attribute
“density of oxygen”, which are associated with existence
probabilities 0.4 and 0.6, respectively. Similarly, probabilis-
tic object op4 contains 4 instances o41 ∼ o44, where each
missing attribute, “density of gas” or “density of dust”, has
two possible (imputed) values (i.e., 1 or 2). In particular,
instance o41 has “density of gas” equal to 1 with probabil-
ity 0.8, and “density of dust” equal to 1 with probability
0.7. Thus, the instance o41 has the existence probability 0.56
(= 0.8 × 0.7).

The cases of probabilistic objects op5 and op6 are similar
and thus omitted here.

Possible worlds over imputed data stream Following the
literature of probabilistic databases [12], we consider the
possible worlds semantics over (imputed) probabilistic data
stream pDS at time stamp t , that is, a set, Wt , of valid (not
expired) objects, where each possible world is a materialized
instance of Wt ∈ pDS that can appear in the real world.

Definition 3 (Possible Worlds of the Imputed Data Stream,
pw(Wt )) Given an imputed data stream pDS at time stamp
t (i.e.,Wt ), a possible world, pw(Wt ), ofWt is a set of object
instances oil , where oil is an instance of probabilistic object
opi ∈ Wt (i.e., satisfying oi .exp > t).

Each possible world, pw(Wt ), has an appearance proba-
bility, Pr{pw(Wt )}, given as follows:

Pr{pw(Wt )} =
∏

∀oil∈pw(Wt )

oil .p. (1)
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Table 3 The imputed data stream, pDS, at time stamp 6 (i.e., W6) in the example of Table 1

Object Instance Temperature (◦F) Density of gas Density of oxygen Density of dust prob.

op3 o31 90 2 2 3 0.4

o32 90 2 3 3 0.6

op4 o41 60 1 1 1 0.56

o42 60 1 1 2 0.24

o43 60 2 1 1 0.14

o44 60 2 1 2 0.06

op5 o51 70 2 2 2 1.0

op6 o61 90 2 3 2 0.6

o62 80 2 3 2 0.4

Table 4 Possible worlds,
pw(W6), of W6 from the
imputed data stream, pDS, at
time stamp 6 in Table 3

Possible world of W6 Content of pw(W6) Appearance probability

pw1(W6) (o31, o41, o51, o61) 0.1344

pw2(W6) (o31, o41, o51, o62) 0.0896

pw3(W6) (o32, o41, o51, o61) 0.2016

pw4(W6) (o32, o41, o51, o62) 0.1344

… … …

pw16(W6) (o32, o44, o51, o62) 0.0144

In the example of Table 3, probabilistic objects op3 , o
p
4 ,

op5 , and op6 in W6 have 2, 4, 1, and 2 possible instances,
respectively. Therefore, there are totally 16 (= 2×4×1×2)
possible worlds ofW6 over imputed data stream pDS at time
stamp6, as depicted inTable 4. The appearance probability of
each possibleworld can be computed byEq. (1), for example,
Pr{pw1(W6)} = o31.p×o41.p×o51.p×o61 = 0.4×0.56×
1 × 0.6 = 0.1344.

2.3 Skyline queries on incomplete data stream

In this subsection, we will define the skyline query over
incomplete data streams (Sky-iDS). Before we introduce the
Sky-iDS query, we first provide the definition of the domi-
nance between two certain (or imputed probabilistic) objects.

Definition 4 (Dominance Between Certain Objects o and o′
[7]) Given two objects o and o′, we say that object o dom-
inates object o′, denoted by o ≺ o′, if two conditions are
satisfied:

– for any dimension 1 ≤ i ≤ d, o[Ai ] ≥ o′[Ai ] holds, and;
– for some dimension 1 ≤ j ≤ d, o[A j ] > o′[A j ] holds.

Without loss of generality, in this paper, we use “the larger,
the better” semantics (i.e., larger attribute values are better)
for the dominance definition (and skyline as discussed later).
Intuitively, as given inDefinition 4, object o dominates object
o′, if and only if two conditions hold: (1) o is not worse than

o′ for all attributes Ai , and (2) o is strictly better than o′ on at
least one attribute A j . If only the first condition is satisfied,
we denote it as o � o′.

In the example of Table 1, object o1 dominates o2, since
all the four attribute values of o1 are larger than that of o2,
respectively.

Next, we define the dominance probability between two
imputed probabilistic objects op and o′p.

Definition 5 (The Dominance Probability Between the
Imputed Probabilistic Objects op and o′p) Given two
imputed probabilistic objects op and o′p, the dominance
probability, Pr{op ≺ o′p}, between op and o′p is given by:

Pr{op ≺ o′p} =
∑

∀o∈op

∑

∀o′∈o′p
o.p · o′.p · χ(o ≺ o′), (2)

where o and o′ are instances of probabilistic objects op and
o′p, respectively, and χ(z) is either 1 (if z is true) or 0 (if z
is f alse).

As an example in Table 3, we compute the dominance
probability, Pr{op3 ≺ op6 }, between two probabilistic objects
op3 and op6 . In particular, we first consider the dominance
relationships between instances from op3 and op6 (based on
Definition 4) and thus have: χ(o31 ≺ o61) = 0, χ(o31 ≺
o62) = 0, χ(o32 ≺ o61) = 1, and χ(o32 ≺ o62) = 1 .
Then, by Eq. (2), we can obtain the dominance probability:
Pr{op3 ≺ op6 } = o31.p × o61.p × 0 + o31.p × o62.p × 0 +
o32.p × o61.p × 1 + o32.p × o62.p × 1 = 0.6.
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Definition 6 (SkylineQueriesOver IncompleteData Stream,
Sky-iDS) Given an incomplete data stream i DS and a prob-
abilistic threshold α, a skyline query over incomplete data
stream (Sky-iDS) continuously monitors those objects oi ∈
Wt from i DS at any time stamp t , such that their imputed
probabilistic objects opi are not dominated by other imputed
objects opj ∈ Wt with skyline probabilities, PSky-i DS(o

p
i ),

greater than threshold α, that is,

PSky-i DS(o
p
i ) =

∑

∀pw(Wt )

Pr{pw(Wt )}

·χ
⎛

⎜
⎝

∧

∀opj 
=opi and oil ,o js∈pw(Wt )

o js ⊀ oil

⎞

⎟
⎠ > α, (3)

where pw(Wt ) is a possibleworld ofWt containing instances
oil or o js of objects opi , opj ∈ Wt , respectively, o js ⊀ oil
indicates that o js is not dominated by oil , and χ(z) is given
in Definition 5.

Intuitively, users can register a Sky-iDS query in Defini-
tion 6 by specifying a parameter α, which will continuously
monitor those skyline objects over incomplete data stream
i DS with high confidences (i.e., satisfying Inequality (3)).

As an example in Table 3, at time stamp t = 6,
the Sky-iDS query will compute skyline answers over
W6 = {op3 , op4 , op5 , op6 }. Specifically, as given in Defini-
tion 6, we need to enumerate all possible worlds pw1(W6) ∼
pw16(W6) (as shown in Table 4) and compute the sky-
line probability, for example, PSky-i DS(o

p
3 ), of each object

over all possible worlds in Inequality (3). In W6, we obtain
PSky-i DS(o

p
3 ) = 1. If the user-specified probabilistic thresh-

old α is 0.45, then we have PSky-i DS(o
p
3 ) > α, which

indicates that object op3 is one of our Sky-iDS query answers
at time stamp t = 6.

Challenges To tackle the Sky-iDS problem, there are three
major challenges. First, many existing works [15,33] on
stream processing usually assume that the underlying data
are complete. However, this assumption does not always hold
in practice (e.g., sensory data attributes may be missing or
not available). Directly discarding incomplete data objects
may lead to the bias of skyline query results over the purged
data stream. Thus, we cannot directly apply skyline query
processing techniques over complete data to solve our Sky-
iDS problem over incomplete data stream, and we should
design an effective and efficient approach to impute possible
missing attribute values of incomplete data objects.

Second, in the stream environment, it is rather challenging
to efficiently process the imputed probabilistic data stream
under possible worlds semantics [12]. In particular, as shown
in Inequality (3), there are an exponential number of possible
worlds, which are inefficient, or even infeasible, to enumer-

ate. Thus, we need to design an effective approach to reduce
the problem to the one over imputed objects in probabilistic
data stream.

Third, it is not trivial either how to efficiently process the
Sky-iDS query in incomplete data stream. In other words, we
need to dynamically and incrementallymaintain the Sky-iDS
query answer set, upon insertions and deletions in incomplete
data stream. Therefore, in this paper, we should design effec-
tive pruning or indexing mechanisms to reduce the problem
search space and enable efficient Sky-iDS query answering.

2.4 Sky-iDS processing framework

Algorithm 1 illustrates a framework for our Sky-iDS query
processing, which consists of three phases. In the first offline
pre-computation phase, we offline build indexes I j over a
static (complete) data repository R for imputing attributes
A j , respectively (line 1). In the second imputation and incre-
mental Sky-iDS computation phase, upon deletions (lines
2–3) and insertions (lines 4–7), we dynamically maintain
a data synopsis, called skyline tree ST , over incomplete data
stream i DS, which stores potential Sky-iDS candidates. For
insertions in particular, we use indexes I j over R to facilitate
data imputation via DDs and apply our pruning strategies to
rule out false alarms of Sky-iDS candidates (lines 5–6). Note
that, in this paper, we focus on DDs, and leave other impu-
tation methods as our future work. Finally, in the refinement
phase, we refine Sky-iDS candidates in the skyline tree ST
and return actual Sky-iDS answers (line 8).

Algorithm 1: Sky-iDS Processing Framework
Input: an incomplete data stream i DS, a static (complete) data repository R, a

timestamp t , and a probabilistic threshold α

Output: a Sky-iDS query answer set over Wt
// Offline Pre-Computation Phase

1 construct indexes, I j , over data repository R
// Imputation and Incremental Sky-iDS Computation

Phase
2 for each expired object o′

i at timestamp t do
3 update a skyline tree, ST , over Wt with o′

i and evict o′
i from Wt

4 for each new object oi with missing attributes A j arriving at Wt do
5 traverse index, I j , over R and the skyline tree, ST , over Wt at the same

time to enable DD attribute imputation and skyline computation, resp.
6 if object opi cannot be pruned by spatial, max-corner, and min-corner

pruning strategies then
7 incrementally update the skyline tree, ST , with new object opi

// Refinement Phase
8 refine Sky-iDS candidates in the ST index and return actual Sky-iDS answers

Table 5 depicts the commonly used symbols and their
descriptions in this paper.

3 Incomplete object imputation

In this section, we will discuss how to impute missing
attributes in incomplete data stream i DS by using rules such
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Table 5 Symbols and descriptions

Symbol Description

i DS An incomplete data stream

pDS An imputed (probabilistic) data stream

oi An object arriving at time stamp i from stream i DS

opi An imputed probabilistic object in the
imputed stream pDS

Wt A set of valid objects from stream
i DS or pDS at time stamp t

pw(Wt ) A possible world of imputed proba-
bilistic objects in Wt

t ≺ oi Object t dominates object oi
t � oi t ≺ oi or t ≡ oi

Table 6 An example of a
complete data repository R with
2 DD rules, DD1 : (A →
D, {[0, 10], [0, 2]}) and
DD2 : (BC →
D, {[0, 1], [0, 1], [0, 1]})

Object A B C D

s1 90 2 2 3

s2 60 1 1 1

s3 70 2 2 2

s4 90 2 3 2

asdifferential dependencies (DDs) [47]. In the sequel,wewill
first briefly introduce DD rules and then present an effective
approach to impute missing attributes by a historical com-
plete data repository with the help of conceptual lattices.

3.1 Preliminary: differential dependency

Attributes of real-world objects often have inherent value cor-
relations. The differential dependency (DD) technique [47]
is a useful and important tool to explore such attribute corre-
lations among objects. Specifically, given a data repository,
R, with complete data objects, we can obtain a set, �, of
DD rules [47] over R. Each DD rule, denoted as DDs ∈ �,
is represented in the form of (X → A j , φ[X A j ]), where
X are determinant attribute(s), A j is a dependent attribute
(A j /∈ X ), and φ[X A j ] is a differential function on attributes
X and A j . Here, the differential function φ[Y ] specifies dis-
tance range restrictions on attributes Y , which contain a
number of distance intervals, Ay .I , for attributes Ay ∈ Y ,
where Ay .I = [0, εAy ]. In this paper, we have the assump-
tion that a data repository R containing complete data is
available for data imputation via DD rules. This data repos-
itory can be obtained from historical data (e.g., from data
streams or other external sources). The data repository is
used as a source to impute missing attributes from other non-
missing attributes, and we do not assume that we can obtain
all stream data coming in the future. We will leave this inter-
esting topic of detecting DD rules from data streams as our
future work.

Table 6 shows an example of a data repository R, which
contains 4 attributes A, B, C , and D, and follows a set, �,
of two DD rules, DD1 and DD2, below:

DD1 : (A → D, {[0, 10], [0, 2]}), and
DD2 : (BC → D, {[0, 1], [0, 1], [0, 1]}).
In Table 6, for DD1 (A → D, {[0, 10], [0, 2]}), if two

objects, such as s2 and s3, have attribute A satisfying the
distance constraint A.I = [0, 10] (i.e., |s2[A] − s3[A]| =
10 ∈ [0, 10]), then they must have similar values of attribute
D (i.e., |s2[D] − s3[D]| = 1 ∈ [0, 2]). The case of DD2 is
similar.

DD [47] is quite useful for many real applications,
such as fraud detection over transaction records (e.g., two
transactions of a credit card within an hour must occur
within 100 miles). DD can be also used for imputing
missing attributes, as will be discussed in the next subsec-
tion.

The advantages of using DDs as the imputation approach
In this paper, we use DDs as our imputation approach,
which has following advantages. Compared with imputa-
tion methods requiring exact matching (e.g., editing rule
[20]), DD-based imputation approach can tolerate differen-
tial differences (e.g., φ[A] = [0, 10] for DD1 in Table 6)
between attribute values, which can lead to a good imputa-
tion result even in sparse data sets [47]. Compared with the
state-of-the-art constraint-based imputation approach [64]
(requiring labelled data in data streams), DD-based imputa-
tion approach does not require any labelled data and imputes
missing values via complete historical data records (i.e.,
data repository R). Specifically, many existing imputation
approaches (e.g., the constraint-based approaches [52,64])
usually impute data based on incomplete data themselves
only, which may lead to the imputation failure. For example,
[52] requires that any two consecutive tuples cannot be miss-
ing at the same time. Nevertheless, imputation via DDs does
not have such limitations. Moreover, imputation via DDs can
lead to good query accuracy for skyline operator over incom-
plete data streams, which can be confirmed in Sect. 6.4.

3.2 Data imputation via DDs

Data imputation with one single DD X → A j . Given an
incomplete object oi ∈ i DS with missing attributes A j (for
1 ≤ j ≤ d), a (complete) data repository R, and a single DD
rule DDs ∈ � in the form X → A j , our goal is to impute
the missing attribute A j in object oi by utilizing R and DDs .

Intuitively, if someobject sr fromcomplete data repository
R has attribute values sr [X ] the same as or similar to that of
incomplete object oi , then, according to the DDs rule, their
values of attribute A j should also be similar. In other words,
we use attribute value sr [A j ] of complete object sr ∈ R as
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one possible imputed value of missing attribute oi [A j ] for
incomplete object oi .

In particular, given an incomplete object oi ∈ i DS, if oi
has complete attributes X , then we can obtain all objects sr
fromdata repository R such that their attribute values of sr [X ]
satisfy distance constraints with oi [X ] based on DDs , that is,
for each attribute Ax ∈ X , it holds that |sr [Ax ] − oi [Ax ]| ∈
Ax .I . Next, all the retrieved objects sr ∈ R will contribute
their attribute values sr [A j ] (i.e., samples) to imputing the
missing attributes oi [A j ] for object oi .

Without loss of generality, we assume that all the imputed
values sr [A j ] via objects sr ∈ R have equal chances to rep-
resent actual attribute value oi [A j ] of incomplete object oi .
Therefore, we will count the frequency, v. f req, of each dis-
tinct imputed value, v, for attribute oi [A j ], and then we can
calculate the probability that the missing attribute oi [A j ] of
incomplete object oi equals to z (for some sr [A j ]) from com-
plete object sr as: Pr{oi [A j ] = z} = z. f req∑

∀v v. f req .

Let us consider an incomplete object o5 = (70, 2, 2,−)

in the example of Table 1. Based on a DD rule DD1 : (A →
D, {[0, 10], [0, 2]}), we will find all objects from the data
repository R in Table 6 whose attribute A values are within
10-distance from o5[A] = 70, that is, falling into interval
[60, 80] (= [70 − 10, 70 + 10]). In Table 6, objects s2 and
s3 from R will be selected (since both s2[A] and s3[A] are
within interval [60, 80]). Then, we will use their attributes D
values, s2[D] (= 1) and s3[D] (= 2), to impute the missing
attribute o5[D] of incomplete object o5. Thus, o5[D] will
be imputed with two possible values 1 and 2, each with a
probability 0.5 (= 1

1+1 ).
Note that, in this paper, we do not use the imputed

attributes to further estimate othermissing attributes.Wewill
leave this interesting topic as our future work.

Data imputation with multiple DDs In practice, we may
havemultiple DD rules with the same dependent attribute A j

over data repository R, for example, X1 → A j , X2 → A j ,
…, and Xl → A j . Given an incomplete object oi with miss-
ing attribute A j , assume that attribute sets X1 ∼ Xl from
DD rules are all complete in object oi . Then, we will uti-
lize attributes oi [X1], oi [X2], …, and oi [Xl ] to impute the
missing attribute oi [A j ] (via R and DDs). In other words,
we can apply a combined DD rule, X1X2 . . . Xl → A j , to
efficiently impute oi [A j ]. Here, if two attribute sets Xa and
Xb share the same attributes Ay , then we will use the inter-
section of their intervals Ay .I as the distance constraint in
X1X2 . . . Xl → A j .

Note that, one straightforwardmethod is to use l individual
DD rules to separately impute oi [A j ]. However, this method
may lead to low efficiency and, most importantly, biased esti-
mates of attribute value oi [A j ] (due to the correlations among
determinant attributes in X1 ∼ Xl ). On the other hand, if we
apply all attributes X1X2 . . . Xl to impute oi [A j ] (though

(a) conceptual lattice Latj

(b) lattice LatD from 2 DDs in Table 6

Fig. 2 Illustration of a conceptual lattice and its example

it is efficient), due to the limited number of samples in data
repository R, it is possible that none of objects (samples) in R
satisfy the distance constraints for all attributes X1X2 . . . Xl ,
which cannot perform the imputation at all. Alternatively, in
this paper, wewill consider appropriate selection of attributes
(e.g., a subset of X1X2 . . . Xl ) to impute attribute oi [A j ],
making a balance between efficiency and accuracy.

Conceptual lattice Inspired by the reason above, in the
sequel, wewill propose a conceptual lattice, denoted by Lat j
(for 1 ≤ j ≤ d), which can facilitate the decision of selecting
DD rules for imputing the missing attribute A j . Figure 2a
shows the logical structure of the conceptual lattice Lat j ,
which consists of (l + 1) levels. Specifically, on level 0, we
have an empty set, ∅, indicating that we cannot use any DD
rules to infer attribute A j ; on level 1, we have l nodes, each
corresponding to a DD rule DDs : Xs → A j ; on level 2,
lattice nodes contain rules in the formof Xa Xb → A j ; and so
on. Finally, on level l, we have one nodewith a combined DD
rule X1X2 . . . Xl → A j . Figure 2b depicts the conceptual
lattice LatD for the example in Table 6 (with 2 DDs).

DD selection via lattice Given a conceptual lattice Lat j
and an incomplete object oi with missing attribute A j (i.e.,
oi [A j ] =“−”), we need to decide which (combined) DD rule
from lattice Lat j should be selected for imputing oi [A j ].
Algorithm 2 illustrates the pseudocode of the DD selection
algorithm, which traverses the lattice Lat j in a breadth-first
manner. Specifically, we start the traversal of the lattice Lat j
from level l to level 0 (line 1). Intuitively, higher level of
lattice Lat j involves more determinant attributes (e.g., level
l has the largest number of attributes in X1X2 . . . Xl ), which
will lead to more accurate imputation results and higher
imputation efficiency (i.e., handling fewer candidates in R).
Thus, here, we will start from higher level first.
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When we access level lv, for each node with DD rule,
Y → A j , on this level, we offline rank these DDs in increas-
ing order of the imputation cost (defined as the expected
number of possible samples from R). Intuitively, DDs with
high ranks will have both low imputation cost and smaller
imputation errors. Thus, for DDs on the same level, we will
considerDDswith high ranks first. Then,wewill check if this
combined DD rule can be used for imputing oi [A j ] (lines 2–
4). In particular, if some complete objects sr in R satisfy the
distance constraints with incomplete object oi on attributes
Y (i.e., the number of samples for imputation is nonzero,
estimated from histograms), then we will terminate the loop
and return the DD rule Y → A j as the best DD rule for
imputing the missing attribute oi [A j ] (lines 3–4). Note that,
if multiple combined DD rules on the same level lv satisfy
distance constraints, then we will only return the one with
higher rank. If the lattice traversal descends to level 0, this
indicates that none of DDs can be used for imputation. In
this case, we can only apply a statistics-based method [35]
to impute oi [A j ]with possible values of attribute A j over R,
following some probabilistic distribution, where the proba-
bility of each possible value can be calculated by the count
of this value in attribute A j over R divided by the size of R
(lines 5–6). For instance, given a value set {0.1, 0.1, 0.1, 0.2}
on attribute A j over data repository R (assuming R only hav-
ing 4 complete data records), and an incomplete data object
oi with missing value on the attribute A j , if no DD can be
used for imputation oi [A j ], we will fill oi [A j ] with 0.1 and
0.2 with probabilities 0.75 and 0.25, respectively. Note that,
if no DD can be used for imputing oi [A j ], we may not be
able to use other imputation approaches (e.g., editing rule
[20]) to impute oi [A j ].

Algorithm 2: DD Selection Using Conceptual Lattice
Input: Lattice Lat j , incomplete object oi with missing attribute A j , and data

repository R
Output: the best DD rule from Lat j to do the imputation

1 for level lv = l to 0 do
2 for each node, Y → A j , on level lv in increasing order of the imputation

cost do
3 if the number of samples in R satisfying the distance constraints on

attributes Y is not zero then
4 return the DD rule, Y → A j , in this node

5 if lv = 0 then
6 apply a statistics-based method [35] to impute oi [A j ] with possible

values of attribute A j over R

Once we select an appropriate (combined) DD rule, Y →
A j , we can use this rule to impute the missing attribute,
oi [A j ], of incomplete object oi , similar to the aforemen-
tioned case of the data imputation with a single DD.

4 Pruning strategies

Problem reduction As mentioned in Sect. 2, it is not effi-
cient, or even not feasible, to compute the skyline probability,
PSky-i DS(o

p
i ), in Inequality (3) by enumerating an exponen-

tial number of possible worlds pw(Wt ). In order to speed
up the efficiency, we will reduce our Sky-iDS problem over
possible worlds to the one on uncertain objects. In particular,
we will rewrite the skyline probability PSky-i DS(o

p
i ) as the

probability that instances, oil , of o
p
i are not dominated by

other (imputed) objects opj , which is given in an equivalent
form below:

PSky-i DS(o
p
i ) =

∑

∀oil∈opi
oil .p ·

∏

∀opj ∈Wt∧o j 
=oi

(1 − Pr{opj ≺ oil}). (4)

Since it is still not efficient for stream processing to cal-
culate the probability in Eq. (4) for every object opi ∈ Wt ,
in this paper, we will provide pruning lemmas below to filter
out false alarms (i.e., objects with low skyline probabilities)
and reduce the search space of the Sky-iDS problem.

Spatial pruningWefirst present an effective spatial pruning
method, which utilizes the interval of each imputed attribute
to rule out objects that can never be Sky-iDS answers (i.e.,
with zero skyline probabilities) over data stream.

Specifically, for each incomplete object oi from data
stream i DS, we use a minimum bounding rectangle (MBR),
opi .MBR, to represent its imputed object opi . We denote
opi .min and opi .max as minimum and maximum corners
of MBR opi .MBR, respectively, which have minimum
and maximum possible coordinates on all attributes A j in
opi .MBR.

Lemma 1 (Spatial Pruning) Given two incomplete objects
oi and o′ from incomplete data stream iDS, if o′p.min ≺
opi .max and o′.exp ≥ oi .exp hold, then object oi can be
safely pruned.

Proof Please refer to Appendix 9.1. ��
As illustrated in Fig. 3a, (imputed) object o′p dominates

opi , since the corner point, o′p.min, of o′p dominates that,
opi .max , of opi . Moreover, since o′.exp ≥ oi .exp holds,
object opi can never be the skyline in its lifetime and can
be safely pruned (as given by Lemma 1).

Max-corner pruning Next, we present a max-corner prun-
ing method, which uses the max-corner, opi .max , of MBR
opi .MBR to prune the false alarm.

Lemma 2 (Max-Corner Pruning) Given two incomplete
objects oi and o′ from incomplete data stream iDS, and a
max-corner opi .max of the imputed object opi , if Pr{o′p ≺
opi .max} ≥ 1 − α and o′.exp ≥ oi .exp hold, then object oi
can be safely pruned.
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Fig. 3 Illustration of pruning
strategies

(a) spatial pruning (b) max-corner pruning (c) min-corner pruning

Proof Please refer to Appendix 9.2. ��
In Lemma 2, the probability Pr{o′p ≺ opi .max} is given

by the probability that object o′p falls into the shaded region
w.r.t. max-corner opi .max (as shown in Fig. 3b). Intuitively,
if Pr{o′p ≺ opi .max} ≥ 1 − α holds, then object opi is not
dominated by o′p with probability less than α, and in turn,
the skyline probability, PSky-i DS(o

p
i ), of opi is less than α.

Moreover, object o′p expires from pDS later than opi . Thus,
opi cannot be a skyline in its lifetime and can be safely pruned.

Min-corner pruningFinally, we provide amin-corner prun-
ing method, which uses min-corner, o′p.min, of the MBR
o′p.MBR to filter out object opi with low skyline probabil-
ity.

Lemma 3 (Min-Corner Pruning) Given two incomplete
objects oi and o′ from incomplete data stream iDS, and
the min-corner, o′p.min, of the imputed object o′p, if
Pr{o′p.min ≺ opi } ≥ 1 − α and o′.exp ≥ oi .exp hold,
then object oi can be safely pruned.

Proof Please refer to Appendix 9.3. ��
As an example in Fig. 3c, the probability Pr{o′p.min ≺

opi } in Lemma 3 is given by the probability that object oi falls
into the shaded region w.r.t. min-corner o′p.min. Similar to
Lemma 2, in Fig. 3c, object opi is not dominated by o′p with
probability less thanα (i.e.,with low skyline probability), and
opi expires before o′p. Thus, object opi never has a chance to
be the skyline during its lifespan and can be safely pruned.

Note that, for these three pruning rules, we will first apply
the spatial pruning and then consider the max-corner and
min-corner pruning rules if the spatial pruning fails.

5 Skyline processing on incomplete data
stream

In this section, we will first propose a novel data synopsis,
namely skyline tree (ST ), which dynamically maintains Sky-
iDS candidates over incomplete data stream i DS. Then, we
will present index structures, I j , constructed over complete
data repository R to facilitate missing data imputation. Next,
we will discuss how to use data synopsis ST and indexes I j

to continuouslymonitor Sky-iDSquery answers from incom-
plete data stream i DS, following the style of “imputation and
query processing at the same time.” Finally, we will provide
cost models for index construction and parameter tuning.

5.1 Skyline tree

In this subsection, we will present the data structure of the
skyline tree ST and then discuss properties of ST .

Data structure of the skyline tree In the sequel, we propose
a multi-layer tree structure, namely skyline tree (ST ), which
is incrementally maintained over valid (imputed) objects
(potential skyline candidates) opi ∈ Wt from incomplete data
stream i DS. Intuitively, the skyline tree ST stores all possible
Sky-iDS candidates over i DS that have chances to be sky-
lines over time. If a Sky-iDS candidate (node) opi on a layer
of skyline tree ST expires, then its children (child nodes) opc
will become new skyline candidates.

Specifically, each node of the skyline tree ST corresponds
to an (imputed) object, opi ∈ Wt , which has one or multiple
pointers pointing to its children opc , such that: (1) each child
opc is dominated by its parent node opi with probability greater
than or equal to (1 − α) (i.e., Pr{opi ≺ opc } ≥ 1 − α), and
(2) opc expires after opi (i.e., opi .exp < opc .exp).

Moreover, for any two sibling nodes opi and opj on the
same layer of the tree ST , they should dominate each other
with probabilities less than (1 − α), that is, (1) Pr{opi ≺
opj } < 1 − α, and (2) Pr{opj ≺ opi } < 1 − α.

Further, to obtain a tree structure, we use a virtual node
(root) ∅ to point to all objects (skyline candidates) on the
first layer of ST . In order to facilitate dynamic updates (e.g.,
deletions) in the streaming environment, for each layer of
the ST tree, we will maintain the list of objects (nodes) opi in
non-descending order of their expiration times (i.e., opi .exp).

Figure 4 illustrates a skyline tree ST over W8 =
{o3, o4, o5, o6, o1, o2} in the example of Table 1, where
α = 0.45. This ST tree has 3 layers, {op3 }, {op6 , o2}, and
{o1}. Consider objects (nodes) op3 and op6 in the tree struc-
ture. Node op3 is a parent of node op6 , since two conditions
hold: (1) Pr{op3 ≺ op6 } = 0.6 ≥ 1 − α = 0.55, and (2)
op3 .exp < op6 .exp.

123



Skyline queries over incomplete data streams 971

Similarly, objects op6 and o2 are sibling nodes on layer 2
of the ST tree. This is because (1) Pr{op6 ≺ o2} = 0 <

1 − α = 0.55, and (2) Pr{o2 ≺ op6 } = 0 < 1 − α = 0.55.
Moreover, objects o4 and o5 are not in the ST tree. This is

because object o4 (or o5) is dominated by o1 with probability
1 (in layer 3 of ST ) and expires before o1, which implies that
o4 (or o5) can never be the skyline during its lifetime (i.e.,
always dominated by o1 during the lifetime).

Properties of the skyline tree Next, we will provide the
properties of the skyline tree ST .

Property 1 (Completeness) The skyline tree ST contains all
the objects opi from i DS that have the chance to be skylines
before they expire.

Property 2 (No False Dismissals) If an imputed object opi is
not on the first layer of the skyline tree ST over Wt , then o

p
i

cannot be a skyline at current time stamp t.

Property 3 (Superset of Sky-iDSAnswers)The set of objects
opi on the first layer of the skyline tree ST is a superset of
Sky-iDS answers at current time stamp t.

From the three properties above, we can see that the sky-
line tree ST contains a superset of Sky-iDS answers on the
first layer of ST without any false dismissals. We will dis-
cuss later how to incrementally maintain this ST tree over
incomplete data stream i DS. Please refer the proofs of these
three properties to Appendix 10.

5.2 Cost-model-based indexes on data repository R
for imputation

In this subsection, we will present indexes, I j , constructed
from complete data repository R, which can facilitate quick
imputation of missing attributes in data stream i DS.

Index structure In order to facilitate efficient data imputa-
tion, in this paper, we will devise d (i.e., the dimensionality
of data sets, or the number of attributes in objects) effec-
tive indexes, I j (for 1 ≤ j ≤ d), each of which can help
quickly access candidates sr from data repository R and

Fig. 4 An example of a skyline tree over incomplete data stream i DS
at time stamp 8 (i.e., W8) in Table 1 (α = 0.45)

impute missing attributes oi [A j ]. Specifically, given l DD
rules X1 → A j , X2 → A j , …, and Xl → A j from �,
we build an index I j over those objects in R projected on
attributes Uj = X1 ∪ X2 ∪ · · · ∪ Xl as follows.

As illustrated in Fig. 5, we first divide the data space over
attributesUj into grid cells of equal size [30], where the side
length of each cell is given by u. We will discuss later in
Sect. 5.4 how to tune this parameter u, in light of our pro-
posed cost model, for minimizing the imputation cost. Then,
we insert each object sr ∈ R into a cell containing sr [Uj ].
Finally, we build an R∗-tree [4] over those cells with objects,
by invoking normal “insert” method. This way, the R∗-tree
over non-empty grid cells can be constructed, denoted as
index I j , which can be used for imputing attribute A j .

Note that, compared with directly using R∗-tree [4] for
imputation, our proposed index I j can achieve better impu-
tation cost. This is because, all objects in a non-empty grid
cell are stored in a single leaf node in I j (rather than multiple
leaf nodes in the R∗-tree), which incurs lower index traversal
(DD imputation) cost than R∗-tree.

Furthermore, each entry (MBR) e in nodes of index I j

is associated with a histogram, HUj , over attributes Uj =
X1 ∪ X2 ∪ · · · ∪ Xl , which stores a summary of objects in e.

HistogramconstructionTobuild a histogram HUj for node
e, we first divide each dimension Ax ∈ Uj of the data space
intoλ intervals of equal size and obtainλ|Uj | buckets, denoted
as bucq (for 1 ≤ q ≤ λ|Uj |), where |Uj | is the number
of attributes in Uj (e.g., if Uj = ABC , then |Uj | = 3).
Then, each bucket, bucq , stores two items: (1) a COUNT
aggregate, bucq .cnt , of objects from R that fall into bucket
bucq ; and (2) an interval, bucq .I = [bucq .A−

j , bucq .A
+
j ],

of attribute values sr [A j ] for any objects sr ∈ R that fall
into bucq . Intuitively, the information stored in each bucket
of the histogram can be used for spatial, max-corner, and
min-corner pruning (as mentioned in Sect. 4).

As an example in Fig. 5, for data repository with attributes
(A, B,C, D) and DD1 and DD2 in Table 6, index I j over
attributes Uj = {A, B,C} contains a number of MBRs e,
each of which is associated with a histogram, HABC . Given
λ = 2, the histogram HABC has 8 (= 2|ABC| = 23) buckets.

Fig. 5 The histogram associated with each MBR node e ∈ I j w.r.t.
DD1 : A → D and DD2 : BC → D in Table 6 (λ = 2)
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Each bucket, bucq , contains the number of objects in it (e.g.,
buc1.cnt = 10 for bucket buc1), and a value bound, bucq .I
of attribute D for those objects in bucket bucq (e.g., buc1.I =
[1, 2]).

Updates of index I j Next, we consider how to maintain
index I j upon the appending of new objects for data reposi-
tory R (thoughwe consider R as static data set in our Sky-iDS
problem). When a new complete object sr comes in, we will
insert this object sr , by traversing indexes I j from the root
node to leaf nodes. During the index traversal, if we insert
object sr into an index node e, then we will: (1) increase the
COUNT aggregate, bucq .cnt , of bucket bucq (containing sr )
in histogram HUj by 1; (2) update the minimum and maxi-
mum values of attribute A j for the interval, bucq .I , of bucket
bucq , and; (3) recursively insert sr into one of children under
node e. When we access a leaf node, we will insert object sr
into this leaf node (maintaining the index structure, if neces-
sary) and update the information of a cell that contains object
sr .

Data imputation via indexesNext, we consider how to effi-
ciently use indexes, I j , and DD rules, X → A j , to impute
missing attribute A j of an incomplete object oi ∈ i DS. As
discussed in Sect. 3.2, we will utilize the conceptual lattice
to decide an appropriate DD rule Y → A j (Algorithm 2)
and then perform a range (aggregate) query over index I j

for attributes Y (note: range predicates on other attributes
are wildcard ∗), where a query range Q is given by an MBR
with [oi [Ax ]−εAx , oi [Ax ]+εAx ]on each dimension Ax ∈ Y .

Specifically, given a range query Q, we traverse index I j

over attributes Y (in the selected DD for imputation), starting
from the root, root(I j ). When we encounter a non-leaf node
e, we will check whether or not its children are intersecting
with the query range Q (ignoring attributes other than Y ). If
the answer is yes, then we will access those intersecting chil-
dren. When we encounter a leaf node e, we will obtain those
cells intersecting with query range Q and retrieve objects
sr ∈ R from cells that fall into Q.

After we retrieve all objects in the query range Q from
I j , we can use their corresponding attribute A j values (and
confidences as well) to impute the missing attribute oi [A j ]
of incomplete object oi ∈ i DS.

As an example in Fig. 6, we can use index I j (in Fig. 5)
over attributes ABC to impute missing attribute D for an
incomplete object oi . In particular, with the help of a selected
DD rule DD2 : BC → D, we can specify a query range:

Q = [
oi [B] − εB, oi [B] + εB; oi [C] − εC , oi [C] + εC

]
,

over attributes BC (wildcard “∗” for other attribute A). In
Fig. 6, we can obtain two nodes, e2 and e3, from index
I j intersecting with Q, each of which has four (projected)
buckets, bucq , intersecting with the query region Q. Cor-

Fig. 6 The usage of index I j for imputing oi [D] based on DD2 :
BC → D

respondingly, we can retrieve the value bounds, bucq .I , in
these buckets bucq to impute attribute D for incomplete
object oi . For example, in e3, since all the 4 buckets are
intersecting with Q, we can obtain lower/upper bounds of
possible imputed attribute D w.r.t. e3, that is, [1, 4] (=
buc1.I ∪ buc2.I ∪ buc3.I ∪ buc4.I ).

Object pruning via indexes As discussed in Sect. 4, we
can apply spatial, max-corner, and min-corner pruning to
filter out an (imputed) object opi by using another object n p,
where the missing attributes in opi and n p are imputed by
their possible values (inferred from data repository R). In
the sequel, we will briefly discuss how to enable the pruning
by traversing indexes I j over R.

Specifically, whenwe access a level of index I j for imput-
ing attribute A j of object o

p
i (or n p), we can retrieve several

possible value intervals of attribute A j . Then, we can com-
pute value boundaries, bucq .I , of attributes A j for object o

p
i

(or n p) and thus obtain corners opi .max and n p.min, which
can be used in the spatial pruning (asmentioned inLemma1).
Similarly, we can also obtain COUNT aggregates, bucq .cnt ,
for attribute A j intervals from buckets bucq and compute
probabilities Pr{n p ≺ opi .max} and Pr{n p.min ≺ opi },
which are used formax-corner andmin-corner pruning (Lem-
mas2 and3), respectively. Similar to the pruningon theobject
level, we omit the pruning details via indexes.

5.3 Sky-iDS query processing algorithm

As discussed in Sect. 5.1 (Properties 1–3), the skyline tree
ST always contains a superset of Sky-iDS query answers on
its first layer. Therefore, in order to efficiently process Sky-
iDS queries over incomplete data stream, one important issue
is how to dynamically maintain this skyline tree ST in the
streaming environment, upon object insertions and deletions.
Then, we will discuss how to refine skyline candidates from
(the first layer of) ST .
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Algorithm 3: Insertion
Input: the skyline tree ST and a new object oi
Output: the updated ST

1 parent Node ← null // parent node of opi in ST

2 is Pruned ← f alse // whether opi can be pruned

3 is Added ← f alse // whether opi has been inserted

4 for each object n p on layer 1 do
5 if Pr{opi ≺ n p} ≥ 1 − α then
6 is Added ← true // insert opi into layer 1

7 if opi .exp ≥ n p .exp then
8 replace n p with opi in ST // n p is pruned

9 else
10 add opi to the first layer of ST
11 move n p and all its descendant nodes from their current layer L to

layer (L + 1)
12 let opi be the parent node of n p

13 if is Added = f alse then
14 queue Q ← all objects n p on the first layer of ST
15 while Q is not empty do
16 remove n p from Q
17 if Pr{n p ≺ opi } ≥ 1 − α then
18 if n p .exp ≥ opi .exp then
19 is Pruned ← true // opi is pruned

20 break; // terminate the while loop

21 else
// find the parent of opi

22 if parent Node = null or n p .exp > parent Node.exp then
23 parent Node ← n p

24 add all child nodes of n p toQ

25 if is Pruned = f alse then
26 if parent Node = null then

// opi is a skyline candidate

27 add opi to the first layer of ST

28 else
29 let opi be the child node of parent Node

// If opi is inserted into ST, find children of opi
and use opi to prune other objects in ST

30 if is Pruned = f alse then
31 for each object n p from layer opi .layer to height(ST ) do
32 if Pr{opi ≺ n p} ≥ 1 − α then
33 if opi .exp ≥ n p .exp then
34 remove n p from layer n p .layer

35 move up all descendant nodes opc of n p by

(opc .layer − opi .layer − 1) layer(s)

36 let opi be the new parent for child nodes of n p

37 else if opi .exp > par(n p).exp then
38 let opi be the new parent of n p

39 move up n p and all its descendant nodes opc by

(opc .layer − opi .layer − 1) layer(s)
40 delete the edge between n p and its old parent par(n p)

5.3.1 Dynamic maintenance of the skyline tree

InsertionWhen a new object oi arrives from incomplete data
stream i DS, we will consider how to update the skyline tree
ST with this (incomplete) objectoi . Specifically,Algorithm3
illustrates the pseudocode to decide appropriate location to
insert the imputed object opi (if oi is incomplete) and incre-
mentally maintain the data structure of the ST index.

Basic idea In Algorithm 3, we initialize three variables,
that is, parent Node, is Pruned, and is Added, which store
the parent node of object opi after the insertion, whether opi
can be pruned by some object in ST , and whether object
opi has been added to ST , respectively (lines 1–3). Then,
we will find appropriate location in ST to insert object opi ,
either on the first layer or on another layer pointed by a parent
node, parent Node (lines 4–29). Finally, we will update the
ST index by removing those objects dominated by opi and
finding children of object opi in ST (lines 30–40).

Finding the location to insert new object opi First, we will
check whether or not new (imputed) object opi dominates any
object n p (i.e., Pr{opi ≺ n p} ≥ 1 − α holds) on layer 1 of
ST (lines 4–5). If the answer is yes, then opi can be inserted
into layer 1 and the variable is Added is set to true (line
6). Moreover, if object opi expires after n p (i.e., opi .exp ≥
n p.exp), it indicates that n p cannot be skyline any more (i.e.,
always dominated by opi during its lifetime), and thus we
replace n p with opi in ST (note: if there are duplicate objects
opi on the first layer, we will keep only one copy and merge
their children; lines 7–8). Otherwise (i.e., opi .exp < n p.exp
holds; line 9), opi should be a parent node of n p. Therefore,
we will add opi to the first layer (line 10), move layers of n p

and all its descendant nodes from current layer L to (L + 1)
(line 11), and let opi point to n p (line 12).

In the case that new object opi has not been added to layer 1
(i.e., is Added = f alse; line 13), we will utilize a queue,Q,
to search an appropriate parent node, parent Node, for this
new object opi (lines 14–24). Initially, we insert all objects on
layer 1 of ST into the query Q (line 14). Each time we pop
out one object, n p, from queue Q (line 16). If n p dominates
opi with probabilities greater than (1 − α) and n p expires
after opi , in this case, opi can never be a skyline during its
lifetime, that is, new object opi should not be inserted into
ST . Thus, we set variable is Pruned to true and terminate
the search loop (lines 17–20). When opi cannot be pruned by
n p (as n p.exp < opi .exp holds; line 21), we will set n p as
a temporary (best-so-far) parent, parent Node, of opi , under
one of the two conditions: (1) n p is the first potential parent
node we encounter (i.e., parent Node = null), or (2) n p

expires later than a best-so-far parent node, parent Node,
of opi (intuitively, opi should be inserted under a parent node
with the largest expiration time) (lines 22–23). Moreover, we
will add children of node n p to queryQ for further searching
(since these children may also be potential parent node of opi
in ST ; line 24).

The loop of finding parent node parent Node repeats,
until queue Q becomes empty (line 15) or new object
opi can be pruned (line 20). If opi cannot be pruned and
parent Node = null holds, it implies that no object can
dominate opi with high probability, and we can insert opi into
layer 1 as a skyline candidate (lines 25–27). On the other
hand, if any parent node is found in variable parent Node,
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then we will let new object opi be the child of parent Node
(lines 28–29).

Finding children of new object opi and pruning objects in
ST After we find the parent node of newly inserted object opi
in the ST index, we will next update the children of this
new object opi , as well as using opi to prune/purge some
(dominated) objects in ST (lines 30–40). That is, we will
consider all objects, n p, from the layer of opi (i.e., opi .layer )
to the height of the ST index, and check whether opi dom-
inates n p during n p’s lifetime (lines 31–33). If the answer
is yes, then we will remove object n p from ST , and let
descendant nodes, opc , of n p be that of opi (lines 34–36).
Otherwise (i.e., n p is not pruned), if opi expires after the
parent node, par(n p), of n p, then we should let opi be the
new parent of n p, move up n p and all its descendants in ST
and remove the link from old parent, par(n p), to n p (lines
37–40).

Correctness of the insertion algorithm Please refer to the
discussions about the correctness of the insertion algorithm
in Appendix 11 in our technical report [43].

Algorithm 4: Deletion
Input: the skyline tree ST and current timestamp t
Output: the updated ST

1 for each expired object n p on layer 1 do
2 remove object n p from ST
3 move all descendant nodes of n p from their current layer L to layer (L − 1)

Deletion At time stamp t , some objects opi from incomplete
data stream i DS are expired (i.e., opi .exp ≤ t). Algorithm 4
will remove all the expired objects from the skyline tree ST
over i DS. In fact, we can prove that all the expired objects
reside on layer 1 of ST (since objects on layers other than
layer 1 will always expire after their parents). Since objects
in each layer are sorted in ascending order of their expiration
times, we will only check those expired objects on layer 1
(line 1). In particular, for each expired object n p, we first
remove it from ST (line 2) and move up all its descendant
nodes opc from their current layer L to layer (L − 1) (line
3).

Complexity analysis The object insertion in Algorithm 3

requires O
(|Wt | · 1− f anout(ST )height(ST )

1− f anout(ST )

)
time complexity,

where |Wt | is the size of sliding window Wt (i.e., the num-
ber of descendants of opi in index ST ), height(ST ) is the
height of the tree ST , and f anout(ST ) is the average num-
ber of children per node in ST . Similarly, the object deletion

in Algorithm 4 needs O
(
θ · 1− f anout(ST )height(ST )

1− f anout(ST )

)
time cost,

where θ is the maximum number of expired objects on layer
1 of index ST .

Algorithm 5: Sky-iDS Refinement
Input: the skyline tree ST , timestamp t , and a data stream Wt
Output: the updated skyline answer set, At , at timestamp t

1 if there is no update with Wt at timestamp t then
2 return At−1;

3 At = ∅;
4 if there is no new object added to Wt at timestamp t then
5 let At be At−1 excluding all expired objects at timestamp t

// objects in At are definitely skylines
6 let V be all objects on layer 1 of ST , but not in At

7 else
// objects on layer 1 are potential skylines

8 let V be all objects on layer 1 of ST

9 for each object opi ∈ V do
10 obtain a lower bound, lb_P(opi ), of probability PSky-i DS (opi )

11 if lb_P(opi ) > α then
12 add opi to At

13 else
14 compute exact Sky-iDS probability, PSky-i DS (opi ), of opi
15 if PSky-i DS (opi ) > α then
16 add opi to At

17 return At ;

5.3.2 Sky-iDS refinement

After dynamic maintenance of the skyline tree ST over i DS,
the first layer of ST always contains a superset of Sky-iDS
answers at time stamp t , as guaranteedbyProperty 3 of ST (in
Sect. 5.1). Thus, we will incrementally refine Sky-iDS can-
didates and return actual Sky-iDS query answers in a skyline
answer set At .

Algorithm 5 provides the pseudocode of refining Sky-iDS
candidates upon stream updates. In particular, if there is no
update (insertion or deletion) at time stamp t , then skyline
answers remain the same and we simply return skylines at
previous time stamp (t − 1) in At−1 (lines 1–2). In the case
that there are deletions but no insertions, those objects in
At−1 (excluding expired objects) are still skylines at time
stamp t . Thus, we add these non-expired objects in At−1 to
At , and objects on layer 1 of ST , but not in At , will form
a candidate set V that should be refined (lines 3–6). On the
other hand, if both insertions and deletions occur, then we
will assign all objects on layer 1 to candidate set V (lines
7–8).

Next, we will refine objects opi in the candidate set V
by checking their Sky-iDS probabilities PSky-i DS(o

p
i ) (as

given by Eq. (3); lines 9–16). Specifically, we will first cal-
culate a lower bound, lb_P(opi ), of the skyline probability
PSky-i DS(o

p
i ) (line 10). Here, the lower bound probability

can be obtained by calculating the skyline probability ofmin-
corner, opi .min, of object opi . If lb_P(opi ) > α holds, object
opi will definitely be a skyline, and we add opi to the skyline
answer set At (lines 11–12). Otherwise, we need to compute
exact skyline probability, PSky-i DS(o

p
i ), of opi , and add o

p
i to

At if the Sky-iDS probability is greater than α (lines 13–16).
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Fig. 7 Derivation of the cost model

Finally, we return actual Sky-iDS query answers in set At

(line 17).
Correctness of the refinement algorithm Please refer to

discussions on the correctness of the refinement algorithm in
Appendix 11 in our technical report [43] (Lemmas 7 and 8).

Complexity analysisAlgorithm 5 has O(|Wt | ·θ) time com-
plexity in the worst case, where |Wt | is the number of valid
objects in sliding window Wt at time stamp t , and θ is the
number of new objects per time stamp in data stream. At time
stamp t , we need to update skyline probabilities of (at most
|Wt |) objects on the first layer of the skyline tree ST , due
to the insertion of at most θ new objects and the deletion of
at most θ expired objects. Therefore, the worst-case refine-
ment cost is given by O(|Wt | · θ). Note that, in practice, the
expected number of objects on the first layer of ST is much
smaller than |Wt |. From our experiments over real/synthetic
data sets (as discussed later in Sect. 6.3), the average number
of objects on layer 1 of ST is about 2.8–11.76% of |Wt |.
Thus, the refinement algorithm (Algorithm 5) is empirically
quite efficient in the average case.

5.4 Cost model for parameter tuning

Weprovide a cost model to tune the parameter u (i.e., the side
length of each cell in the grid) for index I j over R (discussed
in Sect. 5.2). The basic idea is to derive a cost model for the
total cost (Fig. 7), Cost, to access the grid (w.r.t., parameter
u). Then, we take the derivative of Cost to u, and let it be
0, that is, ∂Cost

∂u = 0, in order to find the optimal u that
minimizes Cost . For the details, please refer to Appendix 12
in our technical report [43].

6 Experimental evaluation

6.1 Experimental settings

Real/synthetic data setsWe evaluate the performance of our
Sky-iDS approach on both real and synthetic stream data.

Specifically, for real data, we use Intel lab data1, UCI gas
sensor data for home activity monitoring2, Antallagma time
series data for trading goods3, and Pump sensor data for
predictive maintenance4, denoted as I ntel, Gas Bid, and
Pump, respectively. I ntel data are collected every 31 sec
from 54 sensors deployed in Intel Berkeley Research lab on
Feb. 28-Apr. 5, 2004, including 2.3 million readings. Gas
data contain 919,438 sensory instances from 8 MOX gas
sensors, a temperature and humidity sensor. Bid data contain
882K operation transactions between buyers and sellers from
Jan. 2014 to Jun. 2016. Pump has 220K data, collected from
52 sensors on Apr. 1-Aug. 31, 2018. We extract 4 attributes
from I ntel data: temperature, humidity, light, and voltage;
10 attributes from Gas data: resistance of sensors 1-8, tem-
perature, and humidity; 8 attributes from Bid data: price_sd,
price_mean, price_max, price_min, mean, max, min, sd; and
10 attributes from Pump: sensor_01-sensor_10.We normal-
ize all the attributes of each real data set to an interval [0, 10].
We obtain DD rules (as depicted in Table 7), by scanning
all complete objects sr in data repository R and all possible
combinations of any two determinant/dependent attributes in
the data schema [47] and selecting the ones with minimum
interval for each dependent attribute A j .

For synthetic data, we generate data repository R and
incomplete data stream i DS as follows. Following the con-
vention [7], we generate three types of d-dimensional data
sets: Uni f orm, Correlated, and Anti-correlated, which
correspond to different data distributions. Specifically, we
first generate 5,000 seeds following uniform, correlated, or
anti-correlated distribution [7]. Then, based on these seeds,
we produce the remaining data objects, following DD rules
as depicted in Table 7.

For real/synthetic data above, given a missing rate ξ (i.e.,
the probability that objects in the sliding window have miss-
ing attributes), for each incomplete object, we randomly set
m out of d attributes to “−” (i.e., missing attributes) and
obtain incomplete data stream i DS. Table 8 depicts the aver-
age number of instances per incomplete object for both real
and synthetic data, where m = 1 and ξ = 0.3.

Competitor We compare our Sky-iDS approach with six
competitors, namely DD + skyline, mul + skyline, con +
skyline, DD + skyline_tree, mul + skyline_tree, and
con + skyline_tree. Note that, many existing works (e.g.,
[31,40]) for skyline on uncertain data are for static uncertain
databases and require offline building an index and online
traversing the index, which is not efficient for the stream sce-

1 http://db.csail.mit.edu/labdata/labdata.html.
2 http://archive.ics.uci.edu/ml/datasets/gas+sensors+for+home+acti
vity+monitoring.
3 https://www.kaggle.com/abkedar/times-series-kernel.
4 https://www.kaggle.com/nphantawee/pump-sensor-data/version/1.
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Table 7 The tested
real/synthetic data sets and their
DD rules

Data sets DD rules

I ntel voltage → temperature, {[0, 0.001], [0, 0]}
voltage → humidity, {[0, 0.001], [0, 0]}
voltage → light , {[0, 0.001], [0, 0]}
light → voltage, {[0, 0.001], [0, 9.89]}

Gas resistance4 → resistance1, {[0, 0.001], [0, 1.77]}
resistance3 → resistance2, {[0, 0.001], [0, 2.615]}
resistance2 → resistance3, {[0, 0.001], [0, 2.79]}
resistance5 → resistance4, {[0, 0.001], [0, 2.39]}
resistance4 → resistance5, {[0, 0.001], [0, 2]}
resistance1 → resistance6, {[0, 0.001], [0, 0.38]}
resistance3 → resistance7, {[0, 0.001], [0, 1]}
temperature → resistance8, {[0, 0.001], [0, 0.06]}
resistance8 → temperature, {[0, 0.001], [0, 0.07]}
resistance8 → humidity, {[0, 0.001], [0, 0.43]}

Bid price_max → price_sd , {[0, 0.001], [0, 5.73]}
price_max → price_mean, {[0, 0.001], [0, 4.58]}
price_mean → price_max , {[0, 0.001], [0, 6.58]}
price_max → price_min, {[0, 0.001], [0, 2.96]}
sd → mean, {[0, 0.001], [0, 3.5]}
sd → max , {[0, 0.001], [0, 3.21]}
mean → min, {[0, 0.001], [0, 2.11]}
max → sd , {[0, 0.001], [0, 2.06]}

Pump sensor_06 → sensor_01, {[0, 0.001], [0, 0]}
sensor_06 → sensor_02, {[0, 0.001], [0, 0]}
sensor_06 → sensor_03, {[0, 0.001], [0, 0]}
sensor_06 → sensor_04, {[0, 0.001], [0, 0]}
sensor_08 → sensor_05, {[0, 0.001], [0, 0]}
sensor_07 → sensor_06, {[0, 0.001], [0, 0.206]}
sensor_01 → sensor_07, {[0, 0.001], [0, 0.73]}
sensor_07 → sensor_08, {[0, 0.001], [0, 0.6]}
sensor_01 → sensor_09, {[0, 0.001], [0, 0.65]}
sensor_08 → sensor_10, {[0, 0.001], [0, 0]}

Uni f orm Correlated Anti-correlated B → A, {[0, 0.001], [0, 0.01]}
C → B, {[0, 0.001], [0, 0.01]}
D → C , {[0, 0.001], [0, 0.01]}
E → D, {[0, 0.001], [0, 0.01]}
F → E , {[0, 0.001], [0, 0.01]}
G → F , {[0, 0.001], [0, 0.01]}
H → G, {[0, 0.001], [0, 0.01]}
I → H , {[0, 0.001], [0, 0.01]}
J → I , {[0, 0.001], [0, 0.01]}
A → J , {[0, 0.001], [0, 0.01]}

nario. Therefore, we compare with the existing work [18] on
skyline over uncertain data streams. The details of the six
baseline methods are as follows (please refer to [18,56,63]
for more implementation details).

• mul + skyline: this baseline first imputes the missing
attribute values via multiple imputation [44] and then
performs skyline query processing over imputed data
streams via the algorithm in [18].We implement themul-
tiple imputation, by first obtaining 20 possible imputed
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Table 8 Average number of instances per incomplete object for
real/synthetic data sets (with ξ = 0.3 and m = 1)

Data sets Average No. of object instances

I ntel 14

Gas 19

Bid 23

Pump 11

Uni f orm 27

Correlated 25

Anti-correlated 27

values for each missing attribute A j via Markov chain
and prior distribution of attribute A j in complete objects
of R, and then computing the final imputed value by aver-
aging the 20 imputed values [56];

• mul+skyline_tree: this baseline first imputes the miss-
ing attribute values viamultiple imputation [44] (with the
same implementation as themul+skyline) and then per-
forms skyline query processing via the skyline tree over
imputed data streams in our work;

• con + skyline: this baseline first imputes the missing
attribute values via a constraint-based imputationmethod
[63] and then uses the skyline query processing method
in [18];

• con+ skyline_tree: this baseline first imputes the miss-
ing attribute values via a constraint-based imputation
method [63] and then performs skyline query process-
ing via the skyline tree over imputed data streams in our
work;

• DD + skyline: this baseline first imputes the miss-
ing attribute values via DD rules and data repository R
and then conducts the skyline query over imputed data
streams via the algorithm in [18];

• DD+skyline_tree: this baseline first imputes the miss-
ing attribute values via DD rules and data repository R
and then performs skyline query via the skyline tree over
imputed data streams in our work.

Measures In our experiments, we will report maintenance
and query times of our proposed Sky-iDS approach, which
are the CPU times to incrementally maintain the skyline
tree ST (as discussed in Sect. 5.3.1; including the missing
data imputation via I j ) and to retrieve actual Sky-iDS query
answers (by refining candidates on the first layer of ST , as
mentioned in Sect. 5.3.2), respectively.

Parameter settings Table 9 depicts the parameter settings
of our experiments, where default parameter values are in
bold. In each set of experiments, we will vary one parameter,
while setting other parameters to their default values. We ran
our experiments on a machine with Intel(R) Core(TM) i7-

Table 9 The parameter settings

Parameters Values

Probabilistic threshold α 0.1, 0.2, 0.5, 0.8, 0.9

Dimensionality d 2, 3, 4, 5, 6, 10

The number, |Wt |, of valid
objects in i DS

5K, 10K, 20K, 40K, 50K, 80K

The size, |R|, of data
repository R

40K, 80K, 120K, 160K, 200K

The number, θ , of new objects
per time stamp in i DS

10, 20, 30, 40, 50, 100

The number, m, of missing
attributes

1, 2, 3

The missing rate, ξ , of
incomplete objects in i DS

0.1, 0.2, 0.3, 0.4, 0.5
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Fig. 8 Cost model verification for the imputation cost (Uni f orm)
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Fig. 9 Pruning power evaluation over real/synthetic data sets

6600U CPU 2.70 GHz and 32 GB memory. All algorithms
were implemented by C++.

6.2 Verification of the cost model

We first verify our cost model in Sect. 5.4, by comparing the
estimated and actual data imputation time over Uni f orm
data set, w.r.t. different side lengths, u, of cells in index I j ,
where u = 0.1, 0.2, 0.4, 0.7, and 1, and |R| = 120K . From
the experimental results in Fig. 8, we can see that our esti-
mated imputation cost can closely approximate the trend of
actual imputation cost, which confirms the correctness of our
proposed cost model for estimating the imputation cost. As
a result, we can use our cost model to select the best value of
side length u of cells, that minimizes the imputation cost. In
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Fig. 8, the optimal u value is about 0.4, which matches with
the u selection based on our cost model and thus indicates
the effectiveness of our cost model.

The verification results of the cost model for other data
distributions (e.g., Correlated and Anti-Correlated) are
similar, and therefore omitted here.

6.3 Effectiveness of Sky-iDS pruningmethods

Figure 9 demonstrates the percentages of objects that are
pruned by our three pruning rules, spatial pruning, max-
corner pruning, and min-corner pruning, over real/synthetic
data sets, where parameters of synthetic data sets are set
to their default values. As mentioned in Sect. 4, we will
first apply the spatial pruning, followed by max-corner and
min-corner pruning rules (if the spatial pruning fails). From
figures, we can see that the spatial pruning can significantly
prunemost of data objects for both real and synthetic data sets
(i.e., 85.43%-91.17% for real data sets and 80.35%-84.31%
for synthetic data sets). Then, the max-corner and min-
corner pruning rules can further reduce the Sky-iDS search
space. To be specific, the max-corner pruning rule can fur-
ther prune 2.64%-3.54% and 2.16%-3.25% of objects from
real and synthetic data, respectively, whereas the min-corner
pruning rule can further filter out 2.96%-4.95% and 3.62%-
5.15% of objects in real and synthetic data, respectively.
Overall, our proposed three pruning methods can together
prune 92.92%-97.2% and 88.24%-90.09% of data objects in
real and synthetic data sets, respectively, which indicates the
effectiveness of our proposed Sky-iDS approach. Note that,
from our experimental results, the first layer of our proposed
skyline tree ST (as mentioned in Sect. 5.1) contains only
2.8%-11.76% of objects in the sliding window Wt , which
confirms the effectiveness of our skyline tree and shows the
efficiency of our Sky-iDS refinement algorithm (Sect. 5.3.2).

6.4 The effectiveness of Sky-iDS queries

In this subsection, we compare the effectiveness of our pro-
posed Sky-iDS approach with that of mul + skyline_tree
and con + skyline_tree over four real data sets (i.e., I ntel,
Gas, Bid, and Pump), in terms of the F-score. Note that,
since DD + skyline and DD + skyline_tree use the same
DD-based imputation method as our Sky-iDS approach, they
have the same F-score as our Sky-iDS approach. Thus,
we will not report the effectiveness of DD + skyline and
DD+skyline_tree here. Similarly, since they have the same
F-score as mul + skyline_tree and con + skyline_tree,
we will not report the effectiveness of mul + skyline and
con+skyline, respectively. Specifically, for each (complete)
real data set, we first randomly select some objects as incom-
plete based on the missing rate ξ and then mark m out of d
random attribute(s) as missing in the selected objects. This
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Fig. 10 The Sky-iDS effectiveness versus the number, |Wt |, of valid
objects in i DS

way, we can know the groundtruth of actual skyline query
answers from complete real data and test the accuracy of
the three approaches over (masked) incomplete data sets, in
terms of the F-score defined as follows.

F-score = 2 × recall × precision

recall + precision
, (5)

where recall is given by the number of actual skyline answers
in our Sky-iDS query results divided by the total number of
actual skyline answers in complete data sets, and the preci-
sion can be calculated by the total number of actual skyline
answers in our Sky-iDS query results divided by the total
number of objects returned by our Sky-iDS approach.

The Sky-iDS effectiveness versus the number, |Wt|, of
valid objects in iDS Figure 10 shows the query accuracy of
our Sky-iDS approach and other two competitors (i.e.,mul+
skyline_tree and con+skyline_tree) over the four real data
sets, where |Wt | = 5K , 10K , 20K , 40K , 50K and 80K ,
and other parameters follow their default values in Table 9.
From figures, we can see that our Sky-iDS approach can
achieve high F-score over real data sets with different |Wt |
values (i.e., close to 100%), which significantly outperforms
mul + skyline_tree and con + skyline_tree.

The Sky-iDS effectiveness versus the missing rate, ξ , of
objects in iDS Figure 11 demonstrates the query accuracy
evaluation between our Sky-iDS approach and its competi-
tors (i.e.,mul+skyline_tree and con+skyline_tree) over
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Fig. 11 The Sky-iDS effectiveness versus themissing rate, ξ , of objects
in i DS

four real data sets, wheremissing rate ξ varies from0.1 to 0.5,
and other parameters are set to their default values in Table 9.
As shown in figures, as the increase in the ξ , the F-scores
of mul + skyline_tree and con + skyline_tree decrease
smoothly. This is reasonable, since multiple imputation [44]
and constrained-based imputation methods [63] may lead to
higher imputation errors with higher missing rate ξ . Never-
theless, Fig. 11 shows that our Sky-iDS approach can still
achieve high F-score (close to 100% even when ξ = 0.5)
for all real data sets, which confirms the effectiveness of our
Sky-iDS approach.

The experimental results with respect to recall and preci-
sion are similar and thus will not be reported here.

6.5 The efficiency of Sky-iDS queries

The Sky-iDS efficiency versus real/synthetic data setsFig-
ure 12 illustrates the performance of our Sky-iDS algorithm,
DD + skyline, mul + skyline, con + skyline, DD +
skyline_tree,mul+skyline_tree, and con+skyline_tree
over both real and synthetic data sets, where parameters of
synthetic data sets are set to default values. We report the
overallwall clock time of each approach, which includes both
maintenance and query times. From experimental results,
our Sky-iDS approach outperforms DD + skyline and
DD+skyline_tree algorithms by2orders ofmagnitude, has
lower cost than the mul + skyline and mul + skyline_tree
approach, and slighter higher cost than the con + skyline
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Fig. 13 The efficiency versus probabilistic threshold α

and con + skyline_tree approach, in terms of the wall
clock time. The reason that our Sky-iDS approach is better
than DD + skyline_tree and DD + skyline is as follows.
When Sky-iDS performs the imputation (via indexes over
data repository R) and skyline processing (via skyline tree)
at the same time, Sky-iDS can early prune incomplete objects
on the level of index nodes. In contrast, con + skyline
and DD + skyline_tree need to impute incomplete objects
to their instance level, by obtaining all samples from data
repository R. Thus, our Sky-iDS approach outperforms
DD + skyline_tree and DD + skyline by two orders of
magnitude, which verifies the efficiency of the “imputation
and query processing at the same time” style of our Sky-iDS
approach. Moreover, the experimental results show that our
proposed Sky-iDS approach is comparable tomul+skyline,
mul+skyline_tree, con+skyline, and con+skyline_tree,
in terms of the efficiency, however, our Sky-iDS approach
incursmuchhigher accuracy, as confirmedbyFigs. 10 and11.

Below, we will test the robustness of our Sky-iDS
approach by varying different parameters over synthetic data
sets.

The Sky-iDS efficiency versus probabilistic threshold α

Figure 13 shows the effect of the skyline probability thresh-
old α on the Sky-iDS performance over three synthetic data,
where α = 0.1, 0.2, 0.5, 0.8, and 0.9 and other parame-
ters are set to default values. From figures, the maintenance
time is low (less than 0.222 sec) and increases linearly for
larger α over the three data sets, which shows good per-
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Fig. 15 The efficiency versus missing rate ξ

formance of our Sky-iDS approach to impute incomplete
objects via indexes and incrementally maintain the skyline
tree ST . Moreover, in Fig. 13b, when α increases, the query
time decreases (due to the lower cost to incrementally refine
skyline candidates on the first layer of ST ) and remains small
(i.e., 0.0251∼0.0275 sec). Thus, the experimental results
confirm the efficiency of our Sky-iDS approach against dif-
ferent α values.

The Sky-iDS efficiency versus dimensionality d Figure 14
reports the performance of our Sky-iDS approach over syn-
thetic data sets, by varying the number, d, of attributes in
objects from 2 to 10, where other parameters are by default.
As shown in Fig. 14a, with the increase in dimensionality d,
the maintenance time increases. This is because, the mainte-
nance time includes the data imputation cost via R∗-tree and
update time of the ST index. With higher dimensionality d,
the imputation cost via R∗-tree becomes higher, due to the
“dimensionality curse” problem [5]; similarly, the updates of
ST need to check the dominance relationships by considering
more attributes, which incursmore time cost. Thus, themain-
tenance cost increases for larger d, nevertheless, remains low
(i.e., less than 0.137 sec).

Since higher dimensionality d may lead to more skylines,
the query cost to refine more candidates on layer 1 of ST
is also increasing (as shown in Fig. 14b). Nonetheless, for
different dimensionality d, the query time is small (i.e., less
than 0.013 sec).
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stamp in i DS
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Fig. 17 The efficiency versus the number, |Wt |, of valid objects in i DS

The Sky-iDS efficiency versus the missing rate, ξ , of
incomplete objects in iDS Figure 15 evaluates the Sky-iDS
performance with different missing rates, ξ , of incomplete
objects in i DS, where ξ = 0.1, 0.2, 0.3, 0.4, and 0.5, and
default values are used for other parameters. As shown in
Fig. 15a, as the increase in ξ , the maintenance time increases
linearly for all three data sets. This is reasonable, since more
incomplete objectswill needmore imputation cost. Similarly,
in Fig. 15b, when ξ increases, the query time also becomes
larger for all three data sets. In particular, in Fig. 15b, the
Correlated and Anti-correlated data sets always need the
minimum and maximum query time. This is because, under
“the larger, the better” semantics, the Anti-correlated data
usually have more skylines than the Correlated data [7].
Nevertheless, the time costs for both maintenance and query
processing are still low (i.e., less than 0.1 sec and 0.0095 sec,
respectively).

The Sky-iDS efficiency versus the number, θ , of new
objects per time stamp in iDS Figure 16 varies the num-
ber, θ , of newly arriving objects per time stamp from 10
to 100, where default values are used for other parameters.
In Fig. 16a, when θ becomes larger, the maintenance time
increases smoothly for all the three data sets. This is because,
the skyline tree ST is updatedwithmore newobjects per time
stamp, which requiresmore time to imputemissing attributes
and maintain skyline answers (as discussed in Algorithm 5
of Sect. 5.3.2). Similarly, in Fig. 16b, the query time also
increases with more new objects per time stamp (due to
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Fig. 18 The efficiency versus the size, |R|, of data repository

higher refinement cost). Nevertheless, both maintenance and
query costs remain low (i.e., 0.201∼0.221 sec for dynamic
maintenance and 0.0251∼0.0275 sec for retrieving skyline
answers).

The Sky-iDS efficiency versus the number, |Wt|, of valid
objects in iDS Figure 17 shows the Sky-iDS performance
with different numbers, |Wt |, of valid objects in stream i DS,
where |Wt |= 5K , 10K , 20K , 40K , 50K , and 80K , and other
parameters are set to their default values. For larger |Wt |
value, bothmaintenance and query times increase, but remain
low (less than 0.2067 sec and 0.01932 sec, respectively, even
when |Wt | = 80K ). This is reasonable, with more valid
objects in i DS, we need more efforts to maintain ST index
with the imputed objects and conduct the refinement over
more Sky-iDS candidates.

The Sky-iDS efficiency versus the size, |R|, of data repos-
itory R Figure 18 illustrates the influence of the size, |R|, of
data repository on the performance of our Sky-iDS approach.
Fromfigures, with larger |R|, themaintenance time increases
smoothly, sincemore objects in R are included for data impu-
tation. On the other hand, due to more possible imputed
attribute values (resulting from larger |R|), the query cost
to refine Sky-iDS candidates in ST requires more time cost.
Nonetheless, both time costs are low (i.e., around 0.0704
sec for the maintenance, and 0.00931 sec for the query cost,
even when |R| = 200K ). The experimental results indicate
the scalability of our Sky-iDS approach against large |R|.

We also did experiments on other parameters (e.g., the
number, m, of missing attributes). We do not report simi-
lar experimental results here. For interested readers, please
refer to Appendix 13 in our technical report [43]. In sum-
mary, our Sky-iDS approach can achieve robust and efficient
performance under various parameter settings.

7 Related work

Stream processing Existing works on data streams stud-
ied many query types, including the keyword search [42],

top-k query [10,14], join [13,23], aggregate queries [19,55],
nearest neighbor queries [6,28], skyline queries [18,30,54],
event detection [67], and so on. These works usually assume
that the underlying data (e.g., either certain or uncertain) are
complete. Thus, the proposed techniques for complete data
streams cannot be directly applied to our Sky-iDS problem
over incomplete data stream.

Differential dependencyDifferential dependency (DD) [47]
is a useful tool for data imputation [51], data cleaning
[41,46], data repairing [24,48,49,58,59], and so on. Song
et al. [50,51] used DD to impute the missing attributes via
extensive similarity neighbors with the same determinant
attributes. Prokoshyna et al. [41] detected records violating
DD rules and cleaned those inconsistent records. Song et
al. [46] cleaned the dirty time stamps in data stream based
on temporal constraints. Moreover, DD can be also used for
constraint-based data repairs over texts [24], events [58,59],
and graphs [48].

Many existingworks on imputationmethods, such as edit-
ing rule [20], multiple imputation [44], smoothing-based
imputationmethod [26], constraint-based imputationmethod
[64], or regression-based imputation approach [62], usu-
ally impute data based on incomplete data themselves only.
However, for sparse (incomplete) data sets (i.e., with many
missing attributes), it is rather difficult to accurately and unbi-
asedly impute data attributes. For example, the supervised
imputation approaches (e.g., [64]) usually require labelled
data, which is not trivial how to online obtain the labelled
streamdata in the streaming environment.Moreover, the rule-
based imputation approaches (e.g., editing rule [20]) usually
requires exact matching, and we may not obtain possible
candidates for missing values, especially in sparse data set.
In contrast, our DD-based imputation approach utilizes an
external source, a complete data repository R, for imputing
missing attributes from incomplete data stream, which can
avoid lacking of (unbiased) samples, tolerate differential dif-
ferences between attribute values, and does not require any
labelled data. Thus, our DD-based imputation approach can
achieve unbiased and more accurate data imputation, com-
pared with existing works.

Skyline queries The skyline query was proposed by Borz-
sony et al. [7]. Afterward, there are many relavant works on
skyline and its variants, for example, skyline queries over
certain data [3,8,9,16,29,39,45,54,65] and that on uncertain
data [18,31,34,40,66].

In the literature, Khalefa et al. [27] re-defined the skyline
operator over static incomplete database. In particular, they
ignore the missing attributes during the dominance checking
between two incomplete objects. Based on this new sky-
line definition, Gao et al. [21] and Miao et al. [36] further
explored a variant of the skyline query, k-skyband query,
which obtains those objects that are dominated by at most
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k objects in incomplete data set. However, by neglecting
incomplete dimensions, the resulting skylines may be biased
(compared with skylines on all attributes). For example,
given two objects, o1 = (2, 4) and o2 = (1, 9), with two
dimensions, according to [7], o1 and o2 cannot dominate
each other. In this scenario, if the first dimension of o1 is
missing, that is, o1 = (−, 4), based on [27], o2 dominates
o1 (by neglecting the first missing attribute for dominance
checking; the larger, the better), which may lead to biased
skyline result (i.e., o1 is not included).

The previouswork [18] directly assumed that objects from
data streams are uncertain, thus, skyline queries are directly
conducted over uncertain objects. In contrast, we consider
skyline queries over incomplete data streams and turn incom-
plete objects into complete ones via differential dependencies
(DDs) [47] (rather than ignoring missing attribute for domi-
nance checking), which will result in unbiased skylines with
high confidences. Most importantly, our work follows the
style of “imputation and query processing at the same time”,
which is more challenging than conducting skyline queries
directly over uncertain objects and cannot borrow previous
techniques for skyline computations to solve our Sky-iDS
problem.

Stream outlier detection and repair Existing works on
stream outlier detection and repair can be classified into
two categories, smoothing-based [26] and constraint-based
[52,63,64] approaches. Without distinguishing normal data
and outlier, [26] modified almost all data values, which may
not be the best way to clean (repair) the outlier. To overcome
this drawback, Song et al. [52] proposed an approach to detect
the outlier values within a sliding window and then updated
the outlier values based on a speed constraint swithminimum
and maximum speed changes smin and smax ), respectively.
Zhang et al. [63] refined this speed-constraint approach by
detecting and modifying smaller errors by narrowing the
speed intervals s via probability distributions of speeds and
speed changes. However, [52,63] cannot repair outliers for
data sets with consecutive errors between any two sequen-
tial data records. To solve this problem, Zhang et al. [64]
proposed a supervised approach based on some labelled data
on data stream. Note that, the constraint-based approaches
[52,63,64] detected outliers with speed change beyond the
acceptable speed constraint s, which have different seman-
tics from the skyline operator in this paper (i.e., skylines
are records with maximum values on at least one attributes
among all data within a slidingwindow). Nevertheless, in our
experiments, we implemented a baseline method based on
[63] and compared our imputation method with [63]. Specif-
ically, [64] cannot be used as the imputation method for our
Sky-iDS problem, since it is not trivial how to online obtain
the labelled stream data in the streaming environment.

Since these works [26,52,63,64] focus on detecting the
outlier values with the high (abnormal) change rates (speeds)
w.r.t. the near normal values, they cannot be applied to solve
our Sky-iDS problem, which retrieves data objects not dom-
inated by other objects in a sliding window.

Incomplete data management There are some previous
works on incomplete data management, for example, how
to model incomplete data [2,32], how to index incomplete
data [38], and so on. Miao et al. [37] did a comprehen-
sive survey about incomplete data management. In order
to obtain complete data, some studies imputed the missing
attributes by applying rule-based (exact matching over all
dimensions) [20], statistical-based (exact matching over par-
tial dimensions) [35], filter-based [57], pattern-based [60], or
analysis-based [44] imputation methods. For example, [60]
imputed the missing attributes in streams by finding the k
most similar patterns from l time series. However, if the same
attributes from l time series are all missing, then this method
cannot accomplish the imputation. Royston [44] is to cre-
ate multiple complete (imputed) versions of data sets and
combine all these versions to impute the missing attributes.
However, these generated data versions may introduce many
erroneous imputed values, which may not be able to provide
a stable imputation result. For [20,35,57], although they can
achieve explicit imputation results, they may not success-
fully impute the missing data, due to the sparseness of data
sets [47]. In contrast, in this paper, we use DDs [47] and a
complete data repository R to impute the missing attributes.

To our best knowledge, no prior works studied the prob-
lem of conducting data imputation (via DDs) and skyline
query answering, at the same time, on incomplete data in the
streaming environment.

8 Conclusions

In this paper, we study an important problem, Sky-iDS, of
monitoring the skylines over incomplete data stream, which
is useful in many real-world applications such as sensory
data monitoring. In order to efficiently impute the missing
attributes and conduct Sky-iDS queries, we propose effec-
tive data synopses and skyline tree (ST ) indexes to facilitate
the data imputation via differential dependency (DD) rules
and skyline computations, , at the same time. We also design
effective pruning strategies to greatly reduce the Sky-iDS
search space over the stream and propose efficient Sky-iDS
algorithms to perform “imputation and query processing at
the same time” over incomplete data stream.Extensive exper-
iments have demonstrated the efficiency and effectiveness of
our proposed Sky-iDS processing approaches on both real
and synthetic data sets under different parameter settings.

123



Skyline queries over incomplete data streams 983

Acknowledgements Xiang Lian is supported by NSF OAC No.
1739491 and Lian Startup No. 220981, Kent State University. We thank
the anonymous reviewers for the useful suggestions.

Appendix

9 Proofs of Lemmas for pruning strategies

9.1 Proof of Lemma 1

Proof As shown in Fig. 3a, since o′p.min is the minimum
corner of the imputed object o′p, it holds that imputed sam-
ples of o′p is dominating o′p.min, that is, o′p � o′p.min.
Similarly, we also have opi .max � opi . Due to lemma
assumption that o′p.min ≺ opi .max , by dominance transi-
tion, we can derive o′p � o′p.min ≺ opi .max � opi . Thus,
we have Pr{o′p ≺ opi } = 1 (or Pr{o′p ≺ oil} = 1 for
any instance oil ∈ opi ). According to Eq. (4), it holds that
PSky-i DS(o

p
i ) = 0. Moreover, since o′.exp ≥ oi .exp holds

(i.e., object o′ expires after opi from lemma assumption), it
indicates that opi can never be the skyline due to the existence
of object o′p. Hence, object opi ∈ i DS can be safely pruned,
which completes the proof. ��

9.2 Proof of Lemma 2

Proof From Eq. (4), we can derive a probability upper bound
as follows.

PSky-i DS(o
p
i ) ≤

∑

∀oil∈opi
oil .p · (1 − Pr{o′p ≺ oil})

= 1 −
∑

∀oil∈opi
oil .p · Pr{o′p ≺ oil}. (6)

Since opi .max � oil (oil ∈ opi ) and Pr{o′p ≺ opi .max} ≥
1− α hold, we have Pr{o′p ≺ oil} ≥ Pr{o′p ≺ opi .max} ≥
1 − α. By substituting this probability into Eq. (6), we can
obtain: PSky-i DS(o

p
i ) ≤ 1 − ∑

∀oil∈opi oil .p · (1 − α) = α.

Moreover, since o′.exp ≥ oi .exp holds, opi always has the
skyline probability less than α during its lifetime, due to the
existence of object o′. Thus, object oi can be safely pruned.

��

9.3 Proof of Lemma 3

Proof Similar to the proof of Lemma 2, since o′p � o′p.min
and Pr{o′p.min ≺ opi } ≥ 1 − α hold, we have Pr{o′p ≺
opi } ≥ Pr{o′p.min ≺ opi } ≥ 1 − α. By substituting this
probability into Eq. (6), we can obtain: PSky-i DS(o

p
i ) ≤ 1 −

Pr{o′p ≺ opi } = α. Thus, since object oi expires before
object o′ (i.e., o′.exp ≥ oi .exp), object oi always has the

skyline probability lower than α during its lifetime. Hence,
object oi can be safely pruned. ��

10 Proofs of properties for skyline tree ST

10.1 Proof of Property 1 of ST

Proof We can prove this property by showing that no such
an imputed object opi exists, where opi is a valid object not
within skyline tree ST but is actually a skyline ormaybecome
a skyline later.

First, assume that the object opi is a current skyline.
According to Definition 6, we can obtain PSky-i DS(o

p
i ) >

α. By substituting this probability into Eq. (6), we have
∑

∀oil∈opi oil .p · Pr{n p ≺ oil} < 1 − α, that is, Pr{n p ≺
opi } < 1 − α. Thus, no object t p in ST dominates opi with
probability not smaller than (1−α), and then objectopi should
be on the first layer of ST .

Second, assume that the object opi is dominated by some
objects n p ∈ ST , and may become the skyline after these
objects n p expire (i.e., n p.exp < opi .exp). In this case,
object n p should be the child of one of these objects n p,
since Pr{n p ≺ opi } ≥ 1 − α and n p.exp < opi .exp. There-
fore, the ST index contains all the objects opi ∈ pDS that
have the chance to be skylines before they expire. ��

10.2 Proof of Property 2 of ST

Proof Given an imputed object opi ∈ ST , if it is not on the
first layer of ST , opi will be dominated by its non-empty
parent node (object) n p ∈ ST with probability Pr{n p ≺
opi } ≥ 1 − α. By substituting this probability into Eq. (6),
we can obtain PSky-i DS(o

p
i ) ≤ 1−∑

∀oil∈opi oil .p · Pr{n p ≺
oil} = 1 − Pr{n p ≺ oil} ≤ α, that is, PSky-i DS(o

p
i ) ≤ α,

which violates the Sky-iDS definition in Definition 6. Hence,
object opi cannot become a skyline before its parent node
expires from stream i DS. ��

10.3 Proof of Property 3 of ST

Proof According to Property 2, we can get objects n p not on
the first layer all have the skyline probabilities not bigger than
α (PSky-i DS(n p) ≤ α). So, current skyline objects must be
all on the first layer of ST , in other words, the set of objects
on the first layer of ST is a superset of Sky-iDS answers. ��
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