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Abstract—Recently, location-based social networks, that involve both social and spatial information, have received much attention in
many real-world applications such as location-based services (LBS), map utilities, business planning, and so on. In this paper, we
seamlessly integrate both social networks and spatial road networks, resulting in a so-called spatial-social network, and study an
important and novel query type, named group planning query over spatial-social networks (GP-SSN), which is very useful for
applications such as trip recommendations. In particular, a GP-SSN query retrieves a group of friends with common interests on social
networks and a number of spatially close points of interest (POls) on spatial road networks that best match group’s preferences and
have the smallest traveling distances to the group. In order to tackle the GP-SSN problem, we design effective pruning methods,
matching score pruning, user pruning, and distance pruning, to rule out false alarms of GP-SSN query answers and reduce the
problem search space. We also propose effective indexing mechanisms to facilitate the GP-SSN query processing, and develop
efficient GP-SSN guery answering algorithms via index traversals. Extensive experiments have been conducted to evaluate the
efficiency and effectiveness of our proposed GP-SSN query processing approaches.

Index Terms—Spatial-social network, group planning query over spatial-social networks, GP-SSN

1 INTRODUCTION

OWADAYS, social networks (e.g., Twitter, Facebook, etc.)

have become increasingly popular and important in
many people’s daily lives. With the proliferation of advanced
technologies such as GPS-equipped smart devices and high-
speed wireless networks (e.g., WiFi, Bluetooth, or mobile data
networks), social-network users can now easily share their
spatial locations via mobile devices, and request for location-
based social networking services (e.g., Yelp [50], Foursquare
[19]. etc.), such as finding restaurants recommended by friends,
and/or spatial locations closest to one’s current working place.
Therefore, location-based social networks (a.k.a. geo-social
networks [3]. [18], [52]), that involve both spatial and social
information, have recently drawn much attention from the
database community, which are useful in numerous real-world
applications such as location-based services (LBS), map utilities,
mobile recommendation systems, and so on.

With the popularity of mobile-based devices, many mobile
Apps provide comprehensive location-based functions such as the
trip planning, as well as social communications with ones friends
on social networks. While many existing works [38], [31], [9] on
the trip planning usually recommend points of interest (POIs),
such as shops or restaurants, for one single user, in practice,
some user may prefer to travel together with a group of friends
who share common or similar interests (e.g., apparel, food, or
places of interest). Previous works on group trip planning [21],
[5]. [45], [22] always assumed that the user group is known or
given at the query time. In reality, however, a user may need to
search for such a group of users who are friends of each other
with common/similar interests. Inspired by this, in this paper, we
will formulate and tackle a group planning query over spatial-

point of interest (POIs)

users

social network G, spatial road network G,

Fig. 1: An illustration of a spatial-social network (..

social networks (GP-SSN), which retrieves a group of friends who
share common interests with a query user on social networks, and
a number of (spatially close) POls that best match the group’s
preferences and have the smallest traveling distances to the group
on spatial road networks.

Below, we provide a motivation example of the GP-SSN query
to facilitate the plan of visiting POIs for a group of friends.

Example 1. (Destination Planning for a Group of Friends).
Figure 1 illustrates an example of a so-called spatial-social
network, denoted as ., which combines social networks G
with spatial road networks G.. In social networks G, users,
uy ~ us, are vertices, and edges (e.g., ujug) represent friend
relationships between users. In spatial road networks G, edges
indicate road segments containing POIs such as restaurants or
hotels, and vertices (e.g., v1 ~ Ug) are intersection points of
roads. In addition, each user u; (1 < j < 5) on social networks
G, is associated with a link (edge) pointing to some spatial
location (e.g., home address) on road networks G.,.. This way,
spatial-social network (5 is an integrated graph from social and
spatial road networks (i.e., G5 and G, respectively).
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In this spatial-social network G, a user, say ui, may want
to utilize social/spatial information available in the spatial-social
network, and obtain suggestions/recommendations about forming
a group of friends (from social networks) and having a rour of
several POIs of their interests that are not far away from their
homes (on road networks). ]

The GP-SSN query is also useful in real applications such as
online advertising/marketing by recommending discount coupons
from several participating merchants to a group of customers.

Example 2. (Online Advertising and Marketing). Consider an
e-commerce company like Groupon [47], [48], which targets ar
customer groups and offers substantial discounts, coupons, and
cashback on group purchases (or called group buying) ro a group
of people (e.g., with at least 5 people) if they buy products or
services together. Assume that a sale manager in Groupon would
like to send Groupon deals (e.g., discount coupons for group
buying) to a customer, in order to promote products/services
of participating merchants. In this case, one can issue a GP-
SSN query over users in social networks and merchant locarion
information on road networks, and recommend this customer not
only with a group of merchants (i.e., POIs), but also with a group
of friends on social nerworks who share similar interests and
match with the merchants’ products/services. In such a scenario,
the GP-SSN query is very useful and suggestive for online
advertising and marketing, such that customers can benefit from
discounts and merchants can establish good purchasing habits of
CUSIOMEY groups. ]

There are many other applications for our GP-SSN problem

such as recommendation systems (e.g., POl/user recommendations
on Yelp), location-based services, and map services.
Our Contributions. In order to efficiently process GP-SSN
queries, in this paper, we will propose effective pruning
mechanisms, mcluding matching score pruning, user pruning, and
road-network distance pruning, that can safely filter out GP-SSN
false alarms and reduce the problem search space. Moreover, we
will design indexing structures to enable our propesed pruning
methods, and propose an efficient algorithm for GP-SSN query
answering via the index traversal.

Specifically, we make the following contributions in this paper.

1) 'We formalize the problem of the group planning query
over spatial-social networks (GP-SSN) in Section 2.

2)  We propose effective pruning strategies to reduce the
search space of the GP-SSN problem m Section 3.

3)  We design effective indexing mechanisms to facilitate the
GP-SSN query processing in Section 4.

4)  We propose an efficient query procedure to tackle the
GP-8SN problem in Section 5.

5)  We demonstrate through extensive experiments the

performance of our GP-SSN approach in Section 6.
Section 6.3 reviews previous works on social networks and/or
road networks. Finally, Section 7 concludes this paper.

2 PROBLEM DEFINITION
2.1 Data Model for Spatial-Social Networks

Spatial Road Networks. We first give the definition of spatial
road networks {(and POIs on them as well).

Definition 1. (Spatial Road Networks, ) A spadal road
network, G, is a triple (V(G,), E(G.), #(G})), where V(G,)

2

TABLE 1: [ustration of interest keyword vectors u;.w for social-
network users u;.

[[ wser ID | restaurant | shoppingmall | cafe

w 07 03 07
s [ 03 03
us 04 03 03
Uy 05 07 07
us 01 03 05

is a set of N vertices v1, va, ..., and vy, E(G;) is a set of edges
ek (roads between vertices vy and vy ), and &(G) is a mapping
function: V(G,) x V(G,) — E(G,).

In Definition 1, the spatial road network G, can be modeled
by a graph, where edges are roads and vertices correspond to
intersection points of roads.

Definition 2. (Points of Interest, or POIs) Given a spatial road
network G, there are a set, O, of i points of interest (POIs) on
G, where each POl object o; € O is a facility on an edge e; , €
E(G,) with the ID o04.td, 2D location o;. Loc = (0;.x,0;.y), and
a set, 0;. K, of keywords.

In practice, each POI object o; (for 1 < 2 < n), as given in
Definition 2, may be restaurant, cinema, shop, museum, and so
on. The set, 0;. K, of keywords describes the POIL, including its
facility type (e.g., restaurant) and attributes (e.g., French foed).

Social Networks. Next, we give the definition of social networks.

Definition 3. (Social Networks, G) A social nerwork, G, is a
triple (V(Gs), E(G:), d(G,)), where V(G,) is a set of m users
U1, Un, ..., and up, B(G,) is a ser of edges f; ;. (friendship
between users uy and ur), and @(Gs) is a mapping function:

V(Gs) x V(Gs) — E(G,).

In Definition 3, each user, u; (for 1 < j < m), in the social
network G5 is associated with a vector of d possible interested
keywords (or topics) u;.w = (ng).p, wéj).p, ...,wg).p), where
the user uy is interested in the f-th topic wj(f) with probability
wj(;] ).p € [0, 1]. Here, the probability wj(;? ), p can be inferred from
user’s behavior (e.g., posted/forwarded messages in history). We
follow prior works that assume the availability of users’ mterested
topics, for example, [10], where the weighted vector is computed
by applying text-based topic discovery algorithms such as [4],
[42]. This way, we can obtain a (normalized) weighted vector
(distribution) for each user’s interests. For other metrics such
as Jaccard similarity or Hamming distance, we need to design
specific techniques (e.g., pruning with lower/upper bounds of these
metrics). We would like to leave the interesting topic of using other
metrics such as Jaccard similarity or Hamming distance as our
future work. Moreover, in reality, the home of each user resides at
a 2D location, u;. Loc = (u;.x, u;.y), on road network G

Table 1 depicts an example of the interest keyword (topic)
vector {i.e., the row in the table), u;.w (1 < § < 5), for each
social-network user u; in Figure 1. As an example, u3 is interested
in the resraurant topic with probability 0.4, visiting shopping malls
with probability 0.8, and going to cafe with probability 0.8.
Spatial-Social Networks. By integrating both social and road
networks, we formally define the spatial-social networks below.

Definition 4. (Spatial-Social Networks, & .,) A spatial-social
network, G, is given by a combination of spatial road networks
G and social networks G, denoted as Gy = G| G, where
users u; on social networks G are located on edges of sparial
road networks Gy,
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Figure 12 shows an example of spatial-social networks Gpg
{as given by Definition 4), which integrate both road and social
networks in Figure 1. With enriched information from spatial-
social networks that bridges the gap between physical and virtual
worlds (i.e., road and social networks, resp.), in this paper, we will
tackle a novel group trip planning problem (discussed in the next
subsection), which cannot be defined on a single type of networks
alone (i.e., either road or social networks).

2.2 Group Planning on Spatial-Social Networks

In this subsection, we formalize the problem of the group planning
guiery over spatial-social nerworks (GP-SSN).

Definition 5. (Group Planning Query over Spatial-Social
Networks, GP-SSN) Given a spatial-social network G, a query
issuer ug, and a group size T, a group planning query over spatial-
social networks (GP-SSN) is ro retrieve a set, S, of T users from
social networks G, and a set, R, of POIs from spatial road
nerwork GG, such that:

U = S,‘

v all usersin S are connected in G ;;

s for any two users Ug and uy in S, the common interest
score holds that: Interest_Score(uy, ug) > v;

» POl objects 0; € R satisfy the condifion that the road-
network distance of any two POI objects is less than 2r;

v for any wser u; £ S, the matching score,
Mateh_Score(u;, K) > 0; and

« the maximum  distance between S and K,
mazdistpn (S, R) = maXyy, s MaXyo, cR

distpn (uy,05), is minimized.

where v is an interest scorve threshold between any two users, 7
is a matching threshold between user and POIs, v is the threshold
on the traveling distance between POIs, and distpy (uj, oi) is the
shortest path distance on road networks Gy between user u; € §
and POI object 0; € R.

In Definition 5, a GP-SSN query retrieves a group, S, of
7 users who are friends and share common interests on social
networks, as well as a group, B, of spatially close POL objects
that match with these users’ interests with the smallest {(maximum)
road-network distance, maxdistpn (S, K}, between S and E.
Intuitively, GP-SSN provides the user group S with a POI set
A, and users have the flexibility to freely select their preferred
POIs in R to visit.
Discussions on the GP-SSN Query Predicates. [n our GP-SSN
problem definition (Definition 3), the 6 conditions are natural
query predicates that are needed in real applications such as group
planning or social marketing. For example, the first 3 conditions
require the returned user group S must contain the query issuer ug,
include users that are friends of each other (i.e., at least connected
and know each other), and have users with common interests
(so that they can group buy the same products). The fourth and
fifth conditions require the returned group, K, of POI objects
be spatially close and match with users’ interests, respectively.
Fmally, the sixth condition aims to find a POL group closest
to the user group (i.e., with small traveling time or low fuel
consumption). Therefore, these 6 conditions are quite necessary
to define our GP-SSN problem
Discussions on the Parameter Tuning. Note that, parameter -y
(€ [0,1]) is an interest score threshold that specifies the minimum

3

score that any two users have commen/similar interests in the user
group S. Larger v will lead to a user group S with higher social
connections.

The matching score threshold @ provides a constraint on
the matching score, MatchiScore(uj,R), between a user u;
and a set, K, of POIs. Intuitively, if a user u; has interest
keywords/topics matching with POIs in R, then this user tends to
have a higher matching score with F. Thus, larger interest score
threshold & will result in better matching pairs of user-POI groups.

The parameter © controls the maximum road-network distance
between any two POIs in the set R, that is, any two POIs in R
have road-network distance less than or equal to 2. The larger the
value of r, the farther user would have to drive.

It is worth mentioning that, «, €, and r are system parameters,
which can be tuned from historical query logs or data distributions
of users/POIs. In particular, interest score threshold « can be
tuned by the average interest score of pairwise users for those
user groups selected in the query log, or the x-th percentile over
the distribution of common interest scores for pairwise users in
social networks. Similarly, the matching score threshold & can be
specified by taking the average (or x-percentile) of the matching
scores between users and POI groups from query logs or spatial-
social networks. Further, we can set 27 to the maximum road-
network distance that a user (or user group) may travel between
any two POls, based on the query history of their trip planning.

In contrast, 7 is a user-specified parameter, which indicates
the number of users (i.e., user group size) the query user 2, would
like to invite for group visiting to POls. In real applications such
as online advertising and marketing (Example 2), this parameter
7 can be set to the required number of customers on the coupon
(e.g., by Groupon) in order to receive group buying deals.
Semantics of the Interest Score and Matching Score. In
Definition 5, we define the score, Interest_Score(u;, uy), of
common interests for users as follows:

d

Interest_Score(u;,ux) = Z (wl(J)‘p : wl(k)‘p)‘ (1)
i=1

Furthermore, the matching score, Match_Score(u;, R),
between user u; and a set, K, of POls is given by:
Match_Seore(u;, R)
4
Z wl(j)‘px wl(j) S U o0;. K ,
=1 Yo;€R

2

where x(z) = 1, if # is true; x(z) = 0, if 2 is false.
Challenges. One straightforward method to tackle the GP-SSN
problem is to enumerate all possible groups of users and POL
objects, check the query predicates in Definition 5, and return GP-
SSN results. However, this method incurs high time complexity,
since the number of all possible user/POI groups is rather large.
In particular, there are three major challenges to solve the GP-
SSN problem. First, there are an exponential number of possible
combinations with 7 users (sharing common interests) in spatial-
social networks G ;. Second, there are also an arbitrary number
of possible circular spatial regions (i.e., circles centered at any
locations in the 2D space), and in turn sets, K, of POI objects,
which is not efficient to enumerate for answering the GP-SSN
query. Third, it is not efficient either to examine all combinations
of user and POI groups, 5 and R, respectively, and obtain the best
combination satisfying the conditions given i Definition 5.
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To retrieve GP-SSN query answers, in this paper. we will
design effective pruning strategies (in Section 3) to reduce the
search space of the GP-SSN problem. Then, we will devise
indexing mechanisms (in Section 4) and develop efficient GP-SSN
query answering algorithms (in Section 5) by traversing the index.
Please refer to the commonly-used symbols and their descriptions
in Table 4 of the supplemental materials.

3 PRUNING STRATEGIES
3.1 Matching Score Pruning

We first present the marching score pruning method, which utilizes
an upper bound, UB_M atch_Score(u;, R), of the matching
score, Match_Score(u;, R), to filter out the false alarms.
Specifically, given an upper bound, UB_Match_Score(u;, R),
of the matching score between a user u; and a POI set R, if it holds
that U B_Match_Score(uj, R) is smaller than the matching
threshold @, then the POI set R can be safely pruned (since the
POI set R does not match with user w;’s interests).

Lemma 1. (Matching Score Pruning) Given an upper
bound, UB_M atChMScore(u.j,R), of the matching score,
Match_Score (?Lj, R), between a user u; and a POI set R,
if UB_Match_Score (uj, R) < 0 holds, then the POI set R
can be safely pruned.

Proof. Please refer to Appendix B in the supplemental materials
for the detailed proof. O

Derivation of Matching Score Upper Bound. One important
issue to enable the matching score pruning is to derive an upper
bound of the matching score. In the sequel, we will use the
menotonic property of the matching score Match_Score(u;, R)
to obtain its upper bound.

Lemma 2. Let B’ be a superset of the POI set R, thatis, R C R'.
Then, we have:

Match_Score(uj, R) < Mateh_Score(u;, R'). (3)

Proof. Please refer to Appendix C in the supplemental materials
for the detailed proof. a

From Lemma 2, Match_Score(u;, R') is an upper bound of
the matching score Match_Score(u;, R) (as given in Eq. (3)),
which can be used to replace UBfﬂfatChfScore(uj, R) in
Lemma [.
Discussions on Obtaining a Superset ' of POI Objects in
R. To compute the upper bound Match_Score(u;, R'), one
remaining issue is how to obtain the superset, R/, of the POI set
R (within circles with radii r of road network distance). However,
in reality, there are an infinite number of circular regions with
radius r in the data space. Thus, it is not efficient, or feasible, to
enumerate all of them (with any possible circle centers).

In order to find a superset, 12/, of a POI object set R (within
a circular region with radius r of road network distance), we will
consider a larger circular region, (5(o;, 2r), centered at each POI
object o; with radius 27, and obtain all objects falling into region
(D(o4, 2r) as a candidate superset R'. Intitively, a POI object set
R (containing 0;) in any circle with radius  must fall in the region
O (o4, 2r).

Figure 2 illustrates an example of the (outer) circular region,
™(o0;, 2r), which contains 5 POI objects (forming a superset R').

4

The inner circle with radius r containing o; captures a subset,
R C R', with 4 POIs.

a superset, R,
of a POl set R

road-network
radius 2r

5

aset, R, of POIs

radius r
Fig. 2: Ilustration of the circular region, (-)(o;, 2r), for the candidate
superset R’

3.2 User Pruning

In this subsection, we design the user pruning method, which rules
out those users with low interest scores between two users or far
away from the query user 1w, in spatial-social networks G'r.5.
Interest Score Pruning. Due to the large scale of graph G, it is
not space-efficient to offline pre-compute and store all the interest
scores between pairwise users. Thus, our basic idea is to derive a
pruning region in the data space of the interest score, which rules
out pairs of users u; and uy with interest scores below threshold
5.

We have the following lemma about the pruning method with
respect to interest scores.

Lemma 3. (Interest Score Pruning) Given a user u; in the
set S and a candidate user wy, based on Definition 5, if
Interest_Score (uj, uk) <y holds, then uj, can be safely
pruned from the set S.

Proof. Please refer to Appendix D for the detailed proof. O

Note that, according to Definition 5, the query user ug must be
inset S (i.e., u; = u, in Lemma 3). Thus, we can apply Lemma
3 to prune other users uy with u,.

Next, we aim to derive a pruning region for filtering out false

alarms of users uy. Specifically, we first provide an equivalent
form of the interest score Interest_Score(u;, uy ), and then use
it to derive the pruning condition as given by Lemma 3.
An Equivalent Form of the Interest Score. The interest score
function [ nterest_Score(uj, uk) between two users u; and
uy, (given in Eq. (1)) is equivalent to the cosine similarity [13]
between two vectors u;.w and uy.w. That is, we have:

Interest_Score(u;, uy) Uj. W - U W

[|wjw|] - ||up.wl| - cost, (4)

where ||V|| is the length of vector V' in the d-dimensional space,
and @ is the angle between two vectors wj.w and uy.w.

Figure 3 shows an example of the cosine similarity between
two vectors uj.w and ug.w in the d-dimensional space. We
consider a plane that contains the origin O and two d-dimensional
points u;.w and ug.w, which are plotted in the figure. Figure 3
depicts the lengths, ||uj.w|| (i.e., the distance from origin O to
point u;.w) and |[ug.wl| - cosf (i.e., the projected line length of
vector u.w on vector u;.w). Based on Eq. (4), the interest score
Interest_Score(u;, uy) can be computed by the multiplication
of these two lengths, that is, ||u;.w|| times (||uz.w]| - cosd).
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The selection of pivots can be guided by our proposed cost
model that gradually finds better pivots (with tighter distance
lower bound {b_distgn (ug, ug) above).

3.3 Road-Network Distance Pruning

In this subsection, we present the road-network distance pruning
method, which filters out those false alarms of set pairs,
(8", R"), with large maximum distances mazdistpn (5", B'").
Specifically, we utilize the bounds of the maximum distance to
enable the pruning below.

Lemma 5. (Road-Network Distance Pruning) Denoie lower and
upper bounds of mazdistpn(S, R} as lb_mazdistpn (S, R)
and ub_moxdistan (S, R), respectively. Given two pairs of
candidate sets, (S',R') and (S",R"), if it holds that
ub_mazdistpn (S, R") < lb_mazdistgn(S", R"), then the
pair (S", R") can be safely pruned.

Proof. Please refer to Appendix H in the supplemental materials
for the detailed proof. O

Derivation of Distance Lower/Upper Bounds. To enable the
distance pruning method in Lemima 5, the remaining issue is how
to obtain the upper/lower distance bounds, ub_mazdistpn (5,
R') and Ib_maxzxdistpn (S”, R").

In particular, assume that B’ is a set of POl objects
in a circle centered at o; with radius 2r of road network
distance. We compute the upper bound of the maximum distance
ub_mazdistpy (S, R') as follows.

ub_mazdistpn (S, R)

Vumjaejé’{sztRN (u5,00)} + vg;?fz/{dthN (o4,05) H5)

Similarly, since user u, belongs to set §, we can calculate the
lower bound of the maximum distance (b_mazdisign(S”, R")
below:

(©

. nopiny :
Ib_mazdistpn (8", R") = Jnax distpn (ug, o).

4
4.1

To support the GP-SSN query processing and simultaneously
prune false alarms of POIs and users in road networks and social
networks, respectively, we will build two indexes, 7 and Zg, over
POI objects on road networks G and users on social networks
(7, respectively. Specifically, we traverse both indexes L and
L5 at the same time, apply our proposed pruning methods on
both indexes, retrieve candidate pairs, and refine candidate pairs
to return actual GP-SSN query answers.

Index 7 Over POI Objects on Road Networks ... For road
networks 7,., we use the R*-tree [6], denoted as T, to index
POI objects o; on road networks. In particular, we nsert the 2D
locations 0. Loe = {05.x, 0:.y) of POI objects o; into the R*-tree
by using a normal “insert” operator.

Leaf Nodes. Bach leaf node im index Zg contains POI
objects o;. Each object o; is associated with 2 pre-computed
keyword sets, op.sup K (= [y, cp 07.K) and opsub K
(= chg cp 0. 1). Here R and é" are sets of POls within
circular regions of road distance @ (os, 2rpaz) and ©(0;, P ),
respectively, where Tyay and Ty, are maximum and minimum

INDEXING MECHANISM
Index Structures

6

possible values of the user-specified radius 7, respectively. The two
keyword sets will be used for overestimating / underestimating the
matching scores. To save the space cost, we hash each keyword
w € op.sup_K (or w € o;.sub_K) nto a position in a bit vector
Oi-‘/;up (or 07.Vsup).
Further, we choose h road-network vertices as pivots rp1, 7Pz,
., and rpp in G, and each POI object o; m leaf nodes
also maintains its road-network distances to these pivots, that is,
distpn (o, rog) (1 < k < h). A cost model is proposed in
Appendix M of the supplemental materials to guide how to choose
good pivots.

Non-Leaf Nodes. Bach entry ep of non-leaf nodes in index
I stores a minimum bounding rectangle (MBR) for all POIs
under er. In addition, e is also associated with a keyword
superset ep.sup K (= Uvmeeg o5.sup_K), a keyword subset
ep.sub_ K (= o;sub_K, for some object 0; € eg), and
lowerfupper bounds of road-network distances from POIls under
er to each pivot, rpy, as follows:

Ib_distgn(er,mrr) = vénéll destpy (o, o), (D
g R

ub_distpy(en,Tpr) = Jnex distpn(o;, rpg). (8)
i R

Furthermore, we maintain a bit vector e R.Vsup for entry ep,
which is a bit-OR of bit vectors ai‘Vsup for all o; € eg. In
addition, we also keep a bit vector ep.V;yp, hashed by keywords
in set ep.sub K.

Index 7g for Users on Social Networks G,. We also build
a tree index, 7g, over users from social nmetworks (7, which
can help access users efficiently for GP-SSN query processing.
Specifically, we partition the graph structure of social networks
G, into subgraphs (via standard graph partitioning methods such
as [28]), which can be treated as leaf nodes of index 7Zs. Then,
connected subgraphs in leaf nodes are recursively grouped into
non-leaf nodes, until a final root is obtained.

Leaf Nodes. Bach user u; in leaf nodes of index Zg is
associated with one’s interest vector wuj;.w, and road-network
distances, distpy (uj,rpk), from user’s home location to road-
network pivots rp1 ~ Tpp.

Moreover, we choose { social-network users as pivots spi,
$p2, .., and sp; in G4, according to our proposed cost model
(see Appendix L in supplemental materials). Then, for each user
uy, we also store social-network distances (i.e., No. of hops),
distgn (5, 8pi) (for 1 < k < 1), to ! social-network pivots
spy ~ spi, which can be used for social-network distance pruning.

Non-Leaf Nodes. In each entry eg of non-leaf nodes, we keep
T (7
{

lower/upper bounds of user interest probabilities w
topics wl(J)) for all users u; under eg, given as follows.

p (Wt

i), ©
eg.ub_w = (wges)‘ubip, wges)‘ubip,‘ — w((ies).ubip), (10)

eg.lb_w = (w%es).lb_p, wéeS)‘lb_p,‘..

where for 1 < f < d we have wj(fs).lbﬁ = Mminyy,, ces (w](ej).p),

}es).ubj = MaXvu, ces (w}J)p)

Furthermore, we also store lower/upper bounds of distances

and w
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from (all POIs in) eg to social-network and road-network pivots:

Ib_distsy(es,spr) = min distsn(uj, spr), (11)

Yuj€es

ub_distsy(es, spr) max distsy(u;, spr); (12)

Yu;€eg

min  dist gy (g, 7pr), (13)
Yuj;Ces

max distpy(u,,rpy). (14)

Yu;Ces

Ib_distpn(es,mpr)

ub_distpy(es,rpr)
Discussion on Indexing Mechanisms Over Spatial-Social
Networks. Please refer to Appendix O in supplemental materials.

4.2 Index-Level Pruning
4.2.1 Road-Network Index Pruning

We first propose the pruning with the road-network index 7.
Matching Score Pruning for Road-Network Index Nodes.
Given a user #; € S and a node e¢p from road-network index
Ir, the basic idea of our index-level matching score pruning
is to derive an upper bound, ub_Match_Score(u;, egr), of
matching scores, Match_Score(u;, 0;), for all objects 0; € ep.
If this upper bound is below the matching threshold @ (i.e.,
ub_Mateh_Score(uj, ep) < #), then we can safely discard
index node .

Lemma 6. (Matching Score Pruning for Road-Network Index
Nodes) Given a user u; € S and a node egp € Ig, if
ub_Mateh_Score(u;, er) < 0 holds, node ¢ can be pruned.

Proof. Please refer to Appendix I in the supplemental materials
for the detailed proof. |

Derivation of the Matching Score Upper Bound. To derive an
upper bound of the matching score ub_AMatch_Score(u;,ep),
we consider the keyword superset, € p.sup_K, stored in node ep.
Then, we can obtain the upper bound of the matching score below.

ub_Match_Score(u;, eg)
d

Z (-m?).p X ('t;_:j;')

f=1

where y(z) = 1,if z is true; x(z) = 0, if z is false.
Road-Network Distance Pruning for Index Nodes. Next, we
consider the road-network distance pruning, which rules out road-
network nodes ep; that are far away from locations of users in set
S. Specifically, we have the following lemma.

€ rfg.sup_ﬁ’)) 3 (13)

 imaxdistg,( S, eg;)

& e

A ub_maxdistay(|S, €g)

o ® LI
o |

€Ri

Fig. 6: Tllustration of road-network distance pruning with respect to
the user set S.

Lemma 7. (Road-Network Distance Pruning for Index Nodes)
Given a set, S, of users from social networks G, a node ep;
Srom index Tr (containing at least one candidate set R satisfying
the matching score condition with users in S), and a radius r,
as illustrated in Figure 6, any node €p; € Lp can be safely

7

pruned, if lb_maxdistgn (S, eri) > ub_maxdistpn(S.er;)
and mindist(eg;, eg;) > 2r hold, where mindist(eg;. ¢r;) is
the minimum Euclidean distance between nodes ¢ p; and ¢ ;.

Proof. Please refer to Appendix J in the supplemental materials
for the detailed proof. O

Discussion on Obtaining Upper/Lower Bounds of maxdist g (S,
LFL)_ Next, we discuss how to derive upper and lower bounds,
ub_maxdistgy(S.er) and lb_maxdistpy (S, er), resp., of
maximum road-network distance maxdist py (S, ep), which are
used in Lemma 7.

For the upper bound, we overestimate the maximum possible
distance between S and ep, via pivots rpg (1 < & < h; by the
triangle inequality) as follows:

ub_maxdist(S, er) (16)
h
1;11'1111 {vmax‘! {dist pn (i, rpr)} + ub_dist v (er, vpr) + 2r
u; €S
Moreover, for the lower bound of the maximum distance, we
utilize the query user u, € S as follows:

)

lb_maxdist(S.ep)

\distpn (g, i) — h_distpy (er, 7pr)|,

if distpn (g, rpr) < lb_distpy(ep,rpr);
\distpy (g, Tpr) — ub_distpy (er, rpr)|,
if distpy (g 1pr) > ub_distpn(er, rpr);
otherwise.

h
= max

0,

Discussions on How to Guarantee a Candidate Set R in Node e g;.
In Lemma 7, we need to guarantee that there exists at least one
candidate set I? in index node e that satisfies the matching score
condition w.r.t. S. In order to check this condition, we will derive
a lower bound, lb_Match_Secore(S, ep), of the matching score.
If this lower bound is greater than threshold £ for all w; € S, then
there exists at least one candidate set 1 in node ep;.

To derive the lower bound lb_Match_Score(S.ep), we
maintain a number of samples 0; in node ey, as well as their
keyword subsets 0;.5ub_K = Uy, cqy(or.rmin) Ow-I . Where
T'min 18 the minimum possible radius value that can be specified
by the query issuer. Specifically, with samples 0; € ¢p, we obtain
the lower bound as follows;

Ib_Match_Score(S, egr)
d
{
=1

where x(z) = 1, if 2 is true; x(z) = 0, if z is false.

max
Isample o; Ee

(wg"'-).p ©x

(wf') € (Ji.sub_K))} ;

(18)

4.2.2 Social-Network Index Pruning

Next, we discuss pruning techniques that filter out nodes es on
the social-network index Zs.

Interest Score Pruning for Social-Network Index Nodes. We
next discuss our interest score pruning on social-network index
Ts. Similar to the interest score pruning discussed in Section 3.2,
we only need to check if an index node ¢g is completely in the
pruning region.

Lemma 8. (Interest Score Pruning for Social-Network Index
Nodes) Given a query user u, and an index node ¢s € Lg, node
es can be safely pruned, if it holds that es € PR(ug), where
PR(uy) is the user pruning region w.rt. ug.w and .

Proof. Please refer to Appendix K in the supplemental materials
for the detailed proof. O
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To check if all interest score vectors under eg fall into

the pruning region PR (uy), we combine lower/upper bound of
interest vectors, eg.lb_tw and eg.ub_w, nto an MBR, denoted as
eg.w, n the data space of mterests. As illustrated in Figure 5, if it
holds that meazdist (eg.w, B") < mindist(eg.w, B) for Case 1
(or mazdist(eg.w, B) < mindist(eg.w, B') for Case 2), then
node eg can be safely pruned.
Distance Pruning for Social-Network Index Nodes. Given a
query user g4, an index node eg from social network G, and a
group size 7, our index-level distance pruning method rules out
node eg, if the distance lower bound lb_distgn (ug, e5) between
uy and any user under entry eg on social network G is greater
than or equal to 7 (i.e., lb_distgn (ug,e5) > 7).

Lemma 9. (Distance Pruning for Social-Network Index Nodes)
Given a query user ug, an index node es < Ls, and a group size
T, node eg can be safely pruned, if lb_distgn (ug, e5) > 7 holds.

Proof. Please refer to Appendix L i the supplemental materials
for the detailed proof. O

Discussion on Obtaining the Lower Bound of the Social-Network
Distance. The only remaining issue is how to obtain the
lower bound, Ib_distsn (ug, es), of the social-network distance.
Specifically, each index node eg € Tg stores lower and upper
bounds of distances distgn(u;,spe) (for 1 < k < ) from
all users u; € eg to { pivots spy (as mentioned in Section
4.1), denoted as {b_distgn(eg, spy) and ub_disten (eg, 5P1 ),

respectively.
Then, we can apply the triangle inequality (via pivots) to obtain
Ib_distsn (ug,eg) as follows,

b _distsi(ug,es) (19)
|distsm (ug, spu) — Ib_distsn(es, spr ),

if distsp(ug, spr) < Ib_distsv(es, spr);
|distsm (ug, spu) — ub distsw(es, sp)l,

if distsn (g, spr) > ub_distsw(es, spr);

0, otherwise.

423 Pivot Selection Algorithm

Algorithm 1 illustrates the details of pivot selection, n light of
our proposed cost model, on road or social networks. Specifically,
our algorithm first mitializes two parameters, global_cost and S,
which store the globally optimal cost value and the corresponding
pivot set, respectively (line 1). Then, we first randomly select a
pivot set P from road (social) networks, and evaluate the cost
function Costpy in Bq. (20) (or Costgn in Bq. (21}), recorded
by variable local_cost (lines 3-3). Next, each time we swap a
pivot piv € P with a non-pivot npiv, which results in a new
pivot set P with new cost CostRyy (or Cost3s) (lines 6-
10). If the new cost is better than the best-so-far cost local_cost,
then we can accept the new pivot set and its cost (lines 11-13).
We repeat the process of swapping a pivot with a non-pivot for
swap_tter times (line 6). To avoid the local optimal solutien, we
consider selecting different initial pivot sets for global_i#ter times
(lines 2-3), and record the globally optimal pivot set and its cost
(lines 14-16). Finally, we return the best pivot set Sp.

5 GP-SSN QUERY ANSWERING

Algorithm 2 illustrates the pseudo code of GP-SSN answering,
which processes GP-SSN queries over spatial-social networks G

8

Algorithm 1: Pivot Selection for Road Networks or
Social Networks

Input: a road (social) network G - (or G ) and the number, k (or 1), of pivots
Output: the set, &, of pivots
1 global cost= —oco, & '
2 for a = 1o global_iter do
randomly select £ (or I} initial pivots and form a pivot set 77
evaluate the cost function C'ostr iy (or Costz ) of P
set local_cost = Costry (or Costay)
for b = 1 10 swap_iter do
select a random pivot piv € P
randomly choose a non-pivot npiv
P P (piv) + {npiv)
evaluate the new cost Costryy” (or Cost5 i) wat. P
if the new cost Cost’y5y" (or Cost ") is better than local_cost
then
L local_cost = Costhyy (or Costiif)
T — prew

v Wt oa W

if local_cost is better than global_cost then

Sy =P
global_cost = local_cost
return &,

via indexes T and 7. Specifically, we traverse both indexes 7
and Tg at the same time, retrieve candidate POT/user pairs (R, ),
and refine candidate pairs to return actual GP-SSN query answers.

In particular, we maintain two candidate sets, Reqnd and

Seand, which store POI object sets (i.e., B/ {o;)) in road networks
and users in social networks, respectively. Moreover, parameter &
keeps the smallest upper bound of the maximum distance between
R (0z) and S;4nq, which can be used for the distance pruning.
Pre-Processing. Mitially, we set B.,,4 t0 an empty set, add the
root, reot(Zs), of index Tg to set Syqnd, and let parameter & be
+00 (line 1). Then, we create an empty minimum heap Hr for
index traversal, which contains entries (e R, key), where eg is the
node of index Zg (for POIL objects), and key is the lower bound
of the maximum distance between sets B’ {o;) of POI objects o;
in ep and users in Seqpq (line 2).
Traversal of Index 7. In Algorithm 2, we first insert a heap entry
(root(Ir), 0) into heap Hx (line 3), and then parallel traverse
both indexes Zx and Zg from roots te leaf neodes (lines 4-28). We
start from root, root(Zs ), of index Zg on level height(Zs), and
visit nodes level by level to leaf nodes on level O (line 4). On each
level k, for each node eg in candidate set S.qng, we consider
its child nodes e, € eg, and apply the user pruning method
(discussed in Section 3.2). If e, cannot be pruned, then we add
e to a candidate set Sémd (lnes 5-9). After traversing all nodes
es € Seand, we obtain a new candidate set Sécmd containing their
children on a lower level, and update Seqnqg with 57, ; (line 10).
Traversal of Index 7. At the same time, we will search for
candidate POI objects o; (and objects in their surrounding regions
R'(0;)) m index T (lmes 11-26). In particular, we will use heap
Hx to enable the tree traversal, Each time we pop out an entry
(er, key) with the minimum %key m heap Hp (lines 12-13). If
this key key is greater than parameter §, then all entries in heap
Hy must have their lower bounds of maximum distances greater
than the upper bound distances of candidates pairs from Founna
and S.qrn4, which indicates that all entries can be safely pruned
and the loop can be terminated (line 14).

‘When e, is a leaf node, we consider each POl object o; € ep,
and apply matching score and distance pruning methods to reduce
the search space (lines 15-18). If POI objects o; cannot be pruned,
then we will add o; to candidate set R.4pq4, and meanwhile update
the value of parameter § w.r.t. Szong and R’ (o;) (lines 19-20).

‘When ep, is a non-leaf node, for each child e, € eg, we will
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Algorithm 2: GP-SSN Query Answering Algorithm

Input: a spatial-social network G s, indexes T and 75, a query issuer ug, a
group size 7, an interest score threshold +y, a matching thrashold #, and a
spatial radius threshold »

Qutput: a pair of sets, (R, ), satisfying GP-SSN query predicates in Def. 5

1 Roond = B Soang = root(Zs); § = +oo;

2 initialize a min-heap M accepting entries in the form (e g, key)
3 insert entry (root(Zr ), 0) into heap Hyp

4 for k = height(Is)ro0do

s Ssng =0

6 for each node eg € 8,4 nq do

7 for each entry e, € eg do

g if e, cannot be pruned by the user priming w.rt. u, then

[] L adde, to §7_ ;// Section 3.2

1 Soand = Song

1 initialize an smpty min-heap Hr’

12 while H oy is not empry do

13 (er, key) = de-heap Hp

14 if key > &, then terminate the loop;

15 if ep is a Jeafnode then

16 for each PO!I objecto, € ep do

17 if o; cannor be pruned by matching scove prining w.rt g
(Section 3.1) then

18 if o: cannot be pruned by road-network distance

pruning wet. S, .4 (Section 3.3) then
19 add o; to Roqng
20 update & with minvgtegmnd
ub_mazdist(Soana, B (0:))
21 else
// ern 12 a non-leaf node

22 for each entry e, € eg do

23 if e, cannot be pruned by matching score prining wWrr g
(Section 3.1) then

24 if ey, cannot be priuned by road-network distance

pruning wet. S, .4 (Section 3.3) then
23 insert (e, Ib_mazdist(S.0nq, €y )) into the
heap Hr '
26 'HR = HR/

27 while H  is not empty do
L execute lines 13-25 (except that in line 25 the heap entry is inserted into

heap Hr)

apply the user pruning (Corollary 2) to prune users in S, 4

apply matching score and distance pruning to prune POIs in R, ng (Wit
Seand)

refine (S.ana, R (0:)) (for 0; € R..nq) to obtain actual GP-SSN query
answers

20

3

also use matching score and distance pruning methods to filter out
false alarms (lines 21-24). If a node e, cammot be pruned, then
we will insert heap entry (ey,Ib_mazdist(Scand,ey)) ito an
initially empty heap Hx' for further checking (line 25).

After the loop (lines 12-25), we keep all candidate children of
nodes in heap Hw, and obtain a new candidate set Hz' at alower
level. Then, we will update Hz with Hz' (Ime 26).

If the height of mdex 73 is smaller than that of index 7, then
we will continue to process the remaining levels in index Zr by
executing lines 13-25 with a slight modification in line 25 (i.e.,
inserting entry into heap Hr, instead of Hz'; lines 27-28).
Refinement. After the index traversals, we will check candidates
in Seand and Reqpa by filtering out false alarms via user, matching
score, and distance pruning methods (lines 29-30). Finally, we
will refine candidate pairs (S;gnd, B/ (0;)) (for 0; € Rogna), and
compute/return actual GP-SSN query answers (line 31).

It is worth mentioning that after the index traversal (with user
pruning in social networks), we can obtain a candidate set, Scpnd,
of users. We will enumerate subsets (connected subgraphs), S,
of Seung with size 7 (and a POI set B as well), and refine
the POI-user group pairs (K, 5). To enhance the efficiency of
the enumeration, we can apply subset sampling by randomly

9

TABLE 2: Statistics of real data sets Bri+Cal and Gow+Col.

social V(G| | deg(G.) road V(G | deg(G.)
network network

Brightkite 40K 10.3 California 2IK 21
(Bri) (Cal)

Gowalla 40K 32.1 Colorado 30K 24
{Gow) (Col)

expanding the subgraph starting from the query vertex g, which
we will leave as our future work

6 EXPERIMENTAL EVALUATION
6.1 Experimental Settings

We evaluate the performance of our GP-SSN query answering
algorithm on both real and synthetic data sets.

Real Data Sets: Specifically, we tested 2 real data sets of spatial-
social networks, namely Bri+Cal and Gow+Col. The first real
data set, Bri+Clal, is a spatial-social network, which combines
social network, Brightkite [7], with California road network [8];
the second spatial-social network, Gow-+Col, mtegrates social
network, Gowalla [20], and Colorado road network [12]. Statistics
of these social/road networks are depicted in Table 2. Bach user u;
m Brightkite or Gowalla social networks has a number of check-
in locations (i.e., POls). Intuitively, if a user often visits some
POIls, s/he is more interested in topics/keywords of those POIs.
Thus, we build a vector, us.w, of interested keywords for user u;,

where each element wJ(cJ) .p corresponds to the percentage of times

user «; visit locations with keyword w®,

We map each user u; in Brighikite (or Gowalla) social
networks to a 2D spatial location (e.g., home address) on
California (or Colorado) road network, which is set to the centroid
of POIs that s/he checked m.

Synthetic Data Sets: We also generate 2 synthetic spatial-social
networks (i.e., graphs) as follows. For spatial road network G,
we first obtain random intersection points (vertices) in a 2> data
space. Then, we produce road segments (edges) by randomly
connecting vertices that are spatially close to each other (without
introducing new intersection points, since the road network is a
plannar graph). Furthermore, we generate n POI objects, by first
selecting random edges on road network (. and then generating
w POIs on each edge, where w € [0, 5] follows the Uniform or
Zipf distribution. Each POI o; is associated with a keyword set
o0;. K, where each keyword has the value domain [0, 4] with the
Uniform/Zipf distribution.

To generate a social network (g with e users, we randomly
connect each user u; with deg(G,) users via edges, where
degree deg () follows the Uniform or Zipf distribution within
the range [1,10]. Each user u; is associated with an interest
keyword vector uj.w of size d, containing interest probabilities

w](;j ).p of keywords w'?). The interest probability w(J).p has the
Uniform/Zipf distribution within [0, 1]. Finally, we combine social
network &, with road network &, by randomly mapping social-
network users to a 2D spatial location on the road network, and
obtain a spatial-social network G.

With the Uniform or Zipf distribution during the data
generation above, we can obtain two types of synthetic spatial-
social networks (7,.¢, denoted as UNT and ZIPF.

Measures: [n order to evaluate the performance of our GP-SSN
algorithm, we report the CPU time and the [/O cost. In particular,
the CPU time measures the time cost of retrieving the GP-
SSN answer candidates by traversing the index (as illustrated in
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TABLE 3: Experimental settings.

([ Parameter Values |
the interest score threshold v 0.2,0.3,05,07,09
the user group size T 2,3,8,7,.10

the number, n, of POI objects

the number, [V{G,}]. of vertices in G-
the number, |V (G, )], of vertices in &
the matching score threshold @

the spatial radius

the number of pivots { or h

3K, 5K, 10K, 15K, 30K
T0K, 20K, 30K, 40K, S0K_ ||
10K, 20K, 30K, 40K, 50K
0.2,0.3,05,0.7,09
05,1,2,3,4

23,5, 7, 10

during the GP-SSN query answering.

Competitor: To the best of our knowledge, prior works did not
study the group planning problem over spatial-social networks

A straightforward baseline method, Baseline, is as follows. We
first find all user sets S of size 7 (containing query user ) fron
social networks (7, that satisfy the constraint of the interest score
threshold +y. Then, we obtain all sets R of POIs in a circular regior

with radius 7, which #-match with user sets S. Finally, we returt

a pair, (S, R), with the smallest maximum distance.

Parameter Settings: Table 3 depicts the parameter settings in our
experiments, where bold numbers are default parameter values.
In each set of our subsequent experiments, we will vary one
parameter while setting other parameters to their default values.
We ran our experiments on a machine with Intel(R) Core(TM) i7-
6700 CPU 3.40 GHz (8 CPUs) and 64 GB memory. All algorithms
were implemented by C++.

6.2 Effectiveness Evaluation of the GP-SSN Approach

In this subsection, we measure the effectiveness of our proposed
GP-SSN pruning strategies over real/synthetics data sets, in terms
of the pruning power.

The Pruning Power of Index-Level and Object-Level Pruning:
Figure 7(a) examines the pruning power of index-level pruning on
social-network index, Zg, and road-network index, Zr, as well as
that of the object-level pruning. In particular, the pruning power of
the index-level pruning is given by the percentage of users/POIs
that can be ruled out, when we traverse index nodes and apply
our pruning methods. Moreover, the pruning power of object-level
pruning is defined as the percentage of users/POls (in leaf nodes)
that can be pruned after the index-level pruning.

For real/synthetic data sets Bri + Cal, Gow + Col, UNI,
and ZIPF, all parameters are set to their default values. From
the figure, social-network index-level pruning has 40%~50%
pruning power, and social-network object-level pruning can
achieve 50%~58% pruning power (with an overall pruning power
949%~97%). Furthermore, the pruning power of road-network
index-level pruning is 48%~70%, and that of road-network
object-level pruning is 30%~42% (i.e., the total pruning power is
around 96%~98%). Therefore, our experimental results confirm
the effectiveness of our indexing mechanism and pruning methods.
The Pruning Power of User Pruning on Social Networks:
Figure 7(b) illustrates the percentages of users on social networks
that can be pruned by social-network distance pruning and interest
score pruning over real/synthetic data sets, where parameters are
set to their default values. In this figure, we can see that social-
network distance pruning can achieve 24%~-30% pruning power,
whereas the pruning power of the interest score pruning varies
between 65%~75%. We can clearly see the effectiveness of our
pruning methods on the social-network index, Zs.

The Pruning Power of POI Pruning on Road Networks: Figure
7(c) shows the pruning powers of road-network distance pruning
and matching score pruning on real/synthetic data sets Bri +

pruning power (%)

1

B Social-Network Distance Pruning
Interest Score Pruning

20

o

Bri+Cal Gmm{'l ol U'N'l

Algorithm 2), whereas the 1/O cost is the number of page accesses,, jndex- and object-level pruning(b) user pruning on social net-

ZIPF

Bri+Cal (an{'wl L‘l\l

ZIPF

works

-
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3
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praning pover (%)

‘: .
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al LN
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(c) POl pruning on road networks(d) pruning with user-POIL group

pairs

Fig. 7: The pruning powers of the GP-SSN pruning strategies vs.
real/synthetic data sets.
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Fig. 8: Performance comparisons of GP-SSN with Baseline over
real/synthetic data sets.

Cal, Gow + Col, UNI, and ZIPF, where all parameters are
set to their default values. Here, the pruning power is given by
the percentage of the remaining POI objects after applying the
pruning methods. From the figure, the pruning power of the road-
network distance pruning is around 38%~58%, and that of the
matching score pruning is about 55%~68% (after applying road-
network distance pruning), which indicates the effectiveness of
our proposed road-network distance and matching score pruning
methods.

The Pruning Power of User-POI Group Pairs: Figure 7(d)
shows the overall pruning power of the user-POI group pairs
on real/synthetic spatial-social networks, which is defined as the
number of user-POI group pairs that can be pruned divided by
the total number of user-POI group pairs, where default parameter
values are used. Specifically, from the figure, we can see that the
overall pruning power of the user-POI group pairs is high (i.e.,
99.9993%~99.9999%), which confirms the effectiveness of our
proposed pruning strategies.

6.3 Efficiency Evaluation of the GP-SSN Approach

In this subsection, we evaluate the GP-SSN performance by testing
different real/synthetics data sets.

The GP-SSN and Baseline Performances vs. Real/Synthetic
Data Sets: Figure 8 compares the performance of our GP-SSN
query processing approach with that of the Basline algorithm

r\t[a] Gow+Col  UNI
data sets
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Fig. 9: The GP-SSN performance vs. the user group size 7.

over 4 real/synthetic data sets, Bri+Cal, Gow+Col, UNI,
and ZIPF, in terms of the CPU time and /O cost, where all
parameters are set to their default values. Since it is not feasible to
obtain the exact time cost for Baseline (e.g., almost 1.9 x 1013
days as shown in Figure 8), we will alternatively use a sampling
method to estimate the time cost. In particular, we take 100 sample
sets S, obtain the average CPU time and I/O cost for retrieving
GP-SSN answers w.r.t. one pair (5, R), and estimate the overall
Baseline cost by multiplying the average time (or IO cost) with
the total number, (f_’), of candidate pairs.

From the experimental results, for all the real/synthetic data,
the CPU time of our proposed GP-SSN algorithm is 0.017~0.035
sec, and the number of I/0s is around 201~-303. This confirms
the efficiency of our GP-SSN query answering algorithm on
real/synthetic data. In contrast, the Baseline algorithm takes
years (with high CPU time and /O costs) to obtain the results.
Therefore, our GP-SSN approach can outperform the Baseline
algorithm by orders of magnitude.

In order to show the performance trend of our GP-SSN
approach for different parameters, in subsequent experiments, we
will not report the similar results of the Baseline algorithm.
Below, we will vary different parameters (e.g., 7, 8, 7, n, |V (G,)],
etc., as depicted in Table 3) on synthetic data sets UNT and
ZIPF to evaluate the robustness of our GP-SSN approach.

Effect of the User Group Size 7: Figure 9 examines the GP-SSN
performance with different sizes, 7, of the user group, in terms
of the CPU time and I/O cost, where 7 = 2,3,5,7, and 10, and
other parameters are set to their default values. From figures, when
the user group size 7 becomes larger, both CPU time and I/O cost
smoothly increase. This is because larger user group may lead
to higher computation cost to retrieve more user/POI candidates.
Nevertheless, the CPU time and the I/O cost remain low (i.e., 0.01
~ 0.022 sec and around 170 ~ 235 page accesses, respectively),
which indicates the efficiency of our proposed GP-SSN approach
for different user group sizes 7.

Effect of the Number, n, of POIs: Figure 10 demonstrates
the scalability of our GP-SSN query processing algorithm with
different numbers of POIls, n, where n = 3K,5K, 10K, 15K,
and 20K, and default values are used for other parameters.
Intuitively, when n becomes larger (i.e., with more POIs), we need
more effort to retrieve POI candidates, which thus leads to higher
CPU time and I/O cost. From the experimental results, we can see
that both CPU time and I/O cost smoothly increase with larger
n, which confirms the scalability of our GP-SSN approach w.r.t.
n. Nonetheless, the time and /O costs of our GP-SSN approach
remain low (i.e., 0.009~0.03 sec and 138~285 I/Os, resp.).

Effect of the Number, |V ()|, of Vertices in Road Network:
Figure 11 shows the performance of our GP-SSN approach with
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Fig. 10: The GP-SSN performance vs. the number, n, of POI objects.
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Fig. 11: The GP-SSN performance vs. the number, [V (Gs)|, of
vertices in road network.
different sizes of the spatial road network, where the number,
|[V(G, )|, of vertices in road network varies from 10K to
50K, and we set other parameters to their default values. The
experimental results show that the GP-SSN performance is not
very sensitive to the size of the road network (i.e., |V{(G,)|).
This is because we utilize offline pre-computed road-network
pivots to enable fast online pruning and GP-SSN query processing.
With different |V (G,.)], the CPU time is around 0.014~0.02 sec,
whereas the I/O cost is about 200~270 I/Os, which indicates the
efficiency of our GP-SSN algorithm with large road networks.
Please refer to more experimental results (w.r.t., &, r, No. of
pivots, and ~y) in Appendix P, and comprehensive related works in
Appendix S of supplemental materials.

7 CONCLUSIONS

In this paper, we formulate and tackle the GP-SSN problem
on spatial-social networks. To efficiently and effectively tackle
the GP-SSN problem, we design effective pruning and indexing
mechanisms, and propose efficient GP-SSN query processing
algorithms. Through extensive experiments, we confirm the
efficiency and effectiveness of our proposed GP-SSN approaches
over real/synthetic data sets under various parameter settings. In
future, we will consider group planning over privacy-preserved
[40] or inconsistent spatial-social networks [46], [33].
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