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Abstract

Deep convolutional neural networks (CNNs) are becoming increasingly popular models

to predict neural responses in visual cortex. However, contextual effects, which are

prevalent in neural processing and in perception, are not explicitly handled by current



CNNs, including those used for neural prediction. In primary visual cortex, neural

responses are modulated by stimuli spatially surrounding the classical receptive field in

rich ways. These effects have been modeled with divisive normalization approaches,

including flexible models, where spatial normalization is recruited only to the degree

responses from center and surround locations are deemed statistically dependent. We

propose a flexible normalization model applied to mid-level representations of deep

CNNs as a tractable way to study contextual normalization mechanisms in mid-level

cortical areas. This approach captures non-trivial spatial dependencies among mid-level

features in CNNs, such as those present in textures and other visual stimuli, that arise

from tiling high order features, geometrically. We expect that the proposed approach

can make predictions about when spatial normalization might be recruited in mid-level

cortical areas. We also expect this approach to be useful as part of the CNN toolkit,

therefore going beyond more restrictive fixed forms of normalization.

1 Introduction

It has long been argued that an important step in understanding the information process-

ing mechanisms in the brain is to understand the nature of the input stimuli (Attneave,

1954; Barlow, 1961). Visual processing of natural images is a paradigmatic example

that has been studied extensively (Simoncelli and Olshausen, 2001; Zhaoping, 2006,

2014; Olshausen and Lewicki, 2014; Geisler, 2008; Hyvrinen et al., 2009). Structure

in images can be captured in the form of statistical dependencies among the responses

of filters acting on the image at different scales, orientations, and spatial locations (e.g.
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Bell and Sejnowski, 1997; Olshausen and J.Field, 1997; Hyvrinen et al., 2009). These

regularities often manifest in a nonlinear fashion (Simoncelli, 1997; Wegmann and Zet-

zsche, 1990; Zetzshe and Nuding, 2005; Golden et al., 2016). Therefore, it is natural to

think that neural processing systems employ nonlinear operations to exploit dependen-

cies, as they encode information about the input stimulus.

Both perception and neural responses are influenced by the spatial context, i.e., by

stimuli that spatially surround a given point in space. Spatial contextual influences

beyond the classical receptive field have been extensively documented for neurons in

primary visual cortex (e.g. Levitt and Lund, 1997; Sceniak et al., 1999; Cavanaugh

et al., 2002a,b). Models that are based on nonlinear statistical regularities across space

in images have been able to capture some of these effects (Rao and Ballard, 1999;

Schwartz and Simoncelli, 2001; Spratling, 2010; Karklin and Lewicki, 2009; Zhu and

Rozell, 2013; Coen-Cagli et al., 2012; Lochmann et al., 2012).

Here, we focus on divisive normalization, a nonlinear computation that has been

regarded as a canonical computation in the brain (Heeger, 1992; Carandini et al., 1997;

Carandini and Heeger, 2012). From a coding perspective, divisive normalization acts

as a transformation that reduces nonlinear dependencies among filter activation patterns

in natural stimuli (e.g. Schwartz and Simoncelli, 2001). Different forms of divisive

normalization have been considered in modeling spatial contextual interactions among

cortical neurons. In its basic form, the divisive normalization operation is applied uni-

formly across the entire visual field. However, spatial context effects in primary visual

cortex are better explained by a weighted normalization signal (e.g. Cavanaugh et al.,

2002a,b; Schwartz and Simoncelli, 2001). Recently, more sophisticated models that
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recruit normalization in a nonuniform fashion (Coen-Cagli et al., 2012) have shown

better generalization at predicting responses of V1 neurons to natural images (Coen-

Cagli et al., 2015). The rationale behind this form of flexible normalization (and related

predictive coding models of (Spratling, 2010; Lochmann et al., 2012)) is that contextual

redundancies vary with stimulus. In the flexible normalization model, divisive normal-

ization is therefore only recruited at points where, according to the model, the pool

of spatial context filter responses to an image are statistically dependent with the filter

responses in a center location. This relates to highlighting salient information by seg-

mentation in regions of the image in which the spatial homogeneity breaks down (Li,

1999).

As basic computational modules, it would be expected that non-linearities take place

at different stages of the cortical processing hierarchy. However, studying these opera-

tions beyond the primary visual cortex level, for instance understanding when normal-

ization is recruited for natural images, has been rather difficult. Learning models of

surround divisive normalization in primary visual cortex has often relied on access to

individual neural unit responses, which are then combined (e.g., in a weighted manner)

to produce the modulation effect from the pool of units. In comparison to primary visual

cortex, where different features such as orientation, spatial frequency and scale have a

fairly well understood role in characterizing visual stimuli, the optimal stimulus space

for intermediate cortical levels is less well understood (Poggio and Anselmi, 2016).

For instance, in V2, studies have previously shown selectivity to conjunctions of

orientations (e.g., Ito and Komatsu, 2004), to figure-ground (e.g., Zhou et al., 2000;

Zhaoping, 2005), and to texture stimuli (e.g., Freeman et al., 2013; Ziemba et al.,
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2016) and texture boundaries (e.g. Schmid and Victor, 2014; Rowekamp and Sharpee,

2017). Some studies have characterized contextual surround modulation in area V2

(e.g. Shushruth et al., 2009; Ziemba et al., 2018) and V4 (e.g. Kim et al., 2019). The re-

cent findings regarding texture sensitivity have also spurred surround experiments with

naturalistic textures in V2 (Ziemba et al., 2018). We believe developing computational

models of surround normalization offers a complementary route for hypothesizing what

stimulus patterns might be relevant at intermediate levels.

In this work, we propose the use of deep CNNs to study how flexible normalization

might work at intermediate level representations. CNNs have shown intriguing ability to

predict neural responses beyond primary visual cortex (Kriegeskorte, 2015; Yamins and

DiCarlo, 2016; Cichy et al., 2016), including recent studies modeling neurophysiology

data from area V2 (Laskar et al., 2018) and V4 (Pospisil et al., 2016, 2018). As we

move up in the hierarchy, neural units at a given level combine the responses from

early processing stages lending to a larger repertoire of possible stimuli acting at the

higher level. In addition, CNNs have interestingly incorporated simplified forms of

normalization (Jarrett et al., 2009; Krizhevsky et al., 2012; Ren et al., 2017). CNNs can

therefore provide a tractable way to model representations that might be employed by

intermediate levels of the visual processing hierarchy, such as secondary visual cortex

(V2). Here, we integrate flexible normalization into the AlexNet CNN architecture

(Krizhevsky et al., 2012), although our approach can be more broadly applied to other

CNN and hierarchical architectures.

For intermediate level representations, we show that incorporating flexible nor-

malization can capture non-trivial spatial dependencies among features such as those
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present in textures, and more generally, geometric arrangements of features tiling the

space. One instance of such geometric arrangements are texture boundaries where fea-

tures detecting such boundaries are likely to align. Our focus here is on developing

the framework for the CNN and demonstrating the learned statistics and spatial ar-

rangements that result for intermediate layers of the CNN. We expect the proposed

approach can make predictions about when spatial normalization might be recruited in

intermediate areas, and therefore will be useful for interplay with future neuroscience

experiments as well as become a standard component in the CNN toolkit.

1.1 Contributions of this work

Divisive normalization is ubiquitous in the brain (Carandini and Heeger, 2012), but

contextual surround influences in visual cortex have mostly been studied in area V1.

In primary visual cortex, models such as steerable pyramids or Gabor filters provide a

good account for the single-unit selectivity of the neural receptive field, and are often

used as a front end to more sophisticated normalization models. Such models learn sta-

tistical dependencies between units in center and surround locations and then apply an

appropriate computation the reduces them. On the other hand, models of intermediate

cortical neural unit selectivity of responses, such as visual cortical area V2, have been

more elusive. Consequently, there is less understanding about what patterns of statisti-

cal dependencies emerge across space at these intermediate levels. Understanding such

patterns of dependencies would be a basis for formulating models that reduce the de-

pendencies and make predictions about when normalization is recruited in intermediate

areas such as V2.
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In this paper, we focus on characterizing the statistics and learning what statistical

patterns of dependencies might emerge for intermediate cortical visual area model units.

We then learn a model for reducing such dependencies. In the discussion, we elaborate

on (i) predictions of our framework and future application to understanding V2 data

beyond the classical receptive field; and (ii) the potential benefit and future application

of testing the impact of such computations downstream.

We largely focus on the second convolutional layer of AlexNet. Second layer neural

units combine V1-like features, captured by the first convolutional layer units, into

bigger receptive fields. Since the network is constrained to capture information relevant

to natural images, we expect the second layer will only learn such structures that are

meaningful and not all possible combinations of simple features. We also examine and

compare to other layers of AlexNet, namely the first and third convolutional layers.

The model of contextual interaction we propose to use is a normative model based

on the premise that one of the purposes of normalization is to remove high order de-

pendencies that cannot be removed by linear computations or point-wise non-linearities

and that extend beyond the classical receptive field (This also means they extend be-

yond the reach of the max pooling layers). This class of model has been used to explain

V1 contextual influences, but it has not been applied to higher order units (Coen-Cagli

et al., 2009, 2012). Our results for the second layer offer potential predictions about

when normalization might be recruited in areas beyond V1. This approach could be

adapted to other hierarchical architectures and higher layers, and thus has more general

applicability.

From a technical standpoint, models such as the mixture of Gaussian Scale Mixtures
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(GSM)s and flexible normalization have been studied extensively for V1. Our main

technical contribution is making these models applicable to units at intermediate stages

where, unlike V1, units lack compact descriptors such as scale and orientation, and

demonstrating the approach on CNN units. For V1 filters, models like (Coen-Cagli

et al., 2009) enforce symmetry constraints on the covariance matrix to equalize the

variances of surround units in opposing spatial locations, given the orientation structure

of the receptive fields. The rationale was that for basic features such as oriented edges,

symmetry would be expected: a vertical edge is equally likely on average to have a

dependency with a vertical edge on the top or bottom, and to the left and right. Without

this constraint, the model learned variances were sometimes skewed to one side. In

intermediate areas, one would still expect certain symmetries, but we cannot assume the

symmetry directions based on the orientation, since the filter structure in the CNN is not

characterized by orientation. We found that learning proceeds well without having to

incorporate symmetry constraints by modifying the model of (Coen-Cagli et al., 2009)

as described in more detail in Section 4.

2 Normalization in Deep Neural Nets

Recently, new forms of normalization have been introduced to the deep neural networks

tool set (Ioffe and Szegedy, 2015; Ba et al., 2016). The motivation for these compu-

tations is different from the divisive normalization models in neuroscience, which are

based on observations of neural responses. Batch normalization (Ioffe and Szegedy,

2015) is a popular technique aimed at removing the covariate shift over time (i.e., in
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batches) in each hidden layer unit, with the goal of accelerating training by maintaining

global statistics of the layer activations. Layer normalization (Ba et al., 2016) on the

other hand, employs averages across units in a given layer (and space in the case of

convolutional networks) at every time step, introducing invariances in the network that

benefit the speed of learning. Batch and layer normalization provide better conditioning

of the signals and gradients that flow through the network, forward and backwards, and

have been studied from this perspective.

Simple forms of divisive normalization that draw inspiration from neuroscience,

such as those described in (Jarrett et al., 2009; Krizhevsky et al., 2012), have been used

to improve the accuracy of deep neural network architectures for object recognition.

However, the empirical evaluation of deeper architectures in (Simonyan and Zisser-

man, 2015) reached a different conclusion showing that the inclusion of local response

normalization (LRN), where responses are normalized by the activity of other filters at

the same spatial location, did not offer any significant gains in accuracy. One possible

yet untested hypothesis for this case is that the increased depth may be able to account

for some of the nonlinear behavior associated with LRN. Nevertheless, it is important to

note that these empirical conclusions have only considered simple and fairly restrictive

forms of normalization and measured their relevance solely in terms of classification

accuracy. While accuracy with and without normalization can be the same for the stan-

dard benchmarks, other criteria such robustness to adversarial examples or other forms

of noise could be used to evaluate the role of normalization.

Recent work that attempts at unifying the different forms of normalization discussed

above has started to reconsider the importance of normalization for object recognition,
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in the context of supervised deep networks (Ren et al., 2017). In their work, divisive

normalization is defined as a localized operation in space and in features where normal-

ization statistics are collected independently for each sample. Divisive normalization

approaches arising from a generative model perspective have also been recently intro-

duced (e.g. Balle et al., 2016). Other work on supervised networks inspired by primary

visual cortex circuitry has proposed normalization as a way to learn a discriminant

saliency map between a target and its null class (Han and Vasconcelos, 2010, 2014).

Although these works extend beyond the simple normalization forms discussed in pre-

vious paragraphs, they are still limited to fixed normalization pools and to early stages

of processing. None of these approaches have thus far considered the role of spatial

dependencies and normalization in intermediate layers of CNNs to address questions in

neuroscience.

Our work extends the class of flexible normalization models considered in (Coen-

Cagli et al., 2012, 2015) which stem from a normative perspective where the division

operation relates to (the inverse of) a generative model of natural stimuli. In previous

work, flexible normalization models were learned for an oriented filter bank akin to

primary visual cortical filters. Here, we develop a flexible normalization model that

can be applied to convolution filters in deep CNNs. Our objective in this paper is to

develop the methodology and to study the statistical properties and the structure of

the dependencies that emerge in middle layers (specifically, we focus on the second

convolutional layer of AlexNet). We expect our model to be useful in providing insights

and plausible hypotheses about when normalization is recruited in visual cortical areas

beyond primary visual cortex.
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3 Background

We describe the Gaussian Scale Mixture and flexible normalization model, which serves

as a background to our modeling.

3.1 Statistical model for divisive normalization

A characteristic of natural stimuli is that the coefficients obtained by localized linear

decompositions such as wavelets or independent component analysis are highly non-

Gaussian, generally depicting the presence of heavy tailed distributions (Field, 1987).

In addition, these coefficients, even if linearly uncorrelated, still expose a form of de-

pendency where the standard deviation of one coefficient can be predicted by the mag-

nitudes of related coefficients across space, scale, and orientation (Simoncelli, 1997).

In this sense, models that extend beyond linearity are needed to deal with nonlinear

dependencies that arise in natural stimuli.

A conceptually simple yet powerful generative model that can capture this form

of coupling is known as the Gaussian Scale Mixture (Andrews and Mallows, 1974;

Wainwright and Simoncelli, 2000; Wainwright et al., 2001). In this class of models,

the multiplicative coordination between filter activations is captured by incorporating a

common mixer variable where local Gaussian variables are multiplied by this common

mixer. Since in this generative model dependencies arise via multiplication, one can

reduce the dependencies and estimate the local Gaussian variable via the inverse oper-

ation of division. The Gaussian variables may themselves be linearly correlated, which

amounts to a weighted normalization.

Formally, a random vector X containing a set of m coupled activations is obtained
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by multiplying an independent positive scalar random variable V (which we denote the

mixer variable) with an m-dimensional Gaussian random vector G with zero mean and

covariance Λ, that is, X = V G. The random variable X|V = v is a zero mean Gaussian

random variable with covariance Λv2, and X is distributed with pdf:

pX(x) =

∞
∫

0

v−m

(2π)m/2 |Λ|1/2
exp

(

−xTΛ−1x

2v2

)

pV (v)dv. (1)

For analytical tractability, we consider the case where the mixer V is a Rayleigh dis-

tributed random variable with pdf, pV (v) =
v
h2 exp

(

− v2

2h2

)

, for v ∈ [0,∞) , and scale

parameter h. Integrating over v yields the following pdf:

pX(x) =
1

(2π)m/2 |Λ|1/2hm
a1−m/2Km/2−1(a), (2)

where Kλ(·) is the modified Bessel function of the second kind, and

a2 =
xTΛ−1x

h2
. (3)

To ease notation, we can let Λ absorb the scale parameter h. Reversing the above

model to make inferences about G given X , results in an operation similar to divisive

normalization. Given an instance x of X , we can compute the conditional expectation

of the ith element of G as follows:

E [gi|x] =
xi√
a

Km−1

2

(a)

Km

2
−1(a)

. (4)

The divisive normalization is weighted, due to the term a, which incorporates the in-

verse of the covariance matrix in the computations of the normalization factor.
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3.2 Flexible contextual normalization as a mixture of Gaussian scale

mixtures

The Gaussian Scale Mixture model described above captures the coordination between

filter activations (e.g., for receptive fields that lie in nearby spatial locations) through a

single mixer variable. The normalization operation produced by performing inference

on the GSM model is replicated across the entire image, which intrinsically assumes the

statistics to be homogeneous across space. However, the statistical dependency between

filter activations may vary depending on the particular visual image and set of filters,

such as if the filters cover a single visual object or feature, or are spaced across the

border of objects in a given image (Schwartz et al., 2006, 2009).

A more sophisticated model (Coen-Cagli et al., 2009) (see also Coen-Cagli et al.,

2012), uses a two-component mixture of GSMs,

pX(x) = ΠcspX(x|Λcs) + (1− Πcs)pXc
(xc|Λc)pXs

(xs|Λs), (5)

where xc and xs denote the set of responses from units with receptive fields in center

and surround locations, and Λcs,Λc, Λs are the parameters that capture covariant struc-

ture of the neural responses, and Πcs is the prior probability that center and surround

are dependent. The subscript cs denotes parameters of the center-surround dependent

component of the model, and c and s the respective center and surround parameters

of the center-surround independent component. In this model, normalization is only

recruited to the degree center and surround responses are deemed as statistically de-

pendent. The first term of Eq.(5), pX(x|Λcs), corresponds to center-surround depen-

dent units. In the center-surround dependent component, the responses are coupled
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linearly by the covariance Λcs and nonlinearly by the multiplicative mixer. The product

pXc
(xc|Λc)pXs

(xs|Λs) in the second term represents the case of statistical independence

between the center group and the surround group.

Note that the covariance matrix (which provides a tuned or weighted normalization)

is fixed for a given center-surround group. The covariance structure is learned for a

given group of filters over an ensemble of images, and meant to capture the neural

responses that may be co-active. We presume the covariance structure is fixed in the

brain for any stimulus it encounters (akin to other weighted normalization models). The

covariance matrix in the model is therefore not stimulus dependent for a given neuron.

4 Normalization in Deep Convolutional Networks

We next describe our approach for incorporating flexible normalization into convolu-

tional layers of deep CNNs. We also explain how we modified the mixture of GSM

model of (Coen-Cagli et al., 2009) to accomodate this.

4.1 Convolutional layers and Flexible Normalization

In their most basic form, convolutional neural networks are a particular instance of feed

forward networks where the affine component of the transformation is restricted by

local connectivity and weight sharing constraints. Convolutional layers of deep CNNs

are arrangements of filters that uniformly process the input over the spatial dimensions.

On 2-dimensional images, each of the CNN filters linearly transforms a collection of 2-

dimensional arrays called input channels. For instance, RGB images are 2-dimensional
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Figure 1: Schematic of flexible normalization on map computed by a convolutional

layer of a deep CNN. As with flexible normalization, the surround normalization is

gated and determined based on inference about statistical dependencies across space.

To compute the normalized response of a filter k at location (x, y), the model uses

responses from adjacent filters (channels) in the arrangement (akin to cross-orientation

suppression in primary visual cortex) as the center group, and a set of responses from

the same filter k at relative displacements from the (x, y) position to form the surround

group (spatial context).

images with 3 channels. The output produced by each filter is a 2-dimensional array of

responses called a map. Therefore, each convolutional layer produces as many output

maps as filters. Let Iin(x, y, ℓ) be the collection of 2-d input arrays, where x and y

denote the spatial indexes and ℓ ∈ Xin the input channel index. A convolutional layer is

a collection of 3-dimensional arrays {Wk(x, y, ℓ)}k∈Cout
. The operation of convolution,

which yields a map, is defined as:

Iout(x, y, k) =
∑

ℓ

∑

x′,y′

Iin(x+ x′, y + y′, ℓ)Wk(x
′, y′, ℓ) (6)
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In addition to convolutions and point-wise nonlinearities, CNNs can include other

nonlinear operations such as pooling and normalization whose outputs depend on the

activities of groups of neural units. Here, we cascade the flexible normalization model

with the output map of a convolution layer. Flexible normalization of the outputs of

a convolutional layer is carried out at each spatial position and output channel of Iout.

For channel k and spatial position (x, y), the normalization pool consists of two groups:

(i) a group of activations at the same (x, y) position from spatially overlapping filters

from neighboring channels to k, called the center group. We use the center group that

is already part of the Alexnet CNN local normalization layer (akin to cross-orientation

suppression in V1 (Heeger, 1992)); (ii) a set of responses from the same filter k at

spatially shifted positions, called the surround group. According to the flexible normal-

ization, the surround normalization is gated and determined based on inference about

the statistical dependencies between center and surround activations.

Figure 1 depicts this arrangement of maps produced by the filters in a convolutional

layer as a 3-dimensional array. For each map k, we compute the normalized response

at each (x, y) location using the flexible normalization model introduced above.

4.2 Flexible normalization for convolutional layers

One of the main differences between our model and (Coen-Cagli et al., 2009) is that

our model imposes statistical independence among surround responses in the center-

surround independent component of the mixture. This is achieved by making:

pXs
(xs|Λs) =

∏

ℓ∈S

p(Xs)ℓ
((xs)ℓ| (Λs)ℓ), (7)
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where S denotes the set of indexes of the surround units and xs the vector of filter

responses of the surround units. In other words, when the center units are indepen-

dent from the surround units, the group of surround units do not share the same mixer.

By having independent mixers in our model, we avoid making any assumptions about

symmetries in the responses of the surround units. Symmetry constraints based on the

orientation of the V1 model units were originally used in (Coen-Cagli et al., 2009) for

learning the parameters of the model. It is important to bear in mind that for mid-level

representations there is no clear intuition or explicit knowledge about the nature of the

symmetries that may arise across space. A graphical model of the flexible normalization

model proposed here is depicted in Figure 2.

4.3 Inference

Another key difference between our model and (Coen-Cagli et al., 2009) is the infer-

ence. In our model, we assume there exists a common underlying Gaussian variable Ĝ

that generates both types of responses (center-surround dependent and center-surround

independent). The coupling is therefore, a two-stage process. First, a latent response

vector Ĝ is sampled from a Gaussian distribution with zero mean, and identity covari-

ance. This response is then linearly mapped by one of two possible transformations

depending on whether the response is center-surround dependent or independent. Sub-

sequently, the multiplicative coupling is applied to the linearly transformed vector ac-

cording to the type of response (dependent or independent). The main reason for the

above choice is that, if we were only resolving the multiplicative couplings, the distri-

bution of the inferred response would still be a mixture of Gaussians which cannot be
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(gs)i

∀i ∈ S
ξ2

Figure 2: Flexible normalization model, based on a mixture of Gaussian Scale Mix-

tures. (left) Center-Surround dependent; (right) Center-Surround Independent. The

model is similar to (Coen-Cagli et al., 2009, 2015), except that when center units are

independent from surround units. We further impose independence of the surround unit

activations. This removes the need to impose any symmetry constraints in learning the

model parameters for higher CNN layers. xc and xs correspond to the filter responses

of center and surround units, respectively. gc and gs are the Gaussian latent variables,

v is the mixer in the center-surround dependent component ξ1, vc and vs are the center

and surround mixers for the center-surround independent component ξ2, and S are the

surround indexes. Note that for each surround unit filter response (xs)i there is an i.i.d

draw of the mixer vs.

decoupled by linear means.

Reversing the coupling by computing E

[

Ĝi|x
]

is also a two-stage process. First,

posterior probabilities of x being center-surround dependent are obtained using Bayes

rule, p(ξ1|x) = p(x|ξ1)Πcs

p(x)
. Then, conditional expectations E [Gi|x,Λcs] and E [Gi|xc,Λc]

are linearly mapped to a common space. Namely, we apply a linear transformation QT

18



to the center-surround independent component cs ⊥⊥, such that:

QTΛcs⊥⊥Q = QT









Λc 0

0 Λs









Q = Λcs. (8)

Inference in our flexible normalization model is given by:

E

[

Ĝi|c
]

= p(ξ1|x)E [G|x,Λcs] + (1− p(ξ1|x))
(

QT
)

i,:
E [G|x,Λc,Λs] , (9)

where (QT)i,: denotes the ith row of QT. This inference can be followed by whitening

of the components of Ĝ yielding the desired identity covariance matrix, I. However,

here, the relevant operation is the transformation that takes one covariance and makes

it equal to the other covariance matching the distributions of the center-surround de-

pendent and center-surround independent component after removing the multiplicative

couplings (Eq.(8)).

As we mentioned above, the covariance and therefore the whitening transformation

are presumed fixed. The flexible part of the model is gating this weighted surround nor-

malization (e.g., turning it on or off to the degree that center and surround are inferred

to be statistically dependent for a given stimulus). The inference about posterior prob-

abilities of center-surround dependence is therefore the part that is stimulus dependent.

Learning parameters of the model

In this work, our main purpose is to observe the effects of normalization in the responses

obtained at the outputs of a convolutional layer in a deep CNN. For this reason, we

apply the flexible normalization model to the responses of filters from a pre-trained

network that does not include flexible normalization 1. The responses of a layer from

1In our work, as with the original AlexNet, filters were trained for object recognition
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this pre-trained network are used to construct the set of center and surround units to

be normalized. The parameters of the flexible normalization model, the prior Πcs and

covariances Λcs, Λc, and Λs, are then learned by Expectation Maximization (EM) fitting

to the pre-trained CNN responses (Coen-Cagli et al., 2009)(see appendix for details).

5 Simulations

We integrate flexible normalization into the AlexNet architecture (Krizhevsky et al.,

2012) pre-trained on the ImageNet ILSVRC2012 object recognition challenge. Since

our main goal is to investigate what the effects of normalization are at the layer level

rather than at the network level, we only learn the parameters of the divisive normaliza-

tion model on top of the pre-trained filters. The divisive normalization is applied to the

outputs of the convolutional layer. In particular, we integrate flexible normalization into

the outputs of the second convolutional layer of AlexNet. In the Additional simulations

in the Appendix, we also examine incorporating flexible normalization into the first and

third layers of Alexnet.

We focus on the second layer for two reasons. First, it is comprised of combinations

of V1-like units in the first layer, and so is likely to be more tractable in future studies

comparing to neurophysiology studies in V2. Second, we found empirically that on

average, as we move up from layer 1 to layer 3, the responses of units in AlexNet be-

come less statistically dependent across space, suggesting that from an efficient coding

perspective divisive normalization across space would have less influence as we move

up the hierarchy.
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In our model, the center neighborhoods are the same built-in neighborhoods that

were induced by the local response normalization operation carried out in the original

AlexNet architecture. The surround groups are obtained by taking activations from an

approximately circular neighborhood with a radius of 4 strides apart2, at every 45 de-

grees, which yields a total of 8 surround units. Figure 3a depicts the spatial arrangement

of a center response and the positions of its surround responses.

5.1 Redundancy in activations of intermediate layers

As argued above, multiplicative couplings (high order correlations) between linear de-

composition coefficients are common in natural images. As we show below, activations

at intermediate layers such as the second convolutional layer of AlexNet, which we

denote as “Conv2,” display a significant amount of high order coupling.

Focusing on the Conv2 layer from AlexNet, we examine the structure of spatial de-

pendencies within a unit. We show that even at spatial locations for which the filters

have less than 20% overlap, the values of the activations of spatially shifted units expose

high order correlations3. In Figure 3b, we display the energy correlations for the acti-

vations of a subset of units in the second convolutional layer (Conv2) of AlexNet. For

each unit, we display the correlation of energies between the given unit and its spatial

neighbors 4 strides apart in either the vertical or horizontal direction. Each one of the

3× 3 tiles is the corresponding squared correlation for a particular unit. We see that not

2By stride, we mean the minimum spatial shift at which the convolution sum is eval-

uated.

3Correlations beyond first order include correlation of squares as a special case
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Figure 3: Energy correlations in the second convolutional layer of AlexNet before and

after flexible normalization. (a) Spatial distribution of center and surround activations

in the normalization pool. (b) Correlation of energies between center and surround

responses from a subset of 16 Conv2 units from AlexNet before (left) and after (right)

flexible normalization. Each of the sixteen 3 × 3 tiles depicts the correlation between

the center activation and each of the 8 surround units shown in (a). It is clear that

normalization reduces the energy correlations.

only do these high order couplings remain for the outputs of the Conv2 layer, but also

the regularities of how their values are distributed across space. For various units, it is

clear that spatial shifts in particular directions have stronger couplings.

5.2 Dependency reduction by flexible normalization

To visually assess the effect of normalization on the correlation structure among units,

we depict the joint conditional histograms of the unit activations after normalization and

whitening. Previous studies with V1-like filters have shown that filter activations follow

a bowtie-like structure that can be understood as a high order coupling (e.g. Schwartz

and Simoncelli, 2001). In particular, the amplitude of one variable gives information

about the variance (standard deviation) of the other variable. This dependency can be
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Figure 4: Marginal and joint conditional distributions of activations from example

Conv2 units in AlexNet, before an after flexible normalization. The joint conditional

distributions are a simple way to visually inspect dependencies. As we can see, Conv2

units at different spatial locations are nonlinearly coupled. Flexible normalization re-

duces these dependencies making the conditional distributions look closer to constant.

In addition, the marginal log-histograms show that the normalized responses become

closer to Gaussian, in agreement with the model assumptions.

reduced via divisive normalization from neighboring filter activations. Figure 4 shows

the conditional histograms (p(xs|xc)) for the same pair of center-surround unit activa-

tions before and after applying flexible divisive normalization. Along with the nor-

malized conditional histograms, we show marginal log-histograms which give an idea

of how normalization changes the marginal distributions from highly kurtotic to more

Gaussian-like.
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We further quantify the results for the flexible normalization model, and compare to

a simpler baseline surround normalization model using a single GSM. At a population

level, both normalization models, flexible and single GSM, consistently reduce mutual

information between the center unit and spatial surround activations (2032 out of all 8×

256 center-surround pairs). But the flexible normalization reduces mutual information

beyond the level achieved by the control model (Figure 5). The distribution of the

difference of the estimates of mutual information between single GSM minus flexible

normalization is skewed to the right (1.8 skewness).

Also, computing the entropy of the activations before and after normalization shows

consistent increase which is more pronounced in the flexible normalization model (Fig-

ure 6). Since the activations before and after normalization have been scaled to have

unit variance, larger entropies correspond to random variables whose distributions are

more similar to the Gaussian. We have also examined the expected likelihood of the

test data. For more than 98% of the units, flexible normalization has higher likelihood

compared to the single GSM model. Overall, the population quantities confirm that

flexible normalization is better than the single GSM at capturing the Gaussian statistics

and reducing the statistical dependencies.

5.3 Predicting homogeneity of stimuli based on mid-level features

The main idea of flexible normalization is that contextual modulation of neural re-

sponses should be present only when responses are deemed as statistically dependent.

In the case of V1, co-linearity of stimuli in the preferred direction of the center unit

would cause the flexible normalization model to invoke suppression (see also appendix
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Figure 5: Population mutual information summary statistics for flexible normalization

versus the control surround normalization model. Average mutual information between

center and each of the 8 surround locations for all 256 channels in the second convolu-

tional layer of AlexNet. The units are ordered with respect to the mutual information

before normalization. A control normalization model where normalization is applied

uniformly across the image is included for reference. Flexible normalization is able

to reduce mutual information in cases where the fixed normalization model (control)

cannot.

for Conv1 units). In other words, the model would infer high center-surround posterior

probability from the stimuli.

For the case of mid-level features, we wanted to observe what structure in the stimuli

would lead to center-surround dependence. Note that for intermediate level features, the

notion of orientation is not as clear as in V1, where models may contain orientations in

their filter parameterizations.

Figure 7 shows some examples of image patches that cover the center-surround
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Figure 6: Population entropy summary statistics for flexible normalization versus the

control surround normalization model. Marginal entropies from standardized responses

(zero mean and unit variance) before and after normalization for each unit in the second

convolutional layer of AlexNet. Similar to mutual information, units are oredered based

on their entropy values before normalization. Black dashed line indicates the theoretical

upper bound which corresponds to the entropy of a unit variance Gaussian distributed

random variable.

neighborhoods, for which the model finds a high posterior probability of Center-Surround

dependence. Along with these images, a visualization of the receptive field of the sec-

ond convolutional layer units is presented. In addition, The units depicted in Figure 7

are ordered based on the prior probability of center-surround dependence that is learned

by our flexible normalization model. The top row of the figure corresponds to the lowest

value of this prior probability among the units displayed in the figure.

As can be seen, for some of the Conv2 representations, the idea of co-linearity is

present in the form of tiling of these mid-level features. The center-surround covariance
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Figure 7: Tiling in Conv2 center-surround dependent units. Example units are ordered

from lower learned prior of dependence (top unit on the left side table; .5193) to higher

learned prior of dependence (bottom unit on the right side table; .9364). (First column)

center-surround dependent covariances. Each black corresponds to the spatial location

of the receptive fields. The line thickness between points depicts the strength of covari-

ance between spatially shifted receptive fields. The size of the black circles depicts the

variance relative to the center circle which has the same size in all units. (Second col-

umn) Conv2 units visualization with a method adapted from Zeiler and Fergus (2014).

(Remaining columns) Image regions with high probability of being Center-Surround

dependent and high activation values prior normalization according to our model. Note

how regions can be seen as tiling the space with translations of the Conv2 unit receptive

fields in directions with strong covariance.27
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Figure 8: Inferred posterior distributions on ImageNet data. (left) Original images input

to the CNN. For each image at each spatial location, we compute the geometric mean

of posterior probabilities among all channels of the layer (Conv2). (middle) Areas that

the model deemed as dependent while obscuring other areas. (right) Complementary

display where high center-surround dependent areas are darker, instead.

also captures this property. By looking at the receptive fields of the Conv2 units (second

column from the left in Figure 7) we can see that spatial arrangements of repetitions of

these receptive fields seem more natural in certain configurations. For instance, the

eighth row shows horizontal structure in the covariance matrix. The receptive field has
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a horizontal structure, but also a texture boundary that includes vertical structure. The

tiling according to the covariance matrix is along this main horizontal axis. Similarly,

in the second row of the left table, vertical arrangements of translated versions of the

receptive field give a continued pattern as appreciated in the corresponding patches

(right column of the table). For other example units (e.g., the last 3 units which appear

to capture texture-like structure), the covariance structure is more uniform across space.

We also looked at the spatial distribution of the posterior probabilities for entire

images from ImageNet. For each channel in the convolutional layer, we obtained the

posterior probabilities and computed the geometric mean across channels. Figure 8

shows the relation between the image content and the posterior probability by shading

areas with high (middle column) and low (right column) posterior probability of be-

ing center-surround dependent. As mentioned earlier, a high posterior probability of

center-surround dependent activations can be an indicator of the homogeneity of the

region under consideration. As we can see, the posterior probabilities from Conv2 units

capture this homogeneity at a more structured level compared to previous work on V1-

like filters, where homogeneous regions correspond to elongated lines in the preferred

orientations of the filters.

In particular, repeating this procedure for the first convolutional layer (Figure 15 in

the Appendix), reveals that the first layer is not as effective as the second in capturing

(and therefore suppressing) the background homogeneous texture structure prevalent in

images, so as to highlight for instance the snake (third row) or birds (sixth row) in the

scene.
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5.4 Predicting surround modulation based on image homogeneity

for intermediate level features

Previous work has considered predictions and experimental testing of the flexible nor-

malization model for area V1 (Coen-Cagli et al., 2015). Here we consider predictions

for the intermediate level features of the CNN. We focus on Conv2 units following the

flexible normalization.

To characterize the influence of surround modulation, we presented each model unit

with small natural images confined to the classical receptive field and a corresponding

large image that extended beyond the classical receptive field. We obtained the mod-

ulation ratios by comparing the average responses of each unit, when presented with

stimuli at apertures of 31 and 63 pixels, corresponding to the areas covered by a single

unit and the center and surround neighborhood. Example images for both apertures are

displayed in Figure 9a.

In the scatter plot of Figure 9b, each point corresponds to a single model unit. The

scatter plot compares two types of stimuli, based on the model predictions. One set of

images correspond to images deemed as homogeneous by the model posterior inference

of center-surround dependence (top row of Figure 9a). The second set of images are

those deemed heterogeneous by exposing low posterior probability in the component

modeling center-surround dependencies (bottom row of Figure 9a). The vertical axis

corresponds to the modulation ratios for the set of heterogeneous images and the hori-

zontal axis for the homogeneous images. The model predicts more surround modulation

for images that are deemed homogeneous than for images deemed heterogeneous.This

mostly results in suppression by the surround, since most of the points lie above the
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diagonal line. Note that some units do lie below the diagonal because in some cases

the model would actually increase the energy of the response to match the expected

variance of the Gaussian latent variable.

For this simulation, in addition to the posterior probabilities, images where selected

based on the magnitude of the responses they elicited in the Conv2 units. Only images

with high response levels and largest or smallest posterior probabilities were used. To

compute the average response for each unit, a set of 40 homogeneous images and 80

heterogeneous images (40 where center energies are larger than surround energies and

40 for the opposite case) were selected for each unit, as explained above.

In a similar flavor to (Coen-Cagli et al., 2015), which focused on V1, an experi-

ment to test the model predictions of surround modulation in V2 could use the same

set of images (collected for all units in the CNN) to record responses from this area.

Responses of each unit can be matched to CNN units by their level of correlation for

the stimuli confined to the classical receptive field. Average responses for center and

center-surround stimuli can then be compared between the CNN and the recorded units,

by computing the modulation ratios of the experimental data to obtain a plot analogous

to the one displayed in Figure 9b. Although we focus here on convolutional layer 2 of

the CNN, one could expand the experimental comparisons to include other layers of the

CNN, for instance layers 1 and 3.
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Figure 9: (9a) Example stimuli employed to compute modulation ratios. Top left image

corresponds to an image patch that was deemed as homogeneous by the flexible normal-

ization model and the bottom left to a heterogeneous patch. The center column contains

the stimuli cropped at 31 pixel diameter for center aperture and at 63 pixel diameter for

center-surround aperture. (9b) Modulation ratios obtained by comparing the average of

the normalized responses of Conv2 units from AlexNet when presented with stimuli at

31 and 63 pixel apertures. The two apertures correspond to the areas covered by a sin-

gle unit and the center-surround neighborhood, respectively. The scatter plot compares

two types of stimuli. One set of images correspond to images deemed as homogeneous

by the model posterior inference of center-surround dependence (vertical axis). The

second set of images are those deemed heterogeneous by exposing low posterior proba-

bility that center and surround are dependent. In addition to the posterior probabilities,

images where selected based on the magnitude of the responses they elicited in the

Conv2 units. Only images with high response levels and largest or smallest posterior

probabilities are used.
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6 Discussion

V1 normalization has been studied extensively, including flexible models of divisive

normalization by the spatial context. In modeling normalization of V1 units using a

Gaussian Scale Mixture framework, previous work has shown that the learned covari-

ance matrix (influencing the contextual normalization) has collinear structure (Coen-

Cagli et al., 2012) (see also appendix). This reflects the oriented front end of V1 units

and the collinear structure prevalent in images. Our work seeks to address richer recep-

tive field structure beyond the level of V1-like units. We therefore build on a modified

version of the model of (Coen-Cagli et al., 2012), and use intermediate level represen-

tations that are learned by convolutional networks trained for object recognition.

The second convolutional layer of AlexNet combines responses from different units

from the first layer into more elaborate features. However, the statistical dependencies

between such units have not been characterized, and consequently there has been little

emphasis on deriving divisive normalization models from scene statistics as has been

done extensively for V1-like model units. We therefore set out to study the statistics of

the second layer of the CNN, and to examine the covariance structure that is learned.

The covariance structure can be understood as a template of what spatial arrangements

lead to high center-surround dependence for a given model unit.

First, we found that units in the Alexnet CNN had sparse marginal statistics and joint

conditional statistical dependencies across space, similar to what has been observed

for ICA and Gabor filters. Although this decreased in higher layers on average, the

statistics in the second layer of AlexNet were still prominent. Further, we found in our

simulations, that the learned covariances for Conv2 units included both collinear spatial
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arrangements capturing structure such as tiling across space of texture boundaries; and

covariances that were more uniform across all spatial directions capturing structure such

as textures. Textures have also received attention in other studies in mid-level visual

areas (Freeman et al., 2013; Rowekamp and Sharpee, 2017; Laskar et al., 2018; Ziemba

et al., 2018) and in generative models such as (Portilla and Simoncelli, 2000; Gatys

et al., 2015).

Furthermore, we found that from a technical perspective, adding independence

among surround units in the center-surround independent component of the mixture

Eq.(5) was crucial for learning the parameters of the model without imposing symme-

try constraints. This is particularly necessary in the context of deep CNNs, and even

more so at middle levels. Unlike Gabor filters or steerable pyramids, units of deep

CNNs are not parametrized explicitly with respect to orientations, for instance. The

same issue arises in cortical neurons, whereby higher neural areas beyond V1 combine

orientations in a nonlinear manner, leading to rich structure that is not easily parame-

terized.

The model does a good job at reducing multiplicative dependencies, but it is not

perfect. Currently, filters of the CNN are not learned jointly with flexible normaliza-

tion. Another limitation of the model is that flexible normalization is incorporated in

a single layer of the CNN. An important future direction which would require further

technical development beyond the scope of this paper, is learning flexible normalization

in multiple layers of the CNN (e.g., layers 1 and 2) simultaneously. Our approach can

also be used with other classes of hierarchical architectures.

There are two important future applications of our approach. The first pertains
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to understanding the benefits of the proposed normalization computation downstream.

In Coen-Cagli and Schwartz (2013), the impact of V1 flexible normalization was ex-

amined downstream and shown to perform better on figure ground segregation than a

model that always divided by the surround. What might be a benefit of flexible normal-

ization for higher neural areas beyond V1? Figure 8 is suggestive in this regard, since

for the second convolutional layer, background textures in example scenes are inferred

to be more statistically dependent, highlighting objects in the scene (compare to Figure

15 in the Appendix for the first convolutional layer).

Flexible normalization has the potential to cope with different data sets and different

amounts of clutter, by controlling the amount of selective suppression helpful for the

given stimulus and task. This may be in line with the recent observation that V4 units

respond more strongly to shapes than to textures, which (Kim et al., 2019) refer to as

de-texturization. It may also have the potential to help in the texture bias that has been

observed for texture-shape cue conflicts in CNNs relative to human subjects (Geirhos

et al., 2019). An important future direction is to explore these questions for intermediate

layers of the deep neural network.

A second important application is making predictions and testing against cortical

neural data. Previous work on flexible normalization has tested predictions for natural

images in area V1 (Coen-Cagli et al., 2015). Our approach can be used to make pre-

dictions about when normalization might be relevant in higher visual cortical areas to

reduce redundancy. In particular, we expect our model can make useful predictions for

testing normalization of neural responses to large stimuli that extend beyond the classi-

cal receptive field in intermediate cortical areas such as V2 (as explained in Section 5.4
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and Figure 9).

Our modeling of surround dependencies in second layer units of Alexnet mostly

revealed homogeneous patterns of dependencies for textures, and collinear patterns for

texture boundaries. Suppression for extended homogeneous textures has been observed

in V2 (Ziemba et al., 2018) and in V4 (Kim et al., 2019). However, the result of (Ziemba

et al., 2018) regarding more suppression for spectrally matched noise than for textures

may require an additional facilitatory mechanism as proposed in their paper. In addition,

neurophysiology studies of V2 surround suppression have found qualitatively similar

surround suppression for grating stimuli in V2 as for V1 (Shushruth et al., 2009). A

direction for future work is to test the model against cortical data in area V2.

A more complete modeling account should include two stages of surround normal-

ization (e.g., corresponding to V1 and V2) and consider what is inherited from area V1

and what is unique to area V2. Although we have emphasized model units based on the

second layer of the CNN, our approach can more generally applied to other hierarchical

models, such as those learned with unsupervised methods (e.g., Hosoya and Hyvrinen,

2015).
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Appendix

6.1 Maximum likelihood estimation of covariance

Recall the pdf of our Gaussian scale mixture with Rayleigh mixer:

pX(x) =
1

(2π)m/2 |Λ|1/2hm
a1−m/2Km/2−1(a), (10)

where Kλ(·) is the modified Bessel function of the second kind, and

a2 =
xTΛ−1x

h2
. (11)

Eq.(10) can be employed to compute the likelihood function of the covariance matrix

Λ. Furthermore, notice that the scale parameter h can be simply dismissed by making

part of the covariance4. If we take Λ̂2 = Λh2, Eq.(10) becomes:

pX(x) =
1

(2π)m/2 |Λ̂|1/2
â1−m/2Km/2−1(â), (12)

where â = xTΛ̂−1x. From this point on, to simplify notation, we will refer to Λ̂ as Λ.

and â as simply a.

For an exemplar xi, the partial derivative of log-likelihood function with respect to

Λ−1 is given by:

∂ logL(Λ|xi)

∂Λ−1
=

∂ log (pX(xi))

∂Λ−1
=

1

pX(xi)

∂pX(xi)

∂Λ−1

=
Λ

2
− 1

2a

Km/2(a)

Km/2−1(a)
xixi

T. (13)

Based on Eq.(13), we propose the following iterative update rule for Λ

Λnew ← 1

N

N
∑

i=1

gm(ai)xixi
T, (14)

4Adding scale back is straightforward.
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where

gm(ai) =
1

ai

Km/2(ai)

Km/2−1(ai)
, (15)

and ai =
√

xi
TΛold

−1xi.

Details about inference

Here, we work out the inference procedure for the full covariance GSM. Let \i denote

the set of all indexes minus index i, and decompose the precision matrix Λ−1 into,

Λ−1 =









(Λ−1)\i,\i (Λ−1)\i,i

(Λ−1)i,\i (Λ−1)i,i









. (16)

It can be shown that

E [Gi|x] =
ci√
a\i

(

a

a\i

)
m

2
−1 |Λ| 12

σi|((Λ−1)\i,\i)−1| 12
Km−1

2

(a\i)

Km

2
−1(a)

, (17)

where σi
2 = (Λ)i,i, and

a\i
2 = x\i

T(Λ−1)\i,\ix\i + 2xix\i
T(Λ−1)\i,i+

+ xi
2
[

(Λ−1)i,\i((Λ
−1)\i,\i)

−1(Λ−1)\i,i + σi
−2
]

.

(18)

Noticing that

(Λ−1)i,i = σi−2 + (Λ−1)i,\i((Λ
−1)\i,\i)

−1(Λ−1)\i,i, (19)

yields a\i = a. Furthermore, since σ2
i = |Λ||(Λ−1)\i,\i|,

E [Gi|x] =
xi√
a

Km−1

2

(a)

Km

2
−1(a)

. (20)

6.2 Mixture of Gaussian scale mixtures

The mixture model has the following general form:

pX(x) =
∑

α∈A

ΠαpX(x|Λα) (21)
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Parameter estimation for the above model Eq.(21) can be solved using expectation max-

imization (EM) algorithm. In particular, we use the conditional EM algorithm to update

the parameters of each of the mixture components. For each partial E-step, we compute

the posterior distributions over the assignment variable:

q(α,xi) =
ΠαpX(xi|Λα)

∑

α′∈A

Πα′pX(xi|Λα′)
, for all α ∈ A. (22)

In the partial M-step, we update all the mixture probabilities using Eq.(22),

Πα′ ← 1

N

N
∑

i=1

q(α′,xi), for all α′ ∈ A, (23)

and the corresponding covariance Λα using a modified version of the fixed-point Eq.(14),

as follows:

Λα ←

N
∑

i=1

q(α,xi)gm(xi|Λα)xixi
T

N
∑

j=1

q(α,xj)

. (24)

where gm(xi|Λα) = gm(
√

xi
TΛα

−1xi) from Eq.(15) We use a single fixed-point itera-

tion per partial CEM iteration. The proposed fixed point update increases the likelihood

at each iteration.

Two-GSM mixture model for flexible normalization

Gaussian scale mixture models have been used to explain non-linear dependencies

among linear decompositions of natural stimuli such as images. In the simplest case,

it is assumed that such dependencies carry over the entire stimuli. For example, in

vision, commonly used approaches of local contrast normalization apply the same nor-

malization scheme across the entire image. Spatial pools for normalization have been

applied to explain responses to redundant stimuli. While this model is able to account
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for suppressions of unit responses where spatial context is redundant, it can also lead

to suppression in cases where context may not be redundant. A flexible normalization

that suppresses responses only when the spatial context is deemed as redundant can be

constructed as a mixture of GSMs. A simple version considers a component with full

center-surround dependencies, a second component representing the center-surround

independence results from the product of a center only and surround only GSM distri-

butions:

pX(x) = ΠcspX(x|Λcs) + (1− Πcs)pXc
(xc|Λc)pXs

(xs|Λs), (25)

where xc and xs denote the sub-vectors of x containing the center and surround vari-

ables, respectively. The variants of the EM steps prsented in Eq.(22), Eq.(23), and

Eq.(24) are discussed below. For each partial E-step

q(cs,xi) =
ΠcspX(xi|Λcs)

Q(xi)
, (26)

q(cs ⊥⊥,xi) =
(1−Πcs)pXx

(xi,c|Λc)pXs
(xi,s|Λs)

Q(xi)
= 1− q(cs,xi) (27)

Q(xi) = ΠcspX(xi|Λcs) + (1−Πcs)pXc
(xi,c|Λc)pXs

(xi,s|Λs) (28)

(29)

Each partial M-step updates the center-surround dependent probability using Eq.(22),

Πcs ←
1

N

N
∑

i=1

q(cs,xi). (30)

Three partial M-step updates are required:

1. A center-surround dependent covariance Λcs update,

Λc ←

N
∑

i=1

q(cs,xi)gm(xi|Λcs)xixi
T

N
∑

j=1

q(cs,xj)

, (31)
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2. a center-only covariance

Λc ←

N
∑

i=1

(1− q(cs,xi))gmc
(xi,c|Λc)xi,cxi,c

T

N
∑

j=1

1− q(cs,xj)

. (32)

3. and a surround-only covariance

Λs ←

N
∑

i=1

(1− q(cs,xi))gms
(xi,s|Λs)xi,sxi,s

T

N
∑

j=1

1− q(cs,xj)

. (33)

Re-parameterization:

To simplify computations and directly enforce the nonnegative definiteness in our

covariance estimation, we re-parametrize the likelihood function. Let us write,

Λ = BTB, and Λ−1 = ATA. (34)

Then, B = A−T and

∂ logL(Λ|xi)

∂A
= B− 1

a

Km/2(a)

Km/2−1(a)
Axixi

T, (35)

which yields the following fixed point update:

Bnew ← 1

N

N
∑

i=1

gm(ai)Aoldxixi
T (36)

A center-surround independent model with independent surround units

In this model the center-surround independent component has the extra property that

requires surround units to be independent from each other. One consequence of this

requirement is that the surround covariance Λs becomes a diagonal matrix. Note that

diagonal covariance is a necessary but not sufficient condition for independence in this
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case. The main feature for independence is that each one of the surround units has its

own mixer (scaling rather than mixing) variable instead of a shared mixer as it is the

case in the model previously discussed. If the mixer (scaling) variables are Rayleigh

distributed, each surround unit ℓ in the center-surround independent component has a

Laplace distribution:

fℓ(x) =
1

2
√

(Λc)ℓ,ℓ

exp



− |x|
√

(Λc)ℓ,ℓ



, (37)

where (Λc)ℓ,ℓ denotes the diagonal element of the surround covariance matrix Λc. Note

that this matrix has zero off-diagonal elements by definition. In this model,

pXs
(xi,s|Λs) =

∏

ℓ∈S

fℓ
(

(xi,s)ℓ
)

(38)

In this modified version Eq.(33) becomes:

(Λs)ℓ,ℓ ←

N
∑

i=1

(1− q(cs,xi))
∣

∣(xi,s)ℓ
∣

∣

N
∑

j=1

1− q(cs,xj)

√

(Λs)ℓ,ℓ. (39)

The rest of the EM algorithm proceeds in the same way as described in Eq.(31) and

Eq.(32).

Matching covariances for inference

Here, we describe how we obtain the transformation Q for equation (7) in the paper.

Assuming that both matrices are full rank, we can write Λcs = ATA and Λcs⊥⊥ = BTB.

Furthermore, there exists a transformation Q such that:

QTΛcs⊥⊥Q = Λcs, (40)

which is simply given by Q = B−1A.
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6.3 Judging the effectiveness of normalization

As noted above, the Gaussian scale mixture introduces a multiplicative coupling be-

tween variables that cannot be removed by linear means. This coupling is captured by

a simple dependency measure based on the energy of the variables. For zero mean, unit

variance, and mutually independent Gi and Gj , define Xi = CiV and Xj = GjV where

the mixer V is also independent of Gi and Gj . The covariance of X2
i and X2

j is given

by,

E
[

(X2
i − E

[

X2
i

]

)(X2
j − E

[

X2
j

]

)
]

= E
[

X2
i X

2
j

]

− E
[

X2
i

]

E
[

X2
j

]

= E
[

G2
iV

2G2
jV

2
]

− E
[

G2
iV

2
]

E
[

G2
jV

2
]

= E
[

V 4
]

− E
[

V 2
]2
. (41)

The strength of the coupling depends on the spread of V . A perfect inversion of

the coupling, which would require explicit values of V , would make the expression

Eq.(41) zero. Here, we use a related measure, the correlation between squared responses

(Coates and Ng, 2011). This measure has been used to select groups of receptive fields

that should be processed together in a subsequent layer of a deep network. The cor-

relation between squared responses is computed in a two-step process. First, variables

X are decorrelated by whitening using ZCA. For the pair whitened variables (X̃i, X̃j),

correlation of squared responses is given by:

S(X̃i, X̃j) =
E

[

(X̃2
i X̃

2
j − 1)

]

√

E

[

(X̃4
i − 1)

]

E

[

(X̃4
j − 1)

]

(42)
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6.4 Additional simulations

Flexible normalization on the first convolutional layer of AlexNet

We also trained our flexible normalization model on the responses of the first convolu-

tional layer of AlexNet. The filters in this layer resemble the patterns that have been

identified to elicit vigorous responses in V1 neurons. This is not the first time the flex-

ible normalization model has been applied to filters modeling V1. For previous work,

we refer the readers to Coen-Cagli et al. (2009, 2012, 2015). Nevertheless, to the best of

our knowledge this is the first time the flexible normalization model has been applied to

filters learned from data in a supervised learning task. In previous work, the orientation

of the filters, which was known, was employed to restrict the model fitting by adding

symmetry constraints to the covariance matrices of the model. As we explained in the

main text, our modified model does not employ these symmetry constraints, but forces

the surround variables to be fully independent, which translates into having a separate

mixer variable for each one of them.

Covariance structure of the surround components of the first convolutional layer

of AlexNet

Similarly to Figure 4a in the paper, we visualize the covariance structure of the surround

covariance (Figure 10). As we can see, low frequency filters expose stronger correlation

in their responses than the high frequency filters. Also the orientation of the filter is

reflected in the covariance structure of the model, similar to the results obtained in

(Coen-Cagli et al., 2009) for wavelet filters. The high frequency filters showed lower

levels of correlation and weaker oriented patterns (see for instance lower right corner in
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Figure 10: Covariance structure for different units in the first convolutional layer of

AlexNet. We display the covariance structure of the surround pool along with the visu-

alization of the corresponding filter. Thicker lines mean larger magnitude of the corre-

lation. Line color linearly interpolates from blue for negative values to red for positive

values

Figure 10).

High order correlations between surround components of the first convolutional

layer of AlexNet

Here, we show the correlation of energies for the first layer units of AlexNet before and

after normalization (Figure 11). We can see that the normalization procedure reduces

the energy correlation significantly. In addition to the squared correlation, we also

visualize the normalized conditional histograms before and after normalization, as well
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Figure 11: Correlation of energies between center and surround responses for a subset

of units of the first convolutional layer of AlexNet. The upper half correspond to the

correlation before normalization and the bottom half after flexible normalization.

as the marginal distributions of the center variable.

High order correlations between surround components of the third convolutional

layer of AlexNet

We also incorporated flexible normalization into the third convolutional layer “Conv3”

of Alexnet. We examined the mutual information and the entropy, in comparison to

layer 2 and 1 (Figure 13). Interestingly, mutual information between center and sur-

round responses reduced, and entropy increased, from Conv1 to Conv3. It is also inter-

esting to note that this effect was obtained despite that the overlap between center and

surround units was increased. Namely, in Conv1, center and surround responses were

6 strides apart which corresponded to 0% overlap. For Conv2, responses were chosen 4

strides apart resulting in 20% overlap, and for Conv3, 2 strides apart (roughly 33% over-
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Figure 12: Normalized conditional histograms between center and surround responses

from the first convolutional layer of AlexNet. The first two rows from the top are the

conditional distributions before and after flexible normalization. The third row are the

corresponding log histograms.

lap). The motivation behind increasing the overlap was that the prior probabilities of

center-surround dependence would drop to the point of collapse in Conv3 when center

and surround units were chosen to lie further apart.

Single GSM normalization of second layer units of AlexNet

In addition to flexible normalization, we looked at a simpler model which assumes the

coupling between center and surround units remains the same across the entire image.

This model is a particular case of the flexible normalization where Πcs = 1. In this

model, only the center-surround dependent covariance Λcs is of interest. As shown in
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Figure 13: Population mutual information and marginal entropy summary statistics for

flexible normalization versus the control surround normalization model for first, second

and third convolutional layers of AlexNet.

more detail for the population statistics in the main text, the single GSM model reduces

dependencies and makes the marginal distributions closer to Gaussian, but not as much

as the mixture of GSMs model.
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Figure 14: Comparison between flexible and single GSM normalized conditional his-

tograms between center and surround responses from the second convolutional layer of

AlexNet. First three rows from the top show the conditional distributions before and

after flexible normalization and single GSM normalization. The fourth row shows the

corresponding log-histograms.

Predicting homogeneity of stimuli based on the first convolutional layer features

of AlexNet

We also mapped the inferred posterior probabilities of the center-surround dependent

component for the first convolutional layer of AlexNet. In this case, the units predict

less homogeneity in the images as compared to Conv2 units. Flexible normalization in
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Conv2 picks up homogeneous structure that is not captured at the Conv1 level. For in-

stance, the textures in the fourth and fifth rows in Figure 15 are consider heterogeneous

by Conv1 units, but more homogeneous by Conv2 units. In addition, the foliage back-

ground in the image in the last row becomes more homogeneous in Conv2, highlighting

one of the objects present in the scene.
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