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Abstract

Deep convolutional neural networks (CNNs) trained with lo-
gistic and softmax losses have made significant advancement
in visual recognition tasks in computer vision. When training
data exhibit class imbalances, the class-wise reweighted ver-
sion of logistic and sofmtax losses are often used to boost per-
formance of the unweighted version. In this paper, motivated
to explain the reweighting mechanism, we explicate the learn-
ing behavior of those two loss functions by analyzing the nec-
essary condition (e.g., gradient equals to zero) after training
CNNs to converge to a local minimum. The analysis imme-
diately provides us explanations for understanding (1) quan-
titative effects of the class-wise reweighting mechanism: de-
terministic effectiveness for binary classification using logis-
tic loss yet undeterministic for multi-class classification using
softmax loss; (2) disadvantage of logistic loss for single-label
multi-class classification via one-vs.-all approach, which is
due to the averaging effect on predicted probabilities for the
negative class (e.g., non-target classes) in the learning pro-
cess. With the disadvantage and advantage of logistic loss
disentangled, we thereafter propose a novel reweighted lo-
gistic loss for multi-class classification. Our simple yet effec-
tive formulation improves ordinary logistic loss by focusing
on learning hard non-target classes (target vs. non-target class
in one-vs.-all) and turned out to be competitive with softmax
loss. We evaluate our method on several benchmark datasets
to demonstrate its effectiveness.

Introduction

Deep convolutional neural networks (CNNs) trained with
logistic or softmax losses (LGL and SML respectively for
brevity), e.g., logistic or softmax layer followed by cross-
entropy loss, have achieved remarkable success in various
visual recognition tasks (LeCun, Bengio, and Hinton 2015;
Krizhevsky, Sutskever, and Hinton 2012; He et al. 2016;
Simonyan and Zisserman 2014; Szegedy et al. 2015). The
success mainly accredits to CNN’s merit of high-level fea-
ture learning and loss function’s differentiability and sim-
plicity for optimization. When training data exhibit class
imbalances, training CNNs with gradient descent is bi-
ased towards learning majority classes in the conventional

*Corresponding author
Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(unweighted) loss, resulting in performance degradation
for minority classes. To remedy this issue, the class-wise
reweighted loss is often used to emphasize the minority
classes that can boost the predictive performance without
introducing much additional difficulty in model training
(Cui et al. 2019; Huang et al. 2016; Mahajan et al. 2018;
Wang, Ramanan, and Hebert 2017). A typical choice of
weights for each class is the inverse-class frequency.

A natural question then to ask is what roles are those
class-wise weights playing in CNN training using LGL
or SML that lead to performance gain? Intuitively, those
weights make tradeoffs on the predictive performance
among different classes. In this paper, we answer this ques-
tion quantitatively in a set of equations that tradeoffs are
on the model predicted probabilities produced by the CNN
models. Surprisingly, effectiveness of the reweighting mech-
anism for LGL is rather different from SML. Here, we view
the conventional (e.g., no reweighting) LGL or SML as a
special case where all classes are weighted equally.

As these tradeoffs are related to the logistic and softmax
losses, answering the above question actually leads us to an-
swering a more fundamental question about their learning
behavior: what is the property that the decision boundary
must satisfy when models are trained? To our best knowl-
edge, this question has not been investigated systematically,
despite logistic and softmax losses are extensively exploited
in deep leaning community.

While SML can be viewed as a multi-class extension of
LGL for binary classification, LGL is a different learning
objective when used in multi-class classification (Bishop
2006). From the perspective of learning structure of data
manifold as pointed out in (Belkin, Niyogi, and Sindhwani
2006; Bishop 2006; Dong, Zhu, and Gong 2019), SML treats
all class labels equally and poses a competition between true
and other class labels for each training sample, which may
distort data manifold; for LGL, the one-vs.-all approach it
takes avoids this limitation as it models each target class in-
dependently, which may better capture the in-class structure
of data. Though LGL enjoys such merits, it is rarely adopted
in existing CNN models. The property that LGL and SML
decision boundaries must satisfy further reveals the differ-
ence between LGL and SML (see Eq. (9), (10) with anal-



ysis). If used for the multi-class classification problem, we
can identify two issues for LGL. Compared with SML, LGL
may introduce data imbalance, which can degrade model
performance as sample size plays an important role in de-
termining decision boundaries. More importantly, since the
one-vs.-all approach in LGL treats all other classes as the
negative class, which is of a multi-modal distribution, the av-
eraging effect of the predicted probabilities of LGL can hin-
der learning discriminative feature representations to other
classes that share some similarities with the target class.
Our contribution can be summarized as follows:

e We provide a theoretical derivation on the relation among
sample’s predicted probability (once CNN is trained),
class weights in the loss function and sample size in
a system of equations. Those equations explaining the
reweighting mechanism are different in effect for LGL
and SML.

e We depict the learning behavior for LGL and SML for
classification problems based on those probability equa-
tions. Under mild conditions, the expectation of model
predicted probabilities must maintain a relation specified
in Eq (9).

e We identify that the multi-modality neglect problem in
LGL is the main obstacle for LGL in multi-class clas-
sification. To remedy this problem, we propose a novel
learning objective, in-negative class reweighted LGL, as
a competitive alternative for LGL and SML.

e We conduct experiments on several benchmark datasets
to demonstrate the effectiveness of our method.

Related Work

With recent explosion in computational power and avail-
ability of large scale image datasets, deep learning models
have repeatedly made breakthroughs in a wide spectrum of
tasks in computer vision (LeCun, Bengio, and Hinton 2015;
Goodfellow, Bengio, and Courville 2016). Those advance-
ments include new CNN architectures for image classifi-
cation(Krizhevsky, Sutskever, and Hinton 2012; He et al.
2016; Simonyan and Zisserman 2014; Szegedy et al. 2015),
objective detection and segmentation (Ren et al. 2015;
Ronneberger, Fischer, and Brox 2015), new loss functions
(Dong, Zhu, and Gong 2019; Zhang and Sabuncu 2018) and
effective training techniques to improve CNN performance
(Srivastava et al. 2014; Ioffe and Szegedy 2015).

In those supervised learning problems, CNNs are mostly
trained with loss functions such as LGL and SML. In prac-
tice, class imbalance naturally emerges in real-world data
and training CNN models directly on those datasets may
lead to poor performance. This phenomenon is referred as
the imbalanced learning problem (He and Garcia 2008).
To tackle this problem, cost-sensitive method (Elkan 2001;
Zhou and Liu 2010) is the widely-adopted approach in cur-
rent training practices as they don’t introduce any obsta-
cles in the backpropagation algorithm. One of the most
popular methods is class-wise reweighting loss function
based on LGL and SML. For example, (Huang et al. 2016;
Wang, Ramanan, and Hebert 2017) reweight each class by

its inverse-class frequency. In some long-tailed datasets, a
smoothed version of weights is adopted (Mahajan et al.
2018; Mikolov et al. 2013), which emphasizes less on mi-
nority classes, such as the square root of inverse-class fre-
quency. More recently, (Cui et al. 2019) proposed a weight-
ing strategy based on the calculation of effective sample
size. In the context of learning from noisy data, (Zhang
and Sabuncu 2018) provides analysis on the weighted SGL
showing close connection to the mean absolute error (MAE)
loss. However, what role class-wise weights play in LGL
and SML is not explained in previous works. In this paper,
we provide a theoretical explication on how the weights con-
trol the tradeoffs among model predictions.

If we decompose the multi-class classification as multi-
ple binary classification sub-tasks, LGL can also be used
as the objective function via one-vs.-all approach (Hastie
et al. 2005; Bishop 2006), which is however rarely adopted
in existing works of deep learning. Motivated to understand
class-wise reweighted LGL and SML, our analysis further
leads us to a more profound discovery in the properties of
decision boundaries for LGL and SML. Previous work in
(Dong, Zhu, and Gong 2019) showed that the learning ob-
jective using LGL is quite different from SML as each class
is learned independently. They identified the negative class
distraction (NCD) phenomenon that might be detrimental to
model performance when using LGL in multi-class classifi-
cation. From our analysis, the NCD problem can be partially
explained that LGL treats the negative class (e.g., non-target
classes) as a single class and ignores its multi-modality. If
there exists one non-target class that share some similarity
with the target class, CNN trained with LGL may make less
confident predictions for that non-target class (e.g., probabil-
ity of belonging to the negative class is small) as its predicted
probabilities are averaged out due to other non-target classes
with confident predictions. Consequently, samples from that
specific non-target class can be misclassified into the target
class, resulting in large predictive error.

Analysis on LGL and SML

In this section, we provide a theoretical explanation for the
class-wise weighting mechanism and depict the learning be-
havior of LGL and SML losses.

Notation Let D = {(z;, )}, be the set of training sam-
ples of size N, where x; € R is the p-dimensional feature
vector and y; = k(k =0,--- , K — 1) is the true class label,
and Sy = {(z;,v:) : y; = k} the subset of D for the k-th
class. The bold y; = (y?,---,y ") is used to represent
the one-hot encoding for y;: y* = 1if y; = k, 0 otherwise.
Ny = |Sk|(k =0,---, K — 1) is used to represent sample
size for the k-th class and hence ), N, = N. The maxi-
mum size is denoted as Nyax = Maxg=0,..., kx—1(Ng).

Preliminaries

For classification problem, the probability for a sample x
belonging to one class is modeled by logistic (e.g., sigmoid)
for binary classification
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ply = 0lz;0) =1 —ply = 1|z),
and by softmax for multi-class classification
exp(zk)
K—1
> exp(z)

where all 2’s are the logits for  modeled by CNN with pa-
rameter vector 6. It is worth noting that softmax is equiva-
lent to logistic in binary classification as can be seen from

p(y = k|z;0) =

exp(z1) B 1

ply = lz) = exp(z0) +exp(z1)

Hence, without loss of generality, we write class-wise
reweighted LGL (K = 2) and SML (K > 3) in a unified
form as follows

K—

Z Ak Z log f1(0;x;,) = ALy (0
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where each f(0;x;) = p(y; = k|x;) is the CNN predicted
probability of sample x; belonging to the k-th class; As are
weight parameters to control each class’s contribution in the
loss. When all As are equal, L(8) is the conventional cross-
entropy loss and minimizing it is equivalent to maximizing
likelihood. If the training data are imbalanced, a different
setup of As is used, usually classes with smaller sizes are
assigned with higher weights. Generally, As are treated as
hyperparameters and selected by cross-validation.

We emphasize here that using logistic function for multi-
class (K > 3) is a different learning objective from softmax
in this case as the classification problem is essentially refor-
mulated as K binary classification sub-problems.

Key Equations for Weights \s

Assume that CNN’s output layer, after convolutional layers,
is a fully connected layer of K neurons with bias terms, then
the predicted probability for sample x is given by the soft-
max activation:

exp(Wihg + bi)
fk(m) = K
> j—1 exp(W jhg + b;)

(k:07 7K71)7
(2

where h,, is the feature representation of & extracted from
convolutional layers, W, and by, are parameters of the k-th
neuron in the output layer. For notational simplicity, we have
dropped 0 in fi(x).

After CNN is trained, we assume that the reweighted SML
L(0) is minimized to local optimum 6. By optimization
theory, a necessary condition is that the gradient of L(6) is
zero at § = 9*:

oL 8Lk
9% = =0 < Z )\k =0. 3)

We specifically consider L4 (@) for the 1-st class with respect
to one component 7 of €. Then with chain rule, the necessary

"More strictly, zero is in the subgradient of L(8) at 8*. But this
doesn’t affect the following analysis.

1+ exp(—(z1 — 20))°

condition above gives:
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where we use f;,, = f;(x;,) given by Eq. (2).

Let o(z) be the softmax function of z = (21, - ,2K)
with each component o (2z) = exp(zi)/>.; exp(z;), its
derivative is

9o (zr) _ {cr(zk)(l —o(z)), i=k
0z; —o(zx)o(2;), i#£ k.

Denoting a;,;, = Wjhg, +b; as the j-thlogitin Eq. (2)

o)

for sample x;, , then f;;, = o(a;;:.)(j =0,--- , K —1).
Again with chain rule and Eq. (5):
afk ik Z afk ik aag ik
o aaj i
8ak oa;;
:fk,i;c( fk‘lk) L szsz],lk J,k'
J#k

(6)

Since Eq. (4) holds valid for any component 7 of 6, we
specifically consider the case when 17 = b;. Therefore we
have aalyik_/ﬁbl = 1and 8aj7ik/8b1 = 0(] = 2, s ,K)
Then Eq. (6) becomes:

Of i _ {fl,i1(1 — f14), k=1
by —[ryin f1ins k#1.

Plug Eq. (7) back into Eq. (4) and rearrange the terms, we
have

)
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With the same calculations, we can obtain other X — 1
similar equations, each of which corresponds to one class.
Remember f;;, is the probability of sample x;, from the
k-th class being predicted into the j-th class, and Eq. (8) re-
veals the quantitative relation between weights As, model
predicted probabilities and training samples. Notice that
CNN is often trained with Ly regularization to prevent over-
fitting. If the bias term bys are not penalized, Eq. (8) still
holds valid. Another possible issue is that the calculation re-
lies on the use of bias terms by, in the output layer. As using
bias increases CNN’s flexibility and is not harmful to CNN
performance, our analysis is still applicable to a wide range
of CNN models trained with cross-entropy loss.

We observe in Eq. (8), >_; g, (1 — f1,4,)/N1 (approxi-
mately) represents the expected probability of CNN incor-
rectly predicting a sample of class 1 and Zike s, S, /Ny
the expected probability of CNN misclassifying a sample of
class k(k # 1) into class 1. If we assume that the training



data can well represent the true data distribution that test-
ing data also follow, the learning behavior of trained CNN
shown in Eq. (8) can be generalized to testing data.

More specifically, since the CNN model is a continuous
mapping and the softmax output is bounded between 0 and
1, by the uniform law of large numbers (Newey and McFad-
den 1994), we have the following system of K equations
once CNN is trained:

AoNo(L = Po—0) & 3 gz A NkPr—o

Ak—1Nk-1(1 = Pr—15k-1) & D s 1 MNEDros k-1,

)
where for indices 7 and j, p;_, ; represents the expected prob-
ability of CNN predicting a sample from class 7 into class j:

Disj = EmNP(:cly:i)fj (x),

where P(x|y = i) is the true data distribution for the i-th
class.

Binary Case with LGL For binary classification problem
(K = 2), Eq. (9) gives us the following relation about CNN
predicted probabilities:

1—poso _ MM
P10 AoNo

(10)

e In the conventional LGL where each class is weighted
equally (A\y = A1), Eq. (10) becomes 1 — pp_o =
Nip1-0/Np. If data exhibit severe imbalance, say Ny =
10Ny, then we must have (p1_o9 < 1)

D1—0
10

If t = 0.5 is the decision making threshold, this im-
plies that the trained neural network can correctly pre-
dict a majority class (e.g., class 0) sample, confidently
(at least) with probability 0.9, on average. However, for
minority class, the predictive performance is more com-
plex which depends on the trained model and data dis-
tribution. For example, if two classes can be well sepa-
rated and the model made very confident predictions, say
Po—so = 0.98, then we must have p;_,; = 0.8 for the mi-
nority class, implying a good predictive performance on
class 1. If po_,o0 = 0.92, then we have p;_,; = 0.2. This
means the predicted probability of a minority sample be-
ing minority is 0.2 on average. Hence, the classifier must
misclassify most minority samples (0.2 < 0.5), resulting
in very poor predictive accuracy for minority class.

> 0.9.

Do—o=1—

o If LGL is reweighted using inverse-class frequencies,
Ao = 1/Ny and A\; = 1/Ny, the equation above is equiv-
alent to po—0 = 1 — P10 = P1—1. Since predictions are
made by y = argmax; f;(z) and fi(x) > fo(x) means
fi(x) > 0.5, we can have a deterministic relation: if ei-
ther class O or 1 can be well predicted (e.g., p;—; > 0.5),
reweighting by class inverse frequencies can guarantee
performance improvement for the minority class. How-
ever, the extent of “goodness” depends on the separability
of the underlying data distributions of the two classes.

)\O 1 No 2No

2 No+N, (2No+N1)
RES 10 1 0.5
. 10.05  1.00 0.50
LHS SimD 1 93) 009 (0.04)
LHS (Sim) 1012 101 0.50

0.67)  (0.05) (0.03)

Table 1: Simulation results (along with standard deviation)
for Eq. (10) over 100 runs, Ay = 1— \y. RHS represents the-
oretical value on the right-hand side of (10); LHS the simu-
lated value on the left hand side.

Simulations for Eq (10) We conduct simulations under two
settings for checking Eq. (10). The imbalance ratio is set to
10 in training data (Ng = 1000, N; = 10000), testing data
size is (1000, 1000); both training and testing data follow the
same data distribution. As the property only relies on the last
fully connected hidden layer, we use the following setup:

e Siml: Py(z|y = 1) = N(=1.5,1)+U(0,0.5), Py(z|ly =
0) = N(1.5,1) + U(—0.5,0). Logistic regression is fit-
ted. A and U represents normal and uniform distribution
respectively.

e Sim2: Pi(zly = 1) = N(py,01), Polzly = 0) =
N(IJ’an'O)’ where Hy = (07()’0)’ Mo = (17 17 1)7 o1 =
1.21, oy = I. A one-hidden-layer forward neural net-
work of layer size (3, 10, 1) with sigmoid activation.

Table 1 shows simulation results under three A settings. We
see from the Table that simulated values match with the the-
oretical values accurately, demonstrating the correctness of
Equation (10).

Multi-class Case with SML Because >, p;—,,, = 1 and Eq.
(9) has K (K — 1) variables with only K equations, we can’t
exactly solve it quantitatively for a relation among those
Di—;’s when K > 2. For the special case when weights are
chosen as the inverse-class frequencies A\, = 1/Ny, con-
sidering for class 1, we have (1 — p;1) ~ 21#1 Ph—s1-
Multi-class classification (K > 2) does not have a determin-
istic relation as in the binary case, as predictions are made by
y = argmax; f;(x) and we don’t have a decisive threshold
for decision making (like the 0.5 in binary case). Our find-
ings match the results in (Zhou and Liu 2010) in the sense
that class-wise reweighting for multi-class is indeterminis-
tic. However, our results are solely based on the mathemat-
ical property of the backpropagation algorithm from opti-
mization theory whereas (Zhou and Liu 2010) is based on
decision theory.

Learning Behavior of LGL and SML As the class-wise
reweighting mechanism is explained in Eq. (9), those equa-
tions also reveal the property of decision boundaries for
LGL and SML. For comparison, the decision boundary of
support vector machine (SVM) (Cortes and Vapnik 1995)
is determined by those support vectors that maximize the
margin and those samples with larger margin have no ef-
fects on the position of decision boundary. On the contrary,
all samples have their contribution to the decision boundary
in LGL and SML so that their averaged probabilities that
the model produces must satisfy Eq. (9). In particular for



the binary case, we can see that if classes are balanced, the
model must make correct predictions with equal confidence
for the positive and negative classes, on average; whereas
for imbalanced data, the decision boundary will be pushed
towards the minority class in a position with Eq (10) always
maintained. Another observation is that if the expectation of
model predicted probabilities doesn’t match with its mode
(e.g skewed distribution), the magnitude of tradeoff between
performance of the majority and minority class depends on
the direction of skewness. If the distribution of the majority
class skews away from the decision boundary, upweighting
minority class will boost model performance at a small cost
of performance degradation for the majority class than if it
skews towards the decision boundary. This implies that es-
timating the shape of data distribution in the latent feature
space and choosing the weights accordingly would be very
helpful to improve model overall performance.

In-negative Class Reweighted LGL

In this section, we focused on LGL for multi-class classifi-
cation via one-vs.-all approach. In addition to the theoret-
ical merits of LGL mentioned in the introduction section
that LGL is capable of better capturing the structure of data
manifold than SML, the guarantee of achieving good perfor-
mance after properly reweighting (e.g., Eg.(10)) is also de-
sirable as the one-vs.-all approach naturally introduces data
imbalance issue.

Multi-modality Neglect Problem In spite of those merits of
LGL, it also introduces the multi-modality neglect problem
for multi-class classification. Since the expectation of model
predicted probability must satisfy Eq (10) for LGL, the aver-
aging effect might be harmful for model performance. In the
one-vs.-all approach, the negative class consists of all the
remaining non-target classes, which follows a multi-modal
distribution (one modality for each non-target class). LGL
treats all non-target classes equally in the learning process. If
there is a hard non-target class that shares non-trivial similar-
ity with the target class, its contribution in LGL might be av-
eraged out by other easy non-target classes. In other words,
those easy non-target classes (e.g., correctly predicted as
the negative class with high probabilities) would compen-
sate the predicted probability of the hard non-target class so
that the probabilistic relation in Eq (10) is maintained. Con-
sequently, model could incorrectly predict samples from the
hard non-target class into the target class, inducing large pre-
dictive error for that class. This phenomenon is not desirable
as we want LGL to pay more attention on the separation of
the target-class with that hard class, meanwhile maintain the
separation from the remaining easy non-target classes.

To this end, we propose an improved version of LGL to
reweight each non-target class’s contribution within the neg-
ative class. Specifically, for the target class & (e.g., positive
class, labeled as y = 1) and all non-target classes (e.g.,
negative class, labeled as y = —1), a two-level reweight-
ing mechanism is applied in LGL, which we term as in-

negative-class reweighted LGL (LGL-INR):

1
Li%6) = - - > logp(y = 1]a;6)

x €Sy
K-1 1
- Z /\iﬁj > log(1 = p(y = 1[a;0)),
7=0,j#k xES;

(11)

where p(y = 1|a; ) is the predicted probability of sample
x belonging to the positive class and \; is the weight for
class j as a sub-class of the negative class.

The first reweighting is at the level of positive vs. negative
class. If we require » j A; = 1, using inverse-frequencies
will maintain the balance between the positive and negative
class, as one-vs.-all is likely to introduce class imbalance.
The second level of reweighting is within the negative class:
we upweight the contribution of a hard sub-class by assign-
ing a larger )\, making LGL-IGR focus more on the learning
for that class.

Choice of \’s When there are a large number of classes,
treating all \’s as hyperparameters and selecting the optimal
values are not feasible in practice as we generally don’t have
the prior knowledge about which classes are hard. Instead,
we adopt a strategy that assigns the weights during the train-
ing process. For each non-target class j(j # k), let S;YIB be
the subset of .S} in the mini-batch, we use the mean predicted
probability

1

D = 7|SMB| Z p(y = 1z,0)
J

MB
mGSj

as the class-level hardness measurement. A larger p; implies
class j is harder to separate from the target class k. We then
transform those p;’s using softmax to get A;:

_ ()

Zi;ﬁk exp(6pi) ’

where 8§ > 0 is the temperature that can smooth (0 <
B < 1) or sharpen (5 > 1) each non-target class’s contri-
bution (Chorowski et al. 2015). LGL-INR adaptively shifts
its learning focus to those hard classes, meanwhile keep at-
tentive on those easy classes. Note that this strategy only
introduces one extra parameter in LGL-INR.

With the competition mechanism imposed by >~ \; = 1,
LGL-INR can be viewed as a smoothed learning objec-
tive between the one-vs.-one and one-vs.-all approach: when
f =0, = 1/K — 1, all non-target classes are weighted
equally, which is the in-negative-class balanced LGL using
inverse-class frequencies; when (3 is very large, A; concen-
trates on the hardest class (e.g., A; = 1) and LGL-INR ap-
proximately performs one-vs.-one classification. We don’t
specifically fine-tune the optimal value of S and 8 = 1
works well in our experiments.

A\ =

Experiments

We evaluate LGL-INR on several benchmark datasets for
image classification. Note that in our experiments, apply-
ing LGL in multi-class classification naturally introduces



Model Architecture Model Loss MNIST FMNIST KMNIST
CNN2C CV(C20K5S1)-MP(K2S2)- LGL 99.15 89.44 94.37
CV(C50K5S1)-MP(K2S2)-800-10 CNN2C SML 99.09 91.15 95.13
CV(C32K3S1)-BN-CV(C64K3S1)-BN- LGL-INR  99.29 91.15 96.43
CNNS5C | CV(C128K3S1)-MP(K2S2)-CV(C256K3S1)- LGL 99.36 92.35 96.35
BN-CV(C512K3S1)-MP(K8S1)-512-10 CNN5C SML 99.47 93.15 96.39

Table 2: CNN architectures used for MNIST-type datasets.
C-channel represents number, K-kernel size, S-stride, BN-
batch normalization and MP-max pooling

data imbalance which is handled in our LGL-INR formu-
lation. Our primary goal here is to demonstrate that LGL-
INR can be used as a drop-in replacement for LGL and SML
with competitive or even better performance, rather than out-
perform the existing best models using extra training tech-
niques. For fair comparison, all loss functions are evaluated
in the same test setting. Code is made publicly available at
https://github.com/Dichoto/LGL-INR.

Experiment Setup

Dataset We perform experiments on four MNIST-type
datasets, MNIST, Fashion-MNIST (FMNIST) (Xiao, Ra-
sul, and Vollgraf 2017), Kuzushiji-MNIST (KMNIST)
(Clanuwat et al. 2018) and CIFAR10. FMNIST and KM-
NIST are intended as drop-in replacements for MNIST
which are harder than MNIST. Both datasets are gray-scale
images consisting of 10 classes of clothing and Japanese
character respectively. CIFAR10 consists of colored images
of size 32 x 32 from 10 objects.

Model setup We test three loss functions on each dataset
with different CNN architectures. For MNIST-type datasets,
two CNNs with simple configurations are used. The first
one (CNN2C) has two convolution layers and the other one
(CNNSC) has 5 convolution layers with batch normaliza-
tion (Ioffe and Szegedy 2015). For CIFAR10, we use Mo-
bilenetV2 (Howard et al. 2017) and Resnet-18 (He et al.
2016) with publicly available implementations.
Implementation details All models are trained with the
standard stochastic gradient descent (SGD) algorithm. The
training setups are as follows. For MNIST-type data, the
learning rate is set to 0.01, the momentum is 0.5, batch size
64, number of epoch is 20. We don’t perform any data aug-
mentation. For CIFAR data, we train the models with 100
epochs and set batch size to 64. The initial learning rate is
set to 0.1, and divide it by 10 at 50-th and 75-th epoch. The
weight decay is 10~* and the momentum in SGD is 0.9.
Data augmentation includes random crop and horizontal flip.
We train all models without pretraining on large-scale image
data. Model performance is evaluated by the top-1 accuracy
rate and we report this metric on the testing data from the
standard train/test split of those datasets for fair performance
evaluation. For LGL-INR, we report the results using 5 = 1.

Predictive Results

Table 3 and Table 4 shows the classification accuracy us-
ing LGL, SML and LGL-INR on the MNIST-type and CI-
FAR10 dataset respectively. From the table, we can observe

LGL-INR  99.63 93.54 97.46

Table 3: Predictive top-1 accuracy rate (%) on the standard
testing data of MNIST-type datasets.

Loss MobilenetV2 Resnetl8
LGL 92.40 91.55
SML 91.11 91.32
LGL-INR 93.34 93.68

Table 4: Predictive top-1 accuracy rate (%) on the standard
testing data of CIFAR10 using different models.

that for all three loss functions, model with larger capacity
yields higher accuracy. On MNIST-type data, LGL yields
overall poorer performance than SML. This is because in
those datasets, some classes are very similar to each other
(like shirt vs. coat in FMNIST) and the negative class con-
sists of 9 different sub-classes. Hence the learning focus of
LGL may get distracted from the hard sub-classes due to the
averaging behavior of LGL as shown in Eq (9). However,
SML doesn’t suffer this problem as all negative sub-classes
are treated equally. On CIFAR10, LGL achieves better accu-
racy than SML. This is possibly due to the lack of very simi-
lar classes as in MNIST-type data. This observation demon-
strates LGL’s potential as a competitive alternative to SML
in some classification tasks.

On the other hand, LGL-INR adaptively pays more at-
tention on the hard classes while keeps its separation from
easy classes. This enables LGL-IRN to outperform LGL and
SML notably. Comparing LGL-IRN with LGL, we see that
the multi-modality neglect problem deteriorates LGL’s abil-
ity of learning discriminative features representation, which
can be relieved by the in-negative class reweighing mecha-
nism; comparing LGL-IRN with SML, focusing on learning
hard classes (not restricted to classes similar to the target
class) is beneficial. Also, the adaptive weight assignment in
the training process doesn’t require extra effort on the weight
selection, making our method widely applicable.

Further Analysis

We check the predictive behavior of LGL-INR in detail by
looking at the confusion matrix on testing data. Here, we use
CNN2C and KMNIST dataset as an example. Fig. 1 show
the results. We observe that for LGL, Class 1 and 2 have the
lowest accuracy among 10 classes. By shifting LGL’s learn-
ing focus on hard classes, LGL-INR significantly improves
model performance on class 1 and 2. This is within our ex-
pectation backed by the theoretical depiction of LGL’s learn-
ing behavior. SML does not have the multi-modality neglect
problem as each class is treated equally in the learning pro-
cess, yet it also does not pay more attention to the hard



o 0
11 800 113 &
£ 2{15 3
o3 g0 3 D
B 4 & afn 8
= [
= 5 w
= a0 25 9
6 6 4
71 ]
200 L C
81 B 8
81 1 5
o 2 :

&
<
<
o

Predicted label

4

Predicted label

5 0 23 6 01 3 4 2

- 3 2 6 3
7 - 800

7 2 6 3T

3 3 ga4 2 24 3 i
T BO0

1 2aiu 3 7 1 4 4 1 3

) 541 4 18 5 3 G 1 4 2
a0 F 400

2 43 2 10 1 0 2BM1 0 1

2 745 3 2 0 3 1 174 RS
200 200

g{0 1 3 3 3 1 1
946 4 4 1 2 0 1
=) & o R e o
© A B 9 SN T T R G A GG

Predicted label
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Figure 2: Testing top-1 accuracy on FMNIST and MNIST.

classes. This makes LGL-INR advantageous: LGL-INR out-
performs SML on 9 classes out of 10. For example, class 0
have 18 samples misclassified into class 4 whereas only 6
are misclassified in LGL-INR.

Figure 2 displays the training accuracy curve for LGL,
SML and LGL-INR on FMNIST and KMNIST. Under the
same training protocol, LGL-INR achieves slightly faster
convergence rate than SML and LGL with comparative
(FMNIST) or better (KMNIST) performance, implying that
focusing on learning hard classes may facilitate model train-
ing process.

B 1 2 4
Accuracy 9643 96.29 96.43

Table 5: Accuracy of different 3 values on KMNIST. Model:
CNN2C.

We also check the sensitivity of the temperature param-
eter 5 in LGL-INR weighting mechanism. Mathematically,
a large or small value for /3 is not desirable as the LGL-
INR is reduced to an approximate one-vs.-one or a class-
balanced learning objective. We test 3 = 1,2,4 on KM-
NIST. As shown in Table 5 and Fig. 2, model performance is
not sensitive to 3 in this range, making LGL-INR a compet-
itive alternative to LGL or SML without introducing much
hyper-parameter tuning.

Conclusion

In this paper, motivated to explain the class-wise reweight-
ing mechanism in LGL and SML, we theoretically deprived
a system of probability equations that depicts the learning
behavior of LGL and SML, as well as explains the roles of
those class-wise weights in the loss function. By examin-
ing the difference in the effects of the weight mechanism on
LGL and SML, we identify the multi-modality neglect prob-
lem is the major obstacle that can negatively affect LGL’s
performance in multi-class classification. We remedy this
shortcoming of LGL with a in-negative-class reweighting
mechanism. The proposed method shows its effectiveness
on several benchmark image datasets. For future works, we
plan to incorporate the estimation of data distribution and
use the reweighting mechanism of LGL-INR at the sample
level in the model training process to further improve the
efficacy of the reweighting mechanism.
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