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On the Uniqueness and Stability of Dictionaries for

Sparse Representation of Noisy Signals
Charles J. Garfinkle and Christopher J. Hillar

Abstract—Learning optimal dictionaries for sparse coding has
exposed characteristic sparse features of many natural signals.
However, universal guarantees of the stability of such features in
the presence of noise are lacking. Here, we provide very general
conditions guaranteeing when dictionaries yielding the sparsest
encodings are unique and stable with respect to measurement or
modeling error. We demonstrate that some or all original dictionary
elements are recoverable from noisy data even if the dictionary
fails to satisfy the spark condition, its size is overestimated, or only
a polynomial number of distinct sparse supports appear in the
data. Importantly, we derive these guarantees without requiring
any constraints on the recovered dictionary beyond a natural upper
bound on its size. Our results yield an effective procedure sufficient
to affirm if a proposed solution to the dictionary learning problem
is unique within bounds commensurate with the noise. We suggest
applications to data analysis, engineering, and neuroscience and
close with some remaining challenges left open by our work.

Index Terms—Inverse problems, brain modeling, parameter es-
timation, sparse matrices, unsupervised learning, channel models.

I. INTRODUCTION

S
PARSE coding is a common modern approach to pattern

analysis in signal processing whereby each of N observed

n-dimensional signal samples is viewed as a (noisy) linear

combination of at most k elementary waveforms drawn from

some unknown “dictionary” of size m � N (see [1] for a com-

prehensive review). Optimizing dictionaries subject to this and

related sparsity constraints has revealed seemingly characteristic

sparse structure in several signal classes of current interest (e.g.,

in vision [2]).

Of particular note are the seminal works in the field [3]–[6],

which demonstrated that dictionaries optimized for coding small

patches of “natural” images share qualitative similarities with

linear filters estimated from response properties of simple-cell

neurons in mammalian visual cortex. Curiously, these wave-

forms (e.g., “Gabor” wavelets) appear in dictionaries learned

by a variety of algorithms trained over different natural image

datasets, suggesting that these learned features may, in some

sense, be canonical [7].
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Motivated by these discoveries and more recent work relating

compressed sensing [8] to a theory of information transmis-

sion through random wiring bottlenecks in the brain [9], we

address when dictionaries for sparse representation are indeed

identifiable from data. Answers to this question may also have

implications in practice wherever an appeal is made to latent

sparse structure of data (e.g., forgery detection [10], [11]; brain

recordings [12]–[14]; and gene expression [15]).

While several algorithms have been recently proposed to

provably recover unique dictionaries under specific conditions

(see [16, Section I-E] for a summary of the state-of-the-art), few

theorems can be invoked to justify the consistency of inference

under this model of data more broadly. To our knowledge, a

universal guarantee of the uniqueness and stability of learned

dictionaries and the sparse representations they induce over

noisy data has yet to appear in the literature.

Here, we prove very generally that uniqueness and stabil-

ity is a typical property of sparse dictionary learning. More

specifically, we show that matrices injective on a sparse do-

main are identifiable from N = m(k − 1)
(

m
k

)

+m noisy linear

combinations of k of their m columns up to an error that

is linear in the noise (Theorem 1 and Corollary 1). In fact,

provided n ≥ min(2k,m), in almost all cases the problem is

well-posed, as per Hadamard [17], given a sufficient amount of

data (Theorem 3 and Corollary 2).

Our guarantees also extend to a related (and perhaps more

commonly posed, e.g. [18]) optimization problem seeking a

dictionary minimizing the average number of elementary wave-

forms required to reconstruct each sample of the dataset (Theo-

rem 2). To practical benefit, our results impose no restrictions on

learned dictionaries (e.g., that they, too, be injective over some

sparse domain) beyond an upper bound on dictionary size, which

is necessary in any case to avoid trivial solutions (e.g., allowing

m = N ).

To state things more precisely, let A ∈ R
n×m be a matrix

with columns Aj (j = 1, . . . ,m) and let dataset Z consist of

measurements:

zi = Axi + ni, i = 1, . . . , N, (1)

fork-sparsexi ∈ R
m having at mostk < m nonzero entries and

noise ni ∈ R
n, with bounded norm ‖ni‖2 ≤ η representing our

worst-case uncertainty in measuring the product Axi. We first

consider the following formulation of the sparse coding problem.

Problem 1: Find a dictionary matrix B and k-sparse codes

x1, . . . ,xN that satisfy ‖zi −Bxi‖2 ≤ η for all i = 1, . . . , N .
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Note that every solution to Problem 1 represents

infinitely many equivalent alternatives BPD and

D−1P�x1, . . . ,D
−1P�xN parametrized by a choice of

permutation matrix P and invertible diagonal matrix D.

Identifying these ambiguities (labelling and scale) yields a

single orbit of solutions represented by any particular set of

elementary waveforms (the columns of B) and their associated

sparse coefficients (the entries of xi) that reconstruct each data

point zi.

Previous theoretical work addressing the noiseless case η = 0
(e.g., [19]–[22]) for matrices B having exactly m columns has

shown that a solution to Problem 1, when it exists, is unique up

to such relabeling and rescaling provided the xi are sufficiently

diverse and A satisfies the spark condition:

Ax1 = Ax2 ⇒ x1 = x2, for all k–sparse x1,x2, (2)

which is necessary to guarantee the uniqueness of arbitrary

k-sparse xi. We generalize these results to the practical setting

η > 0 by considering the following natural notion of stability

with respect to measurement error.

Definition 1: Fix Y = {y1, . . . ,yN} ⊂ R
n. We say Y has a

k-sparse representation in R
m if there exists a matrix A and

k-sparse x1, . . . ,xN ∈ R
m such that yi = Axi for all i. This

representation is stable if for every δ1, δ2 ≥ 0, there exists some

ε = ε(δ1, δ2) that is strictly positive for positive δ1 and δ2 such

that if B and k-sparse x1, . . . ,xN ∈ R
m satisfy:

‖Axi −Bxi‖2 ≤ ε(δ1, δ2), for all i = 1, . . . , N,

then there is some permutation matrix P and invertible diagonal

matrix D such that for all i, j:

‖Aj − (BPD)j‖2 ≤ δ1 and ‖xi −D−1P�xi‖1 ≤ δ2. (3)

To see how Problem 1 motivates Definition 1, suppose that Y
has a stable k-sparse representation in R

m and fix δ1, δ2 to be

the desired accuracies of recovery in (3). Consider any dataset

Z generated as in (1) with η ≤ 1
2ε(δ1, δ2). Using the triangle

inequality, it follows that any n×m matrix B and k-sparse

x1, . . . ,xN solving Problem 1 are necessarily within δ1 and δ2 of

the original dictionary A and codes x1, . . . ,xN , respectively.1

The main result of this work is a very general uniqueness theo-

rem for sparse coding (Theorem 1), which guarantees that sparse

representations of a dataset Z are unique up to noise whenever

generating dictionaries A satisfy a spark condition on supports

and the original sparse codes xi are sufficiently diverse (e.g.,

Fig. 1). Moreover, we provide an explicit, computable ε(δ1, δ2)
in (8) that is linear in desired accuracy δ1, and essentially so in

δ2.

In the next section, we give formal statements of these find-

ings. We then extend the same guarantees (Theorem 2) to the

following alternate formulation of dictionary learning, which

minimizes the total number of nonzero entries in sparse codes.

1We mention that the different norms in (3) reflect the distinct meanings
typically ascribed to the dictionary and sparse codes in modeling data.

Fig. 1. Learning a dictionary from increasingly noisy data. The (unraveled)
basis elements of the 8× 8 discrete cosine transform (DCT) form the 64
columns of the left-most matrix above. Three increasingly imprecise dictionaries
(columns reordered to best match original) are recovered by FastICA [26] trained
on data generated from 8-sparse linear combinations of DCT elements corrupted
with additive noise (increasing from left to right).

Problem 2: Find matrices B and vectors x1, . . . ,xN

solving:

min

N
∑

i=1

‖xi‖0 subject to ‖zi −Bxi‖2 ≤ η, for all i. (4)

Our development of Theorem 1 is general enough to provide

some uniqueness and stability even when generating A do not

fully satisfy (2) and recovery dictionaries B have more columns

than A. Moreover, the approach incorporates a combinatorial

theory for designing generating codes that should be of indepen-

dent interest. We also give brief arguments adapting our results

to dictionaries and codes drawn from probability distributions

(Corollary 2). The technical proofs of Theorem 1 and 2 are

deferred to Section III, following some necessary definitions

and a fact in combinatorial matrix analysis (Lemma 1; proven

in the Appendix). Finally, we discuss in Section IV applications

of our mathematical observations as well as open questions.

II. RESULTS

Precise statements of our results require that we first identify

some combinatorial criteria on the supports2 of sparse vectors.

Let {1, . . . ,m} be denoted [m], its power set 2[m], and
(

[m]
k

)

the

set of subsets of [m] of size k. A hypergraph on vertices [m] is

simply any subset H ⊆ 2[m]. We say that H is k-uniform when

H ⊆
(

[m]
k

)

. The degree degH(i) of a node i ∈ [m] is the number

of sets in H that contain i, and we say H is regular when for

some r we have degH(i) = r for all i (given such an r, we sayH
is r-regular). We also write 2H := {S ∪ S ′ : S, S ′ ∈ H}. The

following class of structured hypergraphs is a key ingredient in

this work.

Definition 2: Given H ⊆ 2[m], the star σ(i) is the collection

of sets in H containing i. We say H has the singleton intersec-

tion property (SIP) when ∩σ(i) = {i} for all i ∈ [m].
We next give a quantitative generalization of the spark condi-

tion (2). The lower bound of an n×m matrix M is the largest α
with ‖Mx‖2 ≥ α‖x‖2 for all x ∈ R

m [23]. By compactness of

the unit sphere, every injective linear map has a positive lower

bound; hence, if M satisfies (2), then submatrices formed from

2k of its columns or less have strictly positive lower bounds.

The lower bound of a matrix is generalized below in (5) by

restricting it to the spans of certain submatrices3 associated with

a hypergraph H ⊆
(

[m]
k

)

of column indices. Let MS denote the

2Recall that a vector x is said to be supported in S when x ∈ span{ej : j ∈
S}, with ej forming the standard column basis.

3See [24] for an overview of the related “union of subspaces” model.
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submatrix formed by the columns of a matrix M indexed by

S ⊆ [m] (setting M∅ := 0). In the sections that follow, we shall

also let MS denote the column-span of a submatrix MS , and

MG to denote {MS}S∈G . We define:

LH(M) := min

{‖MSx‖2√
k‖x‖2

: S ∈ H, 0 �= x ∈ R
|S|
}

, (5)

writing also Lk in place of LH when H =
(

[m]
k

)

.4 As ex-

plained above, compactness implies that L2k(M) > 0 for all M

satisfying (2). Clearly, LH′(M) ≥ LH(M) whenever H′ ⊆ H,

and similarly any k-uniform H satisfying ∪H = [m] has L2 ≥
L2H ≥ L2k (letting L2k := Lm whenever 2k > m).

We are now in a position to state our main result, though for

expository purposes we leave the quantity C1 undefined until

Section III. All results below assume real matrices and vectors.

Theorem 1: If an n×m matrix A satisfies L2H(A) > 0

for some r-regular H ⊆
(

[m]
k

)

with the SIP, and k-sparse

x1, . . . ,xN ∈ R
m include more than (k − 1)

(

m
k

)

vectors in

general linear position5 supported in each S ∈ H, then the

following recovery guarantees hold for C1 > 0 given by (19).

Dictionary Recovery: Fix ε < L2(A)/C1.6 If an n×m ma-

trix B has, for every i ∈ [N ], an associated k-sparse xi sat-

isfying ‖Axi −Bxi‖2 ≤ ε, then m ≥ m, and provided that

m(r − 1) < mr, there is a permutation matrix P and an in-

vertible diagonal matrix D such that:

‖Aj − (BPD)j‖2 ≤ C1ε, for all j ∈ J, (6)

for some J ⊆ [m] of size m− (r − 1)(m−m).
Code Recovery: If, moreover, AJ satisfies (2) and ε <

L2k(AJ )/C1, then (BP)J also satisfies (2) with L2k(BPJ) ≥
(L2k(AJ )− C1ε)/‖DJ‖1, and for all i ∈ [N ]:

‖(xi)J − (D−1P�xi)J‖1 ≤
(

1 + C1‖(xi)J‖1
L2k(AJ )− C1ε

)

ε, (7)

where subscript (·)J applied to vectors represents the subvector

formed from restricting to coordinates indexed by J .

In words, Theorem 1 says that the smaller the regularity r
of the original support hypergraph H or the difference m−m
between the assumed and actual number of elements in the latent

dictionary, the more columns and coefficients of the original

dictionary A and sparse codes xi are guaranteed to be contained

(up to noise) in the appropriately labelled and scaled recovered

dictionary B and codes xi, respectively.

In the important special case when m = m, the theorem

directly implies that Y = {Ax1, . . . ,AxN} has a stable k-

sparse representation in R
m, with inequalities (3) guaranteed

4In compressed sensing literature, 1−
√
kLk(M) is the asymmetric lower

restricted isometry constant for M with unit �2-norm columns [25].
5Recall that a set of vectors sharing support S are in general linear position

when any |S| of them are linearly independent.
6Note that the condition ε < L2(A)/C1 is necessary; otherwise,

with A = I (the identity matrix) and xi = ei, the matrix B =
[

0, 1
2 (e1 + e2),e3, . . . ,em

]

and sparse codes xi = e2 for i = 1, 2 and

xi = ei for i ≥ 3 satisfy ‖Axi −Bxi‖2 ≤ ε but nonetheless violate (6).

in Definition 1 for the following worst-case error ε:

ε(δ1, δ2) := min

{

δ1
C1

,
δ2L2k(A)

1 + C1

(

δ2 +maxi∈[N ] ‖xi‖1
)

}

.

(8)

We should stress here that framing the problem in terms

of hypergraphs has allowed us to show, unlike in previous

research on the subject, that the matrix A need not necessarily

satisfy (2) to be recoverable from data. As an example, let

A = [e1, . . . , e5,v] with v = e1 + e3 + e5 and take H to be

all consecutive pairs of indices 1, . . . , 6 arranged in cyclic order.

Then for k = 2, the matrix A fails to satisfy (2) while still

obeying the assumptions of Theorem 1 for dictionary recovery.

A practical implication of Theorem 1 is the following: there is

an effective procedure sufficient to affirm if a proposed solution

to Problem 1 is indeed unique (up to noise and inherent ambigu-

ities). One need simply check that the matrix and codes satisfy

the (computable) assumptions of Theorem 1 on A and the xi.

In general, however, there is no known efficient procedure. We

defer a brief discussion on this point to the next section.

Since sparse codes in general linear position are straightfor-

ward to produce with a “Vandermonde” construction (i.e., by

choosing columns of the matrix [γj
i ]

k,N
i,j=1, for distinct nonzero

γi), we have the following direct consequence of Theorem 1.

Corollary 1: Given any regular hypergraph H ⊆
(

[m]
k

)

with the SIP, there are N = |H|
[

(k − 1)
(

m
k

)

+ 1
]

vectors

x1, . . . ,xN ∈ R
m such that every matrix A satisfying spark

condition (2) generates Y = {Ax1, . . . ,AxN} with a stable

k-sparse representation in R
m for ε(δ1, δ2) given by (8).

One can easily verify that for every k < m there are regular

k-uniform hypergraphs H with the SIP besides the obvious

H =
(

[m]
k

)

. For instance, take H to be the k-regular set of

consecutive intervals of length k in some cyclic order on [m].
In this case, a direct consequence of Corollary 1 is rigorous

verification of the lower bound N = m(k − 1)
(

m
k

)

+m for

sufficient sample size from the introduction. Special cases allow

for even smaller hypergraphs. For example, if k =
√
m, then a

2-regular k-uniform hypergraph with the SIP can be constructed

as the 2k rows and columns formed by arranging the elements

of [m] into a square grid.

A less direct consequence of Theorem 1 is the following

uniqueness and stability guarantee for solutions to Problem 2.

Theorem 2: Fix a matrix A and vectors xi satisfying

the assumptions of Theorem 1, only now with over (k −
1)

[(

m
k

)

+ |H|k
(

m
k−1

)]

vectors supported in general linear posi-

tion in each S ∈ H. Every solution to Problem 2 (with η = ε/2)

satisfies recovery guarantees (6) and (7) when the corresponding

bounds on η are met.

Another extension of Theorem 1 can be derived from the fol-

lowing algebraic characterization of the spark condition. Letting

A be the n×m matrix of nm indeterminates Aij , the reader

may work out why substituting real numbers for the Aij yields

a matrix satisfying (2) if and only if the following polynomial

evaluates to a nonzero number:

f(A) :=
∏

S∈([m]
2k )

∑

S′∈([n]
2k)

(detAS′,S)
2,
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where for any S ′ ∈
(

[n]
2k

)

and S ∈
(

[m]
2k

)

, the symbol AS′,S

denotes the submatrix of entries Aij with (i, j) ∈ S ′ × S.7

Since f is analytic, having a single substitution of a real matrix

A satisfying f(A) �= 0 implies that the zeroes of f form a set

of (Borel) measure zero. Such a matrix is easily constructed

by adding rows of zeroes to a min(2k,m)×m Vandermonde

matrix as mentioned previously, so that every sum in the product

defining f above is strictly positive. Thus, almost every n×m
matrix with n ≥ min(2k,m) satisfies (2).

We claim that a similar phenomenon applies to datasets of

vectors with a stable sparse representation. Briefly, following

the same procedure as in [22, Section IV], for k < m and

n ≥ min(2k,m), we may consider the “symbolic” dataset Y =
{Ax1, . . . ,AxN} generated by an indeterminate n×m matrix

A and m-dimensional k-sparse vectors x1, . . . ,xN indetermi-

nate within their supports, which form a regular hypergraph

H ⊆
(

[m]
k

)

satisfying the SIP. Restricting (k − 1)
(

m
k

)

+ 1 in-

determinate xi to each support in H, and letting M be the

n×N matrix with columns Axi, it can be checked that when

f(M) �= 0 for a substitution of real numbers for the indetermi-

nates, all of the assumptions on A and the xi in Theorem 1 are

satisfied. We therefore have the following.

Theorem 3: There is a polynomial in the entries of A and

the xi that evaluates to a nonzero number only when Y has a

stable k-sparse representation in R
m. In particular, almost all

substitutions impart to Y this property.

To extend this observation to arbitrary probability distribu-

tions, note that if a set of p measure spaces has all measures

absolutely continuous with respect to the standard Borel measure

on R, then the product measure is also absolutely continuous

with respect to the standard Borel product measure on R
p

(e.g., see [28]). This fact combined with Theorem 3 implies

the following.8

Corollary 2: If the indeterminate entries of A and the xi are

drawn independently from probability distributions absolutely

continuous with respect to the standard Borel measure, then Y
has a stable k-sparse representation in R

m with probability one.

Thus, drawing the dictionary and supported sparse coeffi-

cients from any continuous probability distribution almost al-

ways generates data with a stable sparse representation.

We close this section with some comments on the optimality

of our results. The linear scaling for ε in (8) is essentially optimal

(e.g., see [29]), but a basic open problem remains: how many

samples are necessary to determine the sparse coding model?

Our results demonstrate that sparse codes xi drawn from only

a polynomial number of k-dimensional subspaces permit stable

identification of the generating dictionary A. This lends some

legitimacy to the use of the model in practice, where data in

general are unlikely (if ever) to exhibit the exponentially many

possible k-wise combinations of dictionary elements required

by (to our knowledge) all previously published results.

Consequently, if k is held fixed or if the size of the support set

of reconstructing codes is known to be polynomial in m and k,

7The large number of terms in this product is likely necessary given that
deciding whether or not a matrix satisfies the spark condition is NP-hard [27].

8We refer the reader to [22] for a more detailed explanation of these arguments.

then a practical (polynomial) amount of data suffices to identify

the dictionary.9 Reasons to be skeptical that this holds in general,

however, can be found in [27], [30]. Even so, in the next section

we discuss how probabilistic guarantees can in fact be made for

any number of available samples.

III. PROOFS

We begin our proof of Theorem 1 by showing how dictionary

recovery (6) already implies sparse code recovery (7) when A

satisfies (2) and ε < L2k(A)/C1. We temporarily assume (with-

out loss of generality) that m = m, so as to omit an otherwise

requisite subscript (·)J around certain matrices and vectors. By

definition of L2k in (5), and noting that
√
k‖v‖2 ≥ ‖v‖1 for

k-sparse v, we have for all i ∈ [N [:

‖xi −D−1P�xi‖1 ≤ ‖BPD(xi −D−1P�xi)‖2
L2k(BPD)

≤ ‖(BPD−A)xi‖2 + ‖Axi −Bxi‖2
L2k(BPD)

≤ C1ε‖xi‖1 + ε

L2k(BPD)
, (9)

where the first term in the numerator above follows from the

triangle inequality and (6).

It remains for us to bound the denominator. For any 2k-sparse

x, we have by the triangle inequality:

‖BPDx‖2 ≥ ‖Ax‖2 − ‖(A−BPD)x‖2
≥

√
2k(L2k(A)− C1ε)‖x‖2,

We therefore have that L2k(BPD) ≥ L2k(A)− C1ε > 0,

and (7) then follows from (9). The reader may also verify that

L2k(BP) ≥ L2k(BPD)/‖D‖1.

The heart of the matter is therefore (6), which we now estab-

lish beginning with the important special case of k = 1.

Proof of Theorem 1 for k = 1: Since the only 1-uniform hy-

pergraph with the SIP is [m], which is obviously regular, we

require only xi = ciei for i ∈ [m], with ci �= 0 to guarantee

linear independence. While we have yet to define C1 gen-

erally, in this case we may set C1 = 1/min�∈[m] |c�| so that

ε < L2(A)min�∈[m] |c�|.
Fix A ∈ R

n×m satisfying L2(A) > 0, since here we have

2H =
(

[m]
2

)

, and suppose some B and 1-sparse xi ∈ R
m have

‖Axi −Bxi‖2 ≤ ε < L2(A)/C1 for all i. Then, there exist

c1, . . . , cm ∈ R and a map π : [m] → [m] such that:

‖ciAi − ciBπ(i)‖2 ≤ ε, for i ∈ [m]. (10)

Note that ci �= 0, since otherwise we would reach the follow-

ing contradiction: ‖Ai‖2 ≤ C1|ci|‖Ai‖2 ≤ C1ε < L2(A) ≤
L1(A) = mini∈[m] ‖Ai‖2.

We now show that π is injective (in particular, a permutation

if m = m). Suppose that π(i) = π(j) = 	 for some i �= j and 	.

9In the latter case, a reexamination of the pigeonholing argument in the
proof of Theorem 1 requires a polynomial number of samples distributed over
a polynomial number of supports.
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Then, ‖ciAi − ciB�‖2 ≤ ε and ‖cjAj − cjB�‖2 ≤ ε, and we

have:

(|ci|+ |cj |)ε ≥ |ci|‖cjAj − cjB�‖2 + |cj |‖ciAi − ciB�‖2
≥ ‖A(cicjej − cjciei)‖2
≥

√
2L2(A)‖cicjej − cjciei‖2

≥ L2(A) (|ci|+ |cj |) min
�∈[m]

|c�|,

contradicting our assumed upper bound on ε. Hence, the map π
is injective and so m ≥ m. �

Letting P and D be the m×m permutation and invertible

diagonal matrices with, respectively, columns eπ(i) and ci
ci
ei for

i ∈ [m] (otherwise, ei for i ∈ [m] \ [m]), we may rewrite (10)

to see that for all i ∈ [m]:

‖Ai − (BPD)i‖2 = ‖Ai −
ci
ci
Bπ(i)‖2 ≤ ε

|ci|
≤ C1ε.

An extension of the proof to the general case k < m requires

some additional tools to derive the general expression (19) for

C1. These include a generalized notion of distance (Definition 3)

and angle (Definition 4) between subspaces as well as a stability

result in combinatorial matrix analysis (Lemma 1).

Definition 3: For u ∈ R
m and vector spaces U, V ⊆ R

m, let

dist(u, V ) := min{‖u− v‖2 : v ∈ V } and define:

d(U, V ) := max
u∈U, ‖u‖2≤1

dist(u, V ). (11)

We note the following facts about d. Clearly,

U ′ ⊆ U ⇒ d(U ′, V ) ≤ d(U, V ). (12)

From [31, Ch. 4 Corollary 2.6], we also have:

d(U, V ) < 1 ⇒ dim(U) ≤ dim(V ), (13)

and from [32, Lemma 3.2]:

dim(U) = dim(V ) ⇒ d(U, V ) = d(V,U). (14)

The following is our result in combinatorial matrix analysis;

it contains most of the complexity in the proof of Theorem 1.

Lemma 1: If an n×m matrix A has L2H(A) > 0 for some

r-regular H ⊆
(

[m]
k

)

with the SIP, then the following holds for

C2 > 0 given by (18):

Fix ε < L2(A)/C2. If for some n×m matrix B and map

π : H �→
(

[m]
k

)

,

d(AS ,Bπ(S)) ≤ ε, for S ∈ H, (15)

then m ≥ m, and provided m(r − 1) < mr, there is a permu-

tation matrix P and invertible diagonal D such that:

‖Ai − (BPD)i‖2 ≤ C2ε, for i ∈ J, (16)

for some J ⊆ [m] of size m− (r − 1)(m−m).
We present the constant C2 (a function of A and H) relative

to a quantity used in [33] to analyze the convergence of the

“alternating projections” algorithm for projecting a point onto

the intersection of subspaces. We incorporate this quantity into

the following definition, which we refer to in our proof of

Lemma 3 in the Appendix; specifically, we use it to bound the

distance between a point and the intersection of subspaces given

an upper bound on its distance from each subspace.

Definition 4: For a collection of real subspaces V =
{Vi}�i=1, define ξ(V) := 0 when |V| = 1, and otherwise:

ξ2(V) := 1−max

�−1
∏

i=1

sin2 θ (Vi,∩j>iVj) , (17)

where the maximum is taken over all ways of ordering theVi and

the angle θ ∈ (0, π
2 ] is defined implicitly as [33, Definition 9.4]:

cos θ(U,W ) := max
{

|〈u,w〉| : u∈U∩(U∩W )⊥, ‖u‖2≤1

w∈W∩(U∩W )⊥, ‖w‖2≤1

}

.

Note that θ ∈ (0, π
2 ] implies 0 ≤ ξ < 1, and that ξ(V ′) ≤

ξ(V) when V ′ ⊆ V .10

The constant C2 > 0 of Lemma 1 can now be expressed as:

C2(A,H) :=
(r + 1)maxj∈[m] ‖Aj‖2
1−maxG∈( H

r+1)
ξ(AG)

. (18)

We next define the constant C1 > 0 of Theorem 1 in terms of

C2. Given vectors x1, . . . ,xN ∈ R
m, let X denote the m×N

matrix with columns xi and let I(S) denote the set of indices i
for which xi is supported in S. We define:

C1(A,H, {xi}Ni=1) :=
C2(A,H)

minS∈H Lk(AXI(S))
. (19)

Given the assumptions of Theorem 1 on A and the xi, this

expression for C1 is well-defined11 and yields an upper bound

on ε consistent with that proven sufficient in the case k = 1
considered at the beginning of this section.12

The practically-minded reader should note that the explicit

constantsC1 andC2 are effectively computable: the quantityLk

may be calculated as the smallest singular value of a certain ma-

trix, while the quantity ξ involves computing “canonical angles”

between subspaces, which reduces again to an efficient singular

value decomposition. There is no known fast computation of

Lk in general, however, since even Lk > 0 is NP-hard [27],

although efficiently computable bounds have been proposed

(e.g., via the “mutual coherence” of a matrix [34]); alternatively,

fixingk yields polynomial complexity. Moreover, calculatingC2

requires an exponential number of queries to ξ unless r is held

fixed, too (e.g., the “cyclic order” hypergraphs described above

have r = k). Thus, as presented, C1 and C2 are not efficiently

computable in general.

Proof of Theorem 1 for k < m We find a map π : H →
(

[m]
k

)

for which the distance d(AS ,Bπ(S)) is controlled by ε
for all S ∈ H. Applying Lemma 1 then completes the proof.

Fix S ∈ H. Since there are more than (k − 1)
(

m
k

)

vectors xi

supported in S, by the pigeonhole principle there must be some

S ∈
(

[m]
k

)

and a set of k indices K ⊆ I(S) for which all xi with

10We acknowledge the counter-intuitive property: θ = π/2 when U ⊆ W .
11To see this, fix S ∈ H and k-sparse c. Using the definitions, we have

‖AXI(S)c‖2 ≥
√
kLH(A)‖XI(S)c‖2 ≥ kLH(A)Lk(XI(S))‖c‖2. Thus,

Lk(AXI(S)) ≥
√
kLH(A)Lk(XI(S)) > 0, since LH(A) ≥ L2H(A) > 0

and Lk(XI(S)) > 0 by general linear position of the xi.
12When xi = ciei, we have C2 ≥ 2‖Ai‖2 and the denominator in (19)

becomes mini∈[m] |ci|‖Ai‖2; hence, C1 ≥ 2/mini∈[m] |ci|.
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i ∈ K are supported in S. It also follows11 from L2H(A) > 0
and the general linear position of the xi that Lk(AXK) > 0;

that is, the columns of the n× k matrix AXK form a basis

for AS .

Fixing y ∈ AS \ {0}, there then exists c = (c1, . . . , ck) ∈
R

k \ {0} such that y = AXKc. Setting y = BXKc, which is

in BS , we have by triangle inequality:

‖y − y‖2 = ‖(AXK −BXK)c‖2 ≤ ε‖c‖1 ≤ ε
√
k‖c‖2

≤ ε

Lk(AXK)
‖y‖2,

where the last inequality uses (5). From Definition 3:

d(AS ,BS) ≤
ε

Lk(AXK)
≤ ε

Lk(AXI(S))
≤ ε

C1

C2
. (20)

Finally, apply Lemma 1 with ε < L2(A)/C1 and π(S) := S. �

Before moving on to the proof of Theorem 2, we briefly revisit

our discussion on sample complexity from the end of the previ-

ous section. While an exponential number of samples may very

well prove to be necessary in the deterministic or almost-certain

case, our proof of Theorem 1 can be extended to hold with some

probability for any number of samples by alternative appeal

to a probabilistic pigeonholing at the point early in the proof

where the (deterministic) pigeonhole principle is applied to show

that for every S ∈ H, there exist k vectors xi supported on S
whose corresponding xi all share the same support.13 Given

insufficient samples, this argument has some less-than-certain

probability of being valid for each S ∈ H. Nonetheless, sim-

ulations with small hypergraphs confirm that the probability

of success very quickly approaches one once the number of

samplesN surpasses a small fraction of the deterministic sample

complexity.

Proof of Theorem 2: We bound the number of k-sparse xi

from below and then apply Theorem 1.

Let np be the number of xi with ‖xi‖0 = p. Since the xi are

all k-sparse, by (4) we have:

m
∑

p=0

pnp =

N
∑

i=0

‖xi‖0 ≤
N
∑

i=0

‖xi‖0 ≤ kN

SinceN =
∑m

p=0 np, we then have
∑m

p=0(p− k)np ≤ 0. Split-

ting the sum yields:

m
∑

p=k+1

np ≤
m
∑

p=k+1

(p− k)np ≤
k

∑

p=0

(k − p)np ≤ k
k−1
∑

p=0

np,

(21)

demonstrating that the number of vectorsxi that are not k-sparse

is bounded above by how many are (k − 1)-sparse.

Next, observe that no more than (k − 1)|H| of the xi share a

support S of size less than k. Otherwise, by the pigeonhole prin-

ciple, there is some S ∈ H and a set of k indices K ⊆ I(S) for

which allxi with i ∈ K are supported inS; as argued previously,

(20) follows. It is simple to show that L2(A) ≤ maxj ‖Aj‖2,

13A famous example of such an argument is the counter-intuitive “birthday
paradox”, which demonstrates that the probability of two people having the same
birthday in a room of twenty-three is greater than 50%.

and since 0 ≤ ξ < 1, the right-hand side of (20) is less than

one for ε < L2(A)/C1. Thus, by (13) we would have the

contradiction k = dim(AS) ≤ dim(BS) ≤ |S| < k.
The total number of (k − 1)-sparse vectors xi thus cannot ex-

ceed |H|(k − 1)
(

m
k−1

)

. By (21), no more than |H|k(k − 1)
(

m
k−1

)

vectors xi are not k-sparse. Since for every S ∈ H there are

over (k − 1)
[(

m
k

)

+ |H|k
(

m
k−1

)]

vectors xi supported there, it

must be that more than (k − 1)
(

m
k

)

of them have corresponding

xi that are k-sparse. The result now follows from Theorem 1,

noting by the triangle inequality that ‖Axi −Bxi‖ ≤ 2η for

i = 1, . . . , N . �

IV. DISCUSSION

A main motivation for this work is the emergence of seem-

ingly unique representations from sparse coding models trained

on natural data, despite the varied assumptions underlying the

many algorithms in current use. Our results constitute an impor-

tant step toward explaining these phenomena as well as unifying

many publications on the topic by deriving general determinis-

tic conditions under which identification of parameters in this

model is not only possible but also robust to uncertainty in

measurement and model choice.

We have shown that, given sufficient data, the problem of

determining a dictionary and sparse codes with minimal support

size (Problem 2) reduces to an instance of Problem 1, to which

our main result (Theorem 1) applies: every dictionary and se-

quence of sparse codes consistent with the data are equivalent

up to inherent relabeling/scaling ambiguities within an error that

scales linearly (or essentially so) with the measurement noise or

modeling inaccuracy. The constants we provide are explicit and

computable; as such, there is an effective procedure sufficient to

affirm if a proposed solution to these problems is indeed unique

up to noise and inherent ambiguities, although it is not efficient

in general.

Beyond an extension of existing noiseless guarantees [22] to

the noisy regime and their novel application to Problem 2, our

work contains a theory of combinatorial designs for support sets

key to dictionary identification. We incorporate this idea into

a fundamental lemma in matrix theory (Lemma 1) that draws

upon the definition of a matrix lower bound (5) induced by a

hypergraph. The new insight offered by this combinatorial ap-

proach allows for guaranteed recovery of some or all dictionary

elements even if they are overestimated in number, data cover

only a polynomial number of distinct sparse supports, or the

dictionary does not fully satisfy the spark condition.

The absence of any assumptions about dictionaries solving

Problem 1 was a major technical obstruction in proving The-

orem 1. We sought such a general guarantee because of the

practical difficulty in ensuring that an algorithm maintain a

dictionary satisfying the spark condition (2) at each iteration, an

implicit requirement of all previous works except [22]; indeed,

even certifying a dictionary has this property is NP-hard [27].

One direct application of this work is to theoretical neuro-

science, wherein our theorems justify the mathematical sound-

ness of one of the few hypothesized theories of bottleneck

communication in the brain [9]: that sparse neural population

activity is recoverable from its noisy linear compression through
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a randomly constructed (but unknown) wiring bottleneck by any

biologically plausible unsupervised sparse coding method that

solves Problem 1 or 2 (e.g., [18], [35], [36]).14

In fact, uniqueness guarantees with minimal assumptions

apply to all areas of data science and engineering that utilize

learned sparse structure. For example, several groups have ap-

plied compressed sensing to signal processing tasks; for in-

stance, in MRI analysis [38], image compression [39], and even

the design of an ultrafast camera [40]. It is only a matter of time

before these systems incorporate dictionary learning to encode

and decode signals (e.g., in a device that learns structure from

motion [41]), just as scientists have used sparse coding to make

sense of their data [12]–[15].

Assurances offered by our theorems certify that different

devices and algorithms learn equivalent representations given

enough data from statistically identical systems.15 Indeed, a

main reason for the sustained interest in dictionary learning as

an unsupervised method for data analysis seems to be the as-

sumed well-posedness of parameter identification in the model,

confirmation of which forms the core of our findings.

We close with some challenges left open by our work. All

conditions stated here guaranteeing the uniqueness and stability

of sparse representations have only been shown sufficient; it

remains open, therefore, to extend them to necessary conditions,

be they on required sample size, the structure of support set

hypergraphs, or tolerable error bounds. On this last note, we

remark that our deterministic treatment considers always the

“worst-case” noise, whereas the “effective” noise sampled from

a concentrated distribution might be significantly reduced, espe-

cially for high-dimensional data. It would be of great practical

benefit to see how drastically all conditions can be relaxed by

requiring only probabilistic guarantees in this way, or in the spirit

of our discussion on probabilistic pigeonholing to reduce sample

complexity (as in the famous “birthday paradox”) following the

proof of Theorem 1.

Another interesting question raised by our work is for which

special cases is it efficient to check that a solution to Problem 1

or 2 is unique up to noise and inherent ambiguities. Considering

that the sufficient conditions we have described for checking this

in general are NP-hard to compute, are the necessary conditions

hard? Are Probs. 1 and 2 then also hard (e.g., see [30])? Finally,

since Problem 2 is intractable in general, but efficiently solvable

by 	1-norm minimization when the matrix is known (and has a

large enough lower bound over sparse domains [8]), is there a

version of Theorem 2 certifying when Problem 2 can be solved

efficiently in full by similar means?

It is our hope that the theoretical tools showcased here will be

of use to the community in answering these remaining questions.

APPENDIX

We prove Lemma 1 after the following auxiliary lemmas.

14We refer the reader to [37] for more on interactions between dictionary
learning and neuroscience.

15To contrast with the current hot topic of “Deep Learning”, there are few such
uniqueness guarantees for these models of data; moreover, even small noise can
dramatically alter their output [42].

Lemma 2: If f : V → W is injective, then f
(

∩�
i=1Vi

)

=
∩�
i=1f (Vi) for any V1, . . . , V� ⊆ V . (f(∅) := ∅).

Proof: By induction, it is enough to prove the case 	 =
2. Clearly, for any map f , if w ∈ f(U ∩ V ) then w ∈ f(U)
andw ∈ f(V ); hence,w ∈ f(U) ∩ f(V ). Ifw ∈ f(U) ∩ f(V ),
thenw ∈ f(U) andw ∈ f(V ); thus,w = f(u) = f(v) for some

u ∈ U and v ∈ V , implying u = v by injectivity of f . It follows

that u ∈ U ∩ V and w ∈ f(U ∩ V ). �

In particular, if a matrix A satisfies L2H(A) > 0, then taking

V to be the union of subspaces consisting of vectors with

supports in 2H, we have A∩G = ∩AG for all G ⊆ H.

Lemma 3: Let V = {Vi}ki=1 be a set of two or more sub-

spaces of R
m, and set V = ∩V . For u ∈ R

m, we have (recall

Defs. 3 & 4):

dist(u, V ) ≤ 1

1− ξ(V)

k
∑

i=1

dist(u, Vi). (22)

Proof: Recall the projection onto the subspace V ⊆ R
m is

the mapping ΠV : R
m → V that associates with each u its

unique nearest point in V ; i.e., ‖u−ΠV u‖2 = dist(u, V ). By

repeatedly applying the triangle inequality, we have:

‖u−ΠV u‖2 ≤ ‖u−ΠVk
u‖2 + ‖ΠVk

u−ΠVk
ΠVk−1

u‖2
+ · · ·+ ‖ΠVk

ΠVk−1
· · ·ΠV1

u−ΠV u‖2

≤
k

∑

�=1

‖u−ΠV�
u‖2 + ‖(ΠVk

· · ·ΠV1
−ΠV )u‖2, (23)

where we have also used that the spectral norm of the orthogonal

projections ΠV�
satisfies ‖ΠV�

‖2 ≤ 1 for all 	.
It remains to bound the second term in (23) by ξ(V)‖u−

ΠV u‖2. First, note that ΠV�
ΠV = ΠV and Π2

V = ΠV , so we

have ‖(ΠVk
· · ·ΠV1

−ΠV )u‖2 = ‖(ΠVk
· · ·ΠV1

−ΠV )(u−
ΠV u)‖2. Consequently, inequality (22) follows from [33, The-

orem 9.33]:

‖ΠVk
ΠVk−1

· · ·ΠV1
x−ΠV x‖2 ≤ z‖x‖2, for all x, (24)

with z2 = 1−∏k−1
�=1(1− z2� ) and z� = cos θ

(

V�,∩k
s=�+1Vs

)

(recall θ from Definition 4), after substituting ξ(V) for z and

rearranging terms. �

Lemma 4: Fix an r-regular hypergraph H ⊆ 2[m] satisfying

the SIP. If the mapπ : H → 2[m] has
∑

S∈H |π(S)| ≥ ∑

S∈H |S|
and:

| ∩ π(G)| ≤ | ∩ G|, for G ∈
(H
r

)

∪
( H
r + 1

)

, (25)

thenm ≥ m; and ifm(r − 1) < mr, the map i �→ ∩S∈σ(i)π(S)
is an injective function to [m] from some J ⊆ [m] of size m−
(r − 1)(m−m) (recall σ from Definition 2).

Proof: Consider the following set: T1 := {(i, S) : i ∈
π(S), S ∈ H}, which numbers |T1| =

∑

S∈H |π(S)| ≥
∑

S∈H |S| = ∑

i∈[m] degH(i) = mr by r-regularity of H.

Note that |T1| ≤ mr; otherwise, pigeonholing the tuples of T1

with respect to their m possible first elements would imply that

more than r of the tuples in T1 share the same first element.

This cannot be the case, however, since then some G ∈
( H
r+1

)
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formed from any r + 1 of their second elements would

satisfy ∩π(G) �= 0; hence, | ∩ G| �= 0 by (25), contradicting

r-regularity of H. It follows that m ≥ m.

Suppose now thatm(r − 1) < mr, so that p := mr −m(r −
1) is positive and |T1| ≥ m(r − 1) + p. Pigeonholing T1 into

[m] again, there are at least r tuples in T1 sharing some first

element; that is, for some G1 ⊆ H of size |G1| ≥ r, we have

| ∩ π(G1)| ≥ 1 and (by (25)) | ∩ G1| ≥ 1. Since no more than r
tuples of T1 can share the same first element, we in fact have

|G1| = r. It follows by r-regularity that G1 is a star of H; hence,

| ∩ G1| = 1 by the SIP and | ∩ π(G1)| = 1 by (25).

If p = 1, then we are done. Otherwise, define T2 := T1 \
{(i, S) ∈ T1 : i = ∩π(G1)}, which contains |T2| = |T1| − r ≥
(m− 1)(r − 1) + (p− 1) ordered pairs having m− 1 distinct

first indices. Pigeonholing T2 into [m− 1] and repeating the

above arguments produces the star G2 ∈
(H
r

)

with intersec-

tion ∩G2 necessarily distinct (by r-regularity) from ∩G1. It-

erating this procedure p times in total yields the stars Gi for

which ∩Gi �→ ∩π(Gi) defines an injective map to [m] from

J = {∩G1, . . . ,∩Gp} ⊆ [m]. �

Proof of Lemma 1: We begin by showing that

dim(Bπ(S)) = dim(AS) for all S ∈ H. Note that since

‖Ax‖2 ≤ maxj ‖Aj‖2‖x‖1 and ‖x‖1 ≤
√
k‖x‖2 for all

k-sparsex, by (5) we haveL2(A) ≤ maxj ‖Aj‖2 and therefore

(as 0 ≤ ξ < 1) the right-hand side of (15) is less than one. From

(13), we have |π(S)| ≥ dim(Bπ(S)) ≥ dim(AS) = |S|, the

final equality holding by injectivity of AS . As |π(S)| = |S|,
the claim follows. Note, therefore, that Bπ(S) has full-column

rank for all S ∈ H.

We next demonstrate that (25) holds. FixingG ∈
(H
r

)

∪
( H
r+1

)

,

it suffices to show that d(B∩π(G),A∩G) < 1, since by (13)

we then have | ∩ π(G)| = dim(B∩π(G)) ≤ dim(A∩G) = | ∩ G|,
with equalities from the full column-ranks of AS and Bπ(S) for

allS ∈ H.16 Observe thatd(B∩π(G),A∩G) ≤ d
(

∩Bπ(G),∩AG
)

by (12), since trivially B∩π(G) ⊆ ∩Bπ(G) and also A∩G = ∩AG
by Lemma 2. Recalling Definition 3 and applying Lemma 3

yields:

d
(

∩Bπ(G),∩AG
)

≤ max
u∈∩Bπ(G), ‖u‖2≤1

∑

S∈G

dist (u,AS)

1− ξ(AG)

=
∑

S∈G

d
(

∩Bπ(G),AS

)

1− ξ(AG)
,

passing the maximum through the sum. Since ∩Bπ(G) ⊆ Bπ(S)

for all S ∈ G, by (12) the numerator of each term in the

sum above is bounded by d
(

Bπ(S),AS

)

= d
(

AS ,Bπ(S)

)

≤
ε, with the equality from (14) since dim(Bπ(S)) = dim(AS).
Thus, altogether:

d(B∩π(G),A∩G) ≤
|G|ε

1− ξ(AG)
≤ C2ε

maxj ‖Aj‖2
, (26)

recalling the definition of C2 in (18). Lastly, since C2ε <
L2(A) ≤ maxj ‖Aj‖2, we have d(B∩π(G),A∩G) ≤ 1 and

therefore (25) holds.

16Note that if ever B∩π(G) �= 0 while ∩G = ∅, we would have

d(B∩π(G),0) = 1. However, that leads to a contradiction.

Applying Lemma 4, the association i �→ ∩S∈σ(i)π(S) is an

injective map π : J → [m] for some J ⊆ [m] of size m− (r −
1)(m−m), and Bπ(i) �= 0 for all i ∈ J since the columns

of Bπ(S) are linearly independent for all S ∈ H. Letting

ε := C2ε/maxi ‖Ai‖2, it follows from (14) and (26) that

d
(

Ai,Bπ(i)

)

= d
(

Bπ(i),Ai

)

≤ ε for all i ∈ J . Setting ci :=

‖Ai‖−1
2 so that ‖ciAei‖2 = 1, by Definition 3 for all i ∈ J :

min
ci∈R

‖ciAei − ciBeπ(i)‖2 ≤ d
(

Ai,Bπ(i)

)

≤ ε,

for ε < L2(A)mini∈[m] |ci|. But this is exactly the supposition

in (10), with J and ε in place of [m] and ε, respectively. The

same arguments of the case k = 1 in Section III can then be

made to show that for any m×m permutation and invertible

diagonal matricesP andDwith, respectively, columns eπ(i) and
ci
ci
ei for i ∈ J (otherwise, ei for i ∈ [m] \ J), we have ‖Ai −

(BPD)i‖2 ≤ ε/|ci| ≤ C2ε for all i ∈ J . �

ACKNOWLEDGMENT

The authors thank Fritz Sommer for turning their attention

to the dictionary learning problem and Darren Rhea for sharing

early explorations. They also thank Ian Morris for posting a

reference to his proof of (14) online at Stack Exchange. Finally,

they thank Bizzyskillet (www.soundcloud.com/bizzyskillet) for

“The No-Exam Jams” to which many of their proofs were

designed and constructed.

REFERENCES

[1] Z. Zhang, Y. Xu, J. Yang, X. Li, and D. Zhang, “A survey of sparse repre-
sentation: Algorithms and applications,” IEEE Access, vol. 3, pp. 490–530,
2015.

[2] Z. Wang et al., Sparse Coding and Its Applications in Computer Vision.
Singapore: World Scientific, 2015.

[3] B. Olshausen and D. Field, “Emergence of simple-cell receptive field
properties by learning a sparse code for natural images,” Nature, vol. 381,
no. 6583, pp. 607–609, 1996.

[4] J. Hurri, A. Hyvärinen, J. Karhunen, and E. Oja, “Image feature extraction
using independent component analysis,” in Proc. Nordic Signal Process.

Symp., 1996, pp. 475–478.
[5] A. Bell and T. Sejnowski, “The “independent components” of natural

scenes are edge filters,” Vision Res., vol. 37, no. 23, pp. 3327–3338, 1997.
[6] J. van Hateren and A. van der Schaaf, “Independent component filters of

natural images compared with simple cells in primary visual cortex,” Proc.

R Soc. Lond. [Biol.], vol. 265, no. 1394, pp. 359–366, 1998.
[7] D. Donoho and A. Flesia, “Can recent innovations in harmonic analysis

‘explain’ key findings in natural image statistics?” Netw. Comput. Neural

Syst., vol. 12, no. 3, pp. 371–393, 2001.
[8] Y. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications.

Cambridge, U.K.: Cambridge Univ. Press, 2012.
[9] G. Isely, C. Hillar, and F. Sommer, “Deciphering subsampled data: Adap-

tive compressive sampling as a principle of brain communication,” in Proc.

Adv. Neural Inf. Process. Syst., 2010, pp. 910–918.
[10] J. Hughes, D. Graham, and D. Rockmore, “Quantification of artistic style

through sparse coding analysis in the drawings of Pieter Bruegel the Elder,”
Proc. Natl. Acad. Sci., vol. 107, no. 4, pp. 1279–1283, 2010.

[11] B. Olshausen and M. DeWeese, “Applied mathematics: The statistics of
style,” Nature, vol. 463, no. 7284, 2010, Art. no. 1027.

[12] T.-P. Jung, S. Makeig, M. McKeown, A. Bell, T.-W. Lee, and T. Sejnowski,
“Imaging brain dynamics using independent component analysis,” Proc.

IEEE, vol. 89, no. 7, pp. 1107–1122, 2001.
[13] G. Agarwal, I. Stevenson, A. Berényi, K. Mizuseki, G. Buzsáki, and F.

Sommer, “Spatially distributed local fields in the hippocampus encode rat
position,” Science, vol. 344, no. 6184, pp. 626–630, 2014.



5892 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 23, DECEMBER 1, 2019

[14] Y.-B. Lee et al., “Sparse SPM: Group sparse-dictionary learning in SPM
framework for resting-state functional connectivity MRI analysis,” Neu-

roimage, vol. 125, pp. 1032–1045, 2016.
[15] S. Wu, A. Joseph, A. Hammonds, S. Celniker, B. Yu, and E. Frise,

“Stability-driven nonnegative matrix factorization to interpret spatial gene
expression and build local gene networks,” Proc. Natl. Acad. Sci., vol. 113,
no. 16, pp. 4290–4295, 2016.

[16] J. Sun, Q. Qu, and J. Wright, “Complete dictionary recovery over the
sphere I: Overview and the geometric picture,” IEEE Trans. Inf. Theory,
vol. 63, no. 2, pp. 853–884, Feb. 2017.

[17] J. Hadamard, “Sur les problèmes aux dérivées partielles et leur signifi-
cation physique,” Princeton Univ. Bull., vol. 13, no. 49–52, 1902, Art.
no. 28.

[18] M. Rehn and F. Sommer, “A network that uses few active neurones to
code visual input predicts the diverse shapes of cortical receptive fields,”
J. Comput. Neurosci., vol. 22, no. 2, pp. 135–146, 2007.

[19] Y. Li, A. Cichocki, and S.-I. Amari, “Analysis of sparse representation and
blind source separation,” Neural Comput., vol. 16, no. 6, pp. 1193–1234,
2004.

[20] P. Georgiev, F. Theis, and A. Cichocki, “Sparse component analysis and
blind source separation of underdetermined mixtures,” IEEE Trans. Neural

Netw., vol. 16, no. 4, pp. 992–996, Jul. 2005.
[21] M. Aharon, M. Elad, and A. Bruckstein, “On the uniqueness of overcom-

plete dictionaries, and a practical way to retrieve them,” Linear Algebra

Appl., vol. 416, no. 1, pp. 48–67, 2006.
[22] C. Hillar and F. Sommer, “When can dictionary learning uniquely recover

sparse data from subsamples?” IEEE Trans. Inf. Theory, vol. 61, no. 11,
pp. 6290–6297, Nov. 2015.

[23] J. Grcar, “A matrix lower bound,” Linear Algebra Appl., vol. 433, no. 1,
pp. 203–220, 2010.

[24] R. Vidal, Y. Ma, and S. Sastry, “Generalized principal component anal-
ysis (GPCA),” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 12,
pp. 1945–1959, Dec. 2005.

[25] J. Blanchard, C. Cartis, and J. Tanner, “Compressed sensing: How sharp is
the restricted isometry property?” SIAM Rev., vol. 53, no. 1, pp. 105–125,
2011.

[26] A. Hyvärinen and E. Oja, “Independent component analysis: Algorithms
and applications,” Neural Netw., vol. 13, no. 4–5, pp. 411–430, 2000.

[27] A. Tillmann and M. Pfetsch, “The computational complexity of the
restricted isometry property, the nullspace property, and related con-
cepts in compressed sensing,” IEEE Trans. Inf. Theory, vol. 60, no. 2,
pp. 1248–1259, Feb. 2014.

[28] G. Folland, Real Analysis: Modern Techniques and Their Applications.
Hoboken, NJ, USA: Wiley, 2013.

[29] E. Arias-Castro, E. Candes, and M. Davenport, “On the fundamental limits
of adaptive sensing,” IEEE Trans. Inf. Theory, vol. 59, no. 1, pp. 472–481,
Jan. 2013.

[30] A. Tillmann, “On the computational intractability of exact and approximate
dictionary learning,” IEEE Signal Process. Lett., vol. 22, no. 1, pp. 45–49,
Jan. 2015.

[31] T. Kato, Perturbation Theory for Linear Operators. Berlin, Germany:
Springer Science & Business Media, 2013, vol. 132.

[32] I. Morris, “A rapidly-converging lower bound for the joint spectral ra-
dius via multiplicative ergodic theory,” Adv. Math., vol. 225, no. 6,
pp. 3425–3445, 2010.

[33] F. Deutsch, Best Approximation in Inner Product Spaces. Berlin, Germany:
Springer Science & Business Media, 2012.

[34] D. Donoho and M. Elad, “Optimally sparse representation in general
(nonorthogonal) dictionaries via �1 minimization,” Proc. Natl. Acad. Sci.,
vol. 100, no. 5, pp. 2197–2202, 2003.

[35] C. Rozell, D. Johnson, R. Baraniuk, and B. Olshausen, “Neurally plausible
sparse coding via thresholding and local competition,” Neural Comput.,
vol. 20, no. 10, pp. 2526–2563, 2008.

[36] C. Pehlevan and D. Chklovskii, “A normative theory of adaptive dimen-
sionality reduction in neural networks,” in Prov. Adv. Neural Inf. Process.

Syst., 2015, pp. 2269–2277.
[37] S. Ganguli and H. Sompolinsky, “Compressed sensing, sparsity, and di-

mensionality in neuronal information processing and data analysis,” Annu.

Rev. Neurosci., vol. 35, pp. 485–508, 2012.
[38] M. Lustig, D. Donoho, J. Santos, and J. Pauly, “Compressed sens-

ing MRI,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 72–82,
Mar. 2008.

[39] M. Duarte et al., “Single-pixel imaging via compressive sam-
pling,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 83–91,
Mar. 2008.

[40] L. Gao, J. Liang, C. Li, and L. Wang, “Single-shot compressed ultrafast
photography at one hundred billion frames per second,” Nature, vol. 516,
no. 7529, pp. 74–77, 2014.

[41] C. Kong and S. Lucey, “Prior-less compressible structure from motion,”
in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 4123–4131.

[42] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in Proc. Int. Conf. Learn. Representations, 2014,
pp. 1–10.


