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On the Uniqueness and Stability of Dictionaries for
Sparse Representation of Noisy Signals

Charles J. Garfinkle

Abstract—Learning optimal dictionaries for sparse coding has
exposed characteristic sparse features of many natural signals.
However, universal guarantees of the stability of such features in
the presence of noise are lacking. Here, we provide very general
conditions guaranteeing when dictionaries yielding the sparsest
encodings are unique and stable with respect to measurement or
modeling error. We demonstrate that some or all original dictionary
elements are recoverable from noisy data even if the dictionary
fails to satisfy the spark condition, its size is overestimated, or only
a polynomial number of distinct sparse supports appear in the
data. Importantly, we derive these guarantees without requiring
any constraints on the recovered dictionary beyond a natural upper
bound on its size. Our results yield an effective procedure sufficient
to affirm if a proposed solution to the dictionary learning problem
is unique within bounds commensurate with the noise. We suggest
applications to data analysis, engineering, and neuroscience and
close with some remaining challenges left open by our work.

Index Terms—Inverse problems, brain modeling, parameter es-
timation, sparse matrices, unsupervised learning, channel models.

I. INTRODUCTION

PARSE coding is a common modern approach to pattern
S analysis in signal processing whereby each of N observed
n-dimensional signal samples is viewed as a (noisy) linear
combination of at most %k elementary waveforms drawn from
some unknown “dictionary” of size m < N (see [1] for a com-
prehensive review). Optimizing dictionaries subject to this and
related sparsity constraints has revealed seemingly characteristic
sparse structure in several signal classes of current interest (e.g.,
in vision [2]).

Of particular note are the seminal works in the field [3]-[6],
which demonstrated that dictionaries optimized for coding small
patches of “natural” images share qualitative similarities with
linear filters estimated from response properties of simple-cell
neurons in mammalian visual cortex. Curiously, these wave-
forms (e.g., “Gabor” wavelets) appear in dictionaries learned
by a variety of algorithms trained over different natural image
datasets, suggesting that these learned features may, in some
sense, be canonical [7].
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Motivated by these discoveries and more recent work relating
compressed sensing [8] to a theory of information transmis-
sion through random wiring bottlenecks in the brain [9], we
address when dictionaries for sparse representation are indeed
identifiable from data. Answers to this question may also have
implications in practice wherever an appeal is made to latent
sparse structure of data (e.g., forgery detection [10], [11]; brain
recordings [12]-[14]; and gene expression [15]).

While several algorithms have been recently proposed to
provably recover unique dictionaries under specific conditions
(see [16, Section I-E] for a summary of the state-of-the-art), few
theorems can be invoked to justify the consistency of inference
under this model of data more broadly. To our knowledge, a
universal guarantee of the uniqueness and stability of learned
dictionaries and the sparse representations they induce over
noisy data has yet to appear in the literature.

Here, we prove very generally that uniqueness and stabil-
ity is a typical property of sparse dictionary learning. More
specifically, we show that matrices injective on a sparse do-
main are identifiable from N = m(k — 1) (') 4+ m noisy linear
combinations of k£ of their m columns up to an error that
is linear in the noise (Theorem 1 and Corollary 1). In fact,
provided n > min(2k,m), in almost all cases the problem is
well-posed, as per Hadamard [17], given a sufficient amount of
data (Theorem 3 and Corollary 2).

Our guarantees also extend to a related (and perhaps more
commonly posed, e.g. [18]) optimization problem seeking a
dictionary minimizing the average number of elementary wave-
forms required to reconstruct each sample of the dataset (Theo-
rem 2). To practical benefit, our results impose no restrictions on
learned dictionaries (e.g., that they, too, be injective over some
sparse domain) beyond an upper bound on dictionary size, which
is necessary in any case to avoid trivial solutions (e.g., allowing
m = N).

To state things more precisely, let A € R™*™ be a matrix
with columns A; (j = 1,...,m) and let dataset Z consist of
measurements:

zi:Axiani, iil,...,N, (1)
for k-sparse x; € R™ having at most k& < m nonzero entries and
noise n; € R™, with bounded norm ||n;||» < 7 representing our
worst-case uncertainty in measuring the product Ax,;. We first
consider the following formulation of the sparse coding problem.

Problem 1: Find a dictionary matrix B and k-sparse codes
X1,...,Xy that satisfy ||z; — BX;||s < nforalli=1,...,N.
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Note that every solution to Problem 1 represents
infinitely many equivalent alternatives BPD and
D 'P'x,,..., D 'P Xy parametrized by a choice of

permutation matrix P and invertible diagonal matrix D.
Identifying these ambiguities (labelling and scale) yields a
single orbit of solutions represented by any particular set of
elementary waveforms (the columns of B) and their associated
sparse coefficients (the entries of X;) that reconstruct each data
point z;.

Previous theoretical work addressing the noiseless case 7 = 0
(e.g., [19]-[22]) for matrices B having exactly m columns has
shown that a solution to Problem 1, when it exists, is unique up
to such relabeling and rescaling provided the x; are sufficiently
diverse and A satisfies the spark condition:

Ax; = Axs = x; = xg, forall k—sparse x1, X2, 2)
which is necessary to guarantee the uniqueness of arbitrary
k-sparse x;. We generalize these results to the practical setting
n > 0 by considering the following natural notion of stability
with respect to measurement error.

Definition 1: FixY = {y1,...,yn} C R". Wesay Y hasa
k-sparse representation in R if there exists a matrix A and
k-sparse x1,...,xy € R™ such that y, = Ax; for all 4. This
representation is stable if for every d;, do > 0, there exists some
e = (01, d2) that is strictly positive for positive d; and d2 such
that if B and k-sparse X1, ...,Xy € R satisfy:

||AXZ — BiZ”Q < 5(51,(52)7 forall i = 1, .. .,]\/v7

then there is some permutation matrix P and invertible diagonal
matrix D such that for all 7, j:

|A; — (BPD);[lz < d1and |[x; - D'P'X;[y < b (3)

To see how Problem 1 motivates Definition 1, suppose that Y
has a stable k-sparse representation in R” and fix 1, d2 to be
the desired accuracies of recovery in (3). Consider any dataset
Z generated as in (1) with < 1£(61,6,). Using the triangle
inequality, it follows that any n x m matrix B and k-sparse
X1, ..., Xy solving Problem 1 are necessarily within d; and §, of
the original dictionary A and codes x1,...,Xy, respectively.1

The main result of this work is a very general uniqueness theo-
rem for sparse coding (Theorem 1), which guarantees that sparse
representations of a dataset Z are unique up to noise whenever
generating dictionaries A satisfy a spark condition on supports
and the original sparse codes x; are sufficiently diverse (e.g.,
Fig. 1). Moreover, we provide an explicit, computable (91, d2)
in (8) that is linear in desired accuracy d;, and essentially so in
9.

In the next section, we give formal statements of these find-
ings. We then extend the same guarantees (Theorem 2) to the
following alternate formulation of dictionary learning, which
minimizes the total number of nonzero entries in sparse codes.

'We mention that the different norms in (3) reflect the distinct meanings
typically ascribed to the dictionary and sparse codes in modeling data.
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Fig. 1. Learning a dictionary from increasingly noisy data. The (unraveled)
basis elements of the 8 x 8 discrete cosine transform (DCT) form the 64
columns of the left-most matrix above. Three increasingly imprecise dictionaries
(columns reordered to best match original) are recovered by FastICA [26] trained
on data generated from §-sparse linear combinations of DCT elements corrupted
with additive noise (increasing from left to right).

Problem 2: Find matrices B and vectors Xi,...,Xpy
solving:
N
minz IXillo subjectto ||z; — BX;|l2 <n, foralli. (4)
i=1

Our development of Theorem 1 is general enough to provide
some uniqueness and stability even when generating A do not
fully satisfy (2) and recovery dictionaries B have more columns
than A. Moreover, the approach incorporates a combinatorial
theory for designing generating codes that should be of indepen-
dent interest. We also give brief arguments adapting our results
to dictionaries and codes drawn from probability distributions
(Corollary 2). The technical proofs of Theorem 1 and 2 are
deferred to Section III, following some necessary definitions
and a fact in combinatorial matrix analysis (Lemma 1; proven
in the Appendix). Finally, we discuss in Section IV applications
of our mathematical observations as well as open questions.

II. RESULTS

Precise statements of our results require that we first identify
some combinatorial criteria on the supports” of sparse vectors.
Let {1,...,m} be denoted [m)], its power set 2[™], and ([ZL]) the
set of subsets of [m] of size k. A hypergraph on vertices [m)] is
simply any subset 7 C 2l We say that # is k-uniform when
HC ([7]?]). The degree degy, (i) of anode ¢ € [m] is the number
of sets in H that contain ¢, and we say H is regular when for
some 7 we have degy, (¢) = r for all i (given such an r, we say H
is r-regular). We also write 2H := {SU S’ : 5,5 € H}. The
following class of structured hypergraphs is a key ingredient in
this work.

Definition 2: Given H C 2™l the star o(4) is the collection
of sets in H containing 7. We say H has the singleton intersec-
tion property (SIP) when No (i) = {i} for all i € [m].

We next give a quantitative generalization of the spark condi-
tion (2). The lower bound of an n x m matrix M is the largest «
with ||[Mx||2 > «||x||2 for all x € R™ [23]. By compactness of
the unit sphere, every injective linear map has a positive lower
bound; hence, if M satisfies (2), then submatrices formed from
2k of its columns or less have strictly positive lower bounds.

The lower bound of a matrix is generalized below in (5) by
restricting it to the spans of certain submatrices® associated with
a hypergraph H C ([7;]) of column indices. Let M g denote the

2Recall that a vector x is said to be supported in S when x € span{e; : j €
St with e ; forming the standard column basis.
3See [24] for an overview of the related “union of subspaces” model.
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submatrix formed by the columns of a matrix M indexed by
S C [m)] (setting My := 0). In the sections that follow, we shall
also let Mg denote the column-span of a submatrix Mg, and
M, to denote { M s}seg. We define:

- [IMsx||o S|
LH(M)::mm{:SEH,O#XGR , (5
Vx|

writing also L in place of Ly when H = ([2”]).4 As ex-
plained above, compactness implies that Log (M) > 0 for all M
satisfying (2). Clearly, Ly (M) > Ly (M) whenever H' C H,
and similarly any k-uniform H satisfying UH = [m] has Ly >
Loy, > Loy (letting Loy, := Ly, whenever 2k > m).

We are now in a position to state our main result, though for
expository purposes we leave the quantity C; undefined until
Section III. All results below assume real matrices and vectors.

Theorem 1: If an n x m matrix A satisfies Loy (A) > 0
for some r-regular H C ([ZL]) with the SIP, and k-sparse

X1,...,xy € R™ include more than (k —1)(7) vectors in
general linear position® supported in each S € H, then the
following recovery guarantees hold for C; > 0 given by (19).

Dictionary Recovery: Fix e < Ly(A)/C1.5 If an n x 7 ma-
trix B has, for every i € [N], an associated k-sparse X; sat-
isfying ||Ax; — BX;||2 < ¢, then 7 > m, and provided that
m(r — 1) < mr, there is a permutation matrix P and an in-
vertible diagonal matrix D such that:

||A7 — (BPD)J”Q < 018, for a]l] S J, (6)

for some J C [m] of size m — (r — 1)(m — m).

Code Recovery: If, moreover, A ; satisfies (2) and ¢ <
Lok (A y)/Ch, then (BP) s also satisfies (2) with Lo (BP ;) >
(Lak(Ay) — Cie)/|ID sl1, and for all i € [N]:

T L+ Cil(xi) 11
s = P70, < () e )
where subscript () s applied to vectors represents the subvector
formed from restricting to coordinates indexed by .J.

In words, Theorem 1 says that the smaller the regularity r
of the original support hypergraph H or the difference m — m
between the assumed and actual number of elements in the latent
dictionary, the more columns and coefficients of the original
dictionary A and sparse codes x; are guaranteed to be contained
(up to noise) in the appropriately labelled and scaled recovered
dictionary B and codes X;, respectively.

In the important special case when m = m, the theorem
directly implies that Y = {Axy,...,Axy} has a stable k-
sparse representation in R"”*, with inequalities (3) guaranteed

“In compressed sensing literature, 1 — v/k Ly, (M) is the asymmetric lower
restricted isometry constant for M with unit £2-norm columns [25].

SRecall that a set of vectors sharing support S are in general linear position
when any |S| of them are linearly independent.

®Note that the condition &< L2(A)/Cy is necessary; otherwise,
with A = T (the identity matrix) and x; =e;, the matrix B =
[O, %(el +e2),es,... ,em] and sparse codes X; = ey for i = 1,2 and
X; = e; fori > 3 satisfy ||Ax; — BX;||2 < £ but nonetheless violate (6).
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in Definition 1 for the following worst-case error €:

o1 02 Lok (A)
Ci' 1+ (52 + max;ec[n] ||Xl||1)

(01, d2) := min {
(8)

We should stress here that framing the problem in terms
of hypergraphs has allowed us to show, unlike in previous
research on the subject, that the matrix A need not necessarily
satisfy (2) to be recoverable from data. As an example, let
A =ley,...,e5 V] with v=e; + e3 + e; and take H to be
all consecutive pairs of indices 1, . . . , 6 arranged in cyclic order.
Then for k£ = 2, the matrix A fails to satisfy (2) while still
obeying the assumptions of Theorem 1 for dictionary recovery.

A practical implication of Theorem 1 is the following: there is
an effective procedure sufficient to affirm if a proposed solution
to Problem 1 is indeed unique (up to noise and inherent ambigu-
ities). One need simply check that the matrix and codes satisfy
the (computable) assumptions of Theorem 1 on A and the x;.
In general, however, there is no known efficient procedure. We
defer a brief discussion on this point to the next section.

Since sparse codes in general linear position are straightfor-
ward to produce with a “Vandermonde” construction (i.e., by
choosing columns of the matrix [Vf]ffip for distinct nonzero
vi), we have the following direct consequence of Theorem 1.

Corollary 1: Given any regular hypergraph H C ([7,?])
with the SIP, there are N = |H|[(k—1)("}) +1] vectors
X1,...,XNy € R™ such that every matrix A satisfying spark
condition (2) generates Y = {Axy,..., Axxy} with a stable
k-sparse representation in R™ for £(d1, d2) given by (8).

One can easily verify that for every k < m there are regular
k-uniform hypergraphs H with the SIP besides the obvious
H = ([f]). For instance, take H to be the k-regular set of
consecutive intervals of length k in some cyclic order on [m).
In this case, a direct consequence of Corollary 1 is rigorous
verification of the lower bound N =m(k —1)("}) +m for
sufficient sample size from the introduction. Special cases allow
for even smaller hypergraphs. For example, if k = \/m, then a
2-regular k-uniform hypergraph with the SIP can be constructed
as the 2k rows and columns formed by arranging the elements
of [m] into a square grid.

A less direct consequence of Theorem 1 is the following
uniqueness and stability guarantee for solutions to Problem 2.

Theorem 2: Fix a matrix A and vectors x; satisfying
the assumptions of Theorem 1, only now with over (k —
1) [(7) + [H|k(,™,)] vectors supported in general linear posi-
tion in each S € H. Every solution to Problem 2 (withn = £/2)
satisfies recovery guarantees (6) and (7) when the corresponding
bounds on 7 are met.

Another extension of Theorem 1 can be derived from the fol-
lowing algebraic characterization of the spark condition. Letting
A be the n x m matrix of nm indeterminates A;;, the reader
may work out why substituting real numbers for the A;; yields
a matrix satisfying (2) if and only if the following polynomial
evaluates to a nonzero number:

fay = J1 > (detAgss)?

se(igy) se(3)
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where for any S’ € (1) and S € (7)), the symbol Ag s
denotes the submatrix of entries A;; with (i,j) € S’ x 5.7

Since f is analytic, having a single substitution of a real matrix
A satisfying f(A) # 0 implies that the zeroes of f form a set
of (Borel) measure zero. Such a matrix is easily constructed
by adding rows of zeroes to a min(2k, m) x m Vandermonde
matrix as mentioned previously, so that every sum in the product
defining f above is strictly positive. Thus, almost every n x m
matrix with n > min(2k, m) satisfies (2).

We claim that a similar phenomenon applies to datasets of
vectors with a stable sparse representation. Briefly, following
the same procedure as in [22, Section IV], for k£ < m and
n > min(2k, m), we may consider the “symbolic” dataset Y =
{Axy,...,Axy} generated by an indeterminate n x m matrix
A and m-dimensional k-sparse vectors X1, ..., Xy indetermi-
nate within their supports, which form a regular hypergraph
HC ([Z’]) satisfying the SIP. Restricting (k —1)("}) + 1 in-
determinate x; to each support in 7, and letting M be the
n x N matrix with columns Ax;, it can be checked that when
f(M) # 0 for a substitution of real numbers for the indetermi-
nates, all of the assumptions on A and the x; in Theorem 1 are
satisfied. We therefore have the following.

Theorem 3: There is a polynomial in the entries of A and
the x; that evaluates to a nonzero number only when Y has a
stable k-sparse representation in R™. In particular, almost all
substitutions impart to Y this property.

To extend this observation to arbitrary probability distribu-
tions, note that if a set of p measure spaces has all measures
absolutely continuous with respect to the standard Borel measure
on R, then the product measure is also absolutely continuous
with respect to the standard Borel product measure on R?
(e.g., see [28]). This fact combined with Theorem 3 implies
the following.®

Corollary 2: If the indeterminate entries of A and the x; are
drawn independently from probability distributions absolutely
continuous with respect to the standard Borel measure, then Y
has a stable k-sparse representation in R™ with probability one.

Thus, drawing the dictionary and supported sparse coeffi-
cients from any continuous probability distribution almost al-
ways generates data with a stable sparse representation.

We close this section with some comments on the optimality
of our results. The linear scaling for ¢ in (8) is essentially optimal
(e.g., see [29]), but a basic open problem remains: how many
samples are necessary to determine the sparse coding model?
Our results demonstrate that sparse codes x; drawn from only
a polynomial number of k-dimensional subspaces permit stable
identification of the generating dictionary A. This lends some
legitimacy to the use of the model in practice, where data in
general are unlikely (if ever) to exhibit the exponentially many
possible k-wise combinations of dictionary elements required
by (to our knowledge) all previously published results.

Consequently, if k is held fixed or if the size of the support set
of reconstructing codes is known to be polynomial in 7 and k,

"The large number of terms in this product is likely necessary given that
deciding whether or not a matrix satisfies the spark condition is NP-hard [27].
8We refer the reader to [22] for a more detailed explanation of these arguments.
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then a practical (polynomial) amount of data suffices to identify
the dictionary.® Reasons to be skeptical that this holds in general,
however, can be found in [27], [30]. Even so, in the next section
we discuss how probabilistic guarantees can in fact be made for
any number of available samples.

III. PROOFS

We begin our proof of Theorem 1 by showing how dictionary
recovery (6) already implies sparse code recovery (7) when A
satisfies (2) and e < Loy (A)/C;. We temporarily assume (with-
out loss of generality) that 7m = m, so as to omit an otherwise
requisite subscript (+) s around certain matrices and vectors. By
definition of Loy, in (5), and noting that v/k||v||2 > ||v||; for
k-sparse v, we have for all i € [N]:

IBPD(x; - D"'P%))|l5

||Xi — DilpTil‘Hl

IN

L2+ (BPD)
[(BPD — A)xls + [|Ax; — BXill»
= T2»(BPD)
Cl€||Xi||1 -‘rE’ )
Lok (BPD)

where the first term in the numerator above follows from the
triangle inequality and (6).

It remains for us to bound the denominator. For any 2k-sparse
x, we have by the triangle inequality:

[BPDx||2 > [|Ax|}2 — [[(A — BPD)x|2
> V2k(Lak(A) — Cre)|lx]l2,

We therefore have that Loy (BPD) > Lok (A) — Cie > 0,
and (7) then follows from (9). The reader may also verify that
Lok (BP) > Loy (BPD)/|ID;.

The heart of the matter is therefore (6), which we now estab-
lish beginning with the important special case of k = 1.

Proof of Theorem 1 for k = 1: Since the only 1-uniform hy-
pergraph with the SIP is [m], which is obviously regular, we
require only x; = ¢;e; for i € [m], with ¢; # 0 to guarantee
linear independence. While we have yet to define C; gen-
erally, in this case we may set Cy = 1/ minepy,) |ce| so that
€ < Ly(A) mingen) |ce.

Fix A € R™™ satisfying L2(A) > 0, since here we have
2H = ([ZL]), and suppose some B and 1-sparse X; € R™ have
[[Ax; — BX;||l2 <& < Ly(A)/Cy for all i. Then, there exist
Ci,...,Cm € Rand amap 7 : [m] — [m] such that:

HCiAi - EiBﬂ(i)”Q <e, forie [m] (10)

Note that ¢; # 0, since otherwise we would reach the follow-
ing contradiction: ||A;|l2 < Cyle|]|Aillz < Cie < La(A) <
L1 (A) = minepm) [|Agll2.

We now show that 7 is injective (in particular, a permutation
ifm = m). Suppose that 7(7) = 7(j) = ¢ for some i # j and £.

°In the latter case, a reexamination of the pigeonholing argument in the
proof of Theorem 1 requires a polynomial number of samples distributed over
a polynomial number of supports.
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Then, ||c;A; —¢By|l2 < e and ||c;A; —¢;Byll2 < ¢, and we
have:

([eil + [e;1)e = [eillle; Ay — €Bell2 + [l ciAs — €iBell2
> [|[A(Gicje; —Tjciei)]|2
> V2L, (A)|Eicje; — Tjciel|a
> Ly(A) (fes| + |Ej|)zme[i£] |cel,

contradicting our assumed upper bound on €. Hence, the map 7
is injective and so m > m. |

Letting P and D be the m x m permutation and invertible
diagonal matrices with, respectively, columns e ;) and %ei for
i € [m] (otherwise, e; for i € [m] \ [m]), we may rewrite (10)
to see that for all ¢ € [m)]:

|A: = (BPD)i[l> = A = = Buyl2 < |C‘i| < Che.

An extension of the proof to the general case k < m requires
some additional tools to derive the general expression (19) for
(. These include a generalized notion of distance (Definition 3)
and angle (Definition 4) between subspaces as well as a stability
result in combinatorial matrix analysis (Lemma 1).

Definition 3: Foru € R™ and vector spaces U,V C R™, let
dist(u, V) := min{|ju — v||z : v € V'} and define:

AU, V) = uEUI,nHalfﬁggl dist(u, V). (11)
We note the following facts about d. Clearly,
U'CU=dU,V)<dUYV). (12)
From [31, Ch. 4 Corollary 2.6], we also have:
d(U, V) <1=dim(U) < dim(V), (13)
and from [32, Lemma 3.2]:
dim(U) = dim(V) = d(U, V) = d(V,U). (14)

The following is our result in combinatorial matrix analysis;
it contains most of the complexity in the proof of Theorem 1.

Lemma 1: If an n X m matrix A has Loy (A) > 0 for some
r-regular H C ([7,?]) with the SIP, then the following holds for
Cy > 0 given by (18):

Fix £ < La(A)/Cs. If for some n x T matrix B and map
m:H— ([T]),

d(Asg, Bﬂ(s)) <e, forS eH, (15)

then 7 > m, and provided m(r — 1) < mr, there is a permu-
tation matrix P and invertible diagonal D such that:

||Az — (BPD)ZHQ < 025, fori € J, (16)

for some J C [m] of size m — (r — 1)(m — m).

We present the constant Cs (a function of A and H) relative
to a quantity used in [33] to analyze the convergence of the
“alternating projections” algorithm for projecting a point onto
the intersection of subspaces. We incorporate this quantity into
the following definition, which we refer to in our proof of
Lemma 3 in the Appendix; specifically, we use it to bound the

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 23, DECEMBER 1, 2019

distance between a point and the intersection of subspaces given
an upper bound on its distance from each subspace.
Definition 4: For a collection of real subspaces V =
{V;}¢_,, define £(V) := 0 when |V| = 1, and otherwise:
-1
EV):=1- maxl_[sin2 0 (Vi,Nj>iVj),

i=1

a7

where the maximum is taken over all ways of ordering the V; and
the angle 6 € (0, 5] is defined implicitly as [33, Definition 9.4]:

€L
cos (U, W) := maX{\(u, w)| : weUN(UNW)*, [uf2<1 }

weWn(UNW)*, ||w|2<1
Note that 6 € (0, 5] implies 0 < ¢ < 1, and that {(V') <
£(V) when V' C V.10
The constant Co > 0 of Lemma 1 can now be expressed as:
(r+ 1) maxjcim) | A2
1-— maXge( ) £(Ag)

We next define the constant C; > 0 of Theorem 1 in terms of
C5. Given vectors x1,...,Xy € R™, let X denote the m x NV
matrix with columns x; and let I(.S) denote the set of indices 4
for which x; is supported in S. We define:

C12 (A7 H)
mingey Ly(AX (s))

CQ(A, H) =

(18)

Cr(AH, {x}Y)) = (19)
Given the assumptions of Theorem 1 on A and the x;, this
expression for C is well-defined!! and yields an upper bound
on ¢ consistent with that proven sufficient in the case k =1
considered at the beginning of this section.'?

The practically-minded reader should note that the explicit
constants C and Cy, are effectively computable: the quantity Ly,
may be calculated as the smallest singular value of a certain ma-
trix, while the quantity £ involves computing “canonical angles”
between subspaces, which reduces again to an efficient singular
value decomposition. There is no known fast computation of
Lj, in general, however, since even L; > 0 is NP-hard [27],
although efficiently computable bounds have been proposed
(e.g., via the “mutual coherence” of a matrix [34]); alternatively,
fixing k yields polynomial complexity. Moreover, calculating Co
requires an exponential number of queries to & unless r is held
fixed, too (e.g., the “cyclic order” hypergraphs described above
have r = k). Thus, as presented, C; and C5 are not efficiently
computable in general.

Proof of Theorem I for k < m We find a map 7 :H —
([ZL]) for which the distance d(.Ags, B, (g)) is controlled by &
for all S € H. Applying Lemma 1 then completes the proof.

Fix S € H. Since there are more than (k — 1) (") vectors x;
supported in S, by the pigeonhole principle there must be some
Se ([T]) and a set of k indices K C I(.S) for which all X; with

10We acknowledge the counter-intuitive property: = 7/2 when U C W.

To see this, fix S € H and k-sparse c. Using the definitions, we have
[AX (sycllz > VELy(A)[Xp(s)cll2 > kL (A) Ly (X1(s))llc|l2. Thus,
Li(AX(5)) > VELy(A)Ly(X(s)) > 0, since Ly (A) > Loy (A) > 0
and L, (Xy(gy) > 0 by general linear position of the x;.

2When x; = c;e;, we have Co > 2||A;||2 and the denominator in (19)
becomes min;¢ [, [ci|[|Asl|2; hence, C1 > 2/ minge(p,) |eil-
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i € K are supported in S. It also follows'1 from Loy (A) > 0
and the general linear position of the x; that Ly(AXg) > 0;
that is, the columns of the n x k& matrix AX form a basis
for Ag.

Fixing y € Ag \ {0}, there then exists ¢ = (¢1,...,¢;) €
R¥\ {0} such that y = AX xc. Setting ¥ = BX g ¢, which is
in By, we have by triangle inequality:

ly = ¥ll2 = [(AXx — BXk)ell2 < eflell < Vel
€
P
where the last inequality uses (5). From Definition 3:
e < Cl

I
d(Ag, Bz) < < <e—.
(As:Bs) < T aX) = LiAX 5 = G

(20)

Finally, apply Lemma 1 withe < L2(A)/Cy and w(S) := S. A

Before moving on to the proof of Theorem 2, we briefly revisit
our discussion on sample complexity from the end of the previ-
ous section. While an exponential number of samples may very
well prove to be necessary in the deterministic or almost-certain
case, our proof of Theorem 1 can be extended to hold with some
probability for any number of samples by alternative appeal
to a probabilistic pigeonholing at the point early in the proof
where the (deterministic) pigeonhole principle is applied to show
that for every S € H, there exist k vectors x; supported on S
whose corresponding X; all share the same support.'* Given
insufficient samples, this argument has some less-than-certain
probability of being valid for each S € . Nonetheless, sim-
ulations with small hypergraphs confirm that the probability
of success very quickly approaches one once the number of
samples N surpasses a small fraction of the deterministic sample
complexity.

Proof of Theorem 2: We bound the number of k-sparse X;
from below and then apply Theorem 1.

Let n,, be the number of X; with ||X;||o = p. Since the x; are
all k-sparse, by (4) we have:

m N N
S pnp =Y IRl <3 IIxillo < kN
p=0 1=0 1=0

Since N = me:o nyp, we then have ZZO(P — k)n, < 0. Split-
ting the sum yields:

™m m k k-1
Yoo < > (p—knp <> (k—pny <k Y ny,
p=k+1 p=k+1 p=0 p=0

21

demonstrating that the number of vectors X; that are not k-sparse
is bounded above by how many are (k — 1)-sparse.

Next, observe that no more than (k — 1)|#| of the X; share a
support S of size less than k. Otherwise, by the pigeonhole prin-
ciple, there is some S € H and a set of k indices K C I(S) for
which all x; withi € K are supported in S; as argued previously,
(20) follows. It is simple to show that Lo(A) < max; [|A;][2,

13A famous example of such an argument is the counter-intuitive “birthday
paradox”, which demonstrates that the probability of two people having the same
birthday in a room of twenty-three is greater than 50%.
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and since 0 < ¢ < 1, the right-hand side of (20) is less than
one for ¢ < Ly(A)/Cy. Thus, by (13) we would have the
contradiction k = dim(Ag) < dim(Bg) < [S] < k.

The total number of (k — 1)-sparse vectors X; thus cannot ex-
ceed |H|(k — 1)(,,). By (21), no more than | H|k(k — 1)(,™,)
vectors X; are not k-sparse. Since for every S € H there are

over (k— 1) [(7) + [H|k(,™,)] vectors x; supported there, it
must be that more than (k — 1)(’}') of them have corresponding
X; that are k-sparse. The result now follows from Theorem 1,
noting by the triangle inequality that ||Ax; — BX;|| < 27 for

i=1,...,N. (]

IV. DISCUSSION

A main motivation for this work is the emergence of seem-
ingly unique representations from sparse coding models trained
on natural data, despite the varied assumptions underlying the
many algorithms in current use. Our results constitute an impor-
tant step toward explaining these phenomena as well as unifying
many publications on the topic by deriving general determinis-
tic conditions under which identification of parameters in this
model is not only possible but also robust to uncertainty in
measurement and model choice.

We have shown that, given sufficient data, the problem of
determining a dictionary and sparse codes with minimal support
size (Problem 2) reduces to an instance of Problem 1, to which
our main result (Theorem 1) applies: every dictionary and se-
quence of sparse codes consistent with the data are equivalent
up to inherent relabeling/scaling ambiguities within an error that
scales linearly (or essentially so) with the measurement noise or
modeling inaccuracy. The constants we provide are explicit and
computable; as such, there is an effective procedure sufficient to
affirm if a proposed solution to these problems is indeed unique
up to noise and inherent ambiguities, although it is not efficient
in general.

Beyond an extension of existing noiseless guarantees [22] to
the noisy regime and their novel application to Problem 2, our
work contains a theory of combinatorial designs for support sets
key to dictionary identification. We incorporate this idea into
a fundamental lemma in matrix theory (Lemma 1) that draws
upon the definition of a matrix lower bound (5) induced by a
hypergraph. The new insight offered by this combinatorial ap-
proach allows for guaranteed recovery of some or all dictionary
elements even if they are overestimated in number, data cover
only a polynomial number of distinct sparse supports, or the
dictionary does not fully satisfy the spark condition.

The absence of any assumptions about dictionaries solving
Problem 1 was a major technical obstruction in proving The-
orem 1. We sought such a general guarantee because of the
practical difficulty in ensuring that an algorithm maintain a
dictionary satisfying the spark condition (2) at each iteration, an
implicit requirement of all previous works except [22]; indeed,
even certifying a dictionary has this property is NP-hard [27].

One direct application of this work is to theoretical neuro-
science, wherein our theorems justify the mathematical sound-
ness of one of the few hypothesized theories of bottleneck
communication in the brain [9]: that sparse neural population
activity is recoverable from its noisy linear compression through
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arandomly constructed (but unknown) wiring bottleneck by any
biologically plausible unsupervised sparse coding method that
solves Problem 1 or 2 (e.g., [18], [35], [36]).'4

In fact, uniqueness guarantees with minimal assumptions
apply to all areas of data science and engineering that utilize
learned sparse structure. For example, several groups have ap-
plied compressed sensing to signal processing tasks; for in-
stance, in MRI analysis [38], image compression [39], and even
the design of an ultrafast camera [40]. It is only a matter of time
before these systems incorporate dictionary learning to encode
and decode signals (e.g., in a device that learns structure from
motion [41]), just as scientists have used sparse coding to make
sense of their data [12]-[15].

Assurances offered by our theorems certify that different
devices and algorithms learn equivalent representations given
enough data from statistically identical systems.!> Indeed, a
main reason for the sustained interest in dictionary learning as
an unsupervised method for data analysis seems to be the as-
sumed well-posedness of parameter identification in the model,
confirmation of which forms the core of our findings.

We close with some challenges left open by our work. All
conditions stated here guaranteeing the uniqueness and stability
of sparse representations have only been shown sufficient; it
remains open, therefore, to extend them to necessary conditions,
be they on required sample size, the structure of support set
hypergraphs, or tolerable error bounds. On this last note, we
remark that our deterministic treatment considers always the
“worst-case” noise, whereas the “effective” noise sampled from
a concentrated distribution might be significantly reduced, espe-
cially for high-dimensional data. It would be of great practical
benefit to see how drastically all conditions can be relaxed by
requiring only probabilistic guarantees in this way, or in the spirit
of our discussion on probabilistic pigeonholing to reduce sample
complexity (as in the famous “birthday paradox”) following the
proof of Theorem 1.

Another interesting question raised by our work is for which
special cases is it efficient to check that a solution to Problem 1
or 2 is unique up to noise and inherent ambiguities. Considering
that the sufficient conditions we have described for checking this
in general are NP-hard to compute, are the necessary conditions
hard? Are Probs. 1 and 2 then also hard (e.g., see [30])? Finally,
since Problem 2 is intractable in general, but efficiently solvable
by ¢1-norm minimization when the matrix is known (and has a
large enough lower bound over sparse domains [8]), is there a
version of Theorem 2 certifying when Problem 2 can be solved
efficiently in full by similar means?

It is our hope that the theoretical tools showcased here will be
of use to the community in answering these remaining questions.

APPENDIX

We prove Lemma 1 after the following auxiliary lemmas.

14We refer the reader to [37] for more on interactions between dictionary
learning and neuroscience.

15To contrast with the current hot topic of “Deep Learning”, there are few such
uniqueness guarantees for these models of data; moreover, even small noise can
dramatically alter their output [42].
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Lemma 2: If f:V — W is injective, then f (N{_,Vi) =
NE_y f (V) forany Vi, ..., Vp C V. (f(0) :=0).

Proof: By induction, it is enough to prove the case ¢ =
2. Clearly, for any map f, if w e f(UNV) then w € f(U)
andw € f(V);hence,w € f(U)N f(V).Ifw e f(U)N f(V),
thenw € f(U)andw € f(V);thus,w = f(u) = f(v) for some
w € Uandv € V,implying u = v by injectivity of f. It follows
thatu c UNVandw € f(UNV). |

In particular, if a matrix A satisfies Loy (A) > 0, then taking
V' to be the union of subspaces consisting of vectors with
supports in 2, we have A~g = NAg forall G C H.

Lemma 3: Let V = {V;}¥_, be a set of two or more sub-
spaces of R™, and set V' = NV. For u € R™, we have (recall
Defs. 3 & 4):

k
1
dist(u, V) < ————=» dist(u, ;). (22)
) &

Proof: Recall the projection onto the subspace V' C R™ is
the mapping Iy : R™ — V' that associates with each u its
unique nearest point in V; i.e., |[u — Iy ul|s = dist(u, V). By
repeatedly applying the triangle inequality, we have:

[u—Tyul]z < [[u—yull2 + [Ty, u = Ty, Iy, a2

+ ot ||HVkHVk—1 o HV1u - HVu||2

< (23)

)=

[u—yufls + [|(Iy, - - - Ty, — Iy )ullz,

~
Il

1

where we have also used that the spectral norm of the orthogonal
projections Iy, satisfies ||y, |2 < 1 for all £.

It remains to bound the second term in (23) by £(V)|lu —
Iy ul|2. First, note that IIy,ITy = Iy and 112, = Iy, so we
have |[(ILy, ---ILy, — Hy)ullz = [[(ILy, - - - Iy, — Iy)(u -
[Ty u)||2. Consequently, inequality (22) follows from [33, The-
orem 9.33]:

‘lHVkHVk—l s HV1X — HVX||2 S Z||X||27 for all X, (24)

with 22 =1 — ];;%(1 — z?) and z, = cosf (Vz,ﬂ];:“lvs)
(recall @ from Definition 4), after substituting £())) for z and
rearranging terms. |

Lemma 4: Fix an r-regular hypergraph H C 20" satisfying
the SIP.If the map 7 : H — 2™ has 3" gy, [7(S)| > D geny 1S]
and:

IN7(G)| <[ NG|, forG e (t‘) U (1"7—_:1)’ 25)

thenm > m;andif m(r — 1) < mr,themapi — Ngeq (i) 7(S)
is an injective function to [m] from some J C [m] of size m —
(r — 1)(m — m) (recall o from Definition 2).

Proof: Consider the following set: Ty := {(i,5):i €
7(S),S € H}, which numbers |Ti| =) gy |T(S)] >
D sen |SI = 2 iem) degy (i) = mr by r-regularity of H.
Note that [T} | < mr; otherwise, pigeonholing the tuples of T}
with respect to their 77 possible first elements would imply that
more than r of the tuples in 7} share the same first element.

This cannot be the case, however, since then some G € (Tzl)
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formed from any r+ 1 of their second elements would
satisfy N (G) # 0; hence, | NG| # 0 by (25), contradicting
r-regularity of . It follows that m > m.

Suppose now thatm(r — 1) < mr,sothatp := mr — m(r —
1) is positive and |T7| > m(r — 1) + p. Pigeonholing 7} into
[] again, there are at least r tuples in 77 sharing some first
element; that is, for some Gy C H of size |Gi| > r, we have
| N 7(G1)| > 1 and (by (25)) | N G1| > 1. Since no more than r
tuples of 77 can share the same first element, we in fact have
|G1| = r. It follows by r-regularity that G, is a star of H; hence,
| N G1| = 1bythe SIP and | N7 (G1)| = 1 by (25).

If p=1, then we are done. Otherwise, define 75 :=T7 \
{(¢,5) € Ty : i = Nw(G1)}, which contains | 15| = [T1| —r >
(m—1)(r — 1) + (p — 1) ordered pairs having 7 — 1 distinct
first indices. Pigeonholing T% into [ — 1] and repeating the
above arguments produces the star Go € (7:) with intersec-
tion NGy necessarily distinct (by r-regularity) from NGy. It-
erating this procedure p times in total yields the stars G; for
which NG; — N(G;) defines an injective map to [m] from
J={NG1,...,NG,} C [m]. |

Proof of Lemma 1: We  begin by  showing  that
dim(By(s)) = dim(Ag) for all S € H. Note that since
|Ax(l> < max; [|Aj]l2lx]1 and x| < VE||x|lz for all
k-sparse x, by (5) we have Ly (A) < max; ||A ;| 2 and therefore
(as 0 < & < 1) the right-hand side of (15) is less than one. From
(13), we have |7(S)| > dim(B(s)) > dim(As) = |S]|, the
final equality holding by injectivity of Ag. As |w(S)| =[5,
the claim follows. Note, therefore, that B,r( 3) has full-column
rank for all S € H.

We next demonstrate that (25) holds. Fixing G € (7:) U (Tzl),
it suffices to show that d(Bnr(g), Ang) < 1, since by (13)
we then have | N 7(G)| = dim(Bnr(g)) < dim(Ang) =[N G|,
with equalities from the full column-ranks of A g and B (g for
allS € H.1 Observe that d(Bp (g, Ang) < d (ﬂBﬂ(g), O.Ag)
by (12), since trivially Bn gy € NB(g) and also Ag = NAg
by Lemma 2. Recalling Definition 3 and applying Lemma 3
yields:

d (NBr(g),NAg) <

dist (u, Ag)
ueﬂB,rI(Igl?:)ﬁuH2§1 2 1—¢(Ag)

Seg

Seg
As)

A5
passing the maximum through the sum. Since NBg) C By (s)

for all S € G, by (12) the numerator of each term in the
sum above is bounded by d (B, (s), As) = d (Asg, By (s)) <

€, with the equality from (14) since dim(B(s)) = dim(Ag).
Thus, altogether:
|Gle Cye
d(Bnrg), An < (26)
e Ac0) < T-¢(ag) = s 14512

recalling the definition of Cy in (18). Lastly, since Cae <
Ly(A) < max; ||Ajll2, we have d(Bng), Ang) <1 and
therefore (25) holds.

1oNote that if ever Brrg) #0 while NG = 0, we would have
d(Bnr(g)y,0) = 1. However, that leads to a contradiction.
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Applying Lemma 4, the association i — Ngeq(y7m(S) is an
injective map 7 : J — [m] for some J C [m] of size m — (r —
1)(m —m), and Bzg;) # 0 for all i € J since the columns
of Br(s) are linearly independent for all S € H. Letting
z := Che/ max; || A2, it follows from (14) and (26) that
d (.Ai, Bﬂi)) d (B7T l),.A,L') <z foralli € J. Setting ¢; :=
|Aill3" so that ||c;Ae;||> = 1, by Definition 3 for all i € J:

Ae;
g leothes

—&Bexll2 < d (A, Br;)) <F,

for & < La(A) min;ep,, |c;|. But this is exactly the supposition
in (10), with J and Z in place of [m] and &, respectively. The
same arguments of the case k = 1 in Section III can then be
made to show that for any m x m permutation and invertible
diagonal matrices P and D with, respectively, columns e, ;) and

E’ e; for i € J (otherwise, e; for i € [m] \ J), we have ||A; —
(BPD);||2 <&/|es] < Caeforalli € .J. [ ]
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