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Abstract: A multiaxial degrading hysteretic model is developed, enabling consistent multiaxial yield/capacity surface evolution with
degradations, and is appropriately incorporated in a finite-element framework using hysteretic Timoshenko beam elements. Degradation
phenomena are introduced in this model in the form of either symmetric or asymmetric strength degradation, stiffness degradation, pinching
functions, and various combinations thereof. More specifically, a new strength degradation function is developed and enhancements in other
existing functions are suggested to simulate the physically observed degradation phenomena in structural elements. The degradation functions
are then employed in a multiaxial classical damage-plasticity framework to satisfy the consistency criterion of the yield/capacity surface,
thereby resulting in a set of new multiaxial hysteretic evolution equations. The proposed evolution equations are specifically formulated so
as they could be seamlessly incorporated into a hysteretic finite-element formulation, using appropriate displacement and hysteretic inter-
polation functions, to satisfy the exact equilibrium conditions and model distributed plasticity characteristics, thereby avoiding any shear
locking effects. As such, the proposed hysteretic finite-element model accounts for equilibrium, distributed plasticity, degradations, and
multiaxial inelasticity with capacity interactions in a single consistent and unified framework. Constant system matrices are employed that
do not require updating throughout the analysis, while the degradations and inelasticity are captured through the suggested multiaxial hys-
teretic evolution equations. An efficient numerical solution scheme is also devised, where the finite-element model can be expressed explicitly
in terms of first order ordinary differential equations (ODEs), rather than a set of complex differential-algebraic equations for quasi-static
cases. The resulting system of equations can be then straightforwardly solved using any standard ODE solver, without any required
linearization. Numerical illustrations and experimental verifications are provided to demonstrate the performance and utility of the suggested
methodology. DOI: 10.1061/(ASCE)EM.1943-7889.0001767. © 2020 American Society of Civil Engineers.

Introduction

A hysteretic beam finite-element modeling approach with a new
multiaxial yield/capacity surface evolution criterion for degrading
structural elements is presented. Three primary contributions ena-
bling this consistent and unified modeling framework are described
herein. First, a uniaxial degrading hysteretic model is developed to
simulate highly nonlinear and degrading behaviors physically ob-
served in structural elements after extreme loading events. Second,
the suggested uniaxial model is extended in a multiaxial plasticity
framework, using a damage-plasticity approach, that satisfies the
classical plasticity postulates and the consistency criteria of the
yield/capacity surface, thus resulting in a consistent multiaxial
degrading hysteretic model. Third, the developed multiaxial model
is employed for the finite-element formulation of a nonlinear
Timoshenko beam element to realize a degrading hysteretic beam
finite-element model. In addition to this model, a numerical solu-
tion scheme is also suggested, where the entire finite-element

formulation is presented concisely as a system of ordinary differ-
ential equations (ODEs), that can be efficiently solved without the
need of linearization techniques. Thus, an alternative approach to
traditional nonlinear structural analysis techniques, such as solid
finite elements, fiber-based approaches, and discrete plasticity with
nonlinear spring models (Spacone et al. 1996; Scott et al. 2008;
Lignos and Krawinkler 2010; Deierlein et al. 2010), is presented
in this work, incorporating distributed plasticity, multiaxial interac-
tions, and combined degradation-plasticity phenomena, among
others, in an efficient and unified framework.

Smooth hysteretic models for uniaxial systems can be seen in
early developments by Bouc (1967) and Wen (1976), where the
main idea is to express the evolution of hysteresis in the form of
first order ODEs, commonly referred to as evolution equations. Fol-
lowing these early developments and recognizing the potential for
modeling a variety of physically observed phenomena in structural
elements, other works (Baber and Wen 1981; Baber and Noori
1985; Foliente 1995; Sivaselvan and Reinhorn 2000; Wang et al.
2001; Ibarra et al. 2005) introduced strength degradation, stiffness
degradation, pinching, and asymmetric yielding, bymeans of suitable
degradation functions for uniaxial hysteresis, and Charalampakis
and Koumousis (2009) and Kottari et al. (2014) have shown the
capability of such uniaxial hysteretic models to fully satisfy
Drucker or Ilyushin conditions of plasticity, including for short
unloading-reloading paths. These and other hysteretic variants,
e.g., Papakonstantinou et al. (2008), Miah et al. (2015), among
others, have been extensively used in various applications to
simulate the response of a diverse array of materials and structural
components/devices, as summarized in Ismail et al. (2009). These
models are mainly of a phenomenological nature, and the progres-
sion in this work is toward a model based on multiaxial classical
plasticity and damage theories, as described in detail subsequently.
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In the original formulation of Baber and Wen (1981), the
strength degradation is defined by a linearly increasing function
of the energy dissipated by the hysteretic model, referred to herein
as linear-rate strength degradation function, which can be appropri-
ately incorporated into a uniaxial degrading hysteretic evolution
equation and a relevant finite-element framework. Recent applica-
tions of the linear-rate strength degradation function can be found
in Sengupta and Li (2013), Yu et al. (2016), and Sofianos and
Koumousis (2018), among others. However, structural behavior
does not often adhere to this idealization; for instance, strength
degradation might initiate after several inelastic cycles and then
rapidly increase prior to failure, suggesting a rate that is naturally
not linear. As such, an alternative strength degradation function is
suggested here that is able to simulate a broader range of commonly
observed degradation types. In addition, the pinching function of
Foliente (1995) is simplified to reduce the number of parameters,
without compromising its capability of simulating a diverse range
of pinching phenomena. Lastly, asymmetry in stiffness and in other
degradation effects is also considered. The resulting degradation
functions are all combined to develop a new uniaxial degrading
hysteretic model that is able to simulate strength degradation, stiff-
ness degradation, pinching, and the associated degradation asym-
metries in a single parametrized expression.

The suggested degrading uniaxial hysteretic model is then
effectively incorporated into a multiaxial plasticity framework.
Hysteretic models in a multiaxial plasticity context have been sug-
gested by Casciati (1989), Sivaselvan and Reinhorn (2004), and
Triantafyllou and Koumousis (2011a), among others, where the
model is elegantly formulated based on the multiaxial classical
plasticity postulates (see Appendix II for a detailed presentation
of this fact). However, important observed degradation phenomena
have yet to be adequately integrated with these available multiaxial
models, without violating the consistency condition of the capacity
surface in the inelastic domain, due to the strength degradation
capacity change. Therefore, strength degradation is consistently
treated as a scalar damage function in this paper, and the multiaxial
degrading hysteretic model/law is formulated in the effective stress
domain by employing notions of continuum damage mechanics, so
as to satisfy the plasticity postulates and consistency criteria of the
yield/capacity surface for a degrading system.

The concept of continuum damage theory and scalar damage
function was pioneered by Kachanov (1958) to measure the density
of microcracks/microvoids and their influence on the material
behavior. This idea is extensively used in the field of solid mechan-
ics and has been successfully adapted for plasticity theory, resulting
in coupled damage-plasticity models (Lemaitre 1985; Lemaitre
1996; Krajcinovic 1996). Numerous applications can be seen for
both solid finite-element and fiber based damage frameworks of
structures (Lubliner et al. 1989; Grassl and Jirásek 2006; Andriotis
et al. 2015; Van Do 2016; Feng et al. 2017, 2018; Di Re et al. 2018;
Do and Filippou 2018). The concept of scalar damage function is
employed here to suggest a new multiaxial degrading hysteretic
model, thus resulting in new multiaxial evolution equations with
coupled degradation-plasticity effects. These developed hysteretic
evolution equations have the important attribute of being derived
from the physics of classical multiaxial plasticity to satisfy the load-
ing rate, the yield/capacity criterion, and the flow rule, and can
compactly and seamlessly describe loading, unloading, and reload-
ing of a hysteretic cycle in merely a single vectorized differential
equation expression.

The suggested multiaxial hysteretic evolution equations are
then employed for the formulation of a degrading hysteretic
beam finite-element model, the consistent nonlinear Timoshenko
beam element, suggested in Amir et al. (2020). In the pertinent

beam element formulation, multiaxial interactions are accounted
for through yield/capacity functions, and distributed plasticity is de-
scribed using appropriate hysteretic interpolation functions. The
suggested model in Amir et al. (2020) does not, however, consider
degradation effects in the element. By employing the herein sug-
gested consistent multiaxial degrading hysteretic model/laws, the
finite-element model is thus significantly extended and enabled
to simulate a wide range of plasticity and degradation phenomena,
as illustrated through numerical examples and experimental verifi-
cations. Additionally, all the capabilities of the hysteretic element in
Amir et al. (2020) are preserved in the present formulation, includ-
ing its computational efficiency, primarily due to the fact that the
elastic and hysteretic matrices remain constant, and both need to be
evaluated only once at the beginning of the analysis, given that the
nonlinearities and degradation effects are captured through local
evolution equations. The hysteretic finite-element formulation
can be thus conveniently presented in state-space form for dynamic
cases, as shown in Triantafyllou and Koumousis (2011a, b), and
can be efficiently solved using common ODE solvers. The solution
of quasi-static problems, however, is less straightforward due to the
presence of complex and hard to solve differential algebraic equa-
tions (DAEs), requiring both differential and algebraic forms to be
solved simultaneously. Addressing this issue, an alternative solu-
tion scheme, similar to Amir et al. (2020), aimed to efficiently solve
quasi-static problems is presented here for the paper completeness.

In the remainder of this paper, the formulation and consistency
of the hysteretic beam finite-element model, along with its solution
scheme at the system level, are explained in detail through math-
ematical expressions and illustrative examples. Finally, model per-
formance, versatility, and validity are demonstrated through several
comparisons with experimental data from available tests.

Degrading Hysteretic Laws: Uniaxial Case

This section briefly reviews the existing uniaxial degrading hyster-
etic models/laws and describes in detail the suggested enhancements
to incorporate several physically observed structural degradation
phenomena. A uniaxial law in terms of moment-curvature is shown
here to illustrate the degrading hysteretic formulation, realizing that
the concept can be readily employed for any other work conjugate
pair. Accordingly, a common moment (M)-curvature (εϕ) uniaxial
degradation hysteretic law found in the literature (Baber and Wen
1981; Baber and Noori 1985; Foliente 1995; Wang et al. 2001)
can be expressed as:

M ¼ αϕEIεϕ þ ð1 − αϕÞEIzϕ

żϕ ¼ hϕ
ηϕ

�
1 − νϕ

����M
h

Mh
c

����
n

ðβ þ γsgnðMhε̇ϕÞÞ
�
ε̇ϕ ð1Þ

where Mh ¼ ð1 − αϕÞEIzϕ represents the hysteretic component
of the bending moment; Mh

c ¼ ð1 − αϕÞMp is the hysteretic bend-
ing capacity; Mp is an estimated plastic moment capacity; E is the
elastic modulus; I is the moment of inertia; zϕ is the hysteretic cur-
vature; αϕ is the post-elastic to elastic stiffness ratio; hϕ, ηϕ, and νϕ
are the pinching, stiffness degradation, and strength degradation
functions, respectively, due to flexure; β, γ, n are the model param-
eters; sgn(.) is the signum function and the overdot indicates differ-
entiation with respect to time. Parameter n controls the smoothness
of the transition from the elastic to the inelastic regime, whereas
parameters β and γ control the shape of the hysteretic loops.
Furthermore, for Eq. (1) to be thermodynamically admissible,
β þ γ ¼ 1 and −γ ≤ β ≤ γ (Erlicher and Point 2004).
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The degradation functions are formulated such that their values
are equal to 1 when there is no respective degradations in the
system, as also presented in Fig. 1. Fig. 1(a) is an illustrative local-
ized moment-curvature response obtained using Eq. (1) with
νϕ ¼ ηϕ ¼ hϕ ¼ 1, for three loading-unloading cycles with
increasing curvature amplitude for each subsequent cycle. The
specified parameters for this illustration are: αϕ ¼ 0, E ¼ 2×
1011 N=m2, I ¼ 5,290 cm4,Mp ¼ 300 kNm, n ¼ 2, and β ¼ γ ¼
0.5. The cumulative dissipated hysteretic energy, eϕ ¼ H

Mhdεϕ,
is shown in Fig. 1(b), where

H
indicates integration over the hys-

teretic cycles. In Fig. 1, pointO is the origin and points A, B, and C
are the steps corresponding to maximum positive curvature values
for each cycle. As can be seen from the results in Fig. 1, the hys-
teretic behavior is smooth and without degradation. In the sub-
sequent subsections, different degradation functions are described
in detail.

Proposed Strength Degradation Function

As previously mentioned, existing strength degradation formula-
tions found in the literature (Baber and Wen 1981; Baber and
Noori 1985; Foliente 1995) are based on the assumption that
the rate of degradation is linearly proportional to the rate of hys-
teretic energy dissipation, and thus can be expressed as:

νϕ ¼ 1þ δνeϕ ð2Þ

where δν is a scaling parameter corresponding to the strength deg-
radation, such that there is no strength degradation for δν ¼ 0,
whereas degradation effects can be magnified by assigning a larger
parameter value. For the benefit of the subsequent discussion, the
outcome of the linear-rate degradation on the hysteretic response is
illustrated in Fig. 2, obtained by substituting Eq. (2) into Eq. (1) and
specifying ηϕ ¼ hϕ ¼ 1. Figs. 2(a and b) show the simulated
moment-curvature responses for different values of δν , to illustrate
the impact of the degradation parameter on the hysteretic response,
and Fig. 2(c) represents the corresponding scaled value of the
strength degradation function, given by:

dϕ ¼ 1 − 1

νϕ
ð3Þ

where dϕ ∈ ½0 1Þ, with the bounding values corresponding to no
degradation and full degradation, respectively. As seen in Fig. 2,
moment degradation is increased by increasing the parameter value
from 10−6 in Fig. 2(a) to 10−5 in Fig. 2(b). Fig. 2(c) also shows that
the increase in parameter value increases the curvature/convexity of
the scaled function, resulting in greater initial degradation, indi-
cated by the region OA. Thus, the function in Eq. (2) has a signifi-
cant impact on the initial strength degradation of the system. Yet,
experimental observations suggest that degradation is often low/
small during initial low amplitude cycles, and then increases with
increasing amplitude cycles. This phenomenon can not be then
simulated with the mathematical form of the existing function
in Eq. (2).
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Fig. 1. A Nondegrading hysteretic response for cyclic loading.
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Fig. 2. Response of a linear-rate strength degradation function for different parameter values.
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In order to simulate these often experimentally observed degra-
dation types, as well as the linear-rate degradation, an alternative
degradation function is introduced:

νϕ ¼ 1þ δν1½expðδν2eϕÞððεϕ − εϕpeak
ÞsgnðΔεϕÞ þ 1Þδν3 − 1� ð4Þ

where δν1, δν2, and δν3 are the time invariant parameters controlling
different strength degradation phenomena;Δεϕ ¼ ðεϕ − εϕ0

Þ is the
change in curvature; εϕ0

indicates the curvature from the previous
solution step; and εϕpeak

is the localized peak curvature for each
loading/unloading branch. The value of εϕpeak

at each step can be
efficiently updated using the following equations:

εϕmin
¼ cðΔεϕÞεϕmin0

þ cð−ΔεϕÞεϕ
εϕmax

¼ cð−ΔεϕÞεϕmax0
þ cðΔεϕÞεϕ

εϕpeak
¼ cðΔεϕÞεϕmin

þ cð−ΔεϕÞεϕmax
ð5Þ

where εϕmin
, εϕmax

, and εϕpeak
are the localized minimum, maximum,

and peak curvatures at the current step; and εϕmin0
and εϕmax0

corre-
spond to the minimum and maximum curvatures at the beginning of
each solution step. Function cðtÞ, introduced in Eq. (5), is a
Heaviside function, defined as:

cðtÞ ¼ 1þ sgnðtÞ
2

ð6Þ

Note that the curvature values in Eq. (5) are not the absolute maxi-
mum and minimum from the complete analysis but rather the local-
ized values corresponding to each branch of the current cycle. For
the unloading cycle, when Δεϕ ≤ 0, Eq. (5) results in εϕmin

¼ εϕ,
εϕmax

¼ εϕmax0
, and εϕpeak

¼ εϕmax
, implying that the peak curvature

for the unloading branch is equal to the maximum curvature ob-
tained for that branch. Similarly, for the loading/reloading cycle,
when Δεϕ ≥ 0, Eq. (5) results in εϕmin

¼ εϕmin0
, εϕmax

¼ εϕ, and
εϕpeak

¼ εϕmin
, indicating that the peak curvature for the loading/

reloading is equal to the minimum curvature obtained for that
branch. This is illustrated in Fig. 3, where the minimum and maxi-
mum curvature values at step Q are equal to curvature values at Q
and P, respectively, and the resulting peak curvature atQ is equal to
the curvature value obtained at P. Similarly, according to Eq. (5),
for the illustrative example in Fig. 3, the values of εϕpeak

for each
branch are summarized as:

OP ðΔεϕ > 0Þ : εϕpeak
¼ εϕmin

¼ εϕðOÞ

PQR ðΔεϕ < 0Þ:εϕpeak
¼ εϕmax

¼ εϕðPÞ

RSP ðΔεϕ > 0Þ:εϕpeak
¼ εϕmin

¼ εϕðRÞ ð7Þ

where εϕðOÞ, εϕðPÞ, and εϕðRÞ are the curvature values at pointsO, P,
and R, respectively. Therefore, by employing Eq. (5), peak curva-
ture values can be continuously updated based only on the previous
and current states without requiring the entire history to be stored in
memory.

The proposed strength degradation function in Eq. (4) is formu-
lated such that it consists of a hysteretic energy based component,
indicated by the first term in the square parentheses, as well as a
strain-based component, indicated by the second term in the square
parentheses. For completeness, details pertaining to the formulation
of this degradation function, its application, and the effect of differ-
ent parameters are described in the following subsections.

Hysteretic Energy Based Component
The influence of the cumulative hysteretic energy dissipation on the
strength degradation can be illustrated by setting the parameter
δν3 ¼ 0, such that the expression given in Eq. (4) reduces to Eq. (8):

νϕ ¼ 1þ δν1½expðδν2eϕÞ − 1� ð8Þ

Eq. (8) is similar to Eq. (2), in the sense that strength degrada-
tion is again increasing with increasing hysteretic energy dissipa-
tion; however, instead of linear-rate, exponential growth rate of
degradation with respect to energy is introduced here to simu-
late the aforementioned effects. The value in the parenthesis,
i.e., ½expðδν2eϕÞ − 1�, determines the degradation evolution de-
pending on δν2 values, where the lower bound is always 0 irrespec-
tive of the value of δν2; however, the upper bound increases
exponentially with the parameter δν2. For example, with smaller
values of δν2, almost linear evolution is obtained; however, by
increasing the value of δν2, the nonlinearity in the rate of degrada-
tion growth is increased. Additionally, δν1 is a scaling parameter
that predominantly controls the onset of degradation; for example,
with a very small value of δν1, degradation is delayed, because even
though the eϕ values are increasing in time, δν1 scales down the
function value, resulting in a delay in the initiation of the degrada-
tion, while after the onset, the degradation evolution is controlled
by the parameter δν2. Therefore, by the combination of δν1 and δν2
values, different degradation profiles can be achieved based on the
material behavior.

The effect of parameter δν1 can be seen in Fig. 4, where
Figs. 4(a and b) show the moment-curvature responses for δν1 ¼ 1
and δν1 ¼ 0.01, respectively, both with δν2 ¼ 1.5 × 10−5, and
Fig. 4(c) gives the scaled degradation evolution for both considered
parameter values. In Fig. 4(a), it can be observed that the value of
moment at A is less than the initial moment capacity of 300 kNm,
and the capacity further reduces in each of the subsequent cycles,
indicated by points B and C. Considering now a smaller value of
δν1, as shown by the results in Fig. 4(b), there is no significant deg-
radation in moment capacity at points A and B, whereas there is a
significant degradation from points B to C, such that the degrada-
tion has been effectively delayed by the smaller value of δν1.
Fig. 4(c) also shows that the parameter δν1 affects the shape of
the degradation curve and hence by reducing the value of δν1 from
1 to 0.01, curvature/convexity of the curve is changed, resulting in
negligible initial degradation in the region OA. As such, the com-
monly observed degradation phenomenon is observed, when the
degradation only starts after a few hysteretic cycles and then grows
thereafter.
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Fig. 3. Localized curvature values for different branches.
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Next, the effect of parameter δν2 is illustrated in Fig. 5, in which
the value of δν1 ¼ 0.005 is used for all simulations. The moment-
curvature response for δν2 ¼ 1.5 × 10−5 and δν2 ¼ 2.3 × 10−5 is
plotted in Figs. 5(a and b), respectively. As can be observed, increas-
ing the value of δν2 from 1.5 × 10−5 in Fig. 5(a) to 2.3 × 10−5 in
Fig. 5(b) results in an increase in the rate of degradation in the
consecutive cycles. Again, consistent response is evident from
Fig. 5(c), presenting same initial degradations but different degrada-
tion growth rates for the given δν2 values.

Strain-Based Component
The effect of the parameter δν3 is illustrated by setting δν2 ¼ 0 in
Eq. (4), thus resulting in Eq. (9):

νϕ ¼ 1þ δν1½ððεϕ − εϕpeak
ÞsgnðΔεϕÞ þ 1Þδν3 − 1� ð9Þ

Eq. (9) is formulated such that the strength degradation now is di-
rectly proportional to the absolute value of ðεϕ − εϕpeak

Þ, where the
absolute value is ensured by multiplying the term with sgnðΔεϕÞ.
Furthermore, the value of degradation function in Eq. (9) is equal to
1 for the localized peak curvature values, i.e., εϕ ¼ εϕpeak

, and in-
creases as the value of εϕ moves further away from εϕpeak

, for both
reloading and unloading branches. Therefore, in the elastic region,
when εϕ ≈ εϕpeak

, degradation is negligible, while in the inelastic
part, large degradation function values can be obtained. The param-
eter δν3 is used to further intensify the effect of degradation with

respect to the change in curvature values. Again, the parameter δν1
scales the overall degradation effect.

To illustrate this concept graphically, Fig. 6(a) shows two single
moment-curvature hysteretic cycles, where both nondegrading and
degrading cycles are generated with Eqs. (1) and (9), and Fig. 6(b)
shows their corresponding scaled degradation functions based
on Eq. (3). In the reloading branch of the hysteretic loop, given
by RST, εϕpeak

corresponds to the value of curvature at point R,
i.e., εϕpeak

¼ εϕðRÞ. Therefore, both Δεϕ > 0 and ðεϕ − εϕpeak
Þ ≥ 0

result in positive and increasing values of ðεϕ − εϕpeak
ÞsgnðΔεϕÞ

for every point in the branch RST. Also, ðεϕ − εϕpeak
Þ ≈ 0 in the

elastic region of RS, which according to Eq. (9) produces
νϕ ≈ 1, and therefore there is no degradation in the elastic region.
In contrast, large values as well as a continuous increase in
ðεϕ − εϕpeak

Þ values from point S to point T, result in large and in-
creasing strength degradation values in the plastic region, enhanc-
ing the so-called softening effect. Moreover, initial degradation at
point S can be further reduced by selecting a small value of param-
eter δν1, similar to the energy dissipation effect described earlier,
and the strain-based effect can be magnified by increasing the
parameter value δν3, resulting in relative increase of the degrada-
tions at point T as compared to point S. As for the unloading region
PQR, εϕpeak

corresponds to the value of curvature at point P. Hence,
the curvature values are continuously decreasing in the region PQR,
i.e., Δεϕ < 0 and ðεϕ − εϕpeak

Þ ≤ 0, again resulting in positive and
increasing values of ðεϕ − εϕpeak

ÞsgnðΔεϕÞ for all the points along
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Fig. 4. Effect of parameter δν1 for constant δν2 ¼ 1.5 × 10−5 and δν3 ¼ 0, resulting in different initial degradations.

-0.2 0 0.2
Curvature (1/m)

-300

0

300

M
om

en
t (

kN
m

)

(a)

O

A B
C

-0.2 0 0.2
Curvature (1/m)

-300

0

300

M
om

en
t (

kN
m

)

O

A B

C

(b)

OA B C
0

0.5

1

Sc
al

ed
 st

re
ng

th
 d

eg
ra

da
tio

n
(c)

 2=1.5e-5  2=2.3e-5

Fig. 5. Effect of parameter δν2 for constant δν1 ¼ 0.005 and δν3 ¼ 0, altering degradation evolution.

© ASCE 04020105-5 J. Eng. Mech.

J. Eng. Mech., 2020, 146(9): 04020105



this segment. Therefore, similar to the reloading branch, the value
of νϕ is approximately 1 at point Q, and increases to a maximum
value at point R, where the εϕpeak

value again changes and the pro-
cess repeats similarly for all the subsequent cycles.

The effect of the parameter δν3 is graphically illustrated in
Fig. 7 using Eqs. (1) and (4) with constant values of δν1 ¼ 0.05
and δν2 ¼ 1.5 × 10−5. It can be seen that by increasing the value
of δν3 from 0 in Fig. 7(a) to 10 in Fig. 7(b), the softening effect is
enhanced.

Summarizing, scaling parameter δν1 primarily affects the onset
of degradation, such that for δν1 ¼ 0 there is no strength degrada-
tion, parameter δν2 controls the effect of cumulative energy dissi-
pation allowing nonuniformly degrading hysteretic loops, and δν3
is the strain-based parameter, directly controlling the softening ef-
fects in the element. Hence, based on different values of parameters
δν1, δν2, and δν3, versatile physically observed strength degradation
phenomena can be obtained.

Integration with Stiffness Degradation and Pinching
Functions

In this section, the newly proposed strength degradation function is
integrated with other degradation functions to collectively simulate
a large range of degrading behaviors. As such, the following stiff-
ness degradation function (Baber and Wen 1981; Baber and Noori
1985) is adopted:

ηϕ ¼ 1þ δηeϕ ð10Þ

where parameter δη controls the degree of stiffness degradation.
Setting the parameter value equal to zero results in no stiffness

degradation, whereas varying degrees of stiffness degradation can
be achieved by setting the value of δη greater than zero.

To simulate pinching related phenomena, an existing pinching
function is next adopted and simplified to reduce its number of
parameters while retaining the fidelity of the original formulation.
For the benefit of the subsequent discussion, the pinching function
proposed by Foliente (1995) is reproduced here:

hϕ ¼ 1 − ζ1ϕ exp

�
−
�
zϕsgnðε̇ϕÞ − qzuϕ

ζ2ϕ

�2�

zuϕ ¼
�

1

νϕðβ þ γÞ
�

1=n
ð11Þ

where functions ζ1ϕ ¼ ζ10ð1− expð−peϕÞÞ and ζ2ϕ ¼ ðψ0 þ δψeϕÞ
ðλþ ζ1ϕÞ control the degree of pinching and width of the pinching
region, respectively; and ζ10, p, q, ψ0, δψ, and λ are the time invari-
ant parameters. In an effort to reduce the number of parameters and
ensure compatibility with the proposed formulation, the expression
in Eq. (11) is now modified. The effect of ζ2ϕ can be achieved
through a combination of the stiffness degradation parameter, δη,
and a subset of the pinching parameters, and therefore it can be
simplified from a functional form to a constant parameter ζ20. The
simplified pinching function is now given as:

hϕ ¼ 1 − ζ1ϕ exp

�
−
�ðMh=jMh

c jÞsgnðΔεϕÞ − q

ζ20

�
2
�

ζ1ϕ ¼ ζ10ð1 − expð−peϕÞÞ ð12Þ

where ζ10, ζ20, p, and q are the pinching parameters. Specifying the
value of ζ10 to be zero results in no pinching. Similar to the original
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function, parameter p controls the rate of initial slope reduction,
ζ10 controls the total slip, q sets a fraction of Mh

c as the pinching
level, and ζ20 is a normalizing factor that causes the pinching region
to grow. The pinching function adopted here is presented in terms
of hysteretic moment in Eq. (12), instead of hysteretic curvature in
Eq. (11), to be compatible with the present evolution equation in
Eq. (1). Additionally, for further simplification, pinching is
assumed to occur when the hysteretic bending moment, Mh, is
q times the initial nondegrading capacity, Mh

c , for all the hysteretic
cycles. Therefore, with ðβ þ γÞ ¼ 1, and without considering any
strength degradation, the zuϕ term can be eliminated, ensuring that

the pinching occurs when jMh=Mh
c j ¼ q and sgnðMhΔεϕÞ ¼ 1.

Illustrative results for stiffness degradation and pinching are
shown in Fig. 8. The simulated response shown in Fig. 8(a) is
obtained by combining Eqs. (1) and (10) to illustrate stiffness
degradation with parameter value δη ¼ 3 × 10−6, and Fig. 8(b)
shows pinching behavior obtained by combining Eqs. (1) and (12)
with pinching parameter values ζ10 ¼ 0.95, ζ20 ¼ 0.34, p ¼
8 × 10−4, and q ¼ 0.3.

Asymmetric Hysteresis

In the case of asymmetric cross sections, different yield capacities
in compression and tension can be accounted for in the degrading
hysteretic model using the following expression for Mh

c (Wang
et al. 2001):

Mh
c ¼ cðMhÞMhþ

c þ cð−MhÞMh−
c ð13Þ

where Mh−
c and Mhþ

c are the section capacities in compression and
tension respectively, and the Heaviside function cð·Þ is defined in
Eq. (6). Furthermore, asymmetric responses in the hysteresis can
also be obtained for all the degradation functions. For asymmetric
stiffness degradation, i.e., different rates of degradation for reload-
ing and unloading cycles, the following stiffness degradation func-
tion can be adopted:

ηϕ ¼ cðΔεϕÞηþϕ þ cð−ΔεϕÞη−ϕ ð14Þ

where ηþϕ ¼ 1þ δþη eϕ and η−ϕ ¼ 1þ δ−η eϕ are the stiffness degra-
dation functions corresponding to reloading and unloading cycles
respectively, defined by different parameter values. For symmetric
stiffness degradation, same parameters are obtained for both reload-
ing and unloading cycles, resulting in ηþϕ ¼ η−ϕ ¼ ηϕ. Next, for
simulating asymmetry in the strength degradation, the following
function is employed:

νϕ ¼ cðMhÞνþϕ þ cð−MhÞν−ϕ ð15Þ

where νþϕ and ν−ϕ are the strength degradation functions corre-
sponding to tension and compression respectively, again defined
by their corresponding parameter values. Similarly, the pinching
function is defined as:

hϕ ¼ cðΔεϕÞhþϕ þ cð−ΔεϕÞh−ϕ ð16Þ

where hþϕ and h−ϕ are the pinching functions corresponding to re-
loading and unloading branches, respectively.

Illustrative results for asymmetry in stiffness degradation,
strength degradation, and pinching are shown in Fig. 9, by using
the required asymmetry based on Eqs. (13)–(16) and then substi-
tuting Eqs. (4), (10), and (12) into Eq. (1), while applying the
appropriate parameter values. The parameter values in Fig. 9(a)
for asymmetric stiffness degradation are δþη ¼ 3.6 × 10−6 and
δ−η ¼ 1.5 × 10−6; in Fig. 9(b) for asymmetric strength degradation
are δþν1 ¼ 0.01, δ−ν1 ¼ 1, δν2 ¼ 1.5 × 10−5, and δν3 ¼ 0; and in
Fig. 9(c) for asymmetric pinching are ζþ10 ¼ 0.96, ζ−10 ¼ 0.90,
ζ20 ¼ 0.34, p ¼ 8 × 10−4, and q ¼ 0.3. As such, a wide variety
of hysteretic behaviors can be simulated, as illustrated by the results
presented in Fig. 10, where Fig. 10(a) shows combined strength and
stiffness degradations with δη ¼ 3.0 × 10−6, δν1 ¼ 0.005, δν2 ¼
2.0 × 10−5, and δν3 ¼ 1, in Fig. 10(b) asymmetric yielding is added
withMhþ

c ¼ 300 kNm andMh−
c ¼ 200 kNm, and Fig. 10(c) shows

the result of combining all the described degradations by also
employing nonzero pinching parameters values ζ10 ¼ 0.95, ζ20 ¼
0.34, p ¼ 8 × 10−4, and q ¼ 0.3.

Multiaxial Hysteretic Laws/Hysteretic Evolution
Equations

Consistent with Eq. (1), the generalized hysteretic laws at any
distance x along a beam element of length L are expressed as:

NðxÞ ¼ Ne
ðxÞ þ Nh

ðxÞ ¼ αuEAεuðxÞ þ ð1 − αuÞEAzuðxÞ
QðxÞ ¼ Qe

ðxÞ þQh
ðxÞ ¼ αγGAsεγðxÞ þ ð1 − αγÞGAszγðxÞ

MðxÞ ¼ Me
ðxÞ þMh

ðxÞ ¼ αϕEIεϕðxÞ þ ð1 − αϕÞEIzϕðxÞ ð17Þ

where NðxÞ, QðxÞ, and MðxÞ are the axial force, shear force, and
bending moment, respectively; and superscripts e and h correspond
to the respective elastic and hysteretic components; A is the
cross section area; As is the effective shear area; G is the shear
modulus; and αu and αγ are the axial and shear hardening

-0.2 0 0.2
Curvature (1/m)

-300

0

300

M
om

en
t (

kN
m

)
(a)

-0.2 0 0.2
Curvature (1/m)

-300

0

300

M
om

en
t (

kN
m

)

(b)

Fig. 8. (a) Stiffness degradation; and (b) pinching phenomena.
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parameters, respectively. Eq. (17) is further expressed in vectorized
form as:

PðxÞ ¼ Pe
ðxÞ þ Ph

ðxÞ ¼ αDεðxÞ þ ðI − αÞDzðxÞ ð18Þ

PðxÞ ¼

8>><
>>:

N

Q

M

9>>=
>>;

ðxÞ

; εðxÞ ¼

8>><
>>:

εu

εγ

εϕ

9>>=
>>;

ðxÞ

; zðxÞ ¼

8>><
>>:

zu

zγ

zϕ

9>>=
>>;

ðxÞ

D ¼

2
664
EA

GAs

EI

3
775 α ¼

2
664
αu

αγ

αϕ

3
775 ð19Þ

where Pe
ðxÞ and Ph

ðxÞ are the elastic and hysteretic components of

PðxÞ, respectively; εðxÞ and zðxÞ are the strain and hysteretic defor-
mation vectors, respectively; α is the strain hardening matrix; D is
the rigidity matrix; and I is the identity matrix. The hysteretic
deformation vector, zðxÞ, is described using evolution equations,
that can be formulated to account for a variety of modeling as-
sumptions, ranging from no-interaction/degradation to coupled
degradation-plasticity, as described in the subsequent subsections,
starting with the most basic case.

Case 1: No Degradations and No Interactions

For the simplest case, when the degradations and capacity interac-
tions are not considered, the hysteretic moment-curvature relation
can be expressed as:

Ṁh
ðxÞ ¼ ð1 − αϕÞEI

�
1 −

����M
h

Mh
c

����
n

ðβ þ γsgnðMhε̇ϕÞÞ
�
ε̇ϕðxÞ ð20Þ

Similar equations are also available for axial force-axial strain,
Nh-εu, and shear force-shear strain, Qh-εγ , that have been omitted
for brevity. WithMh ¼ ð1 − αϕÞEIzϕ, Eq. (20) can be expressed in
terms of the hysteretic curvature evolution as shown below:

żϕðxÞ ¼
�
1 −

����M
h

Mh
c

����
n

ðβ þ γsgnðMhðεϕ − εϕ0ÞÞÞ
�
ε̇ϕðxÞ ð21Þ

Note that Eq. (21) is similar to Eq. (1) with hϕ ¼ νϕ ¼ ηϕ ¼ 1, but
with a slight modification in sgn(.) function. For numerical imple-
mentation purposes in quasi-static problems, it is assumed that
sgnðMhε̇ϕÞ ≈ sgnðMhðεϕ − εϕ0

ÞÞ, where εϕ0
is the initial strain

at the beginning of each solution step, as previously defined. With
all the degradation functions equal to 1 for this case, degradation
effects are not considered, and due to the assumption of no capacity
interactions, all the hysteretic deformations evolve independently
based on their full capacities.

Case 2: Degradations with No Capacity Interactions

Another possible model is to assume the system under considera-
tion degrades, but the capacity interactions are neglected. In other
words, axial force, bending moment and shear force are assumed to
evolve and degrade based on their independent capacities, strains
and energy dissipations. For this case, the moment-curvature
expression is formulated as:
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Fig. 9. (a) Asymmetric stiffness degradation; (b) asymmetric strength degradation; and (c) asymmetric pinching.
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Fig. 10. (a) Strength and stiffness degradations; (b) asymmetric yielding, strength, and stiffness degradations; and (c) combined pinching, asymmetric
yielding, strength, and stiffness degradations.

© ASCE 04020105-8 J. Eng. Mech.

J. Eng. Mech., 2020, 146(9): 04020105



Ṁh
ðxÞ ¼ ð1 − αϕÞEI

hϕ
ηϕ

�
1 − νϕ

����M
h

Mh
c

����
n

ðβ þ γsgnðMhε̇ϕÞÞ
�
ε̇ϕðxÞ

ð22Þ
As such, the hysteretic curvature evolution for this case is
given by:

żϕðxÞ ¼
hϕ
ηϕ

�
1 − νϕ

����M
h

Mh
c

����
n

ðβ þ γsgnðMhðεϕ − εϕ0ÞÞÞ
�
ε̇ϕðxÞ ð23Þ

In essence, Eq. (23) is adopting the uniaxial degrading hysteretic
model, as obtained in Eq. (1), for moment-curvature, shear force-
shear strain, and axial force-axial strain mapping, resulting in an
overall multiaxial degrading hysteretic model without interactions.
Importantly, Eq. (23) presents a general form for no interaction
case, comprising both Cases 1 and 2, because the evolution equa-
tion shown in Eq. (23) reverts to Eq. (21) by specifying appropriate
degradation parameter values.

Case 3: Capacity Interactions with No Degradations

For the previous two cases, the axial force, moment, and shear force
have been assumed to evolve following their respective indepen-
dent uniaxial hysteretic laws/models, such that the individual
capacities are not constrained by any multiaxial yield/capacity sur-
face. If needed, the evolution laws can be modified to incorporate
axial-moment-shear interactions (Sivaselvan and Reinhorn 2004;
Triantafyllou and Koumousis 2011a; Amir et al. 2020) using the
following:

Ṗh
ðxÞ ¼ HDðI −H1H2RÞε̇ðxÞ; where Ph ¼ fNh Qh MhgT ð24Þ

H1 ¼ jΦðPhÞ þ 1jn; H2 ¼ β þ γsgnððPhÞT ε̇Þ;

R ¼
�� ∂Φ

∂Ph

�
T
D

� ∂Φ
∂Ph

��−1 �� ∂Φ
∂Ph

�� ∂Φ
∂Ph

�
T
D

�
ð25Þ

where HD ¼ ðI − αÞD is the hysteretic rigidity matrix; H1 is a
smooth function ranging in [0,1] corresponding to the elastic
and plastic regions, respectively; H2 is a Heaviside function;
and ΦðPhÞ is the specified yield/capacity function. Note, Eq. (24)
is derived based on classical plasticity theory satisfying the Kuhn-
Tucker optimality conditions (Sivaselvan and Reinhorn 2004) (see
Appendix II for detailed derivations related to this fact). With
Ph
ðxÞ ¼ HDzðxÞ, the multiaxial hysteretic evolution equation can

be obtained as:

żðxÞ ¼ ðI −H1H2RÞε̇ðxÞ ð26Þ
where function H1 and matrix R are obtained using Eq. (25).
However, for quasistatic problems, it is necessary to approximate
H2 as H2 ≈ β þ γsgnððPhÞTðε − ε0ÞÞ.

Case 4: Coupled Degradation-Plasticity

Case 3 represents a smooth hysteretic model with full axial-
moment-shear interactions following classical plasticity theory
without degradations. In Case 2, the uniaxial model is simply
extended to capture various degradation effects; however, axial-
moment-shear interactions are not considered. Here, the most
general case is addressed, of how to incorporate degradations while
satisfying the consistency condition of the yield/capacity surface
following the classical multiaxial plasticity theory. As such, a
consistent hysteretic degradation-plasticity model is proposed here
where both degradations and multiaxial yield/capacity surface

interactions are evolving in a consistent framework. The stiffness
and pinching functions, affecting only the elastic loading and un-
loading regions, do not alter the capacity surface, and thus, they can
be implemented similar to Case 2. However, strength degradation
functions are evolving with time to reduce the section capacities.
Therefore, treating these in the same manner as for the uniaxial case
violates the Kuhn-Tucker consistency criterion of the capacity sur-
face. In order to satisfy the capacity surface consistency condition,
the strength degradation is considered here using the effective stress
and strain hypothesis. Accordingly, the effective hysteretic bending
moment is defined as:

M̄h ¼ Mh

1 − dϕ
ð27Þ

where dϕ is the scalar damage function corresponding to the flexure
capacity, such that dϕ ∈ ½0 1Þ ranging from intact/undamaged to
fully damaged state. The coefficient of ð1 − dϕÞ in the denominator
of Eq. (27) is a reduction factor associated with the amount of dam-
age in the material (Kachanov 1980), analogous to degradation in
this case. Based on the range of the damage function, it can be de-
fined same as the scaled strength degradation function described
earlier in Eq. (3), and again specified as:

dϕ ¼ 1 − 1

νϕ
or νϕ ¼ 1

1 − dϕ
where;

νϕ ∈ ½1 ∞Þ
dϕ ∈ ½0 1Þ ð28Þ

For multiaxial plasticity, based on different strength degradation
functions corresponding to each action, different scalar damage
functions are defined, resulting in the following effective hysteretic
force vector:

P̄h ¼

8>><
>>:

N̄h

Q̄h

M̄h

9>>=
>>;

¼

8>><
>>:

Nh=ð1 − duÞ
Qh=ð1 − dγÞ
Mh=ð1 − dϕÞ

9>>=
>>;

¼

8>><
>>:

νuNh

νγQh

νϕMh

9>>=
>>;

¼

2
664
νu

νγ

νϕ

3
775
8>><
>>:

Nh

Qh

Mh

9>>=
>>;

¼ νPh ð29Þ

where du and dγ are the scalar damage functions corresponding to
axial strength degradation, νu, and shear strength degradation, νγ ,
respectively. Additionally, hypothesis of strain equivalence states
that the strain associated with a damaged state under the applied
stress is equivalent to the strain associated with its undamaged state
under the effective stress (Lemaitre 1996). Therefore, based on
Eq. (24), the multiaxial hysteretic model/laws for the damaged
material can be expressed in the effective stress domain, consider-
ing no damage, as:

˙̄Ph
ðxÞ ¼ HDðI − H̄1H̄2R̄Þε̇ðxÞ ð30Þ

where H̄1, H̄2, and R̄ are the functions of the hypothetical effective
hysteretic force, P̄h, and true strain, ε, given by:

H̄1 ¼ jΦðP̄hÞ þ 1jn; H̄2 ¼ β þ γsgnððP̄hÞT ε̇Þ;

R̄ ¼
�� ∂Φ

∂P̄h

�
T
D

� ∂Φ
∂P̄h

��−1�� ∂Φ
∂P̄h

�� ∂Φ
∂P̄h

�
T
D

�
ð31Þ

Eqs. (30) and (31), similar to Eq. (24), as also shown in
Appendix II, satisfy the multiaxial classical plasticity theory
postulates, adhering to the consistency of the capacity surface,
i.e., Φ̇ðP̄hÞ ¼ 0. Now, by employing Eq. (29), Eq. (30) can be
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expressed in terms of the true hysteretic force and generalized
strains as

Ṗh
ðxÞ ¼ ν−1½HDðI − H̄1H̄2R̄Þε̇ðxÞ − ν̇Ph

ðxÞ� ð32Þ

As already mentioned, pinching function and stiffness degradation
affect only the elastic part of the hysteresis, and thus they can be in-
troduced here similar to Case 2, resulting in the following equation:

Ṗh
ðxÞ ¼ hη−1ν−1½HDðI − H̄1H̄2R̄Þε̇ðxÞ − ν̇Ph

ðxÞ�

where h ¼

2
664
hu

hγ

hϕ

3
775; η ¼

2
664
ηu

ηγ

ηϕ

3
775 ð33Þ

Eq. (33) represents the final multiaxial hysteretic model, expressed in
terms of axial force, shear force, andmoment, and their corresponding
strains, i.e., centerline axial strain, shear strain, and curvature. Since
the model satisfies the plasticity postulates, a consistent evolution of
the capacity surface with degradations is now obtained. Eq. (33) is
treated as a consistent constitutive law for the hysteretic finite-element
formulation herein; however, it can be readily adopted for other
modeling approaches, e.g., in fiber elements (Spacone et al. 1996;
Scott et al. 2008; Andriotis et al. 2018) to represent stress-strain
relationships and model cross section behaviors, among many other
applications. BecausePh

ðxÞ ¼ HDzðxÞ, the hysteretic deformation vec-

tor is obtained as:

żðxÞ ¼ hη−1ν−1½ðI − H̄1H̄2R̄Þε̇ðxÞ − ν̇zðxÞ� ð34Þ

Eq. (34) presents the proposed multiaxial hysteretic yield/capacity
evolution with degradation effects. In Eq. (34), strength degradation
is introduced through ν, pinching throughh, and stiffness degradation
is obtained by the combination of ν and η. For ν ¼ h ¼ η ¼ I,
Eq. (34) reverts to Eq. (26), that corresponds to the multiaxial
interaction case with no degradation. Therefore, Eq. (34) presents
a general multiaxial interaction case, applicable for both Cases 3
and 4. In the subsequent section, a consistent degrading hysteretic
finite-element formulation is proposed based on the described multi-
axial hysteretic evolution equations.

Degrading Hysteretic Beam Finite Element
Formulation

A parametrized hysteretic beam finite-element model has been de-
rived in Amir et al. (2020), using consistent two-node Timoshenko
elements, to efficiently simulate the nonlinear behavior of structural
systems. Here a similar approach is used to derive a degrading hys-
teretic beam finite-element model with the suggested multiaxial
hysteretic evolution equations. However, for the benefit of the sub-
sequent discussion, first the essential aspects of the element in Amir
et al. (2020) are reviewed. In this beam element, six additional de-
grees of freedom (DOF) are required to account for hysteretic axial,
bending, and shear deformations for each element. Hence, the no-
dal displacement and hysteretic DOF vectors are expressed as:

d¼fu1w1 θ1u2w2 θ2gT ; z¼fzu1 zγ1 zϕ1 zu2 zγ2 zϕ2gT ð35Þ
where d is the nodal displacement vector in local coordinates, con-
sisting of longitudinal displacement u, transverse displacement w,
and rotation θ; z represents the six additional hysteretic DOF, con-
sisting of hysteretic axial deformation zu, shear deformation zγ , and

bending deformation zϕ, which are set to evolve through ODEs;
and the subscripts 1 and 2 correspond to the start and end nodes
of the element. The following compatibility interpolation functions
for zðxÞ ¼ fzuðxÞ zγðxÞ zϕðxÞgT are used to account for distributed
plasticity over the length of the element:

zuðxÞ ¼
�
1

2

�
zu1 þ

�
1

2

�
zu2; zγðxÞ ¼

�
1

2

�
zγ1 þ

�
1

2

�
zγ2

zϕðxÞ ¼
�
1 − x

L

�
zϕ1 þ

�
x
L

�
zϕ2 ð36Þ

Original displacement and rotation interpolation functions have
been derived that satisfy both the exact equilibrium and kinematic
conditions of the nonlinear Timoshenko beam element but have
been omitted here for brevity [see Amir et al. (2020) for details].
Based on the derived interpolation functions, the strain-displacement
expressions for the beam element is obtained as:

εðxÞ ¼ BðxÞdþHBðxÞz ð37Þ

where BðxÞ and HBðxÞ are the linear and hysteretic strain matrices,
respectively (see Appendix I for details). Using the suggested inter-
polation functions, strain-displacement relation, and the nodal boun-
dary conditions, the following force-displacement relation is derived
for the beam element:

F ¼ KdþHz ð38Þ

where F is the element nodal force vector; K and H are the con-
stant element stiffness and hysteretic matrices, respectively (see Ap-
pendix I for details), that do not require updating throughout the
analysis.

Based on the multiaxial degrading hysteretic models/laws
described in the previous section, and the consistent displacement,
rotation, and hysteretic deformation interpolation functions, de-
rived in Amir et al. (2020), a degrading hysteretic beam finite-
element model is proposed here. Since the degradations and
multiaxial plasticity are incorporated through the hysteretic DOFs,
which are set to evolve through the suggested ODEs, the constant
element matrices of Appendix I are still preserved in the present
formulation. For the detailed derivation of element matrices, refer
to Amir et al. (2020).

The formulation can be conveniently presented in state-space
form for dynamic cases, similar to Triantafyllou and Koumousis
(2011a, b), and be efficiently solved using appropriate ODE solver,
avoiding any type of linearizations. In quasi-static problems, how-
ever, the solution process is not as straightforward due to the pres-
ence of algebraic equations now, in addition to the ODEs, resulting
in a set of complex and hard to solve differential algebraic equa-
tions (DAEs). Yet, an efficient solution scheme for such problems is
presented in this paper, where instead of DAEs only a set of
ODEs are again required to be solved, similar to the dynamic cases.
Through the suggested approach, the number of unknowns to be
updated at each pseudotime step of the resulting ODEs are also
significantly reduced, in comparison to both DAE systems and
the typically used Newton’s method, reducing computational com-
plexity and increasing efficiency even further.

The subsequent subsections, categorized into three parts, de-
scribe a method to integrate the degradations and multiaxial plas-
ticity in a hysteretic finite-element framework at the system level,
and present a computationally efficient solution scheme that does
not require linearization to solve the resulting system of equations
for quasi-static problems. More specifically, in the first part, the
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force-displacement expression is obtained in terms of system
stiffness and hysteretic matrices, and their corresponding DOFs.
The second part presents the evolution equations for the system
hysteretic DOFs based on the four cases described in the previous
section, and lastly the third part describes the numerical solution
scheme.

System Force-Displacement Expression

The vectors and matrices in Eq. (38) correspond to local element
coordinates. The typical transformation matrix is used to transform
Eq. (38) to the global coordinates as (Bathe 1996):

Fg ¼ Kgdg þHgz; where Kg ¼ ΛTKΛ; Hg ¼ ΛTH;

d ¼ Λdg; Fg ¼ ΛTF ð39Þ

Λ is the standard coordinate transformation matrix; and Fg and dg

correspond to the element nodal force and displacement DOF
vectors in global coordinates, respectively. Also, Kg and Hg are
the element stiffness and hysteretic matrices in global coordinates,
respectively. The former is then mapped to the symmetric system
stiffness matrix, by the typical direct stiffness matrix assembly
techniques (Bathe 1996), and the latter forms the system hysteretic
matrix, by consistently appending the Hg matrices for all the ele-
ments (Amir et al. 2020). The overall system force-displacement
expression, after applying appropriate displacement boundary
conditions, is thus expressed as:

Fs ¼ Ksds þHszs where zs ¼

8>>><
>>>:

zðel¼1Þ

..

.

zðel¼NelÞ

9>>>=
>>>;

ð40Þ

Ks is the symmetric and positive definite system stiffness matrix;
Hs is the resulting system hysteretic matrix; Fs and ds are the sys-
tem nodal force and displacement DOF vectors, respectively;
zðel¼jÞ is the hysteretic DOF vector of dimensions 6 × 1 for the
jth element ðj ¼ f1; 2; : : : ;NelgÞ, where Nel is the total number
of elements in the system; and zs is the vector consisting of the
hysteretic DOF for all the elements.

System Evolution Equations

Additional equations in the form of evolution equations for zs are
required to augment the system of equations presented in Eq. (40)
in order to solve for the unknown DOFs. This subsection describes
the form of the evolution equations for the various modeling as-
sumptions outlined in Case 1 through Case 4 of the previous sec-
tion. As can be seen in the first three cases of the multiaxial
hysteretic models/laws, i.e., in Eqs. (21), (23), and (26), the rate
of change of the hysteretic deformation vector at a distance x,
i.e., żðxÞ, is a nonlinear function of ðν; η;h;Ph; εÞðxÞ and linearly
dependent on ε̇ðxÞ. The degradation functions ðν; η;hÞðxÞ can be fur-
ther expressed in terms of ðeh;Ph; εÞðxÞ, following Eqs. (4), (10),

and (12), where eh ¼ feu eγ eϕgT . In other words, for Cases 1–3,
żðxÞ can be expressed as a nonlinear function of ðeh;Ph; εÞðxÞ multi-
plied to ε̇ðxÞ. However, for Case 4, the derivative of the strength
degradation function is also required, as indicated by Eq. (34), that
can be obtained using the chain rule, leading to the expression:

ν̇ϕ ¼ ∂νðeϕ; εϕÞ
∂eϕ ėϕ þ

∂νðeϕ; εϕÞ
∂εϕ ε̇ϕ

¼
�∂νðeϕ; εϕÞ

∂eϕ Mh þ ∂νðeϕ; εϕÞ
∂εϕ

�
ε̇ϕ; where ėϕ ¼ Mhε̇ϕ

ð41Þ

The derivatives of νu and νγ are similarly obtained. Substituting
Eq. (41) into Eq. (34), the evolution equation for Case 4 can also
be expressed in the form shown in Eq. (42), similar to Cases 1–3.

żðxÞ ¼ fcðehðxÞ; Ph
ðxÞ; εðxÞÞε̇ðxÞ; where

eh ¼ feu eγ eϕgT ð42Þ

and fc represents different functional forms depending on Cases 1
through 4, as indicated by the subscript c ¼ f1; 2; 3; 4g. Now, ap-
plying the boundary conditions at the start (x ¼ 0) and end nodes
ðx ¼ LjÞ of the jth beam element, the nodal hysteretic DOFs for all
the cases can be expressed as:

żðel¼jÞ ¼

2
64 fcðeh; Ph; εÞðx¼0Þ 0

0 fcðeh; Ph; εÞðx¼LjÞ

3
75ε̇ðel¼jÞ;

where żðel¼jÞ ¼ fzu1 zγ1 zϕ1 zu2 zγ2 zϕ1gTðel¼jÞ;

εðel¼jÞ ¼ fεu1 εγ1 εϕ1 εu2 εγ2 εϕ2gTðel¼jÞ ð43Þ

In Eq. (43), the hysteretic energy dissipation is approximated
as ehðxÞ ≈ eh

0ðxÞ þ Ph
ðxÞðεðxÞ − ε0ðxÞÞ, where eh0ðxÞ is the initial hyster-

etic energy at the beginning of a step. Therefore, żðel¼jÞ in Eq. (43)
becomes a function of Ph, ε, and ε̇. By expressing Ph at x ¼ 0 and
x ¼ Lj in terms of hysteretic DOF and employing the strain-
displacement relation shown in Eq. (37), Eq. (43) can be now com-
pactly expressed as:

żðel¼jÞ ¼ gcðdðel¼jÞ; zðel¼jÞÞḋðel¼jÞ ð44Þ

where dðel¼jÞ ¼ðΛdgÞðel¼jÞ ¼ðΛLdÞðel¼jÞds and zðel¼jÞ ¼Lzðel¼jÞzs,
such that Ld and Lz are the incidence (or connectivity) matrices
that transform vectors dg and z for each element to the global sys-
tem vectors ds and zs, respectively, and gc is a new functional
mapping resulting from the transformation of Eq. (43) to Eq. (44).
The elements in the incidence matrices are 1, corresponding to the
same DOF in both row and column, and 0 otherwise (Bathe 1996).

Solution Scheme

For a given external force vector, the system force-displacement
Eq. (40) and the evolution equation in Eq. (44) have to be solved
simultaneously to obtain the unknown DOFs, which results in a
system of DAEs, where Eq. (40) is a set of algebraic equations,
while Eq. (44) is a set of first order differential equations. The
DAEs from Eqs. (40) and (44) can be solved for the unknown nodal
displacements, ds, and hysteretic DOF, zs, at each step, using
a Newton scheme by approximating the ODE in Eq. (44) in an
algebraic form.

Alternatively, the system of DAEs can be modified so as to be
conducive to the use of more efficient ODE solution schemes, for
example Runge-Kutta methods (RKMs). To facilitate the ODE sol-
ution scheme, the displacement expression from Eq. (40) is substi-
tuted into the evolution equation of Eq. (44), so the resulting

© ASCE 04020105-11 J. Eng. Mech.

J. Eng. Mech., 2020, 146(9): 04020105



expression forms an explicit first order ODE system with respect to
the vector zs. Specifically, the system of ODEs is obtained by first
re-expressing Eq. (40) to the following form:

ds ¼ K−1
s Fs −K−1

s Hszs ð45Þ

From Eq. (44), the overall evolution equation for the system is ex-
pressed as:

żs ¼

2
6664
gcðel¼1Þ

. .
.

gcðel¼NelÞ

3
7775

2
6664

ðΛLdÞðel¼1Þ

..

.

ðΛLdÞðel¼NelÞ

3
7775ḋs ¼ gsðds;zsÞḋs

ð46Þ

By substituting the expression for ds from Eq. (45) into Eq. (46),
the following evolution equation is obtained:

żs ¼ ðIþ gsK−1
s HsÞ−1gsK−1

s Ḟs ð47Þ

where Ks and Hs are the previously defined constant system ma-
trices, and from Eqs. (45) and (46), gs becomes a function of the
unknown zs vector. Thus, the only equations needed to solve the
problem are the ODEs in Eq. (47), which inherently represent a
form of model reduction, since the displacement DOF have been
eliminated from the evolution equation without any loss of fidelity
and accuracy. Hence, the present hysteretic finite-element model
with the suggested numerical solution scheme transforms the en-
tire system into a first order system of ODEs, obtained in Eq. (47),
which enables the use of any common numerical ODE solver,
e.g., the family of RKMs, for obtaining the hysteretic DOFs. With
zs at each time step, the nodal displacements, ds, can be simply
obtained from Eq. (45), either through post processing or through
a separate concurrent step in the analysis. For all numerical results
described in the subsequent sections, Eq. (47) with an appropriate
RKM solver has been used.

Note that due to its parametrized nature, the present degrading
hysteretic beam finite-element model can be used for both
Timoshenko and Euler-Bernoulli beam formulations, with linear/
nonlinear, degrading/nondegrading behaviors, or any combination
thereof. For example, for the pure elastic Timoshenko case with no
degradations, the hardening parameters are αu ¼ αγ ¼ αϕ ¼ 1, so
that the hysteretic matrix in Appendix I becomes null, and degra-
dation parameters, i.e., δη, δν1, and ζ10, in the evolution equations
are set to zero. Alternatively, for λ ¼ 0 and αγ ¼ 1, the matrices in
Appendix I transform to inelastic Euler-Bernoulli formulation, thus
resulting in a degrading hysteretic Euler-Bernoulli beam element.
Another simplified form could be a nondegrading elastic Euler-
Bernoulli beam element, obtained by combining the aforemen-
tioned cases, i.e., λ ¼ 0, αu ¼ αγ ¼ αϕ ¼ 1; δη ¼ δν1 ¼ ζ10 ¼ 0.
It is also important to note that although different formulations
can be obtained from the suggested most generalized form by
changing the values of a few parameters, the present model in
its most general form can be also employed to accurately identify
the response of structural systems without a priori knowledge of the
associated element behavior, such as linear/nonlinear, flexure dom-
inant or shear dominant phenomena.

Illustrative Results

To illustrate the consistency, versatility, and generality of the sug-
gested degrading hysteretic beam finite-element model, a set of

numerical simulations are conducted on pertinent beam elements,
related to the four distinct cases: Case 1 with no degradations and
no interactions; Case 2 exhibiting degradations without capacity
interactions; Case 3 with no degradations but having capacity
interactions; and lastly Case 4 presenting the fully coupled
degradation-plasticity model with interactions. For each case, two
beam models are considered, as shown in Fig. 11, having identical
properties other than their overall lengths. The first beam model
has a specified length of 0.5 m, showcasing significant shear de-
formation, and hence is referred to here as shear dominant beam.
The second beam model analyzed is a flexure dominant beam with
a longer length of 4.0 m, such that the beam deformation is
predominantly due to flexure. For both beam models, the DOFs
at their end nodes are assumed to be fully restrained, except for
the transverse displacement at one end, where the beam is sub-
jected to a displacement based cyclic loading protocol with in-
creasing amplitude, used in all numerical analysis cases in this
section.

Both shear and flexure dominant models are based on a
W30 × 148 steel beam, with web yield strength of 450 MPa, flange
yield strength of 380 MPa, elastic modulus of 200 GPa, and shear
modulus of 77 GPa. The model parameters based on the beam
mechanical properties are accordingly obtained as: E ¼ 200 GPa,
G ¼ 77 GPa, Np ¼ 11,450 kN, Qp ¼ 3,300 kN, and Mp ¼
3,200 kNm; and the parameters derived from the cross sectional
properties are: A¼ 280 cm2, As ¼ 128 cm2, and I ¼ 278,040 cm4.
Other hysteretic parameters assumed are: n ¼ 1 for smooth transi-
tion from elastic to plastic regime; β ¼ γ ¼ 0.5 resulting in unload-
ing stiffness equal to the loading stiffness; αu ¼ αϕ ¼ αγ ¼ 0,
assuming no kinematic hardening; δη ¼ ζ10 ¼ 0, resulting in no
stiffness degradation and pinching from Eqs. (10) and (12); and
δν1 ¼ 0.01, δν2 ¼ 3 × 10−6, and δν3 ¼ 2 for strength degradation,
given by Eq. (4). For Cases 3 and 4, considering full interaction be-
tween axial, shear and bending, the following generalized Gendy-
Saleeb capacity surface criterion is considered (Gendy and Saleeb
1993):

ΦðPhÞ ¼ n2u þ q2γ þ
1

λu
m2

ϕ − 1 ð48Þ

where nu ¼ Nh=Nh
c , qγ ¼ Qh=Qh

c , mϕ ¼ Mh=Mh
c , and λu ¼

1 − 1.1jnuj for wide flange I-cross sections.
All results are summarized in Fig. 12 in a tabular form, where the

rows represent the presented four distinct cases, described earlier.
In Fig. 12, plots (a-b) presented in the first two columns, are

W30x148

L

Beam Type Length (L)

Shear dominant beam 0.5 m

Flexure dominant beam 4.0 m

Fig. 11. Beam element for illustrative examples.
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the global hysteretic response and moment-shear interactions, re-
spectively, for each modeling case of the shear dominant beam.
Similarly, plots (c-d) in the last two columns are the hysteretic
response and moment-shear interaction, respectively, for the flex-
ure dominant beam. For the hysteretic response in plots (a) and (c),
the left and right y-axes correspond to the shear force and moment,
respectively, whereas the x-axis shows the total beam rotation, ob-
tained by normalizing the displacement at the free end with respect
to the beam length. In the interaction plots (b) and (d), blue dots
indicate the normalized moment-shear values at each analysis step,

red dots give the same values when the hysteretic capacity is
reached, and green line/curve presents the initial maximum capacity
that can be reached by a nondegrading system, whereas orange
line/curve corresponds to the final reduced section capacities (color
figure can be viewed online).

Case 1: No degradations and No Interactions

The first row of Fig. 12 presents this case. For the shear dominant
beam, in plots (a) and (b), it can be seen that the shear capacity of
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Fig. 12. Numerical results of shear and flexure dominant beam elements with Mp ¼ 3,200 kNm and Qp ¼ 3,300 kN.
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the beam, i.e., Qp ¼ 3,300 kN, is reached, indicating inelastic
shear deformations, while the bending moment remains in the elas-
tic range, i.e., M < Mp ¼ 3,200 kNm. As can be seen in plot (b),
there are no interactions between the moment-shear capacities, and
thus there is no capacity reduction. However, due to the required
moment-shear equilibrium, i.e., 2M ¼ QL, there is a linear normal-
ized moment (mϕ)-shear (qγ) mapping, indicated by the linear
alignment of the blue dots, that also limits the maximum moment
based on the shear capacity. Similarly, for the flexure dominant
beam, shown in plots (c) and (d), the bending capacity is reached,
while the corresponding shear force is well below its capacity.
Plot (d) again shows that the equilibrium is satisfied, indicated by
the straight blue line as before, that now has a larger slope in com-
parison to the shear beam, due to increased beam length, limiting
the maximum shear force based on the bending capacity.

Summarizing this case, plots (a–b) appropriately demonstrate
that the beam response is governed by shear deformations and shear
capacities, while plots (c–d) show that the beam response is domi-
nated by the flexural properties, and for both shear and flexure
beam models, equilibrium is exactly satisfied.

Case 2: Degradations with No Capacity Interactions

The case of strength degradation with no capacity interactions is
shown in the second row of Fig. 12, wherein the first few hysteretic
cycles are similar to Case 1. However, in contrast to Case 1, after
the onset of degradation, the shear capacity in plots (a-b) is degrad-
ing based on the hysteretic shear energy dissipation and shear de-
formations, while there is no degradation in the flexural capacity of
the beam due to negligible flexural deformations, as indicated by
the constant capacity in the y-direction (normalized moment axis)
of plot (b). In other words, the response of the shear dominant beam
with degradation is solely governed by shear deformation, shear
capacity, and shear energy dissipation. Similarly, for the flexure
dominant beam, the degradations are occurring due to significant
flexural deformations and cumulative flexural energy dissipation.
Again, similar to Case 1, although the moment-shear capacities
are not interacting, they are inter-dependent on each other due
to the equilibrium conditions satisfied in a strong sense everywhere
through the force-displacement expression of Eq. (40), resulting in
the observed blue straight line, as explained before.

As previously mentioned, Case 2 is a general case, when the
capacities interactions are not considered in the system, and can be
transformed to Case 1, by simply selecting the degradation param-
eters δν1 ¼ δη ¼ ζ10 ¼ 0.

Case 3: Capacity Interactions with No Degradations

As shown in the third row of Fig. 12, there is moment-shear inter-
action in this case, without degradation effects, as shown by the
circular surface and its constant amplitude in plots (b) and (d).
Similar to Case 1, the maximum force/moment for the shear
dominant beam corresponds to the shear capacity of the beam,
while the maximum plastic limit in the flexure dominant beam ac-
cords to the bending capacity. However, the plastic capacities in
both beams are reduced now as compared to Case 1, based on
the plots (b) and (d) in the third row, showing the interaction surface
of Eq. (48), that is here rewritten, given that the axial force is
absent, as:

ΦðPhÞ ¼ q2γ þm2
ϕ − 1 ¼ 0 ð49Þ

The same effect of slight reduction in the maximum capacities,
based on the interaction surface, can be seen in plots (a) and
(c), as compared to Case 1. Hence, Eq. (49) represents a circular

capacity surface, restricting the maximum values of moment and
shear force, as shown in plots (b) and (d).

In summary, Case 3 satisfies in a fully consistent manner, both
the equilibrium conditions and capacity interaction criteria, for
shear and flexure dominant beams.

Case 4: Coupled Degradation-Plasticity

Results for the case of coupled degradation-plasticity, indicating
interactions with strength degradation, is presented in the fourth
row of Fig. 12. Similar to Case 3, the first few cycles of the hys-
teretic loops again reach their nondegrading interacting capacities
based on the shear and flexure dominant responses of the beam
elements, indicating interactions but no degradations in the initial
cycles. For this case, the capacity surface is now obtained as:

ΦðP̄hÞ ¼ q̄2γ þ m̄2
ϕ − 1 ¼ ðνγqγÞ2 þ ðνϕmϕÞ2 − 1 ¼ 0 ð50Þ

When νγ ¼ νϕ ≈ 1, i.e., before the onset of degradation, the maxi-
mum plastic capacity is constrained by the constant amplitude cir-
cular surface, as indicated by the green circle in plots (b) and (d).
After the degradation initiates, the value of νγ increases continu-
ously for the shear dominant beam, due to large shear deformation
and shear energy dissipation, whereas νϕ ≈ 1 due to small flexural
deformation, with both functions having the same parameter val-
ues. Therefore, to appropriately satisfy the capacity surface criteria
of Eq. (50), qγ decreases while mϕ almost remains constant, as
indicated by the contraction of capacity surface in the x-direction
(normalized shear axis). Again, the blue line followed by ðmϕ; qγÞ
satisfies the beam equilibrium and the red dots present the updated
evolving plastic limits consistent with yield/capacity surface crite-
ria. In this case, the evolution of yield/capacity surfaces are also
indicated, for more clarity, starting from the initial constant ampli-
tude green surface to the final degraded orange one. Similarly, for
the flexure dominant beam, mϕ decreases while qγ remains station-
ary to satisfy Eq. (50), resulting in the contraction of the interaction
capacity surface in the y-direction (normalized moment axis).

In summary, Case 4 consistently incorporates capacity interac-
tions and degradations, while satisfying exact equilibrium condi-
tions at all points. This most general modeling case can also be
used to simulate the response of Case 3, by simply choosing values
of the degradation parameters as δν1 ¼ δη ¼ ζ10 ¼ 0.

Experimental Verifications

The previous section validates that the proposed model is compat-
ible with theoretical assumptions and intuitive knowledge. To fur-
ther verify the capability of the model to replicate physical
observations, simulated responses are compared with the available
experimental test results. Three examples are presented, based on
the experimental setups shown in Figs. 13 and 14, with each one
exhibiting varied combinations of degradation phenomena, to
showcase the versatility of the modeling approach, and the results
are summarized in Fig. 15. For all three reported experiments, the
simulation is done using both the linear-rate strength degradation
and the new strength degradation functions, the former shown in
the first column, and the latter presented in the second column. Full
axial-shear-bending interaction is considered using the Gendy-
Saleeb capacity surface criterion (Gendy and Saleeb 1993), as shown
in Eq. (48), and the hysteretic finite-element formulation with fully
coupled degradation-plasticity phenomenon described in Case 4 is
used for all the experimental results.
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Example 1: Reduced Beam Section (RBS) Moment
Connection with Deep Wide Flange Column

The first row of Fig. 15 presents the analysis of a RBS moment
connection with deep wide flange column, where the simulated
responses are compared to the experimental data from Yu et al.
(2000). In this example, specimen LS-1 from Yu et al. (2000) is
selected, exhibiting significant strength degradation. The specimen,
as shown in Fig. 13, consists of a W14 × 176 column, with web
yield strength of 375 MPa and flange yield strength of 386 MPa;
and a W30 × 99 beam, with web and flange yield strengths of
400 and 377 MPa, respectively. The beam length from the loading
point to the centerline of the column is 3.8 m, while the column
length to the centerline of the beam is 1.9 m. The column ends

are fully restrained, while the free end of the beam is subjected
to a standard displacement based SAC loading protocol (Clark
et al. 1997). Further details about the experimental setup, cross
sectional geometry, loading history, etc., can be seen in Yu et al.
(2000).

For the suggested degrading hysteretic finite-element formu-
lation, the beam is modeled as one element, while the column
is discretized into two elements, with a node at the beam-column
connection. The parameters of the beam and column elements are
tabulated in Tables 1–3, where the mechanical and geometrical
parameters are obtained based on the material and the cross sec-
tional properties of the elements. The hysteretic parameters are
obtained using a sequential quadratic programming (SQP) optimi-
zation algorithm, by minimizing the sum of the squared error be-
tween the experimental data and the simulated responses for all
inelastic cycles, for both linear-rate and new strength degradation
functions. Note that same hysteretic parameters are assumed here
for all the elements; however, the hardening and degradation
parameters are not activated for the column elements, because
their deformations remain in the elastic range.

The results of the developed degrading hysteretic finite-
element formulation with linear-rate and new strength degradation
functions are shown in plots (a) and (b), respectively, of the first
row in Fig. 15. It can be seen in plot (a) that the simulated re-
sponse is not able to accurately simulate the full capacity of
the section in the first few inelastic cycles, because the initial
capacity is also reduced in order to capture the later inelastic
cycles, which are also not very effectively captured in this case.
Note that if the degradation parameter value increases to replicate
the last cycle, it will also decrease the initial capacity. On the other
hand, if the parameter value decreases to capture the initial capac-
ity, the plastic limit of the last simulated cycle will be much higher
than the experimental one. Therefore, the relevant parameter in the
linear-rate function is trying to simulate the degrading response
based on the uniform degradation evolution constraints. Yet, in
plot (b), it is apparent that the simulated degradation evolution
is almost identical to the experimental one, and all the capacity
cycles are captured with better accuracy as compared to the linear-
rate ones.

Example 2: Weak Axis RBS Beam-Column Moment
Connection

To simulate the cyclic response of a weak axis RBS moment con-
nection, experimental data for specimen CW-1 (Gilton and Uang
2002) are employed here. The experimental setup is similar to
Fig. 13; however, it consists of a W14 × 398 column, with a yield
strength of 386 MPa, and a W36 × 150 beam, with web and flange
yield strengths of 359 and 400 MPa, respectively. The beam length
from the loading point to the centerline of the column is 3.6 m,
while the column length to the centerline of the beam is 1.9 m.
In this case, one end of the beam is connected to the column
web, such that the column is bending about its weak axis, and the
other end is subjected to the SAC loading protocol (Clark et al.
1997), similar to Example 1. The parameters are again tabulated in
Tables 4–6.

Results are presented in the second row of Fig. 15, demonstrat-
ing a combination of significant strength and stiffness degradation.
The linear-rate degradation formulation, as shown in plot (a) of
the second row, is not able to simulate very well the strength and
stiffness degradations in the later unloading and reloading cycles.
On the contrary, plot (b) with the proposed strength degradation
function is aptly replicating the experimental behavior until the
very last cycle. For all the hysteretic cycles, the transition from
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Fig. 13. Experimental setup for beam-column moment connection.
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Fig. 14. Experimental setup for buckling brace: (a) plan view of the
setup; and (b) HSS specimen.
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Fig. 15. Experimental verifications.

Table 1. Experimental example 1: mechanical/geometrical parameters

Parameters E (GPa) G (GPa) Np (kN) Qp (kN) Mp (kNm) A ðcm2Þ As ðcm2Þ I ðcm4Þ
Beam 200 77 7,238 2,300 1,951 187 100 166,076

Column 200 77 12,760 1,762 2,006 334 81 89,073

Table 3. Experimental example 1: hysteretic parameters for proposed
strength degradation

Parameters n γ α δν1 δν2 δν3 δη

Beam/column 0.9 2.7 0.01 0.14 3.8 × 10−6 2.2 5 × 10−7

Table 2. Experimental example 1: hysteretic parameters for linear-rate
strength degradation

Parameters n γ α δν δη

Beam/column 1 2.5 0.003 1.7 × 10−6 6 × 10−7
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elastic to plastic regime and nonuniform degradation evolution is
well simulated in plot (b), as compared to the uniform evolution
in plot (a).

Example 3: Cyclic Response of a Buckling Brace

The cyclic response of a steel brace is shown in the third row of
Fig. 15, indicating asymmetric degradation phenomena (Fell et al.
2009). The experimental setup is shown in Fig. 14, wherein the
related cross section involves a square hollow structural shape
101.6 × 101.6 × 6.4 (HSS-1), with an effective section yield
strength of 480 MPa. The length of the specimen is 3.124 m, with
one end fully restrained, while the other end is subjected to a stan-
dard cyclic protocol following a symmetric displacement-based
axial loading history (Gupta and Krawinkler 2002; Krawinkler
et al. 2000).

The degrading hysteretic finite-element model is formulated here
with just one element, having nodes at the start and end of the brace
element. The model parameters are listed in Tables 7–9. For this
model, it is assumed that strength degradation is only present for the
compressive loading, while pinching is active only in the loading/
reloading branches. Additionally, asymmetric stiffness degradation
is assumed for reloading and unloading branches.

In plot (a), in the third row of Fig. 15, it is seen that the linear-
rate degradation is unable to capture the buckling phenomena for
the compressive loading, and stiffness in same of the unloading
branches are also not captured very well. On the other hand, in
plot (b) buckling effects are appropriately simulated in the com-
pressive cycles, and significantly matching simulation and exper-
imental results are observed here, as compared to the linear-rate
degradation rule.

Overall, the simulated results comparisons with these experi-
mental outputs support the model’s validity to simulate a broad
range of complex physically observed hysteretic behaviors.

Conclusions

In this paper, a new multiaxial degrading hysteretic model is
developed and integrated to a hysteretic finite-element framework,
in order to efficiently simulate a diverse array of nonlinear and
degrading structural behaviors. Toward this goal, a new strength
degradation function is suggested, which is used to formulate sca-
lar damage functions corresponding to axial force, shear force, and
bending moment capacities degradations. Damage functions and
multiaxial inelasticity are then introduced in the effective stress
domain, following multiaxial damage-plasticity postulates, satis-
fying the consistency criteria of the yield/capacity surface. Differ-
ent cases for multiaxial hysteretic models are presented based on
model fidelity, ranging from the case when degradations and
capacity interactions are assumed to be absent, to the most com-
plex case of fully coupled degradation-plasticity model, where the
yield/capacity surface is consistently evolving owing to strength
degradation effects, now adequately simulated with the proposed
framework. Stiffness degradation, pinching and asymmetry are
also introduced, and the resulting multiaxial evolution model is
then used in the overall finite-element formulation of a two-node
hysteretic Timoshenko beam element. Although the proposed hys-
teretic model is implemented here for the hysteretic finite-element
formulation of beam elements, it can also be straightforwardly
employed as a constitutive law for fiber analysis, finite-element
formulations of other elements, or even independently for simu-
lating a range of hysteretic phenomena. Finally, a computationally
efficient solution scheme is suggested for the hysteretic finite-
element formulation of quasi-static problems, where the system
matrices do not need to be updated and the entire framework is
elegantly represented by a system of ODEs, that can be solved

Table 4. Experimental example 2: mechanical/geometrical parameters

Parameters E (GPa) G (GPa) Np (kN) Qp (kN) Mp (kNm) A ðcm2Þ As ðcm2Þ I ðcm4Þ
Beam 200 77 10,730 3,002 3,640 285 144 376,273

Column 200 77 29,125 12,160 2,547 754 545 90,322

Table 5. Experimental example 2: hysteretic parameters for linear-rate
strength degradation

Parameters n γ α δν δþη δ−η
Beam/column 0.6 0.9 0 5.0 × 10−7 7 × 10−7 1.8 × 10−7

Table 6. Experimental example 2: hysteretic parameters for proposed
strength degradation

Parameters n γ α δν1 δν2 δν3 δþη δ−η
Beam/column 0.6 1.0 0 0.1 1.7 × 10−6 2.0 1 × 10−6 4 × 10−7

Table 7. Experimental example 3: mechanical/geometrical parameters

Parameters E Np A

Brace 200 GPa 1,042 kN 22 cm2

Table 8. Experimental example 3: hysteretic parameters for linear-rate strength degradation

Parameters n γ α δ−ν δþη δ−η ζþ10 ζþ20 pþ qþ

Brace 1.2 0.5 0 1.5 × 10−6 0 1.8 × 10−5 0.97 0.64 1.0 × 10−4 0.1

Table 9. Experimental example 3: hysteretic parameters for proposed strength degradation

Parameters n γ α δ−ν1 δ−ν2 δ−ν3 δþη δ−η ζþ10 ζþ20 pþ qþ

Brace 2.7 0.7 0.02 1 1.6 × 10−5 350 4.5 × 10−5 1.0 × 10−5 0.9 0.51 1.0 × 10−4 0.05
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without the need of linearizations. Illustrative results and experi-
mental verifications are provided to demonstrate that the suggested
element satisfies exact equilibrium, degradations, and multiaxial
yield/capacity surface interactions in one consistent framework,
and is able to simulate a diverse range of complex physically

observed structural responses in a concise and efficient manner.
Future work can include, among others, incorporation of large
displacements and the assessment of the predictive capabilities
of the model, i.e., accurately describing physical phenomena
without a priori knowledge of the experimental/output data.

Appendix I. Element Matrices

In this appendix, the pertinent element matrices for the nonlinear Timoshenko beam element are presented (Amir et al. 2020).

BðxÞ ¼

2
6666664

− 1

L
0 0
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Appendix II. Classical Multiaxial Plasticity to Hysteretic Model

In this appendix, the connection of a conveniently expressed hysteretic model to the classical plasticity theory is shown. The following
governing equations need to be satisfied for a consistent multiaxial plastic flow (Simo and Hughes 1998):
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1. Additive property, where the total strain vector ðεÞ can be de-
composed into the elastic ðεeÞ and plastic parts ðεpÞ:

ε ¼ εe þ εp ð52Þ

2. Stress-strain constitutive law, given by σ̇ ¼ Dε̇e, can be then
expressed as:

σ̇ ¼ Dðε̇ − ε̇pÞ ð53Þ

where σ is the stress vector and D is the elastic rigidity matrix.
Note, when σ represents the resultant/generalized stress vector,
as in the present case for a beam element, it constitutes axial
force, shear force, and moment, while the corresponding strains
are centerline axial strain, shear strain, and curvature.

3. The rate of change of plastic strain is governed by the following
flow rule:

ε̇p ¼ λ
∂Φ
∂σ ð54Þ

where λ is the flow parameter here, satisfying the Kuhn-Tucker
complimentary conditions, and Φ is the yield/capacity function.

4. The consistency condition says that in the plastic regime,
i.e., when Φ ¼ 0, the rate of change of yield/capacity surface
is 0, i.e.,

Φ̇ðσÞ ¼ 0; or

�∂Φ
∂σ

�
T
σ̇ ¼ 0 ð55Þ

Note, Φ̇ is only a function of σ for a system with no hardening.
In the elastic region, since ε̇p ¼ 0, Eq. (53) yields σ̇ ¼ Dε̇,

whereas, for the inelastic region, the rate of change in plastic strain
is nonzero, and therefore, the stress-strain relation is obtained
by following Eqs. (52)–(55). Substituting σ from Eq. (53) into
Eq. (55), results in:

�∂Φ
∂σ

�
T
Dðε̇ − ε̇pÞ ¼ 0 ð56Þ

Next, by substituting ε̇p from Eq. (54) into Eq. (56), the flow
parameter can be obtained as:

�∂Φ
∂σ

�
T
Dε̇ ¼

�∂Φ
∂σ

�
T
D

�∂Φ
∂σ

�
λ; or

λ ¼
��∂Φ

∂σ
�

T
D

�∂Φ
∂σ

��−1�∂Φ
∂σ

�
T
Dε̇ ð57Þ

By substituting the expression for λ from Eq. (57) into Eq. (54), and
then the resulting expression for ε̇p to Eq. (53), the following stress-
strain relation is obtained in the inelastic range:

σ̇ ¼ D

�
ε̇ −

��∂Φ
∂σ

�
T
D

�∂Φ
∂σ

��−1�∂Φ
∂σ

��∂Φ
∂σ

�
T
Dε̇

�
ð58Þ

Therefore, the overall stress-strain law using the classical multiaxial
plasticity theory can be expressed as:

σ̇ ¼
�
DðI−RÞε̇ for inelastic domain

Dε̇ for elastic domain
; where R¼ ð∂Φ∂σÞð∂Φ∂σÞTD

ð∂Φ∂σÞTDð∂Φ∂σÞ
ð59Þ

where I is the identity matrix and R is the interaction matrix.
Eq. (59) represents the final expression directly following the
classical plasticity theory. Instead of employing different expres-
sions for the elastic and inelastic regimes, Eq. (59) can be now sim-
ply transformed into the following unified law, satisfying all the
aforementioned conditions for both elastic and inelastic regions:

σ̇ ¼ DðI −H1H2RÞε̇ ð60Þ

whereH1 ¼ jΦþ 1jn andH2 ¼ β þ γsgnðσT ε̇Þ are the appropriate
functions, such that either one of them tends to zero in the elastic
domain, and both reach their maximum value of 1 in the inelastic
domain, providing same results as in Eq. (59). The resulting expres-
sion in Eq. (60) presents a hysteretic model without any hardening
effects, as in Eq. (24). Kinematic hardening can be now externally
added in the model by simply transforming Eq. (60) to:

σ̇ ¼ αDε̇þ ðI − αÞDðI −H1H2RÞε̇ ð61Þ

where the second term on the right side of Eq. (61) represents the
elastoplastic response with no hardening, while the first term adds
the kinematic hardening with a slope of αD.

Hence, Eq. (61) represents the final form of the multiaxial
hysteretic model, which can be very practically and concisely
re-expressed as:

σ ¼ αDεþ ðI − αÞDz; ż ¼ ðI −H1H2RÞε̇ ð62Þ

where z can be considered as the hysteretic deformations as
shown in Eqs. (18) and (26). The extension to the developed
coupled degradation-plasticity formulation in the most general
form can be seen in Eq. (34) and is presented in detail in this work.
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