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ABSTRACT

The problem of selecting łeffective preemption pointsž in a program

Ð points in the code at which to permit preemption Ð in order to

minimize overall running time is considered. Prior solutions that

have been proposed for this problem are based on workload mod-

els in which worst-case known upper bounds are assumed for the

duration needed to perform preemptions at particular points in

the code, and of the time needed to non-preemptively execute the

code between preemption points. Since these solutions are based

on worst-case assumptions, they tend to select effective preemp-

tion points in a conservative manner; consequently the overall

execution time of the program may be needlessly large under most

typical run-time circumstances. We consider a more general work-

load model in which łtypicalž values, as well as upper bounds, are

assumed to be known for the preemption durations and the non-

preemptive code-execution durations; given such information, we

derive algorithms for the optimal placement of preemption points

in a manner that minimizes the typical overall running time (while

continuing to guarantee, if needed, upper bounds on the worst-case

over-all running time). Both off-line solutions (in which all preemp-

tion points are selected prior to run-time) and on-line solutions

(where the selection of some of the preemption points is made

during run-time and therefore can exploit knowledge of the actual

durations of prior preemptions and of the executions of already

executed pieces of code) are presented and proved optimal.
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1 INTRODUCTION AND MOTIVATION

Many safety-critical systems are required to have their correctness

validated prior to deployment. For real-time systems, the correct-

ness criteria include guarantees that the system will meet specified

deadlines during run-time. The likelihood of meeting all required

deadlines in a system is generally enhanced if preemptions are per-

mitted: i.e., a currently executing process may be interrupted in

order to enable the execution of some other process (with, e.g.,

an earlier deadline). However, preemptions may incur consider-

able run-time overhead (for instance, preemptions may require

that cache lines evicted by a preempting process be re-loaded, in-

struction pipelines invalidated, etc.); additionally, permitting pre-

emptions restricts the usage of non-preemptable serially reusable

resources to only occur within critical sections, access to which

need to be arbitrated using non-trivial resource-sharing protocols.

In light of these benefits and drawbacks of preemption, limited-

preemption scheduling has emerged as an attractive alternative to

the extremes of preemptive and non-preemptive scheduling. Under

limited-preemption scheduling a process may only be preempted

at specified łpotential preemption pointsž Ð see Figure 1 Ð that are

designated as being so by the software engineering team developing

the process; the run-time environment is required to let the process

execute non-preemptively between successive preemption points.

These potential preemption points are presumably designated at

points in the code where the cost of preemption are somewhat

limited. Schedulability analysis techniques such as Response-time

Analysis [4, 13] or the Processor Demand Methodology [6, 7, 26]

have been adapted to allow for such non-preemptive execution:

in such extended analysis the maximum duration of such non-

preemptive execution is typically represented as a blocking time (so

called because it represents the duration for which an executing

process may block the execution of other processes of greater prior-

ity). Hence the blocking time becomes a parameter in the model of

the timing behavior of the code (along with the other parameters

such as worst-case execution time, deadline, etc.)

Schedulability analysis such as Response-Time Analysis and the

Processor Demand Methodology are performed prior to run-time,

1 2 · · · N − 1 N

b1 b2 bN−1 bN

ξ1 ξ2 ξN−2 ξN−1

Figure 1: A program is a sequence of non-preemptive basic

blocks 1, 2, . . . ,N , each of which is characterized by a worst-

case execution time b1,b2, . . . ,bN . Preemptions may occur

between basic blocks: ξi is the worst-case cost of performing

a preemption between the i’th and the (i + 1)’th basic block.
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when the actual execution times and blocking times are unknown;

instead, upper boundsmust be estimated and used. The upper bound

on the blocking time that is estimated for a process may in general

depend upon which of the potential preemption points actually

experience preemptions during run-time. Algorithms have been

developed for selecting those of the potential preemption points of

a process at which preemptions should occur in order to optimize

for certain metrics; e.g., Bertogna et al. [8] present an algorithm

for determining which potential preemption points are actually

permitted to experience preemptions (these are called effective pre-

emption points in [8]) during run-time in order to minimize the

overall worst-case execution time of the process, subject to the con-

straint that the blocking time not exceed a specified value. These

algorithms require that estimates be made on the upper bounds of

(1) the execution times of the blocks of code between succes-

sive potential preemption points (known as the worst-case

execution times orWCET’s of these blocks of code Ð they are

depicted as the bi values in Figure 1); and

(2) the preemption overhead that would be incurred were an ac-

tual preemption to occur at each potential preemption point

(these upper bounds are called the worst-case preemption

delays of these potential preemption points, and are depicted

as the ξi values in Figure 1).

These upper bounds (i.e., the bi and ξi values in the notation of

Figure 1) are provided as inputs to the algorithms selecting the

effective preemption points from amongst the designated potential

preemption points; given such inputs, the algorithms determine

both the effective preemption points and an upper bound on the

worst-case running time of the program. Correctness considerations

require that input bi and ξi values be safe upper bounds in the

sense that they bound the actual execution/ preemption times that

may be experienced during run-time; otherwise the outputs of the

algorithms may not be valid (e.g., the actual blocking time that is

experienced during run-time may exceed the specified value, or

the actual running time of the process may exceed the bound that

is computed by the algorithm). Modern computing platforms are

characterized by significant variation and unpredictability with

regards to timing behavior:

• the same piece of code executing upon the same platform

may require very different durations of time to execute on

different runs, and

• preemption delay typically depends not just upon the char-

acteristics of the process being preempted but also upon the

characteristics of other processes with which this process

exists concurrently (and which therefore preempt it or are

preempted by it).

As a consequence, safe upper bounds on the bi and ξi values tend

to be very conservative over-estimations of the execution time

and preemption delay that is typically experienced under most

circumstances.

This research. The major research question investigated in this

paper is this: if we had access to not just worst-case bounds on the

execution time of the basic blocks and preemption delay parameters,

but also typical values of these parameters, could we use these

additional estimates to our benefit? We answer this question in

the affirmative: we show that careful and considered use of such

typical execution-time/ delay parameter values, if available to us,

permits us to optimize for a wider range of run-time properties

while continuing to guarantee that worst-case blocking will not

exceed a specified bound. Specifically, recall that Bertogna et al. [8]

have derived an algorithm that determines, for a given program,

the choice of effective preemption points that minimizes its overall

worst-case execution time plus any cache-related preemption delay

subject to the constraint that blocking time (i.e., the maximum

non-preemptive region for a task) not exceed a specified value,

and provides an upper bound on the resulting worst-case running

time (execution including cache reloads) for the program. We show

how effective preemption points may be chosen to minimize the

typical, rather than worst-case, overall running time of the process

(subject to the same constraint that the blocking time not exceed a

specified value, even in the worst case), and how to obtain a safe

estimate on the resulting worst-case running time.12 We consider

two variations: one in which our only concern is the typical running

time and hence there are no restrictions placed on the worst-case

behavior, and the other in which we must satisfy an additional

constraint that the worst-case running time of the process also not

exceed a specified threshold value. We consider both off-line and

on-line versions of these problems:

• In the off-line versions, the effective preemption points are

to be determined beforehand: during run-time each process

will be preempted at all such pre-determined effective pre-

emption points.

• In the on-line versions, in contrast, the run-time behavior

of the process ś the actual durations for which code has

executed and the actual delays that already-occurred pre-

emption have experienced ś is used to help determine future

effective preemption points.

Organization. The remainder of this paper is organized in the fol-

lowing manner. In Section 2 we describe the formal workload model

that we use in this paper to represent the timing requirements of

preemptable real-time code.We discuss models that have previously

been used, and motivate and formally define the generalizations

that we are proposing to these prior models. Our main technical

results are presented in Sections 3 and 4; in Section 3 we present

our results concerning the off-line version of the problem when all

preemption points are required to be selected prior to beginning

the execution of the code, and in Section 4 we present our results

for the on-line version where some of the preemption points are

selected during run-time once the code has begun executing. We

provide a brief survey of some of the vast body of related research

on limited-preemption scheduling in Section 5, and conclude in

Section 6 with a brief summary of our results and a discussion

regarding future directions.

1That is, we provide an upper bound on the running time of the program under the
assumption that no duration Ð of either a preemption or the execution of a basic block
Ð exceeds the estimate of its typical value.
2We do not address in this paper how typical runtimes for basic blocks/preemptions
and leave it to determine the mechanism for setting these values. For instance, the
designer might follow the strategy of [19] take several traces of execution of the tasks
with various preemption points and use the maximum observed runtime as input;
this maximum observed value is guaranteed to be less pessimistic than the worst-case
runtimes derived using static analysis.



2 MODEL, AND PRIOR RESULTS

In this section we formally present the workload model that was

informally discussed in Section 1 above (Section 2.1), briefly discuss

some prior results that are relevant to the reminder of this paper

(Section 2.2), and describe the extensions to the prior model that

we are proposing (Section 2.3).

2.1 Models used in prior work

Bertogna et al. [8] model a program as a sequence of N non-

preemptive basic blocks (BB’s) Ð see Figure 1. Each basic block

is characterized by a worst-case execution time (WCET); we de-

note the WCET of the i’th block as bi , 1 ≤ i ≤ N . Preemption is

permitted only at the boundaries between basic blocks (conditional

branches and critical sections are assumed to be executed entirely

within a basic block); hence there is a potential preemption point

between successive basic blocks. There is a worst-case preemp-

tion cost associated with performing a preemption at a potential

preemption point; we denote the worst-case preemption cost of

performing a preemption between the i’th and (i + 1)’th basic block

as ξi .

It is generally not required that a program be preempted at all its

potential preemption points during run-time ś the ones at which

preemptions will actually occur are called the effective preemption

points. The sequence of basic blocks between any pair of consecutive

effective preemption points is referred to as a non-preemptive region.

Suppose that a non-preemptive region comprises the i’th through

the j’th basic block (1 ≤ i ≤ j ≤ N ). It is evident that this non-

preemptive region, along with the preemption that was necessary

prior to its execution, executes non-preemptively during run-time

for a duration that may be as large as
(
ξi−1 +

∑j
ℓ=i

bℓ

)
. (Here we

are adopting the convention that ξ0 ← 0.) The worst-case running

time of the entire program is equal to the sum of these durations

over all the non-preemptive regions of the program.

2.2 Relevant prior results

The following problem was studied in [8]:

Given a program specified via the equi-sized vectors
−→
b

def
= [b1,b2,

. . . ,bN ] of basic block WCETs and
−→
ξ

def
= [ξo ≡ 0, ξ1, ξ2, . . . , ξN−1]

of worst-case preemption costs, and a blocking parameter Q denot-

ing an upper bound on the maximum duration for which a program

may execute non-preemptively,

Determine the minimum possible worst-case running time that can

be guaranteed for this program (subject to the constraint that no

non-preemptive region has a run-time greater than Q), and a selec-

tion of effective preemption points that guarantees this minimum

worst-case running time. □

Bertogna et al. [8] derived an algorithm based on dynamic program-
ming for solving this problem, which we now describe. Let B(k)
denote the smallest possible worst-case running time, including
preemption overhead costs, that is incurred in executing the first k
basic blocks. (The desired solution to the problem is therefore the
value of B(N ) and the selection of effective preemption points that
yields this value). Setting

B(0) = 0 (1)

Bertogna et al. [8] observed that for any k ≥ 1, the value of B(k)
may be expressed in terms of the values of the B(ℓ)’s for ℓ < k , in
the following manner:

B(k ) = min
j∈J

{
B(j) + ξ j +

k∑
ℓ=j+1

bℓ

}
(2)

with the j’s constrained as follows:

J =

{
j : (0 ≤ j < k ) and

(
ξ j +

k∑
ℓ=j+1

bℓ
)
≤ Q

}
(3)

This recurrence may be understood based on the following rea-

soning. Suppose that the last preemption before the execution of

the k’th basic block occurred between the j’th and (j + 1)’th basic

blocks. Since the maximum duration of this preemption is ξ j , and(∑k
ℓ=j+1

bℓ
)
represents the cumulative WCETs of all the blocks that

have executed since that last preemption, the sum
(
ξ j +

∑k
ℓ=j+1

bℓ
)

represents the maximum duration for which the process may have

executed non-preemptively since this last preemption. Hence, J

denotes (the indices of) the set of all potential preemption points

at which the process may have been preempted for the last time

prior to the execution of the k’th basic block, without violating the

constraint that no non-preemptive region have a run-time greater

than Q . The smallest possible worst-case running time incurred

in executing the first k basic blocks is now determined by simply

computing the minimum of the worst-case running times if the

last preemption were to occur at each of these possible preemption

points in J.

While determining B(k) according to Expression 2 above, we

additionally store in prev(k) the value of j ∈ J that defines the

value of B(k); i.e., the value of j at which the RHS of Expression 2

is minimized. Once B(N ) has been determined, the sequence of ef-

fective preemption points is determined as prev(N ), prev(prev(N )),

prev(prev((N ))), . . ., all the way down until 0.

To illustrate the problem and the approach of Bertogna et al. [8]

consider the program depicted in Figure 2 represented by two vec-

tors
−→
b = [b1,b2,b3] = [5, 3, 4] and

−→
ξ = [ξ0, ξ1, ξ2] = [0, 3, 2], and

with Q = 10. Two potential preemption points are specified; hence

there are 22 or four possible choices for effective preemption points.

It turns out that having a single effective preemption point, between

basic blocks 2 and 3, is the choice that results in the smallest overall

worst-case running time (which equals 5 + 3 + 2 + 4 = 14).

2.3 Our proposed model extensions

As mentioned in Section 1, the major research question we seek to

investigate is this: if we had access to not just worst-case bounds

on the execution time and preemption delay parameters, but also

typical values of these parameters, what use could we make of

these additional estimates? (For instance, the worst-case bounds

could be obtained by doing conservative path and cache-eviction

analysis, while the typical values could be measurement-based.)

We therefore continue to model our program as before, as a se-

quence of N non-preemptive basic blocks, but suppose that we

have two estimates for the execution time of each basic block and

the preemption delay associated with each potential preemption,



Q = 10

1 2 3

b1 = 5 b2 = 3 b3 = 4

ξ1 = 3 ξ2 = 2

Figure 2: An example. The algorithm of [8] would yield

B(1) = 5,B(2) = min(B(0) + ξ0 + b1 + b2,B(1) + ξ1 +

b2) = min(0 + 0 + 5 + 3, 5 + 3 + 3) = 8, and B(3) =

min (B(1) + ξ1 + b2 + b3,B(2) + ξ2 + b3) = min(5+ 3+ 3+ 4, 8+ 2+

4) = 14 on this example. Note that for B(3) the scenariowhere

only ξ0 is selected (i.e., the code executes non-preemptively)

is not considered in the min() calculation since the non-

preemptive execution of the entire code would exceed the

non-preemptive region constraint Q ; hence the selected ef-

fective preemption point is the one between basic blocks 2

and 3.

a łworst-casež one and a łtypicalž one. The worst-case and typ-

ical estimates for the execution time of the i’th basic block are

denoted as b
(W )
i and b

(T )
i respectively, and the worst-case and typ-

ical estimates for the cost of performing a preemption between

the i’th and the (i + 1)’th basic blocks are denoted as ξ
(W )
i and

ξ
(T )
i respectively. Hence in our more general model a program is

specified via the four vectors
−−→
b(T )

def
= [b

(T )
1 ,b

(T )
2 , . . . ,b

(T )
N
],
−−−→
b(W )

def
=

[b
(W )
1 ,b

(W )
2 , . . . ,b

(W )
N
],
−−→
ξ (T )

def
= [ξ

(T )
0 = 0, ξ

(T )
1 , ξ

(T )
2 , . . . , ξ

(T )
N−1
], and

−−−→
ξ (W )

def
= [ξ

(W )
0 = 0, ξ

(W )
1 , ξ

(W )
2 , . . . , ξ

(W )
N−1
]. As in earlier work [8],

we will also specify the bound Q on the maximum duration for

which any a non-preemptive region is permitted to execute. For

those versions of the problem we consider here in which an upper

bound is specified for the worst-case running time of the program,

we let D denote the specified upper bound.

Throughout this paper we assume that all the parameters are

integers, and that b
(W )

k
> 0 for all k (since a basic block with

worst-case execution time equal to zero may simply be merged

with its predecessor or successor basic block). We also assume

that ξ
(W )
i + b

(W )
i+1 ≤ Q for all i , since otherwise the presence of

this potential preemption point is meaningless: we can never risk

preempting between basic blocks i and (i + 1). (If this condition is

not satisfied for some i , then we may merge the i’th and (i + 1)’th

basic blocks into a single basic block as a pre-processing step upon

the input program.)

The problem considered.Given a program specified as above, we

consider the problem of selecting a subset of the potential preemp-

tion points to designate as being actual preemption points in order

to minimize the typical running time of the program (subject to

the same constraint that the blocking time is bounded from above

by the specified constant Q even in the worst case). That is, our

objective is to determine the smallest overall running time that can

be guaranteed for the program provided that no duration, of either

a preemption or a basic block execution, łoverrunsž or exceeds its

estimated typical value, and to specify the selection of effective pre-

emption points that guarantees this value. We emphasize that we are

seeking not only to minimize the overall running time under typical

conditions; we must also be able to predict, prior to run-time, what

this overall running time under typical conditions is going to be Ð

such pre-runtime predictability is an essential requirement.3

3 SELECTING EFFECTIVE PREEMPTION
POINTS PRIOR TO RUN-TIME

Bertogna et al. [8] have obtained an algorithm, briefly described in

Section 2.2 above, for determining which of the potential preemp-

tion points of a program should be designated as effective preemp-

tion points in order to minimize the worst-case running time of the

program, subject to the constraint that no non-preemptive region

have a worst-case running time greater than a specified blocking

bound Q . We now consider the selection of effective preemption

points in order to minimize the typical running time of the program;

we first consider, in Section 3.1, this problem when no constraint is

placed upon the worst-case overall running time of the program;

subsequently in Section 3.2 we consider the same problem when

an upper bound D on the worst-case running time of the program

is also specified.

3.1 No bounds on worst-case running time
Let us consider a program specified by the four equi-sized vectors
−−→
b(T ),

−−−→
b(W ),

−−→
ξ (T ) and

−−−→
ξ (W ) as discussed in Section 2.3 above, and let

Q denote the maximum permitted duration of a non-preemptive
block of execution. Analogous to Section 2.2, let B(k) denote the
minimum possible completion time for the k’th basic block if each
basic block were to execute for a duration no larger than its typical
execution time and each preemption were to take a duration no
larger than its typical preemption duration. As in [8], we can express
the value of B(k) as a recurrence in terms of values of B(ℓ)’s for
ℓ < k . The critical observation in constructing the recurrence is
that we should define the value of B(k) using the typical values (the

ξ
(T )
i ’s and b

(T )
i ’s) rather than the worst-case values (the ξ (W )’s and

b
(W )
i ’s):

B(k ) = min
j∈J

{
B(j) + ξ

(T )
j +

k∑
ℓ=j+1

b
(T )

ℓ

}
(4)

Note, however, that the values of j that belong to J should continue

to be defined based on the worst-case values (the ξ
(W )
i ’s and b

(W )
i ’s),

in order to ensure that the non-preemptive execution duration is
≤ Q not just in the typical case but also in the worst case:

J =

{
j : (0 ≤ j < k ) and

(
ξ
(W )
j +

k∑
ℓ=j+1

b
(W )

ℓ

)
≤ Q

}
(5)

(As in Section 2.2, we will store in prev(k) the value of j ∈ J that

defines the value of B(k); once B(N ) is computed, these values of

prev(·) can be used to identify the effective preemption points.)

3One consequence of this requirement that (an upper bound on) the running time of
the program under typical conditions be a priori predictable is that we make no effort
to exploit differences between actual durations of execution/ preemption and their
estimated typical values. That is, we choose to not do any run-time łslack reclamationž
Ð such reclamation complicates the run-time algorithm without impacting the a priori
predictions.



Q = 10

1 2 3

b
(T )
1 = b

(W )
1 = 5 b

(T )
2 = b

(W )
2 = 3 b

(T )
3 = b

(W )
3 = 4

ξ
(T )
1 = 1,

ξ
(W )
1 = 3

ξ
(T )
2 = 2,

ξ
(W )
2 = 2

Figure 3: Minimize typical running time (i.e., preempt be-

tween basic blocks 1 and 2).

Example 1. Consider the program depicted in Figure 3. Notice
that the worst-case characterization of this program yields exactly
the program depicted in Figure 2; as we have stated in Section 2.2, on
this example the algorithm of [8] identifies an effective preemption
point between basic blocks 2 and 3 (and a corresponding worst-case
running time of 14). We can see that with this effective preemption
point, the typical running time is also 14:

b
(T )
1 + b

(T )
2 + ξ

(T )
2 + b

(T )
3 = 5 + 3 + 2 + 4 = 14

However, choosing instead the potential preemption point between

basic blocks 1 and 2would have resulted in a typical running time of 13

while continuing to respect the constraint that blocking time by ≤ 10

even in the worst case. This is the solution returned by applying the

recurrence algorithm implied by Expressions (4) and (5) rather than

the algorithm of [8]. It may be verified that the values of B(0),B(1),

and B(2) are identical; the value of B(3) is computed as follows:

• As stated above, the set J is computed using the worst-case

parameter estimates; hence all three basic blocks cannot be

placed in the same non-preemptive region (i.e., 0 < J), and we

thus have J = {1, 2}
• We consequently have

B(3) = min
(
B(1) + ξ

(T )
1 +

(
b
(T )
2 + b

(T )
3

)
, B(2) + ξ

(T )
2 + b

(T )
3

)
= min(5 + 1 + 3 + 4, 8 + 2 + 4) = min(13, 14)

= 13, and prev(3) = 1.

We therefore conclude that the smallest value of the typical running

time is 13; to achieve this, we should choose as the effective preemption

points the potential preemption points (i) prev(3) which equals 1, and

(ii) prev(1) which equals 0. That is, we should choose the potential pre-

emption point between basic blocks 1 and 2 as the effective preemption

point. □

3.2 Worst-case running time bounded from
above

Although the algorithm derived in Section 3.1 results in the smallest

value of typical running time for a given program and a given bound

Q , it pays no attention at all to the worst-case running time that

the program may experience. We now consider a variant of the

problem: it is additionally required that the worst-case running time

of the program not exceed a specified upper bound D. Given such

a bound, we seek to determine which of the potential preemption

points of the program should be designated as actual preemption

points in order to minimize the typical running time, subject to

the constraints that no individual non-preemptive block have a

worst-case duration exceeding Q and the worst-case running time

of the entire program not exceed D. We have two major results

concerning this problem:

(1) We first show, in Section 3.2.1 below, that this problem is NP-

hard; hence, we are unlikely to be able to find a polynomial-

time algorithm for solving it.

(2) In Section 3.2.2, we present a pseudo-polynomial time algo-

rithm that has run time polynomial in the value of D, the

upper bound on the worst-case running time of the program.

It is thus fairly efficient for instances where the specified

value of D is not too large.

3.2.1 NP-hardness. In this section we will show that the decision

version of our problem Ðgiven a program specified as described

in Section 2.3, a bound D on the worst-case running time of the

program, and a positive integer T , is there a placement of effective

preemption points in the program such that the worst-case running

time is at most D and the typical running time is at most TÐ is

NP-hard by transforming from the partition problem, which is

defined as follows:

Given a (multi)set S = {a1,a2, . . . ,an } of positive integers with

A
def
=

(∑n
i=1 ai

)
/2, determine whether there is an S ′ ⊆ S for which∑

ai ∈S ′ ai = A.

partitionwas shown to be NP-hard in [14]. It is straightforward to

show that partition remains NP-hard even if the set S is required

to satisfy the additional restriction that each element in S is strictly

smaller than A/2 (i.e., each element in S is smaller than a quarter

of the sum of all the elements). Henceforth in this section we will

therefore assume that amax
def
= maxai ∈S {ai } is strictly smaller than

A/2. Furthermore, this restriction and the fact that element sizes

must be positive integers implies that A exceeds 2.

Given a set S of positive integers with each smaller than a quarter

of the sum of all the elements in S , we now describe a procedure to

obtain

(1) a program specified by the four equi-sized vectors
−−→
b(T ),

−−−→
b(W ),

−−→
ξ (T ), and

−−−→
ξ (W ),

(2) a value for Q ,

(3) a value for D, and

(4) a value for T

such that effective preemption points can be selected for the pro-

gram to ensure a blocking time at mostQ , worst-case running time

at most D, and typical running timeT , if and only if S ∈ partition.
We now describe this procedure. Recall that A denotes half the

sum of the n elements in S :
∑n
i=1 ai = 2A. The values for Q , D, and

T are as follows:

Q =

(
3

2
A − 1

)
(6)

D =

(
3

2
A +Q

)
× n + 3A (7)

T =

(
3

2
A +Q

)
× n + A (8)

The program is a sequence of 4n basic blocks, obtained by con-

catenating the n instantiations, for i = 1, 2, . . . ,n, of the łgadgetž

of Figure 4. Intuitively, the i’th instantiation of this łgadgetžcor-

responds to the element ai of S . We now argue that of the two

potential preemption points Ð the one between basic blocks (4i −3)
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( 12A,
1
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from

(4i − 4)
to

(4i + 1)

Figure 4: łGadgetž used in the NP-hardness reduction of Sec-

tion 3.2.1

and (4i − 2), and the one between basic blocks (4i − 2) and (4i − 1)

Ð at least one must be designated an effective preemption point:

• The basic block 4i has a worst-case execution time equal to

Q , and must therefore execute as its own non-preemptive

block. Hence, the potential preemption points between basic

blocks (4i − 4) and (4i − 3), between basic blocks (4i − 1)

and 4i , and between basic blocks 4i and (4i + 1) must be

designated as effective preemption points.

• The three basic blocks (4i − 3), (4i − 2), and (4i − 1) together

have a worst-case execution time of 3
2A, which exceeds Q ;

hence, we must preempt at least once between these three

blocks.

It is evident that it is not necessary to preempt at both of these

two potential preemption points; it remains to compare the conse-

quences of choosing between the two:

(1) If wewere to preempt between basic blocks (4i−3) and (4i−2),
both the typical duration and the worst-case duration would
be[
1

2
A

]
+

[
ai +

1

2
A +

1

2
A

]
=

[
1

2
A

]
+ [ai + A] =

(
ai +

3

2
A

)

Ð here the terms within the square parentheses ([ ]) denote
the execution durations of the resulting non-preemptive

regions. Note that since both
(
1
2A ≤

3
2A − 1

)
and

ai + A ≤ amax + A < A/2 + A,

each such execution duration is no larger thanQ , as required.
(2) If we were to preempt between basic blocks (4i − 2) and
(4i − 1), the typical duration would be[

1

2
A +

1

2
A

]
+

[
0 +

1

2
A

]
= [A] +

[
1

2
A

]
=

(
3

2
A

)

while the worst-case duration would be[
1

2
A +

1

2
A

]
+

[
2ai +

1

2
A

]
= [A] +

[
2ai +

1

2
A

]
=

(
2ai +

3

2
A

)

Note again that since both
(
A < 3

2A − 1
)
and

2ai +
1

2
A ≤ 2amax +

1

2
A <

3

2
A,

each non-preemptive execution duration is no larger than

Q .

We thus see that the łgadgetž of Figure 4 corresponding to the
element ai ∈ S can have effective preemption points inserted
to have either both typical-case and worst-case running times

equal to
(
Q + 3

2A + ai

)
, or typical-case running time

(
Q + 3

2A
)

and worst-case running time
(
Q + 3

2A + 2ai

)
. Each gadget there-

fore contributes at least
(
Q + 3

2A + ai

)
to the worst-case running

time; some ś those in which the effective preemption point is se-
lected to between basic blocks (4i − 2) and (4i − 1) ś contribute an
additional ai . Let I denote those values of i for which the effective
preemption point is selected to between basic blocks (4i − 2) and
(4i − 1), and the gadgets corresponding to which hence contribute
an additional ai term to the worst-case running time. Summing
over all n gadgets, we have

Total worst-case running time

=

n∑
i=1

(
Q +

3

2
A + ai

)
+

∑
i∈I

ai

=

(
Q +

3

2
A

)
× n +

n∑
i=1

ai +
∑
i∈I

ai

=

(
Q +

3

2
A

)
× n + 2A +

∑
i∈I

ai (9)

The last step follows from 2A =
∑n
i=1 ai by definition of A. Ob-

serve that the contribution to the typical run-time of the gadget

corresponding to ai is equal to
(
Q + 3

2A
)
for each i ∈ I, and(

Q + 3
2A + ai

)
for each i < I. Summing over all n gadgets, we

have

Total typical running time

=

n∑
i=1

(
Q +

3

2
A

)
+

∑
i<I

ai =

(
Q +

3

2
A

)
× n +

∑
i<I

ai (10)

It follows from Expressions 9 and 10 above that we can choose

effective preemption points to have a worst-case running time no

larger than
((
Q + 3

2A
)
×n+3A

)
, which is the value ofD specified in

Expression 7, and a typical running time no larger than
((
Q + 3

2A
)
×

n +A
)
Ðthe value of T specified in Expression 8Ð if and only if we

have both (
∑
i ∈I ai ≤ A) and

(∑
i<I ai ≤ A

)
. It is evident that this is

possible if and only if the set S can be partitioned into two subsets

each of which sums to A; i.e., the set S ∈ partition.

3.2.2 An algorithmwith pseudo-polynomial run-time. In Section 3.2.1

above we showed that the problem of selecting effective preemption

points to minimize typical running times subject to the additional

constraint that the worst-case running time not exceed a speci-

fied value is NP-hard, by reducing from the partition problem.

Although this transformation implies that we cannot solve our

problem with a polynomial-time algorithm (under the widely-held

assumption that P , NP), it does not rule out the possibility of

nevertheless obtaining reasonably efficient algorithms, albeit not

polynomial-time ones, for solving it Ð indeed, Hayes[12] refers to

partition as the łeasiest hard problemž. We will now derive an al-

gorithm for solving our problem that has running time polynomial

in the value of D; since one typically does not specify very large

upper bounds, it is realistic to expect that the value of D would

generally be reasonably small.
We start out with some notation: let B(k,w) denote the minimum

typical running time that can be obtained for the first k basic blocks,
subject to the constraint that the worst-case running time in executing
these k basic blocks not exceedw . Our objective is to determine the
effective preemption points that result in the value of B(N ,D). First



note from the definition of the B(·, ·) function that

B(0, w ) = 0 for all w ≥ 0 (11)

that is, the typical running time for the (dummy) basic block 0 is
always zero, and

B(k, w ) = ∞ for all k ≥ 1 and w ≤ 0 (12)

that is, we cannot have a finite typical running time for the non-

empty sequence of basic blocks 1, 2, . . . ,k if the worst-case running

time is not permitted to be non-negative (we are using the fact here

that b
(W )
1
≥ 1).

For k > 0 and w > 0, we can write a recurrence expressing the
value of B(k,w) in terms of the values of B(ℓ,ω) with ℓ < k and
ω < w , as follows:

B(k, w ) = min
j∈J

{
B
(
j, w −

(
ξ
(W )
j +

k∑
ℓ=j+1

b
(W )

ℓ

) )
+ ξ
(T )
j +

k∑
ℓ=j+1

b
(T )

ℓ

}
(13)

with the j’s constrained to ensure that the duration of non-preemptive
region spanning from a preemption after block j to the end of block
k does not exceed the blocking bound Q (even in the worst case):

J =

{
j :

(
ξ
(W )
j +

k∑
ℓ=j+1

b
(W )

ℓ

)
≤ Q

}
(14)

Additionally, we let prev(k,w) denote the value of j ∈ J that obtains

the minimum value for B(k,w) in Expression 13.
We can now simply use the recurrence of Expression 13, along

with the initial values specified by Equations 11 and 12, to determine
the value of B(N ,D); this could be done, for instance, using the
following procedure whose worst-case run-time computational
complexity is clearly polynomial in the values of N and D (and
hence pseudo-polynomial):

for k = 1 to N

for w = 1 to D

Determine B(k, w ) and prev(k, w )

// (Using Equations 11, 12, and 13.)

end

end

4 ADAPTIVE ON-LINE SELECTION OF
EFFECTIVE PREEMPTION POINTS

The algorithms we have looked at thus far have been consistent in

structure with earlier work on the problem of selecting effective

preemption points, in the sense that the effective preemption points

are all determined prior to run-time. In this section, we explore an

alternative paradigm: if we could postpone until run-time the selec-

tion of some of the effective preemption points, could we exploit

information that is revealed on-line regarding actual preemption

durations and the actual execution times of basic blocks in order to

obtain smaller typical running times?

Let us first try and understand what benefit such additional in-

formation that is revealed on-line could possibly offer us. Recall

from Section 2 that our objective is to determine the smallest overall

running time that can be guaranteed for the program provided that

no duration, of either a preemption or a basic block execution, exceeds

its estimated typical value, and to specify the selection of effective

preemption points that guarantees this value. We reiterate that we

are seeking the smallest overall running time under typical con-

ditions that we are able to predict beforehand; hence, making the

choice of effective preemption points on-line is beneficial only if a

smaller a priori bound on the overall running time of the program

under typical conditions can be obtained than if information that

is revealed on-line is not exploited. We will see in the remainder

of this section that this is indeed the case, obtaining a polynomial-

time optimal algorithm regardless of whether an upper bound is

specified or not. (We point out that this contrasts with the results

in Section 3, where we saw that the optimal a priori determination

of all effective preemption points is NP-hard when an upper bound

is placed on the worst-case running time.)

4.1 An example illustrating the use of an
on-line strategy

Let us first consider the illustrative example that is depicted in

Figure 5; suppose that a worst-case bound D ← 20 were specified

for this example. We start with a few observations on this example:

• Since the sum of the typical execution requirements of all

the basic blocks (b
(T )
1 +b

(T )
2 +b

(T )
3 +b

(T )
4 = 2+ 3+ 3+ 3 = 11)

exceeds the value ofQ (which is 10), at least one preemption

may be necessary even under typical conditions.

• Since the strategies of Section 3 specify the effective pre-

emption points statically, they cannot place basic blocks 2,

3, and 4 in the same non-preemptive region since ξ
(W )
2 +

b
(W )
2 +b

(W )
3 +b

(W )
4 = 2+ 4+ 4+ 3 = 13, which also exceeds

the value of Q . It may be verified that placing basic blocks

1 and 2 in one non-preemptive region and basic blocks 3

and 4 in another (by identifying the potential preemption

point between basic blocks 2 and 3 as an effective preemp-

tion point) yields a correct solution for which the typical

running-time bound is 14 (and the worst-case bound, at 17,

is ≤ the specified value of 20 for D).

In Figure 6 we present, in pseudo-code form, an on-line strategy

for scheduling this example that guarantees a bound of 12 on the

running time of the program under typical circumstances (i.e., if no

duration, of either preemption or basic-block execution, exceeds its

estimated typical value), while also respecting the specified bound

of 20 (assuming, of course, that no duration exceeds its worst-case

specified value ś the ξ
(W )
i and b

(W )
i values). We will explain later

how such strategies are obtained; for now, please notice that

(1) If any preemption/ basic-block execution duration exceeds its

typical estimated value (i.e., if any of the if clauses evaluates

to true), the strategy specifies all the effective preemption

points that are to be subsequently chosen for the remainder

of the program under the assumption that all subsequent

preemptions/ basic-block executions will also exceed their

typical values.

(2) The scenarios corresponding to each of the four exit points

in this strategy may be verified to be correct in the sense that

there is no non-preemptive region (comprising a preemption

and all the basic blocks that follow it up to, but not including,

the next preemption) is of duration exceeding Q (i.e., 10). It

may also be verified that none exceeds the specified bound

of 20 on the worst-case running time of the program.

(3) The strategy exits at Line 9 if no preemption/ basic-block

execution duration exceeds its typical estimated value; hence
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b
(T )
1 = 2, b

(W )
1 = 2 b

(T )
2 = 3, b

(W )
2 = 4 b

(T )
3 = 3, b

(W )
3 = 4 b

(T )
4 = 3, b

(W )
4 = 3

ξ
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1 = 1, ξ
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1 = 2 ξ
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2 = 3 ξ

(T )
3 = 7, ξ

(W )
3 = 7

Figure 5: This example is used in Section 4 to illustrate on-line preemption-point selection to minimize the typical running-

time bound.

1 Execute basic block 1

// (Since b
(T )
1 = b

(W )
1 , do not consider possible overruns)

2 Preempt; if this preemption takes > 1 time unit

3 Execute basic block 2; preempt;

execute basic blocks 3 & 4; exit

4 Execute basic block 2; if this execution takes > 2 time units

5 Preempt; execute basic blocks 3 & 4; exit

6 Execute basic block 3; if this execution takes > 3 time units

7 Preempt; execute basic block 4; exit

8 Execute basic block 4

// (Since b
(T )
4 = b

(W )
4 , do not consider possible overruns)

9 exit

Figure 6: On-line strategy for the Example of Figure 5 ś

worst-case bound D ← 20.

our claim above that the worst-case running time of the

program under typical conditions is 12.

4.2 An algorithm for generating on-line
strategies

We now describe an algorithm for determining a strategy such as

the one in Figure 6 for a given program:

(1) Prior to run-time, our algorithmwill identify a set of effective

preemption points from amongst the potential preemption

points in the program. (There is just one such identified in

the strategy of Figure 6 for our example ś the one depicted

in Line 2.) These are the preemption points at which preemp-

tions will be carried out during run-time, provided there are

no overruns; i.e., durations of all the scheduled preemptions,

and of the executions of all the basic blocks do not exceed

the typical values specified (the b
(T )
i and ξ

(T )
i values). They

are selected in order to minimize the total typical running

time of the program, subject of course to the constraint that

the maximum duration of any non-preemptive region never

exceed Q even in the worst case. The precise manner in

which these are identified is described later in this section.

(2) Our algorithm additionally computes, corresponding to each

identified effective preemption point and to each basic block,

an alternative collection of effective preemption points. If

the actual preemption duration or the actual basic block exe-

cution duration, overruns (i.e., exceeds the estimated typical

value), then the corresponding alternative collection of ef-

fective preemption points are the ones that are subsequently

enforced.

(3) During run-time, we start out executing the program as pre-

computed ś i.e., non-preemptively between the identified

effective preemption points. While doing so, we monitor the

actual duration of time for which each basic block executes,

and the duration taken for preemption at each of the selected

effective preemption points. If any of these durations exceeds

the typical values, we immediately switch to the alternative

collection of effective preemption points corresponding to

this overrun event.

We now discuss the pre-runtime algorithm, describing both (i) how
the effective preemption points that are followed as long as there
is no overrun is selected; and (ii) how the alternative collections of
effective preemption points corresponding to each overrun event
are determined. Let B(k) again denote the completion time of the
k’th basic block if each basic block were to execute for a duration
equal to its typical execution time and each preemption were to
take a duration equal to its typical preemption duration. As before,
we can express the value of B(k) as a recurrence in terms of values
of B(ℓ)’s for ℓ < k :

B(k ) = min
j∈J

{
B(j) + ξ

(T )
j +

k∑
ℓ=j+1

b
(T )

ℓ

}
(15)

While this is the same recurrence as the one defined as Expression 4

in Section 3.1, the values of j over which the RHS of this expression

is minimized (i.e., the elements in J) are different. Recall that in

determining whether a particular such j belongs to J, we are in

effect asking whether correctness is preserved. For this version of

the problem correctness requires that (i) no non-preemptive region

execute for a duration greater than Q ; and (ii) in the event of an

overrun, the overall running time of the program remains bounded

by the specified boundD. For correctness if the preemption between

basic blocks j and (j + 1) is the last preemption prior to basic block

k (see Figure 7), the following three conditions must hold:

(1) When the preemption duration as well as the execution
durations of all the basic blocks (j + 1), (j + 2), . . . ,k do not
exceed their typical values, we want the duration of non-
preemptive execution to not exceed the blocking parameter
Q :

©­«
ξ
(T )
j +

k∑
ℓ=j+1

b
(T )

ℓ

ª®¬
≤ Q

(2) We must consider the possibility that the preemption dura-

tion exceeds the typical value ξ
(T )
j . If so, we must determine



j j + 1 m − 1 m m + 1 k
Preempt here?

· · · · · ·

Figure 7: Determining the elements in J: is it safe to preempt?

effective preemption points for the remainder of the program

(i.e., from this preemption point onwards) such that

B(j) + A ≤ D (16)

whereA denotes theworst-case running time for the preemp-

tion plus the remainder of the program. We explain below

how A is determined.

(3) For eachm, j + 1 ≤ m ≤ k , we must consider the possibility

that basic blockm is the first to overrun (i.e., execute for a

duration exceeding its typical WCET, b
(W )
m ). In that case, we

need that

B(j) + Bm ≤ D (17)

where Bm denotes the worst-case execution duration of the

preemption plus the basic blocks (j + 1), (j + 2), . . .N in this

scenario (i.e., with the basic blocks (j + 1), (j + 2), . . . (m − 1)

having already each executed for no more than their esti-

mated typical execution durations). We explain below how

the Bm are determined.

The j’s in J used in Expression 15 are those that satisfy all three

conditions enumerated above. And as previously, we continue to

let prev(k) denote the value of j that defines the value of B(k)

(i.e., that minimizes the RHS of Expression 15). Once B(N ) has

been computed, these values of prev(·) can be used to identify the

effective preemption points.

Determining A. A is the smallest worst-case running time for

basic blocks (j + 1), . . . ,N plus the cost of the preemption between

basic blocks j and (j + 1). Determining A is therefore equivalent

to determining the smallest worst-case running time of a program

consisting of the basic blocks (j + 1), (j + 2), . . . ,N , with the worst-

case execution parameter of the (j + 1)’th basic block inflated to

incorporate the cost of the preemption. A can hence be determined

by using the algorithm of [8] (which is described in Section 2.2 of

this paper) upon a program specified by the vectors

−→
b =

[(
ξ
(W )
j + b

(W )
j+1

)
, b
(W )
j+2 , . . . , b

(W )
N

]
and
−→
ξ =

[
0, ξ
(W )
j+1 , ξ

(W )
j+2 , . . . , ξ

(W )
N−1

]
If this value of A does satisfy Inequality 16 above and the potential

preemption point between basic blocks j and (j + 1) is selected as

an effective preemption point for our strategy, then in the event of

the preemption between basic blocks j and (j + 1) overrunning (i.e.,

taking a duration greater than ξ
(T )
j ) during run-time, this output

of the algorithm of [8] will constitute the alternative collection of

effective preemption points that are used to complete the program’s

execution with a worst-case execution duration ≤ D.

Determining Bm . Analogously to the reasoning used above, we
argue that Bm is the worst-case running time for basic blocks
[m̂,m + 1, . . . ,N ], where basic block m̂ is an artefact we introduce
in order to represent the execution of the preemption along with

the basic blocks (j + 1), (j + 2), . . .m. Note that the preemption, and
the basic blocks (j+1), . . . , (m−1) did not overrun; hence m̂ should
be assigned a WCET β as follows:

β
def
= ξ

(T )
j +

©­«
m−1∑
ℓ=j+1

b
(T )

ℓ

ª®¬
+ b
(W )
m

The value of Bm can now be determined using the algorithm of [8],
described in Section 2.2, upon a program specified by the vectors

−→
b =

[ (
β, b

(W )
m+1, b

(W )
m+2, . . . , b

(W )
N

]
and
−→
ξ =

[
0, ξ
(W )
m , ξ

(W )
m+1, . . . , ξ

(W )
N−1

]
As with A, if the potential preemption point between basic blocks

j and (j + 1) is selected as an effective preemption point for our

strategy and is additionally the last effective preemption point prior

to basic blockm, then in the event of the basic blockm being the first

to overrun (taking a duration greater than b
(T )
m ) during run-time,

this output of the algorithm of [8] will constitute the alternative

collection of effective preemption points that are used to complete

the program’s execution with a worst-case execution duration ≤ D.

Runtime complexity. This approach requires that the actual du-

ration of each preemption and each basic-block execution during

program execution be monitored. Assuming this is be done, the

additional run-time complexity of implementing the strategy is

constant for each preemption and each basic-block execution: one

is in essence doing an if-then-else with each such duration (see,

for instance, the example on-line strategy of Figure 6).

It remains to specify the run-time computational complexity

of the pre-runtime algorithm that generates the on-line strategy

such as the one in Figure 6. We claim that this is polynomial in the

number of basic blocks N in the program: this follows from the

observations that

(1) The N values B(1),B(2), . . . B(N ) need to be computed in

sequence.

(2) For a given value of k , when computing B(k)we have at most

(k−1) candidate values for membership in the corresponding

J. Determining whether such a candidate j belongs to J or

not requires us to determine oneA, and at most k Bm ’s; each

such computation requires one call to the polynomial-time

algorithm of [8].

4.3 On-line strategies when no bound is
specified on the worst-case running time

In Section 3 we considered separately the cases where the objec-

tive is to minimize the typical running-time bound when (i) no

constraints are placed on the worst-case running time, and (ii) an

upper bound D is specified on the worst-case running time. We had

seen that while the problem can be solved optimally in polynomial

time when no such D is specified, adding the constraint that the

worst-case running time of the program also not exceed D renders



the problem NP-hard. For the on-line version of the problem we

have seen above (perhaps somewhat counter-intuitively) that even

the version with the upper bound D specified is solvable optimally

in polynomial time. Hence it is not necessary to separately consider

the version of the problem where D is not specified: simply set-

ting the upper bound on worst-case response time equal to infinity

(D ← ∞ ś in practice, a large number) would yield the required

on-line strategy.

5 RELATED WORK

There is a large body of work that focuses upon understanding

the effects of preemption upon the execution time of a task. The

area of cache-related preemption delay (CRPD) analysis (see, e.g., [1ś

3, 15, 17, 21ś23] ś this list is by no means exhaustive) seeks to quan-

tify the effect of preemption on existing scheduling approaches. An

orthogonal direction of research into reducing the effects of preemp-

tion is the area of limited-preemption scheduling. In this approach,

a task can only be preempted at certain points in its execution.

The central goal is to limit the preemption overhead that a job a

task experiences during execution. The two different approaches to

limited-preemption scheduling are deferred-preemption schedul-

ing and preemption-threshold scheduling. In deferred-preemption

scheduling, the preemption due to the arrival of a higher-priority

task is delayed until some later time. The length of the delay can

either be determined by 1) the maximum blocking time the higher-

priority task (called the floating preemption-point model [5, 16]), or

2) by pre-determined locations in the task code (called the fixed

preemption-point model [9]). Preemption-threshold scheduling on

the other hand changes the effective priority that task may execute

at based upon a preemption threshold which allows a currently-

executing lower-priority task to continue executing if a higher-

priority task’s priority is not greater than some predetermined

preemption threshold [25]. Buttazzo et al. [10] provide a survey of

limited-preemption scheduling. It is important to note that these

and other subsequent works on limited preemption scheduling only

attempt to reduce the number of preemptions, but do not explic-

itly incorporate a quantification of actual CRPD cost nor do they

change where the preemption occurs due to potentially different

preemption costs at different program locations.

The setting considered in this paper of selecting effective pre-

emption points in a task code combines the benefits of CRPD analy-

sis and limited-preemption scheduling. The CRPD cache-counting

approach can be used to quantify the worst-case cost of any preemp-

tion; for instance, in our model the
−−−→
ξ (W ) vector could be computed

by carefully determining the set of cache blocks that would need to

be loaded by preempting at each of potential preemption points [11].

Prior research on limited preemption scheduling (e.g., [5]) can be

used to determine for each task its maximum blocking parameterQ ;

that is, this limited-preemption analysis provides the maximum tol-

erable blocking such that if each task executes any non-preemptive

region for no more than Q time units, then the system remains

schedulable. Early work in the direction of preemption-point place-

ment provided heuristics for selecting the best points (e.g., Simon-

son and Patel [20] and Lee et al. [15]). Optimal approaches for

preemption placement originated with Bertogna et al. [8] for select-

ing preemption points for a task’s control flowgraph model with a

strictly sequential structure (as also assumed in this paper). Later

subsequent work, expanded the control flowgraph structure permit-

ted in optimal preemption placement to conditional branches, loops,

and function calls [18]. However, these preemption approaches se-

lect based upon the worst-case preemption delay that might be

realized at a preemption point. Due to the inherent pessimism in

CRPD analysis, it is extremely unlikely that this worst-case will

always be observed in the actual execution. Thus, in our current

work, we have developed an approach that maintains the safety

property of the previous approaches (i.e., the effective preemption

point chosen will ensure that the task does not execute any non-

preemptive region for more thanQ time nor exceed any total WCET

execution bound of D), but also permits the total execution time

to be minimized when more łtypicalž preemption overheads are

experienced.

6 SUMMARY

We have considered the problem of selecting effective preemption

points in a program ś points at which its execution may be pre-

empted ś from amongst a programmer-provided set of potential

preemption points in order tominimize the overall preemption over-

head (and hence the overall running time) of the program while

respecting schedulability constraints. Prior solutions that have been

proposed for solving this problem have only considered worst-case

characterizations of preemption and code-execution durations; here

we have considered a more general model in which both typical

estimates and worst-case bounds are assumed available. We have

shown how such typical estimates can be used to select effective

preemption points in such a manner that we are able to optimally

provide minimal a priori bounds of the typical overall running time

of the program under schedulability constraints that may include

upper bounds on both blocking duration and overall worst-case

running time. We have further shown that overall running time

may be reduced without jeopardizing the schedulability constraints

in any manner, by postponing the selection of some of the effective

preemption points to run-time (i.e., while the program is executing).

The prime focus of this paper has been the minimization of

bounds on the running time of a program under typical conditions,

that can be specified prior to run-time. We believe that such work

fits in very well with the Vestal-model [24] based mixed-criticality

scheduling paradigm: we are in essence specifying two running

times śone under typical assumptions and the other, under conser-

vative łworst-casež assumptionsś for a single program. We propose

to explore the integration of our results and approach with Vestal-

based mixed-criticality scheduling theory.

One approach to minimizing running times that we have not

considered in this work is dynamic slack reclamation Ð exploiting

differences between predicted (whether worst-case or typical) and

actual durations that may be revealed on-line during run-time. As

stated in Section 2 (footnote 3), doing so would likely significantly

complicate the run-time algorithm without providing any improve-

ment to the a priori bounds on typical running time. However,

one could envision extensions and generalizations to the particular

problem we have studied here in which there is a benefit to on-line

slack reclamation of this kind; we plan to study this issue as future

work.
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