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Abstract—Multiprocessor scheduling of hard real-time tasks
modeled by directed acyclic graphs (DAGs) exploits the inherent
parallelism presented by the model. For DAG tasks, a node
represents a request to execute an object on one of the available
processors. In one DAG task, there may be multiple execution
requests for one object, each represented by a distinct node.
These distinct execution requests offer an opportunity to reduce
their combined cache overhead through coordinated scheduling
of objects as threads within a parallel task. The goal of this
work is to realize this opportunity by incorporating the cache-
aware BUNDLE-scheduling algorithm into federated scheduling
of sporadic DAG task sets.

This is the first work to incorporate instruction cache sharing
into federated scheduling. The result is a modification of the
DAG model named the DAG with objects and threads (DAG-
OT). Under the DAG-OT model, descriptions of nodes explicitly
include their underlying executable object and number of threads.
When possible, nodes assigned the same executable object are
collapsed into a single node; joining their threads when BUNDLE-
scheduled. Compared to the DAG model, the DAG-OT model with
cache-aware scheduling reduces the number of cores allocated to
individual tasks by approximately 20 percent in the synthetic
evaluation and up to 50 percent on a novel parallel computing
platform implementation. By reducing the number of allocated
cores, the DAG-OT model is able to schedule a subset of
previously infeasible task sets.

I. INTRODUCTION

For hard real-time parallel tasks, where the total execution

demand of a task may exceed its deadline, federated schedul-

ing [9, 10, 26, 60] provides a method for executing each task

across multiple cores and an accompanying analysis which

determines if all tasks will always meet their deadlines. To

analyze and schedule parallel tasks, each task is represented

by a directed acyclic graph (DAG).

Nodes within a DAG represent the release and complete

execution of an object upon one of the m identical cores of the

system. Edges between nodes indicate precedence constraints

between nodes; a node may not begin executing until all

predecessors have completed. Associated with every node is

a worst-case execution time (WCET) bounding any complete

execution. Schedulability analysis of a task’s DAG depends on

the task’s workload (sum of WCETs of all nodes) and critical

path length (path through the DAG with greatest WCET).

Worst-case execution time calculation accounts for archi-

tecture features including cache memory. The variability in

execution times due to cache memory has been well studied

for uniprocessor single-threaded task sets in works such

as [3, 4, 17, 25, 28, 40, 51, 58, 65]. Scheduling of tasks

on multi-processor systems with cache memory has been

studied in works such as [14, 15, 18, 30, 44, 63, 64]. In most

previous work on both multiprocessor and uniprocessor real-

time systems, cache memory contributes primarily negatively

to schedulability by increasing WCET values. Preemptions be-

tween jobs introduce cache-related preemption delays (CRPD)

for both uniprocessor and multi-processor systems. Multi-

processor multi-threaded systems with shared caches are also

affected by evictions from concurrent execution as well as

cache coherency delays across cores [14, 15, 18, 44, 63, 64].

The method proposed in this work is the first to incorporate

instruction cache reuse beneficially into real-time scheduling

decisions for federated scheduling of multi-processor multi-

threaded systems.

In the setting of uniprocessor multi-threaded task systems,

the BUNDLE-based approaches [54–56] (referred to as BUNDLE

throughout the rest of this work) treat cache memory positively,

creating a benefit to schedulability. BUNDLE restricts the

execution of the multiple threads of task on a single processor

in a cache cognizant manner. This restricted execution allows

the sharing of cached values to be quantified as the inter-

thread cache benefit. The accompanying BUNDLE analysis

incorporates the inter-thread cache benefit into a WCET

function for each task. These WCET functions accept the

number of threads released with each job and quantifies the

total benefit of “bundling” the threads together.

BUNDLE is limited to single processor multi-threaded tasks.

The inter-thread cache benefit applies exclusively to instruction

caches. Furthermore, BUNDLE’s scheduling and WCET anal-

ysis techniques are limited to a single executable object. As

such, BUNDLE is not directly applicable to parallel DAG tasks

utilized by federated or global multi-processor schedulers.

This work incorporates cache memory positively into multi-

processor parallel tasks by joining BUNDLE’s analysis and

scheduling techniques to those of federated scheduling. This

is achieved by treating executable objects (nodes) of parallel

DAG tasks as threads scheduled by BUNDLE. Each individual

node of a DAG task represents a single thread of execution

of the underlying object. Nodes sharing the same underlying

object may be collapsed into a single node and the combined

threads scheduled by BUNDLE.

The purpose of collapse is to increase schedulability by

reducing the number of processors dedicated to high utilization

tasks. However, collapse may not be arbitrarily applied to

nodes of the same object. There are several challenges when

considering collapsing two nodes, doing so may:

• Introduce a cycle to the DAG



• Produce an infeasible parallel task

• Increase the number of cores allocated to a task

To achieve the goal of reducing the number of cores allocated

to high utilization tasks while carefully selecting which nodes

to collapse the following contributions are made:

• A modification to the DAG model named DAG-OT, the

first parallel task model to include inter-thread cache

benefits

• The concepts of collapse and collapse candidacy

• An algorithm for collapsing nodes

• Heuristics for ordering collapse of nodes within a task

• An evaluation of synthetic tasks demonstrating the benefits

of collapse and BUNDLEP scheduling of nodes under a

federated scheduler

• A feasibility study with a parallel DAG-OT task scheduler

operating on physical hardware demonstrating the potential

cache benefits

These contributions are made in the following sections.

Section II expands upon the related work. Section III describes

BUNDLE-based scheduling, the existing DAG model, and the

proposed DAG-OT model. Section IV describes the collapse

operation and its impact. Section V introduces the general

algorithm for collapsing nodes. Section VI describes the

proposed heuristics used to order candidates for collapse.

Section VII describes the collapse of low utilization tasks.

Section VIII describes the schedulability for tasks of the

proposed model. Section IX describes the methods, metrics,

and results of the synthetic evaluation. Section X presents the

feasibility study and results. Section XI concludes the work.

II. RELATED WORK

Parallel hard real-time DAG tasks may be scheduled by

federated [10, 26, 36, 50, 60] or global [11, 24, 46, 47] policies.

Federated scheduling improves the analytical bounds of global

scheduling by dedicating cores to tasks that require more than

one core to meet their deadlines.

For multi-processor systems, the impact of cache memory

focuses on shared caches. When caches are shared between

cores, an object executing on one core may evict values placed

there by another object on a distinct core – increasing execution

times. There are several works dedicated to mitigating or

providing bounds on the number of evictions with global

scheduling policies, including [14, 15, 63, 64]. It should

be noted the tasks in [63, 64] are not parallel tasks. Cache

coherency and false sharing [18, 30, 44] is an another source

of execution time extension for parallel tasks running on a

multi-processor system with shared caches.

In the setting of uniprocessor systems executing single-

threaded tasks, cache memory has been well studied. WCET

analysis accounting for cache reuse of single-threaded tasks

and direct map caches is presented in [5, 38, 39] and expanded

to set-associative caches in [29]. Addressing the impact of

cache memory in a preemptive setting is the purpose of CRPD

analysis [3, 23, 25, 32–35, 49, 51, 58].

Each of the CRPD analytical methods seek to accurately

estimate the impact of preemptions upon the WCET bound

for single-threaded tasks. Other approaches seek to mitigate

CRPD’s run-time impact. The PREM [6, 41, 62] model divides

tasks into load and execute phases, preventing cross tasks cache

interference. Explicit preemption point placement [12, 13, 25,

48, 61] limits when a job may preempt another based upon

the cache impact it may have.

Caches receive a common treatment in the uniprocessor

works related to CRPD and multi-processor works related

to shared caches. Specifically, caches are seen from the

negative perspective, exclusively detracting from schedulability

analysis. The only works the authors’ are aware of that take a

positive perspective are persistent cache blocks [42, 43] in the

uniprocessor single-threaded setting and cache spread [16] in

the multi-processor setting utilizing global scheduling.

The work proposed herein applies to the federated scheduling

of hard real-time parallel DAG tasks on multi-processor

systems, focusing on the impact of scheduling decisions in

the presence of dedicated (not shared) caches. To the authors

knowledge, there are no existing works that address this setting.

Furthermore, the proposed approach treats instruction caches

positively by decreasing the number of cores dedicated to high

utilization tasks in an attempt to increase schedulability.

A positive perspective of caches is taken by BUNDLE [54–

56] for multi-threaded tasks running on a single processor. This

positive perspective is reflected in the WCET of a task which

includes the inter-thread cache benefit: the speed-up one thread

experiences by another placing values in the cache. The benefit

is restricted to instruction caches when threads are scheduled

by the BUNDLE scheduling algorithm.

BUNDLE analysis and scheduling are central to the combined

scheduling approach proposed in Section III-D, depending upon

the BUNDLE calculated WCET values for collapse decisions.

As a product of BUNDLE analysis, each multi-threaded task

is assigned a worst-case execution time and cache overhead

(WCETO) function c(η) : N+ → R. Where c(η) is an upper

bound on the amount of time required to execute η threads

by BUNDLE, which encapsulates the inter-thread cache benefit.

The result is a strictly increasing concave function with respect

to η. Summarily, for η + 1 threads, c(η + 1) ≤ c(η) + c(1).
By combining BUNDLE and federated scheduling the concave

property of BUNDLE analysis can be leveraged to increase the

schedulability of parallel tasks.

III. SYSTEM MODEL

This work proposes changes to the parallel DAG model [27]

of hard real-time tasks to support collapse operations. The

decision to collapse nodes is a scheduling decision that depends

upon the BUNDLE’d execution of combined threads upon a sin-

gle core. The purpose of this section is to describe the BUNDLE

model in Subsection III-A, summarize the DAG model in

Subsection III-B and federated scheduling in Subsection III-C,

describe the proposed model which combines federated and

BUNDLE scheduling in Subsection III-D, and lastly illustrate

the impact of collapse under the combined model.



A. BUNDLE

Tasks in the BUNDLE [54–56] model are represented by

a tuple τi = (pi, di, ci(ηi), ηi, oi). A task has the familiar

minimum inter-arrival time pi and relative deadline di. A

task has an underlying executable object oi, and a number

of threads released per job ηi. With each job release of τi, ηi
threads are simultaneously released and must complete before

the relative deadline di. The task’s WCETO is given by ci(ηi)
which provides an upper bound to complete all ηi threads when

scheduled in BUNDLE’s cache cognizant manner.

To produce the WCETO for a task, the control flow graph

of the executable object is divided into conflict free regions:

sub-graphs of the control flow graph where no two instructions

map to the same cache block. Conflict free regions serve as

input to the BUNDLE scheduling algorithm, which maximizes

the number of threads executing over each region [55] in turn

maximizing the inter-thread cache benefit.

Analysis of jobs scheduled by BUNDLE incorporates the

inter-thread cache benefit in the task’s WCETO function

c(η) for η ∈ N
+ threads. Every increase in η maximizes the

contribution of an individual thread. The result is that c(η)
is a discrete concave function. Consider the addition of a

single thread c(η + 1) compared to the addition of two threads

c(η + 2). The WCETO increase of c(η) to c(η + 1) must be

greater than or equal to the increase from c(η + 1) to c(η + 2):
c(η + 1)− c(η) ≥ c(η + 2)− c(η + 1). If it were not, the

increase of c(η + 1) would not be maximal. Furthermore, if

the increase of one thread were less than that of a second

thread the bound of c(η + 1) would be optimistic and unsafe.

Thus, for any ηa < ηb < ηc the point (ηb, c(ηb)) lies above the

line defined by (ηa, c(ηa)) and (ηc, c(ηc)), therefore c(η) is

concave. Multi-threaded programs executed by BUNDLEP [55]

illustrate the discrete concave growth described by the analysis.

B. DAG Model

Tasks in the parallel DAG model [27] are represented by a tu-

ple τi = (Ti, Di, Gi) of minimum inter arrival time Ti, implicit

deadline Di = Ti and directed acyclic graph Gi = (Vi, Ei).
The set of n tasks is given by τ = {τ1, τ2, ..., τn}. The set of

all DAGs is denoted G = {G1, G2, ..., Gn}.
Within a DAG Gi, a node v ∈ Vi represents the execution

of a single thread. A thread executes on exactly one of the m
cores of the target architecture (or distributed system). Each

node is implicitly associated with an underlying executable

object αv: a set of machine instructions reachable from a single

entry point. A worst-case execution cv time is associated with

every node v; an upper bound on the execution time required to

complete the thread without interruption on a single core. An

edge (u, v) ∈ Ei indicates an execution dependency between

u, v ∈ Vi. For v to begin execution on any core, all immediate

predecessors {u|(u, v) ∈ Ei} must run to completion.

For simplicity of analysis, every DAG Gi must have exactly

one source and sink node, s, t ∈ Vi respectively. A source s
has no incoming edges, 6 ∃u | (u, s) ∈ Ei. A sink t has no

outgoing edges, 6 ∃v | (t, v) ∈ Ei. Without loss of generality,

when a DAG contains multiple sources, the DAG is augmented

by adding an “empty source”: a single node with zero execution

cost that is connected by outgoing edges to existing sources.

Similarly, for a DAG with multiple sinks an “empty sink” is

added with zero execution cost connected by incoming edges

from the existing sinks.

Fig. 1: A DAG Task

Jobs of a task begin with one

thread of s on one core. Jobs

terminates when the single thread

of t completes. During the execu-

tion of a job, up to m cores may

execute any of the v ∈ V threads in

parallel. A task τi ∈ τ generates a

potentially infinite number of jobs,

each arriving no less than Ti time units apart. All jobs of τi
must complete within Di = Ti time units.

An example DAG task is shown in Figure 1. Accompanying

each node is a single-threaded WCET. For u and v, their WCET

values are cu = 20 and cv = 10 respectively. Edges illustrate

the dependency order of execution, such as (s, v) precluding

v from executing until s has completed.

For a DAG Gi = (Vi, Ei), the length of a path through the

graph is the sum of WCET values of all nodes along the

path. The critical path λi of Gi, is a path from s to t with

the greatest length Li called the critical path length. If there

are multiple paths with equal length Li, only one is selected

as the critical path. The workload of Gi is the sum of all

WCET values v ∈ Vi. Utilization of the task τi is the ratio of

its workload and minimum inter-arrival time.

Critical Path Length of Gi

Li =
∑

v∈λi

cv (1)

Workload of Gi

Ci =
∑

v∈Vi

cv (2)

Utilization of Gi

ui = Ci/Ti (3)

Utilization of τ

U =
∑

τi∈τ

ui (4)

TABLE I: Definitions for Parallel DAG Task Sets

In Figure 1, the critical path λ = 〈s, u, t〉 is highlighted. The

calculated critical path length is L = cs + cu + ct = 60 and

workload C = cs + cu + cv + ct = 70.

C. Federated Scheduling

mi =

⌈

Ci − Li

Di − Li

⌉

(5)

Fig. 2: mi for τi ∈ τhigh

Federating scheduling [27] is a

partitioned scheduling algorithm

variant and analysis method devel-

oped for parallel DAG task sets.

It divides the task set τ into two

disjoint sets. Tasks with utilization

greater than one are placed in the high utilization task set τhigh.

The low utilization task set τlow contains the remainder of τ .

Every task τi of τhigh is assigned mi dedicated cores, where

mi is given by Equation 5. Only threads of τi may execute

on the mi cores dedicated to it. All jobs of a high utilization

task τi scheduled on mi cores are guaranteed to meet their

deadlines [27].



The number of cores allocated to all high utilization tasks

is denoted mhigh =
∑

τi∈τhigh
mi. The remaining cores of

low utilization tasks are denoted mlow = m−mhigh. A task

set τ is schedulable under federated scheduling if mlow is

non-negative and all tasks of τlow are partitioned on the mlow

processors while meeting their deadlines when threads within

jobs are scheduled sequentially.

Any greedy, work-conserving, parallel scheduler may be

used to schedule a high utilization task τi ∈ τhigh on its mi

dedicated cores. Low utilization tasks are treated as sequential

tasks, executing at most one thread of a job at a time. Any

multiprocessor scheduling algorithm (such as partitioned EDF)

may be used to schedule all the low utilization tasks on the

mlow allocated cores.

D. Proposed Model: DAG-OT

The model proposed in this work augments the existing

DAG model by explicitly including the implicit number of

threads and executable objects associated with every node

v ∈ V . Doing so requires modification to the WCET of a node,

converting the static value cv to a function in terms of the

number of threads executed. For clarity, the existing model is

referred to as the directed acyclic graph model of parallel tasks

or simply “the DAG model”, the proposed model is named the

DAG with objects and threads or “the DAG-OT model”.

For a DAG in the DAG model Gi = (Vi, Ei), two distinct

nodes u, v ∈ Vi represent the release of one thread of execution

over their underlying executable objects αu and αv . There is

no restriction on the relationship between αu and αv , they may

be distinct or identical objects. The first proposed change to

the DAG model is to explicitly include the executable object

in a node’s description.

Similarly, for a node v ∈ Vi in the DAG model, the execution

of a single thread is bounded by a single WCET value cv . The

second proposed change to the DAG model is to explicitly

include the number of threads ηv and present the WCET of a

node as function in terms of the number of threads executed

cv(η) : N
+ → R

+.

Combining the proposed changes, a node v ∈ Vi in the

DAG-OT model is represented by a tuple v = 〈αv, cv(η), ηv〉.
Figure 3 presents the differences between the DAG and DAG-

OT models visually. A consistent illustrative shorthand is used

in this work, with the order of nodes tuple’s preserved and the

critical path highlighted in gray.

(a) DAG model (b) DAG-OT Model

Fig. 3: From DAG to DAG-OT

Nodes of the DAG-OT model are compatible with nodes of

the DAG model [27], where nodes from the DAG model can

be expressed as v = 〈αv, cv(η), ηv = 1〉 under DAG-OT. This

is illustrated by Figures 3a and 3b, which are equivalent.

The motivation for including the executable object, threads,

and WCET as a function in the description of a node is to satisfy

the BUNDLE model and facilitate the combined scheduling

technique. Combining the federated and BUNDLE scheduling

techniques, each node is treated as single unit of execution

to be BUNDLE scheduled upon one core. Each node requires

ηv ≥ 1 threads of object αv to be executed by BUNDLE.

Under the DAG-OT model, when a node v ∈ Vi is selected

for execution all ηv threads of the object αv are executed

and scheduled by BUNDLE on one core. The total execution

required to complete all threads is bounded by the WCETO

function provided by BUNDLE analysis and associated with

the node as cv(η).

Under federated scheduling (and in this work) DAG tasks

execute on a parallel system with m identical cores. Requiring

uniform cores ensures the validity of the WCET bound for

each node regardless of which core the thread executes upon.

Furthermore, this work requires each core to have identical

cache configurations (hierarchy, size, etc.), memory architecture,

and be timing-compositional [21]. Doing so guarantees the

worst-case execution time and cache overhead (WCETO)

of every node will be consistent across all cores. BUNDLE

WCETO analysis is limited to the per-core dedicated instruction

caches. Data caches, and cache memory shared between cores

are not considered and are reserved for future work.

For the DAG-OT model, the definitions of critical path length

and workload must be updated, given by Equations 6 and 7.

Definition 1 (DAG-OT Critical Path Length of Gi).

Li =
∑

v∈λi

cv(ηv) (6)

Definition 2 (DAG-OT Workload of Gi).

Ci =
∑

v∈Vi

cv(ηv) (7)

E. Growth Factors

For simplicity of presentation and analysis the WCETO

function cu(η) for a node u is described by a growth factor Fu.

A growth factor upper bounds the discrete concave WCETO of

a node by a linear function using the single threaded (cu(1))
value at the cost of increased pessimism. This simplification

is leveraged in the evaluation.

Definition 3 (Growth Factor F). For a node u ∈ V of a DAG

Gi = (V,E), the growth factor of u is a value Fu ∈ (0, 1] that

satisfies Equation 8 for all ηu ≥ 1.

cu(ηu) ≤ c(1) + Fu · (ηu − 1) · cu(1) (8)

An example for a node u, associated cu(ηu), and growth

factor Fu = .5 is shown in Figure 4. The values of cu(ηu)
are 10, 15, 17, 18, 19 for ηu ∈ [1, 5]. While any growth factor

greater than .5 would satisfy the definition, the minimum was

selected for illustrative purposes.
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Fig. 4: Example Growth Factor

IV. COLLAPSING NODES

To bring the inter-thread cache benefit to the DAG-OT model,

this work proposes the concept of collapsing nodes. Under the

DAG-OT model, two nodes u, v ∈ Vi which execute the same

object αu = αv may potentially be combined into a single node

are referred to as candidates. Candidates feature prominently

in the fork-join [31] and MapReduce [19] parallel task models;

which are restricted instances of parallel DAG tasks. A general

DAG task may include fork-join or MapReduce sub-graphs as

part of the task’s graph. Collapsing two nodes into a single node

turns two distinct execution requests executing on (possibly)

distinct cores, into a single request to execute the combined

threads on one core using BUNDLE scheduling. By virtue of

BUNDLE’s analysis incorporating the inter-thread cache benefit,

the WCETO of the combined node may be less than the sums

of the individual nodes.

Definition 4 (Candidate for Collapse). For a DAG Gi = (V,E)
and nodes u, v ∈ V , u and v are candidates for collapse if

and only if they share an executable object αu = αv .

To illustrate, consider Figure 5. Nodes u and v share the

same executable object α1. If the WCETO of one thread

scheduled by BUNDLE on one core is 10 and two is 12, two

nodes executing on separate cores will require 20 total cycles.

Collapsing u and v, requiring the two threads to be scheduled

in a cache cognizant manner on one core by BUNDLE reduces

the workload (and potentially the critical path length) by 8.

(a) Pre-Collapse (b) Post-Collapse

Fig. 5: Node Collapse

Collapse restricts the execution of threads and cores. In

Figure 5 pre-collapse u and v may have executed on distinct

cores. Post-collapse the combined threads of u and v must exe-

cute on the same core scheduled by BUNDLE. To differentiate

between pre and post-collapse values a “hat” will be used for

the latter. In Figure 5, before collapse u and v each execute one

thread. Collapsing the two nodes into û joins the two threads

ηû = 2 = ηu + ηv . The pre-collapse workload is Ci = 43 and

post-collapse workload Ĉi = 35. The reduction in workload is

due to the concave WCETO function cu(η) = cv(η) = cû(η),
where cu(1) = 10 and cu(2) = 12.

Formally, the collapse operation is defined as follows.

Definition 5 (Collapse û← u ⋊⋉ v). For pre-collapse nodes
u, v ∈ V of Gi = (V,E), collapsing u and v (denoted u ⋊⋉ v)

into û, resulting in a new DAG named Ĝi = (V̂ , Ê) where:

ηû ← ηu + ηv (9)

αû ← αu (10)

cû ← cu (11)

V̂ ← û ∪ V \ {u, v} (12)

Ê ← {(û, y)|(u, y) ∈ E ∨ (v, y) ∈ E)} (13)

∪ {(x, û)|(x, u) ∈ E ∨ (x, v) ∈ E)}

∪ E \ {(x, y)|x ∈ {u, v} ∨ y ∈ {u, v}}

Equation 9 joins the threads of u and v to û. Equation 10

and 11 assigns the executable object and WCETO function

shared between u and v to û. Equation 12 takes the nodes

from Gi and copies them to Ĝi, removing u and v. Similarly,

Equation 13 copies the edges of Gi to Ĝi while removing

incoming and outgoing edges of u and v replacing them with

incoming and outgoing edges of û.

A. Infeasibility and the Impact of Collapse

Collapsing nodes may reduce the critical path length Li. This

is illustrated by Figure 6, where the pre-collapse critical path

length is Li = 50. After collapsing û← u ⋊⋉ v, the critical

path length of Ĝi is L̂i = 40.

(a) Pre-Collapse (b) Post-Collapse

Fig. 6: Critical Path Reduction

Observation 1 (Critical Path Reduction). For a DAG

Gi = (V,E) and candidate nodes u, v ∈ V , the collapse of

u ⋊⋉ v into û may reduce the critical path length in Ĝi:

L̂i ≤ Li.

Under the DAG model, a task τi is infeasible (for any number

of dedicated cores mi) if the critical path length is greater than

the deadline, i.e., Li > Di. A task τi deemed infeasible due to

critical path length and period under the DAG model (Li > Di)

may become feasible (and possibly schedulable) under the

DAG-OT model by collapse and Observation 1 (L̂i ≤ Di).

Thus the Li > Di infeasibility test does not apply pre-collapse

to the DAG-OT model. However, for any post-collapse Ĝi of

τi if L̂i > Di the task set is unschedulable under DAG-OT.

Observation 2 (Critical Path Extension). For a DAG

Gi = (V,E) and candidates nodes u, v ∈ V , the collapse



of u ⋊⋉ v into û may extend the critical path length in Ĝi:

L̂i ≥ Li.

In contrast to Observation 1, collapse may extend the critical

path length. This can occur when one of the candidate nodes

u, v ∈ V lies on the pre-collapse critical path and the other

does not. In Figure 7, u lies on the pre-collapse critical path.

Collapsing û← u ⋊⋉ v increases the critical path length L̂i

compared to Li by cu(ηu + ηv)− cu(ηu).

(a) Pre-Collapse Li = 34 (b) Post-Collapse L̂i = 38

Fig. 7: Critical Path Extension

Observation 3 (Workload Decrease). For a DAG Gi = (V,E)
and candidates nodes u, v ∈ V , the collapse of u ⋊⋉ v into û
reduces the workload, i.e., Ĉi ≤ Ci.

For candidates u, v ∈ V , their contribution to the workload

of Ci is cu(ηu) + cv(ηv). The contribution of û← u ⋊⋉ v to Ĉi

is cû(ηû) = cu(ηu + ηv). Since, cu(η) is a concave function,

cu(ηu + ηv) ≤ cu(ηu) + cv(ηv) and Ĉi ≤ Ci.

Observation 4 (Collapse Occlusion). For a DAG Gi = (V,E),
candidates (u, v) and (x, y), the collapse of u ⋊⋉ v may prevent

the collapse of x ⋊⋉ y.

Collapsing one candidate (u, v) may preclude the collapse of

another. For example, consider Figure 8. By collapsing (u, v)
the pair (x, y) cannot be collapsed – doing so would introduce

a cycle into the DAG.

(a) Pre-Collapse (b) Post-Collapse

Fig. 8: Collapse of (u, v) before (x, y)

Ci Li mi u ⋊⋉ v Ĉi L̂i m̂i

52 32 ⌈2.5⌉ → 50 33 ⌈2.42⌉

TABLE II: Collapse of u and v from Figure 8

Given a deadline Di = 40 the result of collapsing (u, v) with

respect to the workload, critical path length, and dedicated

cores are summarized in Table II.

Observation 5 (Alternate Collapse may Decrease m̂). For a

DAG Gi = (V,E), candidates (u, v) and (x, y), the collapse

of u ⋊⋉ v which occludes x ⋊⋉ y and resulting allocation of

cores denoted m̂(u⋊⋉v) may be greater than the allocation of

cores due to collapsing x ⋊⋉ y, i.e., m̂(x⋊⋉y) < m̂(u⋊⋉v).

(a) Pre-Collapse (b) Post-Collapse

Fig. 9: Collapse of (x, y) before (u, v)

Continuing the example, collapsing (x, y) precludes the

collapse of (u, v). Collapsing (x, y) instead of (u, v) is shown

in Figure 9. The impact upon the workload and critical path

length of x ⋊⋉ y differs from that of u ⋊⋉ v and ultimately a

difference in m.

Ci Li mi x ⋊⋉ y Ĉi L̂i m̂i

52 32 ⌈2.5⌉ → 49 29 ⌈1.81⌉

TABLE III: Collapse of x and y from Figure 9

Table III illustrates the impact of ordering of collapse with

respect to m, where collapsing x ⋊⋉ y in place of u ⋊⋉ v yields

a smaller number of dedicated cores m.

B. Beneficial Collapse

By Observations 1-5, collapsing any individual candidate

may increase or decrease the number of cores allocated to a task.

A collapse may increase or decrease the critical path length

creating an infeasible task set or introduce a cycle into the

graph. This subsection defines which collapses are beneficial.

Beneficial collapse depends on the Definition 6 of improving

the allocation of cores. Improving the number of allocated cores

balances the concepts of reducing the number of cores allocated

to a feasible task, avoiding the creation of an infeasible task,

and (possibly) creating feasible tasks from infeasible ones.

Definition 6 (Improved Core Allocation). For a given number

of cores allocated to a task mi, m̂i is an improvement upon

mi denoted m̂i ≪ mi if and only if:

1.) mi > 0⇒ 0 < m̂i ≤ mi

2.) mi ≤ 0⇒ m̂i ≥ mi

When mi is greater than zero, an m̂i less than mi and

greater than zero is an improvement, reducing the number of

cores allocated to the task. When mi < 0, the critical path

length has exceeded the deadline Li > Di. Such a task is not

feasible under the DAG model. For mi less than zero, a m̂i

greater than mi is an improvement; an increase over mi may

result in a schedulable task under DAG-OT.

Improvement of mi does not include the ceiling described

by Equation 5. This is due to the difference in context of mi

under the DAG model compared to DAG-OT. For the DAG

model, mi is calculated once and an integer number of cores

are assigned to the task τi for schedulability analysis. For

the DAG-OT model, mi is recalculated after every collapse



operation. Only when collapse operations have ceased is the

final integer ceiling of m̂i assigned to τi for schedulability

analysis. The treatment of mi (and m̂i) as a real number rather

than an integer is consistent throughout this work.

Beneficial collapse, given by Definition 7 includes the

improvement of core allocation as one of three conditions.

The first condition maintains the integrity of the analysis, a

beneficial collapse may not introduce a cycle into the graph

which the critical path length calculation depends upon.

Definition 7 (Beneficial Collapse). For a task τi, DAG

Gi = (V,E), and candidate nodes u, v ∈ V the collapse of

u ⋊⋉ v which results in Ĝi is beneficial if and only if:

1) Ĝi contains no cycles

2) Li ≤ Di ⇒ L̂i ≤ Di

3) m̂i ≪ mi

Condition 2 of beneficial collapse definition protects against

collapse increasing the critical path length Li beyond the

deadline Di, which would create an unschedulable task.

Protection does not prevent unschedulable tasks becoming

schedulable by collapse, due to the post-collapse critical path

length being bounded by the deadline only if the pre-collapse

critical path length was also less than the deadline.

C. Optimal Collapse

The primary goal of this work is to improve the schedulability

of a task set by reducing the number of cores reserved for

high utilization tasks. Defining optimality with respect to the

number of cores assigned to a task matches the goal of this

work.

Definition 8 (Optimal Collapse of a Task). The optimal

collapse of a DAG G is a DAG Ĝ with the least positive

m̂ obtainable by collapsing candidates of G.

Currently, the complexity class of selecting the optimal

set of candidates to collapse for a single task is unknown

and remains an open problem. Observations 1-5 along with

Definitions 6 and 7 illustrate the difficulties of identifying

candidates that are beneficial to collapse. The only known

method to compute the optimal collapse of a task requires the

exploration of all possible combinations of candidates. Since

there may be V 2 candidates per task, exploring all possible

combinations has a time complexity of O(2V
2

). Generating

the optimal formulation and finding an optimal collapse of a

task are both potentially intractable problems and reserved for

future work. As a practical alternative, heuristics for ordering

candidates for collapse are proposed in Section VI.

V. COLLAPSING HIGH UTILIZATION TASKS

Due to the intractability of optimal collapse for a task, this

work proposes an intuitive heuristic presented in Algorithm 1.

It collapses beneficial candidates (Definition 7), attempting to

reduce the number of cores allocated to a high utilization task.

Reduction begins by identifying the potential candidates for

collapse on Line 2. Candidacy follows Definition 4. Calculating

the complete set of candidates is of complexity O(V 2). The set

Algorithm 1 DAG-OT Dedicated Core Reduction Algorithm

1: procedure DAGOT-REDUCE(Gi)
2: A← CANDIDATES(Gi)
3: A← ORDER(A)
4: while |A| 6= 0 do

5: (u, v)← FIRST(A)
6: A← A \ (u, v)
7: if BENEFIT(Gi, u, v) then

8: COLLAPSE(Gi, u, v)
9: end if

10: end while

11: end procedure

of candidates is prioritized for collapse consideration by ORDER.

Ordering heuristics are proposed in Section VI. Each proposed

heuristic is of equal or lesser computational complexity than

the while loop (and its contents) beginning on Line 4.

Only candidates that benefit the task set are collapsed,

improving (Definition 6) the number of cores allocated to

a task without introducing a cycle into the DAG. The time

complexity of checking for a cycle in Ĝi by a depth first search

(DFS) is O(V + E). The time complexity of calculating L̂i of a

DAG by topological sort is also O(V + E). Determining if the

number of allocated cores satisfy the definition of improvement

is an O(1) operation, and collapse is an O(E) operation.

Iterating over O(V 2) possible candidates, time complexity

of Algorithm 1 is O(V 3 + V 2E).
During each iteration of the while loop on Line 4 of the

DAGOT-REDUCE Algorithm 1 the current state of the DAG Gi

serves as input and Ĝi is the output. A subsequent iteration

of the loop consumes the previous Ĝi value as input when

considering the next candidate for collapse.

VI. CANDIDATE ORDERING

In this work, two heuristics for collapse ordering are

proposed: “greatest benefit”, orders the candidates by descend-

ing workload savings; “least penalty”, orders candidates by

increasing longest path extension.

A. Greatest Benefit

For the greatest benefit heuristic, intuition suggests that

collapsing nodes that most reduce the total workload Ci will

also reduce the number of cores mi maximally. The difference

in workload is represented by ∆ in Equation 14. There is a

one time cost to calculate ∆ for all candidates in A and

order the set. This operation is of O(V lg V ) complexity.

Employing the greatest benefit heuristic, Algorithm 1 is then

O(V lg V + V 3 + V 2E) = O(V 3 + V 2E) complex.

∆ = cu(ηu) + cv(ηv)− cu(ηu + ηv) (14)

B. Least Penalty

For the least penalty heuristic, the intuitive reasoning is

collapsing nodes that impact the critical path length by the

smallest amount (possibly negative) may permit more nodes

to be collapsed overall. Penalties γ are calculated once by

Equation 15 for every candidate pair. The set of candidates A
are ordered by increasing penalty for use in Algorithm 1.

γ = L̂i − Li (15)



Penalty calculation requires a topological sort for ev-

ery candidate to find L̂i with complexity O(V + E), for

O(V 2) candidates. Sorting the candidates by penalty is

O(V lg V ) complex. Therefore, the initial penalty ordering

complexity is O(V 3 + V 2E + V lg V ). The complexity of

Algorithm 1 utilizing the least penalty heuristic is then

O(V 3 + V 2E + V lg V + V 3 + V 2E) = O(V 3 + V 2E).

Penalty calculations apply to a single DAG Gi = (V,E)
instance. Collapsing two nodes u, v ∈ V may impact the critical

path length, i.e. L̂i 6= Li. The penalty of collapse depends on

the critical path length, the collapse of u ⋊⋉ v may impact the

penalty γ of other candidates. Penalties are not adjusted after

collapsing nodes for the least penalty heuristic in favor of

maintaining the O(V 3 + V 2E) complexity of Algorithm 1.

VII. COLLAPSING LOW UTILIZATION TASKS

Previous sections have focused on reducing mi for high

ulitization tasks. Low utilization tasks may also incorporate

the inter-thread cache benefit through collapse. To incorporate

the benefit, a non-preemptive scheduler is required due to

BUNDLE’s lack of preemptive schedulability analysis.

A low utilization DAG task τi ∈ τlow requires no more than

one core mi = 1 to meet all deadlines. Therefore, τi may be

serialized. To serialize τi a topological sort of Gi is performed

and nodes are executed on the single processor in sort order.

Figure 10 illustrates the serialization of a task τi.

(a) Pre-Serializing (b) Post-Serializing

Fig. 10: Serializing a Task τi

Before a low utilization task is serialized all beneficial

(Definition 7) candidates u, v ∈ Vi collapsed. For a serialized

task τi, the workload bounds the critical path length Ci ≥ Li.

A serialized task is infeasible if Ci > Di. Since the workload

is only reduced by collapse, collapse preceding serialization

cannot convert a feasible task into an infeasible one.

Similar to high utilization tasks, the complexity of serializing

low utilization tasks depends on the number of candidates

O(V 2), a DFS to check for cycles O(V + E), and a topological

sort to order execution O(V + E). The total complexity of the

operation is O(V 2 · (V + E) + (V + E)) = O(V 3 + V 2E).

Another concern shared with high utilization tasks is the

order of collapse. For simplicity, collapse ordering is defined for

the entire task set and shared between high and low utilization

tasks. Whichever heuristic is selected for high utilization tasks

is also selected for low utilization tasks for all tasks τi ∈ τ .

Every collapsed and serialized low utilization task τi ∈ τlow
is scheduled non-preemptively, lest the inter-thread cache

benefit of scheduling individual threads of nodes via BUNDLE

be lost. To preserve the benefit of collapse and BUNDLE, low

utilization jobs are scheduled by non-preemptive EDF.

Each low utilization task τi ∈ τlow is assigned to exactly one

of the mlow cores by the Worst-Fit [8]1 heuristic. Worst-Fit

assigns each task τi ∈ τlow to a per-core task set on a core mk

when including τi will not create an infeasible per-core task

set determined by [22]. Once assigned, jobs of τi will execute

only upon its assigned processor.

VIII. SCHEDULING AND SCHEDULABILITY ANALYSIS

Federated scheduling and schedulability analysis [27] of

parallel DAG task sets may be considered for separate task

sets: high and low utilization tasks. For any high utilization

task τi ∈ τhigh, any greedy non-preemptive scheduler may be

used to select which node to execute upon one of the mi

cores dedicated to the task. For low utilization tasks τlow, a

preemptive or non-preemptive multi-core scheduling algorithm

may be used to execute nodes upon the mlow cores.

Schedulability analysis of high utilization tasks follows

from two conditions. The first is the requirement that a task

τi ∈ τhigh must have a critical path length less than its deadline

Li < Di. The second is that τi has mi cores allocated as

calculated by Equation 5. If there are an insufficient number

of cores in the system to satisfy all high utilization tasks i.e.

m < mhigh =
∑

τi∈τhigh
mi, the task set is unschedulable.

In this work, low utilization tasks are scheduled by parti-

tioned EDF to the mlow = m−mhigh cores. For DAG tasks,

that may be preemptive or non-preemptive EDF. For DAG-

OT tasks, it must be non-preemptive EDF or the benefits

of BUNDLE scheduling cannot be guaranteed. In partitioned

EDF, tasks are assigned to cores. In the preemptive and non-

preemptive setting, tasks are assigned to cores by the Worst-

Fit [8] heuristic. Under Worst-Fit partitioning, a task will not be

assigned to a core if assigning it would violate the uniprocessor

scheduling test. The uniprocessor non-preemptive schedulability

test is taken from [22] and the preemptive schedulability test

from [7].

In summary, a taskset is deemed schedulable if all high and

low utilization tasks are schedulable. For high utilization tasks,

there must be a sufficient number of mhigh cores and all critical

paths are less than deadlines. For low utilization tasks, all tasks

must be partitioned on the mlow cores according to Worst-

Fit without violating the appropriate per-core schedulability

test [22] or [7].

IX. EVALUATION

Evaluation of the approach proposed in this work focuses

on two metrics: schedulability ratios and the reduction of

dedicated cores to high utilization tasks. No existing approach

to federated scheduling tasks incorporating the positive impact

of instruction caches is (currently) known. To illustrate the

potential of inter-thread cache benefits to DAG tasks under

federated scheduling [27], high utilization tasks are scheduled

by any non-preemptive work-conserving algorithm on the cores

dedicated to the individual tasks. Low utilization tasks are

assigned to cores by the Worst-Fit [8] partitioning algorithm

1Any non-preemptive EDF schedulability test based task assignment to
cores could be chosen.



and scheduled by non-preemptive EDF. In addition to the

non-preemptive EDF scheduling of low utilization tasks, a

comparison to federated scheduling using preemptive EDF of

low utilization tasks is made. For preemptive EDF, it is assumed

that preemptions have no preemption cost. As the proposed

approach uses non-preemptive scheduling for scheduling low

utilzation tasks, this assumption only benefits the previous

federated scheduling schemes which require preemption.

To permit larger scale testing, if any schedulability test for a

task set takes more than 10 minutes to complete, then that task

set is deemed unschedulable for the given test. For fairness

across the heuristics, such a task set is deemed unschedulable

for all heuristic collapse methods.

The existing schedulability analysis approaches are compared

to collapse by DAGOT-REDUCE using the proposed heuristics.

The proposed heuristics are also compared against an “arbitrary”

(random) ordering to highlight each heuristic’s impact. Table IV

summarizes the existing and proposed approaches used in

the evaluation along with their notation. The approaches are

enumerated by their inclusion of collapse and their use of

non-preemptive EDF (EDF-NP) or preemptive EDF (EDF-P)

for low utilization tasks.

Approach EDF-NP EDF-P

Baseline (No Collapse) B-NP B-P

Collapse Arbitrary OT-A ∅

Collapse Greatest Benefit OT-G ∅

Collapse Least Penalty OT-L ∅

TABLE IV: Federated Schedulability Tests to Compare

Synthetic task sets are provided to each of the schedulability

tests. Generation of the synthetic DAG tasks takes the form

of a pipeline, where individual tasks are synthesized and then

combined to make task sets. To allow a comparison to be made

between the baseline and collapsed tasks, tasks are generated for

the baseline first and then collapsed. DAGOT-REDUCE modifies

the structure of DAG tasks, as well as the critical path length

and total demand. Due collapse related changes, tasks that

were trivially infeasible (i.e., Li > Di) may become feasible.

As such, existing approaches [59] to task set generation which

exclude trivially infeasible tasks are unsuitable for this work.

Fig. 11: Task Set Generation Pipeline

Figure 11 describes the pipeline in coarsest detail. Individual

tasks are generated, and filtered. Due to length restrictions, the

full details of the task set generation pipeline are available

from [57], as is the framework on github [52, 53].

Summarily, tasks are generated by creating a representative

set of 90 DAG task graphs of {16, 32, 64} nodes, with a

variable edge probability between each pair of nodes. For each

graph structure, nine graphs are generated by parameterizing the

number of executable objects {4,8,16} and their growth factors

{0.2, 0.6, 1.0}. For each task, six new tasks are generated with

deadlines calculated using a target utilization {0.25, 0.50, 2.0,

4.0, 8.0, 16.0}. In total, 4,860 tasks are generated.

Filtration of the 4,860 tasks removes only those tasks which

are trivially infeasible (Li > Di) for the baseline DAG task

and for all collapsed DAG-OT tasks. It should be noted that

any post-collapse DAG-OT task τ̂i which is trivially infeasible

could not have originated from a pre-collapse trivially infeasible

DAG task τi. The filtered tasks are then duplicated, once per

collapse ordering, before being assembled into task sets.

Table V enumerates the total number of task sets created

by target task set utilization U , cores of the architecture c,
and number of task sets assembled per utilization and core

specification N . The total reflects the total number of DAG

task sets assembled, it does not reflect the equivalent DAG-OT

task sets (resulting from collapse by each of the heuristics).

Parameter Range

U {0.5, 1, 2, 4, 8, 12, 16, 20, 24, 28, 32, 36}

c {4, 8, 12, 16, 20, 24, 28, 32}

N 1000

Total N · |c| · |U | = 96, 000

TABLE V: Task Set Assembly Parameters

A. Evaluation Metrics

A schedulability ratio is calculated for each of the schedula-

bility tests. For the DAG-OT schedulability tests, the number of

cores saved mi,saved per task τi is calculated by Equation 16

where pre-collapse mi,high comes from Equation 5 and m̂i,high

after Algorithm 1 has terminated.

mi,saved = mi,high − m̂i,high (16)

For a task set τ , the change in number of cores allocated to

high utilization tasks is given by Equation 17.

∆m =
∑

τi∈τ

mi,saved (17)

For a DAG-OT task τ̂i collapsed from a DAG task τi,
the workload reduction and critical path length extension of

collapse are computed by Equations 18 and 19 respectively.

∆C = Ci − Ĉi (18)

∆L = L̂i − Li (19)

B. Results

Figure 12 summarizes the schedulability results. In the title

’4’ indicates the utilization interval the column summarizes.

For the histograms labeled ’0’, the utilization schedulability

ratio is for task sets from with utilization [0, 4). The height

of the bar is the average schedulability ratio over the interval.

From this summary data, it is clear that collapse improves

the schedulability of federated scheduled DAG tasks where

collapsed task sets have a higher schedulability ratios.
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Furthermore the gains in

schedulability from collaps-

ing outweigh any deleterious

effects of the non-preemptive

scheduling requirement for

DAG-OT. This can be ob-

served through the higher

schedulability ratios for col-

lapsed task sets compared to

the uncollapsed fully preemp-

tive low utilization task sets of B-P. The fully preemptive

scheduler incurs no penalty for preemptions between low

utilization tasks.

Requiring consideration for trivially infeasible tasks where

the critical path length exceeds the deadline (Li > Di),

constraints found in other works for task set formulation

are prohibited. For example, in [45] the minimum period

for an arbitrary period task τi is Ti = Li + 2Ci

m
. Due to

implicit deadline Ti = Di tasks, no arbitrary period task

in [45] will require more than m
2 cores. In this work, no

such constraint is possible resulting in tasks requiring up to Vi

cores. Consequentially, higher utilization task sets assembled

from tasks with core allocations upper bounded by the number

of nodes in a task are more likely to be unschedulable. Thus,

schedulability ratios for utilizations over twenty are near zero.
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It is unclear from Figure 12 which of the collapse heuristics is

the most desirable. For different utilization intervals, the heuris-

tic with highest schedulability ratio may differ. Figures 13-15

present the impact of collapse for metrics other schedulability.

Both the preemptive (B-P) and non-preemptive (B-NP) un-

collapsed baseline methods share the same task sets and therefor

the same metrics. The label B represents both un-collapsed

baselines in the figures. Figure 13 focuses on the central purpose

of collapse: to reduce the number of cores assigned to high

utilization tasks. The least penalty heuristic (OT-L) performs

better than greatest benefit (OT-G). With arbitrary collapse

ordering (OT-A) performing below the heuristics. For these

task sets, the OT-L heuristic provides an approximately 20%

reduction in dedicated cores, greater than arbitrary or OT-G

ordering for collapse.

The least penalty (OT-L) heuristic seeks to collapse those

nodes with the smallest increase to the critical path length

before others. Surprisingly, Figure 14 shows the least penalty

ordering of collapse may not have the intended effect. For OT-L,

the average critical path length is greater than greatest benefit
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(OT-G) or arbitrary ordering (OT-A); although it remains within

2 percent of OT-G and OT-A.

Figure 15 illustrates the benefits of collapse to the workload

for all orderings, with OT-G providing the greatest workload

reduction of 27 percent; a 5 percent improvement over OT-L.

From the results of Figure 13, 14, and 15 the OT-G heuristic

performs similarly to OT-L in terms of core savings, the primary

purpose of collapse. However, OT-G out-performs OT-L in both

workload savings and critical path length extension. This is due

to the nature of critical path length extension in comparison

to workload savings. With each collapse, there is potential for

the critical path to shift from one set of nodes to another. If

the critical path length shifts, the initial least penalty ordering

may no longer be in descending critical path length extension

order. Workload savings are not affected when the critical path

shifts; thus greatest benefit provides more consistent behavior

and overall better performance.

X. FEASIBILITY STUDY

To compliment the synthetic results, a feasibility study (FS)

was developed using the TacleBench [20] benchmarks executing

on Raspberry Pi 3 devices. The purpose of the FS is to verify

the potential benefit of collapse and the concave growth of

WCETO values from BUNDLE to parallel DAG tasks.

Existing parallel programming environments such as

OpenMP and CilkPlus lack features for controlling thread

scheduling and management with respect to cache behavior.

Additionally, BUNDLE’s analysis [55] is limited to MIPS

processors. The BUNDLE scheduling algorithm presented

in [55] requires the use of a MIPS simulator. Lacking an ideal

environment and platform for the FS, Raspberry Pi 3 devices

were selected for their cost and limited hardware components.

BUNDLE’s analysis and scheduling algorithm have not

been implemented for ARM processors or Raspberry Pi 3

devices. Existing WCET tools [1] for ARM processors do not



provide cache analysis. Lacking a WCET tool that provides

adequate cache analysis, representative WCET and growth

factor values are calculated based upon observed execution

times. A representative WCET of a TalceBench benchmark

is the maximum number of cycles from the observed worst-

case response time (WCRT) from the set of multiple distinct

executions upon a Raspberry Pi 3 device. Representative growth

factors are calculated from the WCRT of η threads executed

sequentially upon a single core – e.g. the benefit of three

threads scheduled by BUNDLE is estimated by executing three

threads one after another on one core. These representative

values are not reliable since they are based upon observations

rather than analysis and could not be used in an environment

where deadlines must be kept.

In BUNDLE scheduling, executable objects are divided into

conflict free regions. Thread execution is coordinated by

region, thereby maximizing the inter-thread cache benefit. In

comparison, sequential scheduling of threads, where each thread

executes from the first instruction to the last, has (potentially)

fewer inter-thread cache benefits [54, 55]. Thus, representative

growth factor values from sequential execution produces greater

(worse) values than BUNDLE analysis would provide. This over-

estimation biases the results against the proposed approach.

The FS is comprised of a process server running on a

general purpose computer and Raspberry Pi 3 devices, where

each Pi device represents a single core. The process server

schedules nodes of the DAG-OT task non-preemptively in a

greedy fashion. Execution of a node is the sequential execution

of a benchmark upon one of the Raspberry Pi’s representing a

core. Figure 16 illustrates the computing platform architecture

available for download [37].

Server

Raspberry Pi

Client

Fig. 16: Experiment Architecture

Raspberry Pi 3 devices contain a Samsung four-core ARM

Cortex A53 processor with 32KB of L1 instruction cache,

32KB of L1 data cache, and 512KB of L2 unified data and

instruction cache [2]. All Raspberry Pi 3 devices utilize the

Raspbian operating system running Linux kernel 4.18. To

minimize interference from the operating system as well other

processes one of the four cores is reserved exclusively for the

execution of benchmarks.

The sequential execution of benchmarks may benefit from

data values persisting in the cache, thereby decreasing growth

factors and biasing the results towards the proposed approach.

To address the potential bias an attempt at flushing the data

cache is performed between benchmark executions. Algorithm 2

illustrates the method of sequential thread scheduling including

data cache flushing. Note, the flush may be incomplete due to

the pseudo-random L1 and L2 replacement policy [2].

Each main function from the TacleBench suite is modified

according to Algorithm 2, where m is a command line argument

for the number of threads to execute. The READ CYCLES()

function reads the current cycle count of the processor.

The OLD MAIN() function is the TacleBench provided main

function. The CLEAR DATA CACHE() function reads 512KB

(the size of the L2 cache) of allocated memory in an attempt

to flush the data cache.

Algorithm 2 Sequential Thread Execution

1: procedure MAIN(m)
2: total← 0
3: for i← 1 to m do

4: pre← READ CYCLES()
5: OLD MAIN()
6: post← READ CYCLES()
7: total← total + post− pre
8: CLEAR DATA CACHE()
9: end for

10: end procedure

Algorithm 2 executes a benchmark once per iteration of

the for loop, completing m threads sequentially. After each

benchmark execution, the response time is measured by taking

the difference of the processor cycle count before and after

execution. The difference is added to the total to compute

the total number of cycles required to execute m threads

of a benchmark. After every execution of a benchmark,

CLEAR DATA CACHE() performs a partial flush of the data

cache. The goal is to limit the contribution to the inter-thread

cache benefit through the data cache.

The FS uses the sample input data from the TacleBench

suite for every execution. Using the same input for each thread

scheduled sequentially is an approximation of the inter-thread

cache benefit BUNDLE scheduling would produce. Under these

circumstances, the sequential execution provides a lower bound

on the inter-thread cache benefit producing greater (worse)

growth factors than BUNDLE scheduling would.

Each of the 42 benchmarks is executed on a dedicated core

of a Raspberry Pi 3 for m ∈ [1, 10] threads. For every m value,

the benchmark is executed 100 times totaling 1,000 executions.

The maximum total cycles calculated by Algorithm 2 from

100 executions of m threads is recorded as the representative

WCET for m threads. From these WCET values, the minimum

representative growth factor is calculated for every benchmark.

To verify the benefit of collapse proposed in this work,

DAG tasks are constructed using the generation pipeline from

Section IX with one modification: executable objects are one

of the TacleBench benchmarks with WCET and growth factor

values estimated by the repeated execution of Algortihm 2.

Nodes within DAG tasks are assigned one thread of one

benchmark. After assigning executable objects to nodes, the

workload Ci, critical path length Li, and dedicated cores mi

are calculated by Equations 2, 1, and 5, respectively. The DAG

task is then converted to DAG-OT tasks and nodes are collapsed

by each of the heuristics. The result is four tasks: one DAG

requiring mi cores, and three DAG-OT requiring m̂i ≤ mi

cores due to nodes being collapsed by the distinct heuristics.



The makespan of the four tasks is recorded by executing the

tasks on the FS platform given the proper allocation of mi

or m̂i cores. Makespan values are compared to the task’s

deadline, verifying schedulability and illustrating the core

savings resulting from collapse.

A. Feasibility Study Results

Growth factors for the 42 benchmarks fall in the range of 0.3

to 7. Benchmarks with a representative growth factor greater

than 1.0 are not collapsed, since they are not beneficial. A

sample of benchmark values are provided in Table VI. The

complete list of growth factors may be found in [57].

Benchmark fac matrix1 ndes

Growth Factor 0.42 0.84 1.38

TABLE VI: Sample TacleBench Benchmarks Growth Factors

Pre Collapse

i Ci Li Di mi

1 6,168,224 4,287,924 5,248,928 3

2 4,616,294 3,448,417 6,347,882 2

3 5,310,666 3,614,573 3,953,663 4

4 6,684,846 4,149,946 4,448,542 4

Post Collapse

i Ĉi L̂i Di m̂i

1 6,087,061 5,195,855 5,248,928 2

2 3,888,725 3,888,725 6,347,882 1

3 5,018,733 3,853,186 3,953,663 3

4 6,342,401 3,883,653 4,448,542 3

TABLE VII: Pre and Post Collapse Metrics

A subset of 11 benchmarks were selected as the complete

set of executable objects when generating tasks. These 11 were

selected based on their growth factors which range from 0.3

to 2.63. Task graphs are generated with 32 nodes and edge

probabilities in {0.01, 0.02, 0.03}. Every node is randomly

assigned one thread of an executable object from the 11

heuristics. A total of 120 DAG tasks were generated and

analyzed without collapse and as DAG-OT tasks collapsed

by each of the benchmarks. Four of 120 were selected based

on their results to illustrate the benefits of collapse. The tasks

require two, three, or four cores. Each task’s core allocation

is reduced by one to: one, two, and three cores respectively.

Tasks requiring more cores were not considered due to the

limited number of Raspberry Pi 3 devices available.

Table VII presents the four selected tasks and the impact of

collapse upon them when run on the POC platform. In this

limited setting, each of the heuristics OT-G, OT-L, and OT-A

collapsed the same set of candidate pairs. Thus, the critical path

length and workload values were similar across all heuristics.

The result is a core savings of 25 to 50 percent.

During execution on the POC, the makespan and workload

are recorded. Given the similar performance of each heuristic,
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Fig. 17: Makespan Distribution for OT-G Collapsed Tasks

Figure 17 presents the makespan distribution of the 100 runs

of each task collapsed by OT-G. Variation in makespan (and

workload) may be attributed to interrupts, operating system

interference, or the pseudo-random cache replacement policy.

Combined with Table VIII, the average makespan falls within

the 90th percentile. Given the distribution, the average values

are presented for simplicity.

Table VIII provides the average makespan and workload

savings for all tasks across each of the heuristics. Workload

savings ranges from 2 to 16 percent. The results also verify

schedulability of collapsed task with all makespan values

falling below the deadlines in Table VII. In this limited setting

including the negative effect of cache clearing between threads

the savings in makespan, workload, and core allocation are

encouraging for the method proposed herein.

Makespan

i OT-G OT-L OT-A ∆̄C

1 4,531,262 5,195,855 4,640,880 2.03%

2 3,888,725 3,858,028 3,942,390 16.43%

3 3,853,186 3,600,027 3,835,659 6.81%

4 3,883,653 4,213,339 4,436,712 5.12%

TABLE VIII: Mean Makespan and Workload Savings

XI. CONCLUSION

This work proposes the DAG-OT model, joining the feder-

ated scheduling policy and analysis with BUNDLE thread-level

scheduling and analysis through the proposed mechanism of

collapsing candidate nodes of a DAG. The synthetic evaluation

and proof of concept support the proposed mechanism, and

heuristic algorithm for selecting and collapsing nodes; demon-

strating the benefit of collapse to schedulability, workload, and

total cores allocated to parallel DAG tasks.

There remains an open question of the complexity of optimal

collapse of a task. Optimal collapse of all tasks within a task

set remains undefined. The complexity of optimal collapse for

a single task and all tasks of task set is reserved for future

work. Future work also includes consideration for data caches,

shared caches (evictions and false sharing), and permitting

preemptions within BUNDLE scheduling.
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