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Summary. The paper considers the problem of out-of-sample risk estimation under the high
dimensional settings where standard techniques such as K-fold cross-validation suffer from
large biases. Motivated by the low bias of the leave-one-out cross-validation method, we pro-
pose a computationally efficient closed form approximate leave-one-out formula ALO for a large
class of regularized estimators. Given the regularized estimate, calculating ALO requires a mi-
nor computational overhead. With minor assumptions about the data-generating process, we
obtain a finite sample upper bound for the difference between leave-one-out cross-validation
and approximate leave-one-out cross-validation, |LO — ALO|. Our theoretical analysis illustrates
that |LO — ALO| — 0 with overwhelming probability, when n, p — co, where the dimension p of
the feature vectors may be comparable with or even greater than the number of observations, n.
Despite the high dimensionality of the problem, our theoretical results do not require any spar-
sity assumption on the vector of regression coefficients. Our extensive numerical experiments
show that |LO — ALO| decreases as 1 and p increase, revealing the excellent finite sample per-
formance of approximate leave-one-out cross-validation. We further illustrate the usefulness
of our proposed out-of-sample risk estimation method by an example of real recordings from
spatially sensitive neurons (grid cells) in the medial entorhinal cortex of a rat.

Keywords: Cross-validation; Generalized linear models; High dimensional statistics; Out-of-
sample risk estimation; Regularized estimation

1. Introduction

1.1.  Main objectives

Consider a data set D= {(y1,X1), (2,X2), - .-, (¥n, Xy) } Where x; € R? and y; € R. In many appli-
cations, we model these observations as independent and identically distributed draws from some
joint distribution g(y; |xiTﬁ*) p(x;) where the superscript “T” denotes the transpose of a vector.
To estimate the parameter 3* in such models, researchers often use the optimization problem

n
R . T
B=arg mln{ > 1ilx; ﬂ)+/\r(ﬁ)}, (1
Berr  Li=1

where [ is called the loss function, and is typically set to —log{g(y; |xiTﬁ)} when ¢ is known, and
r(3) is called the regularizer. In many applications, such as parameter tuning or model selection,
one would like to estimate the out-of-sample prediction error, defined as
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Errextra £ E[¢(Ynew, Xgewé) D], ()

where (Ynew, Xnew) 18 @ new sample from the distribution q(y|xT,6'*) p(x) independent of D,
and ¢ is a function that measures the closeness of ypew to xnewﬁ A standard choice for ¢ is
— log{q(yleﬁ)}. However, in general we may use other functions as well. Since Errextr, de-
pends on the rarely known joint distribution of (y;, X;), a core problem in model assessment is
to estimate it from data.

This paper considers a computationally efficient approach to the problem of estimating
Errexira under the high dimensional setting, where both n and p are large, but n/ p is a fixed num-
ber, possibly less than 1. This high dimensional setting has received much attention (El Karoui,
2018; El Karoui et al., 2013; Bean et al., 2013; Donoho and Montanari, 2016; Nevo and Ritov,
2016; Su et al., 2017; Dobriban and Wager, 2018). But the problem of estimating Errexira has
not been carefully studied in generality, and as a result the issues of the existing techniques and
their remedies have not been explored. For instance, a popular technique in practice is K-fold
cross-validation, where K is a small number, ¢.g. 3 or 5. Fig. 1 compares the performance of
K-fold cross-validation for four values of K on a lasso linear regression problem. Fig. 1 implies
that, in high dimensional settings, K-fold cross-validation suffers from a large bias, unless K is
a large number. This bias is because of in high dimensional settings the fold that is removed in
the training phase may have a major effect on the solution of problem (1). This claim can be
easily seen for lasso linear regression with an independent and identically distributed data design
matrix using phase transition diagrams (Donoho et al., 2011). To summarize, as the number
of folds increases, the bias of the estimates reduces at the expense of a higher computational
complexity.

In this paper, we consider the most extreme form of cross-validation, namely leave-one-out
cross-validation, which according to Fig. 1 is the least biased cross-validation-based estimate
of the out-of-sample error. We shall use the fact that both n and p are large numbers to ap-
proximate leave-one-out cross-validation for both smooth and non-smooth regularizers. Our
estimate, called approximate leave-one-out cross-validation, ALO requires solving optimiza-
tion problem (1) once. Then, it uses 3 to approximate leave-one-out cross-validation without
solving the optimization problem again. In addition to obtaining 3, approximate leave-one-
out cross-validation requires a matrix inversion and two matrix—matrix multiplications. De-
spite these extra steps approximate leave-one-out cross-validation offers a significant compu-
tational saving compared with leave-one-out cross-validation. This point is illustrated in Fig.
2 by comparing the computational complexity of approximate leave-one-out cross-validation
with that of leave-one-out cross-validation, LO, and a single fit as both n and p increase for
various data shapes, i.e. n > p, n = p and n < p. Details of this simulation are given in Section
5.2.4.

The main algorithmic and theoretical contributions of this paper are as follows. First, our
computational complexity comparison between leave-one-out cross-validation and approxi-
mate leave-one-out cross-validation, confirmed by extensive numerical experiments, show that
approximate leave-one-out cross-validation offers a major reduction in the computational com-
plexity of estimating the out-of-sample risk. Moreover, with minor assumptions about the data-
generating process, we obtain a finite sample upper bound |LO — ALO|, the difference between
the leave-one-out and approximate leave-one-out cross-validation estimates, proving that un-
der the high dimensional settings ALO presents a sensible approximation of LO for a large
class of regularized estimation problems in the generalized linear family. Finally, we provide
a readily usable R implementation of approximate leave-one-out cross-validation on line (see
https://github.com/Francis-Hsu/alocv),and weillustrate the usefulness of our pro-
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Fig.1. Comparison of K-fold cross-validation (for K = 3 (m), 5 (m), 10 (m)) and leave-one-out cross-validation
(m) with the true (oracle-based) out-of-sample error (m) for the lasso problem where /(y|xT8) = 3 (y — xT 8)?
and r(3) =|8]|;: in high dimensional settings the upward bias of K-fold cross-validation clearly decreases as
the number gf folds increases; the dataarey ~N(X3 ", o21) where X € RP*"; the number of non-zero elements
of the true 3 is set to k and their values are set to %; the dimensions are (p, n, k) = (1000, 250,50) and o = 2;
the rows of X are independent N(0,1); the extra-sample test data are ynew ~ N(x'r','ewﬁ ,0°) where xrle\g
~ N(0,1); the trug (oracle-based) out-of-sample prediction error is Effgya = E[(Ynew — xIeW )
ly,X] =2 +||3 -8 ||3; all depicted quantities are averages based on 500 random independent samples,
and error bars depict % standard error
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Fig.2. Time to compute ALO (m) and LO (m), and the time to fit 3 (m) (the ALO-time includes computing 3;
calculating LO takes orders of magnitude longer than ALO): (a) elastic net linear regression (Section 5.2.1)
for n/p =5; (b) lasso logistic regression (Section 5.2.2) for n/p = 1; (c) elastic net Poisson regression (Section
5.2.3)forn/p=1/10

posed out-of-sample risk estimation in unexpected scenarios that fail to satisfy the assumptions
of our theoretical framework. Specifically, we present a novel neuroscience example about the
computationally efficient tuning of the spatial scale in estimating an inhomogeneous spatial
point process.
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1.2. Relevant work

The problem of estimating Errexra from D has been studied for (at least) the past 50 years.
Methods such as cross-validation (Stone, 1974; Geisser, 1975), Allen’s predicted residual error
sum of squares statistic (Allen, 1974), generalized cross-validation (GCV) (Craven and Wahba,
1979; Golub et al., 1979) and the bootstrap (Efron, 1983) have been proposed for this purpose.
In the high dimensional setting, employing leave-one-out cross-validation or the bootstrap is
computationally expensive and the less computationally complex approaches such as fivefold
(or tenfold) cross-validation suffer from high bias as illustrated in Fig. 1.

As for the computationally efficient approaches, extensions of Allen’s predicted residual er-
ror sum of squares (Allen, 1974) and GCV (Craven and Wahba, 1979; Golub et al., 1979) to
non-linear models and classifiers with a ridge penalty are well known: smoothing splines for gen-
eralized linear models (O’Sullivan et al., 1986), spline estimation of generalized additive models
(Burman, 1990), ridge estimators in logistic regression (le Cessie and van Houwelingen, 1992),
smoothing splines with non-Gaussian data using various extensions of GCV (Gu, 1992, 2001;
Xiang and Wahba, 1996), support vector machines (Opper and Winther, 2000), kernel logistic
regression (Cawley and Talbot, 2008) and Cox’s proportional hazard model with a ridge penalty
(Meijer and Goeman, 2013). Moreover, leave-one-out approximations for posterior means of
Bayesian models with Gaussian process priors by using the Laplace approximation and ex-
pectation propagation were introduced in Vehtari et al. (2016) and extended in Vehtari ez al.
(2017). Despite the existence of this vast literature, the performance of such approximations
in high dimensional settings is unknown except for the straightforward linear ridge regression
framework. Moreover, past heuristic approaches have considered only the ridge regularizer. The
results of this paper include a much broader set of regularizers; examples include but are not
limited to the lasso (Tibshirani, 1996), elastic net (Zou and Hastie, 2005) and bridge regression
(Frank and Friedman, 1993), just to name a few.

More recently, a few papers have studied the problem of estimating Errexs under high
dimensional settings (Mousavi et al., 2018; Obuchi and Kabashima, 2016). The approximate
message passing framework that was introduced in Maleki (2011) and Donoho et al. (2009)
was used in Mousavi et al. (2018) to obtain an estimate of Errea for lasso linear regression.
In another related paper, Obuchi and Kabashima (2016) obtained similar results by using
approximations that are popular in statistical physics. The results of Mousavi et al. (2018) and
Obuchi and Kabashima (2016) are valid only for cases where the design matrix has independent
and identically distributed entries and the empirical distribution of the regression coefficients
converges weakly to a distribution with a bounded second moment. In this paper, our theoret-
ical analysis includes correlated design matrices and regularized estimators beyond lasso linear
regression.

In addition to these approaches, another contribution has been to study GCV and Errextra
for restricted least squares estimators of submodels of the overall model without regularization
(Breiman and Freedman, 1983; Leeb, 2008, 2009). In Leeb (2008) it was shown that a variant
of GCV converges to Errextra uniformly over a collection of candidate models provided that
there are not too many candidate models, ruling out complete subset selection. Moreover,
since restricted least squares estimators were studied, the conclusions exclude the regularized
problems that are considered in this paper.

Finally, it is worth mentioning that, in another line of work, strategies have been proposed to
obtain unbiased estimates of the in-sample error. In contrast with the out-of-sample error, the
in-sample error is about the prediction of new responses for the same explanatory variables as
in the training data. The literature of in-sample error estimation is too vast to be reviewed here.
Mallows’s Cp, (Mallows, 1973), Akaike’s information criterion (Akaike, 1974; Hurvich and Tsai,
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1989), Stein’s unbiased risk estimate (Stein, 1981; Zou et al., 2007; Tibshirani and Taylor, 2012)
and Efron’s covariance penalty (Efron, 1986) are seminal examples of in-sample error estimators.
When n is much larger than p, the in-sample prediction error is expected to be close to the out-
of-sample prediction error. The problem is that in high dimensional settings, where n is of the
same order as (or even smaller than) p, the in-sample and out-of-sample errors are different.

The rest of the paper is organized as follows. After introducing the notation, we first present
the approximate leave-one-out formula for twice differentiable regularizers in Section 2.1. In
Section 2.2. we show how approximate leave-one-out cross-validation can be extended to non-
smooth regularizers such as the lasso by using theorem 1 and theorem 2. In Section 3, we
compare the computational complexity and memory requirements of approximate leave-one-
out cross-validation and leave-one-out cross-validation. In Section 4, we present theorem 3,
illustrating with minor assumptions about the data-generating process that |LO — ALO| — 0
with overwhelming probability, when n, p — oo, where p may be comparable with or even greater
than n. The numerical examples in Section 5 study the statistical accuracy and computational
efficiency of the approximate leave-one-out approach. To illustrate the accuracy and computa-
tional efficiency of approximate leave-one-out cross-validation we apply it to synthetic and real
data in Section 5. We generate synthetic data, and compare approximate leave-one-out cross-
validation and leave-one-out cross-validation with elastic net linear regression in Section 5.2.1,
lasso logistic regression in Section 5.2.2 and elastic net Poisson regression in Section 5.2.3. For
real data we apply the lasso, elastic net and ridge logistic regression to sonar returns from two
undersea targets in Section 5.3.1, and we apply lasso Poisson regression to real recordings from
spatially sensitive neurons (grid cells) in Section 5.3.2. Our synthetic and real data examples
cover various data shapes, i.e. n > p, n=p and n < p. In Section 6 we discuss directions for
future work. Technical proofs are collected in section A of the on-line appendix.

1.3. Notation

We first review the notation that will be used in the rest of the paper. Let xiT € R™P stand for
the ith row of X € R"*?. y; € R"~D*! and X ; € R"~D*? stand for y and X, excluding the ith
entry y; and the ith row xiT respectively. The vector a ©® b stands for the entrywise product of
two vectors a and b. For two vectors a and b, we use a <b to indicate elementwise inequalities.
Moreover, |a| stands for the vector that is obtained by applying the elementwise absolute value
to every element of a. Foraset SC{1,2,3,..., p}, let Xg stand for the submatrix of X restricted
to columns indexed by S. Likewise, we let x; 5 € RISIX1 stand for the subvector of x; restricted
to the entries that are indexed by S. For a vector a, depending on which notation is easier to
read, we may use [a]; or ¢; to denote the ith entry of a. The diagonal matrix with elements of
the vector a is referred to as diag(a). Moreover, define

s 3609,
(3,22 ¢(ayz 2
. ol
o2 02,
P 1(yilz)

e oz le=a,
§/i<-) 2 ({1(->, e .i.H(-), §i+1(->, e @(-))T,
IVTOETGIO NN IR TON/RTC U A ) L

The notation PolyLog(n) denotes a polynomial of log(n) with a finite degree. Finally, let o (A)
and oy (A) stand for the largest and smallest singular values of A respectively.
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2. Approximate leave-one-out cross-validation

2.1. Twice differentiable losses and regularizers
The leave-one-out cross-validation estimate is defined through the following formula:

L .
= Zl oG X! B0, 3)
where
By 2arg min { S°10,X]B) +Ar(@) |, )
BeRP J#i

is the leave-i-out estimate. If done naively, the calculation of LO asks for the optimization
problem (4) to be solved n times, which is a computationally demanding task when p and n are
large. To resolve this issue, we use the following simple strategy: instead of solving problem (4)
accurately, we use one step of the Newton method for solving problem (4) with initialization
B. Note that this step requires both / and r to be twice differentiable. We shall explain how
this limitation can be lifted in the next section. The Newton step leads to the following simple
approximation of f)’ Ji

-1
Bi=B+ ;_xjx}z‘(yﬂx}@+Adiag{f<a>} xil(vilx{ B),
JFl

where ,C:)' is defined in equation (1). (In the rest of the paper for notational simplicity of our theo-
retical results we have assumed that r(3) = r(ﬁ,) However, the extension to non-separable
regularizers is straightforward.) Note that Z ]751X X; Ti(y; j |XT,@) + Adiag{#(B)} is still dependent
on the observation that is removed. Hence, the process of computing the inverse (or solving a
linear equation) must be repeated n times. Standard methods for calculating inverses (or solving
linear equations) require cubic time and quadratic space (see appendix C.3 in Boyd and Van-
denberghe (2004)), rendering them impractical for high dimensional applications when repeated
n times. (A natural idea for reducing the computational burden involves exploiting structures
(such as sparsity and bandedness) of the matrices involved. However, in this paper we do not
make any assumption regarding the structure of X.) We use the Woodburry lemma to reduce
the computational cost:

-1 v T AV T T-1
.. R A 1 I (yilx: B)x;
T T 1 i i
XX l(yi|x; 3)+ Adiag{r(3 } =J '+ = —,
,Z;ég X105 P e{F(d)) 1—x1I-1x0(yi|x] B)

where J = E?zlxjij-'l'(yjlij-B) + A diag{i‘(,@)}. Following this approach we define the approxi-
mate leave-one-out cross-validation estimate ALO as

)

12 N (3 Hy
ALOé* s T i = - 19 6
s S otnxTBn =y S ol B H, ©
where
H2X[\diag{i(8)} + X" diag{I(3)}X]~'X " diag{I(3)}. @)

Algorithm 1 (Table 1) summarizes how one should obtain an ALO-estimate of Errexira. We
shall show that under the high dimensional settings one Newton step is sufficient for obtaining
a good approximation of 3,;, and the difference |ALO — LOJ is small when either n or both
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Table 1. Algorithm 1: risk estimation with ALO for twice-
differentiable losses and regularizers

Input: (X1, 1), (X2, ¥2)5- - s (X5 Yn)
Output: Errexlra-estlmate

Step 1: calculate
B=arg mm{ > 10ilx] B) +Ar<ﬁ)}
BeRP i=1
Step 2: obtain
H=X[\diag{#(8)} + X" diag{i(3)}X]~' X" diag{i(8)}
Step 3: the estimate of Errexira i given by

72(]5{ j,ig; 111111‘1'}

n and p are large. However, before that we resolve the differentiability issue of the approach
that we discussed above.

2.2. Non-smooth regularizers

The Newton step, which was used in the derivation of ALO, requires the twice differentiability
of the loss function and regularizer. However, in many modern applications non-smooth regu-
larizers, such as the lasso, are preferable. In this section, we explain how ALO can be used for
non-smooth regularizers. We start with the /{-regularizer and then extend it to the other bridge
estimators. A similar approach can be used for other non-smooth regularizers. Consider

B2arg mm{ S IGilx; B) +/\IIBII1} (8)

BERP

i=1

Let g be a subgradient of ||3]; at 5, denoted by g € 8||B||1. Then, the pair (,@, ¢) must satisfy
the zero-subgradient condition

S xil(vilx} B) + A& =0.
=1

As a starting point we use a smooth approximation of the function ||3]|; in our ALO-formula.
For instance, we can use the following approximation that was introduced in Schmidt et al.
(2007):

P 1
r(B) = 21 a[log{l +exp(af)} +log{l +exp(—ap)}].

Since limq_ 50 r*(3) = || 8|1, We can use

B" Larg mln{ Sl B+ A Z r(B) } ®)

Berr L=l i=1

to obtain the following formula for ALO:

(10)

ALO“éiidﬁ{ i, X} B +l’(ﬁ) Hi; }
i=1

(8" 1-
where H® éX[/\diag{i‘(BQ)} +XTdiag{i(Ba)}X]_lXleag{l(,B )}. Note that ||Ba —Bla—0as
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a — 00, according to lemma 15 in the on-line appendix section A.2. Therefore, we take the
a —> oo limit in expression (10), yielding a simplification of ALO® in this limit. To prove this
claim, we denote the active set of 3 with S, and we suppose the following assumptions.

Assumption 1. (3 is the unique global minimizer of problem (1).

Assumption 2. Ba is the unique global minimizer of problem (9) for every value of «.
Assumption 3. 1(y|xT ) is a continuous function of 3.

Assumption 4. The strict dual feasibility condition ||g ||« < 1 holds.

Theorem 1. 1If assumptions 1-4 hold, then

1(/6) Hj; }’ an

all)l’lcl)oALO Z ¢{YU X; l (B) 1— Hj;
where H = Xs[X1diag{i(3)}Xs]~ ' XLdiag{i(3)}.

The proof of theorem 1 is presented in the on-line appendix section A.2. For the rest of the
paper, the right-hand side of result (11) is the ALO-formula that we use as an approximation
of LO for lasso problems. In Section 5.2, we show that the formula that we obtain in theorem 1
offers an accurate estimate of the out-of-sample prediction error. For instance, in the standard
lasso problem, where [(u, v) = (u — v)2/2 and r(8) = || 3|1, theorem 1 gives the following estimate
of the out-of-sample prediction error:

L& 0i=x[B)?

lim ALO®=-S"

- 12
=00 ni Dl (1—Hp)?*’ (12

where H= XS(XEXS)’1 XE Fig. 3 compares this estimate with the oracle estimate of the out-of-
sample prediction error on a lasso example. More extensive simulations are reported in Section 5.

Assumptions 1-3 hold for most of the practical problems. For instance, to study the conditions
under which assumption 1 holds refer to Tibshirani (2013). Moreover, for [(u, v) = (u — v)?/2,
assumption 1 is a consequence of assumption 4 (Wainwright, 2009). Assumption 4 also holds
in many cases with probability 1 with respect to the randomness of the data set (Wainwright,
2009; Tibshirani and Taylor, 2012). Even if this assumption is violated in a specific problem
(note that checking this assumption is straightforward), we can use the following theorem to
evaluate the accuracy of the ALO-formula in theorem 1.

Theorem 2. Let S and T denote the active set of 3, and the set of zero coefficients at which
the subgradient vector is equal to 1 or —1. Then,

x; [Xs diag{i(B3)}Xs]7'x; 5l;(B) < lim al_f}go Hjj,
lim sup H <x]gr[Xsurdiag{i(3)}Xsurl™'xi surli(B).
a— 00

Theorem 2 is proved in the on-line appendix section A.3. A simple implication of theorem 2
is that

(B3 H! }

lim sup ALO® < — E¢{ Vi X; Z(B)l

a—>00

13)

and



974 K. Rahnama Rad and A. Maleki
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Fig. 3. Out of- sample prediction error versus ALO (

s Effextran; ----- , ALO,): the data are
y~N(Xﬁ 0'2!) where 02 =1 and X € R”*" with p = 10000 and n 2000; the number of non-zero elements
of the true B~ is set to k =400 and their values are set to 1; the rows x| of the predlctor matrix
are generated randomly as N(0,X) with correlation structure corr( i Xijr) =0.3 for all /_1 n and
J,j' =1,...,p; the covariance matrix Z) is, scaled such that the S|gnal variance var(xTﬁ ) ; the
out-of- sample test data are ynew ~N(xnewﬁ 02) where xpew ~ N(0, X); the out-of-sample error is calcu-

I(e:t;)d aS E (e xnow) [Vnew — XhewB)2ly, X] = 02 + |=1/2(8- 7|3 and ALO is calculated by using equation
. I:(3) H.
lim inf ALO®> — Z (;5{ i - (ﬂ;) - }, (14)
a—>00 ni-1 Li(B) 1 —H;;

where
H' =X [X{diag{i(3)}Xs]' X§diag{i(®},

H" = Xsur[XE,rdiag{i(8) }Xsur] " X5 rdiag{i(B)}. (15)

By comparing inequalities (13) and (14) we can evaluate the error in our simple formula of
the risk, presented in theorem 1. The approach that we proposed above can be extended to
other non-differentiable regularizers as well. Below we consider two other popular classes of
estimators:

(a) bridge and
(b) elastic net,

and show how we can derive ALO-formulae for each estimator.

2.2.1.  Bridge estimators
Consider the class of bridge estimators

B2arg mm{ > l(y,IxTﬂ)+/\||ﬁllq} (16)

BERP i=1
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Table 2. Algorithm 2 risk estimation with ALO for the elastic net regularizer

Input: (X1, y1), (X2, ¥2),. - > (X, Yn)
Output: Ertexira-estimate
Step I: calculate

B=arg mm{ > l(ylle/@) +A ||ﬂ||2 + X208 }
BERP i=1

Step 2: calculate S={i: §3; #0} )

Step 3: obtain H=Xg[X T diag{i(3)}Xs + 2\ 17! X diag{I(8)}, where X

includes only the columns of X that are in §

Step 4: the estimate of Errex(ra 1s given by

l n T z(ﬁ) Hj; }
"1§1¢{ ﬂ+l(ﬁ)1_Hu

where ¢ is a number between (1,2). Note that these regularizers are only one-time differentiable
at zero. Hence, the Newton method that was introduced in Section 2.1 is not directly applicable.
One can argue intuitively that, since the regularizer is differentiable at zero, none of the regression
coefficients will be 0. Hence, the regularizer is locally twice differentiable and formula (6) works
well. Although this argument is often correct, we can again use the idea that was introduced
above for the lasso to obtain the following ALO-formula that can be used even when an estimate
of 0 is observed:

:(B) Hi
Eeleta i i) @
where, if we define S="{i:3; %0} and for u #0, 77 (u)="q(q — 1)|u|7~2, then
H =Xg[XTdiag{i(3)}Xs + A diag{¥%(3)}]' XL diag{i(3)}. (18)
This formula is derived in the on-line appendix section A.4.
2.2.2.  Elastic net
Finally, we consider the elastic net estimator
g2 afg;,;;m{ ; 1ilx] B) + M 118113+ A2 1811 } (19)

Again by smoothing the /,-regularizer (similarly to what we did for the lasso) we obtain the
following ALO-formula for the out-of-sample predictor error:

1z T4 ii(B) Hij }
ngld){yl’ B T Ha |
where S ={i:(3;#0}, and
H = XX} diag{i(3)}Xs + 201X  diag{i(3)}. (20)

We do not derive this formula, since it follows exactly the same lines as those of the lasso and
the bridge estimator. Algorithm 2 (Table 2) summarizes all the calculations that are required for
the calculation of ALO for the elastic net.
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3. Computational complexity and memory requirements of approximate leave-
one-out cross-validation

Counting the number of floating point operations that algorithms require is a standard approach
for comparing their computational complexities. In this section, we calculate and compare the
number of operations that are required by ALO and LO. We first start with algorithm 1 and
then discuss algorithm 2.

3.1. Algorithm 1

Before we start the calculations, we warn the reader that in many cases the specific structure of
the loss and/or the regularizer enables more efficient implementation of the formulae. However,
here we consider the worst-case scenario. Furthermore, the calculations below are concerned
with the implementation of ALO and LO on a single computer, and we have not explored their
parallel or distributed implementations.

The first step of algorithm 1 requires solving an optimization problem. Several methods
exist for solving this optimization problem. Here, we discuss the interior point method and the
accelerated gradient descent algorithm. Suppose that our goal is to reach accuracy e. Then, the
interior point method requires O{log(1/¢)} iterations to reach this accuracy, whereas accelerated
gradient descent requires O(1/./e) iterations (Nesterov, 2013). Furthermore, each iteration of
the accelerated gradient descent requires O(n p) operations, whereas each iteration of the interior
point method requires O(p3) operations.

Regarding the memory usage of these two algorithms, in the accelerated gradient descent
algorithm the memory is mainly used for storing matrix X. Hence, the amount of memory that
is required by this algorithm is O(np). In contrast, the interior point method uses O(p3) of
memory.

The second step of algorithm 1 is to calculate the matrix H. This requires inverting the matrix
[Adiag{i(3)} + X diag{i(3)}X]'. In general, this inversion requires O(p>) operations (e.g. by
using Cholesky factorization). However, if n is much smaller than p, then one can use a better
trick for performing the matrix inversion; suppose that both / and r are strongly convex at 3
and define F:A[diag{I(,@)}]l/ 2 and A=2)\ diag{f(,@)}. Then, from the matrix inversion lemma
we have

XXX+ A) IXT=XA"IXT XA XTTAd+ XA 'XTD)~'rxA~'XT. 21

The inversion (I+T'XA~!'XTT)~! requires O(n3) operations and O(n p) of memory (the main
memory usage is for storing X). Also, the other matrix—matrix multiplications require O(n?p +
n?) operations. Hence, overall if we use the matrix inversion lemma, then the calculation of
H requires O(n> +n?p) operations. In summary, the calculation of H requires O{min(p> +
np?,n3 +n? p)}. Also, the amount of memory that is required by the algorithm is O(np). The
last step of the ALO-algorithm, i.e. step 3 in algorithm 1, requires only O(n p) operations. Hence,
the calculation of ALO in algorithm 1 requires,

(a) through the interior point method, O{min(p3log(1/e) + p> +np?, p*log(1/e) +n’ +
n’p)}, and,
(b) through accelerated gradient descent, O{min(np/\/e+ p> +np*,np/Je+n’>+n’p)}.

Similarly, the calculation of LO requires solving n optimization problems of the form (4). Hence,
the numbers of floating point operations that are required for LO are,

(a) through the interior point method, O{np>log(1/e)}, and,
(b) through accelerated gradient descent, O(n?p/./e).
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3.2. Algorithm 2

In algorithm 2, we have used the specific form of the regularizer and simplified the form of H.
Hence, this allows for faster calculation of H and equivalently faster calculation of the ALO-
estimate. Again the first step of calculating ALO is to solve the optimization problem. Solving
this optimization problem by the interior point method or accelerated proximal gradient descent
requires O{ p>log(1/€)} and O(np/./e) floating point operations respectively. The next step is
to calculate H. If B is s sparse, i.e. has only s non-zero coefficients, then the calculation of H
requires O(s> + ns?) floating point operations. Also, the amount of memory that is required for
this inversion is O(s?). Finally, the last step requires O(np) operations. Hence, calculating an
ALO-estimate of the risk requires,

(a) through the interior point method, O{ p>log(1/€) + s +ns> +np}, and,
(b) through accelerated proximal gradient descent, O(np/./e+ s> +ns? +np).

The calculations of LO in the worst case are similar to what we had in the previous section:

(a) through the interior point method, O{np?log(1/¢)}, and,
(b) through accelerated proximal gradient descent, O(n?p/ Je).

(It is known that after a finite number of iterations the estimates of proximal gradient descent
become sparse, and hence the iterations require fewer operations. Hence, in practice the sparsity
can reduce the computational complexity of calculating LO even though this gain is not captured
in the worst-case analysis of this section.)

In this section, we used the number of floating point operations to compare the computational
complexity of ALO and LO. However, since this approach is based on the worst-case scenarios
and is not capable of capturing the constants, it is less accurate than comparing the timing of
algorithms through simulations. Hence, Section 5 compares the performance of ALO and LO
through simulations.

3.3. Memory usage
First, we discuss algorithm 1. We consider only the accelerated gradient descent algorithm. As
discussed above, the amount of memory that is required for step 1 for ALO is O(np) (the main
memory usage is for storing matrix X). For the second step, direct inversion of [\ diag{i‘(,@')} +
XTdialg{'l'(B)}X]_1 requires O(p*) of memory. However, by using the formula derived in equa-
tion (21) the memory usage reduces to O(n?) (for inverting (I + XA ~!XTT)~1). Hence, the
total amount of memory that is required for the second step of algorithm 1 is O{min(np +
n2,np+ p?)}: np for storing X and n? or p? for calculating [Adiag{¥(83)} + X diag{1(8)}X]~".
The last step for ALO requires a negligible amount of memory. Hence, the total amount of
memory that ALO requires, especially when n < p, is O(np +n?), which is the same as O(np).
Note that the amount of memory that is required by LO is also O(n p), since it requires to store X.
The situation is even more favourable for ALO in algorithm 2; all the memory requirements
are the same as before, except that the amount of memory that is required for the calculation
and storing of [X§ diag{1(8)}Xs + 2\ 1] ! is O(s?).

4. Theoretical results in high dimensions

4.1. Assumptions

In this section, we introduce assumptions that are later used in our theoretical results. The
assumptions and theoretical results that follow are presented for finite sample sizes. However,
the final conclusions of this paper are focused on the high dimensional asymptotic setting in
which n, p— oo and n/p — 6o, where dp is a finite number bounded away from zero. Hence,
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if we write a constant as c(n), it may be that the constant depends on both n and p but, since
p~n/éo, we drop the dependence on p. We use this simplification for brevity and clarity of
presentation. Since our major theorem involves finite sample sizes it is straightforward to go
beyond this high dimensional asymptotic setting and to obtain more general results that are
useful for other asymptotic settings.

Assumption 5. The rows of X € R"*? are independent zero-mean Gaussian vectors with
covariance Y. Let ppax denote the largest eigenvalue of X.

As we mentioned earlier, in our asymptotic setting, we assume that n/p — 6o for some 6o
bounded away from zero. Furthermore, we assume that the rows of X are scaled in a way that
Pmax = ©(1/n) to ensure that xiTﬁz 0,(1) and BTEB=o0(1), assuming that each (; is O(1).
Under this scaling the signal-to-noise ratio in each observation remains fixed as n and p grow.
(Furthermore, under this scaling the optimal value of A will be O, (1) (Mousavi et al., 2018).)
For more information on this asymptotic setting and scaling, the reader may refer to El Karoui
(2018), Donoho and Montanari (2016), Donoho et al. (2011), Bayati and Montanari (2012),
Weng et al. (2018) and Dobriban and Wager (2018).

Assumption 6. There are finite constants ¢ (n) and ¢, (n), and ¢,, — 0 all functions of n, such
that with probability at least 1 —g, foralli=1,...,n

c1(n) > 1(B) o, @)

ey(n) > sup (L= 08+ 16} =il .
ref0.1] 18, — Bl

c2(n)> sup ”r{(l_t)ﬂ/i"'tﬁ)—f(ﬁ)llz' o

1€[0,1] 18— Bll2

In what follows, for various regularizers and regression methods, by explicitly quantifying
constants c (n) and ¢ (n), we discuss conditions (22)—(24) in assumption 6. We consider the ridge
regularizer in lemma 1 and the smoothed /;- (and elastic net) regularizer in lemma 2. Concerning
various regression methods, we consider logistic (lemma 3), robust regression (lemma 4), least
squares (lemmas 6 and 7) and Poisson (lemmas 8 and 9) regression. The results below show
that under mild assumptions, for the cases mentioned above, c¢|(r) and c;(n) are polynomial
functions of log(n): a result that plays a key role in our main theoretical result presented in
Section 4.2.

Lemma 1. For the ridge regularizer r(z) = z%, we have
li{(1 =B, +1B8} —F(B)l2
sup = = =0.
1€[0,1] 18,; — Bl

For simplicity we skip the proof. As mentioned in Section 2.2, a standard smooth approxi-
mation of the /;-norm is given by

()= 3> log{1 + exp(o)]} +log{1 +exp(—az)}].

i=1

Lemma 2. For the smoothed /i-regularizer we have
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i{(1-08;+1B} -3
sup [I¥{( )ﬁf/l ,?} (’6)”2<4a2,
r€[0,1] 18/: — Bll2

We present the proof of this result in the on-line appendix section A.5.6. As a consequence
of lemma 2, for the smoothed elastic net regularizer, defined as r(z) =~z + (1 — )r®(z) for
v €10, 1], we have

{1 =08/ +18} —¥(B 2
sup - =
re[0.1] 18,: — Bl

<4 —’y)az.

Lemma 3. 1In the generalized linear model family, for the negative logistic regression log-
likelihood /(y|xT3) = —yxT B +1log{1 +exp(x'B)}, where y € {0, 1}, we have

{1 =08 +18} 1Bl
sup < <
10,11 18,i — Bl
11(B)lloo < 1.

We present the proof of this result in the on-line appendix section A.5.1. Our next example
is about a smooth approximation of the Huber loss that is used in robust estimation, known as

the pseudo-Huber-loss:
2
fu@ =" L/{H (Z) }— 1},
Y

where v > 0 is a fixed number.
Lemma 4. For the pseudo-Huber-loss function {(y|xT3) = fi(y — x13), we have

{1 =B +18}=1:B)l> _3
sup / { A/ = } / < *\/Umax(XTX),
1[0.1] 18/: — Bl v

1B lloo <.

< Vomax(XTX),

The proof of this result is presented in the on-line appendix section A.5.4.
Lemma 5. 1f assumption 5 holds with pyax =c¢/n, and 69 =n/p, then

2
Pr{omax<xTX>>c(1+3j&)> }@xp(—p).

The proof of lemma 5 is presented in the on-line appendix section A. Putting together lemmas
1-5, we conclude that for ridge or smoothed /| -regularized robust or logistic regression we have
c1(n)=0(1) and c,(n) = O(1).

Lemma 6. For the loss function I(y|xT3) = %(y —x13)2, we have
{1 =08, +18} 1Bl
sup = = =
1€[0,1] 18/ — Bl
1(B)llso < Ily —XBlloo-

0,

We skip the proof of lemma 6 because it is straightforward.
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Lemma 7. Assume that y ~ N(X3*, ZI), and l(yleﬁ) 1(y xI3)2. Let assumption 5

hold with pyax =c/n. Finally, let n/p =6y and (1/n)|3* ||2 =c. Ifr(B)= 762 + (1 =yres),
and 0 <~y <1, then

Pr{|ly — X,@IIOo > leog(n)} < erO +2nexp(—n+ 1) +nexp(—p),

where f is a constant that depends on only o, a, ¢, ¢, A, 69 and « (and is free of n and
p)-

We present the proof of this result in the on-line appendix section A.5.5. Putting together lem-
mas 1, 2, 6 and 7, we conclude that for smoothed elastic net regularized least squares regression
we have ¢| (n) = 0{/log(n)} and c;(n) = O(1).

Lemma 8. In the generalized linear model family, for the negative Poisson regression log-
likelihood I(y|xTB8) = — f(xTB) + ylog{ f(x'B)} — log(y!) with the conditional mean
E[y|x, B]= f(x'8) where f(z)=1log{l +exp(z)} (known as a soft rectifying non-linearity),
we have

{1 =08 +18} =B
sup ~ —
t€[0,1] 18,; — Bl
1B oo <1+ 1I¥lloo-

The ‘soft rectifying’ non-linearity f(z) =log{1+exp(z) } behaves linearly for large z and decays
exponentially on its left-hand tail. Owing to the convexity and log-concavity of this non-linearity
the log-likelihood is concave (Paninski, 2004), leading to a convex estimation problem. Since the
actual non-linearity of neural systems is often subexponential, the soft rectifying non-linearity
is popular in analysing neural data (see Pillow (2007), Park et al. (2014), Alison and Pillow
(2017) and Zolrowski and Pillow (2018) and reference therein).

We present the proof of this result in the on-line appendix section A.5.2.

<1 +6]1Ylloo) v/Tmax (XTX)

Lemma9. Assume that y; ~Poisson{ f(XT,@*)} where f@)= log{l +exp(z) }. Let assumption
5 hold with pmax =c¢/n. Finally, let n/p =y and 5* 33* =¢. Then, for sufficiently large n,
we have

2 1
Pr{(1+61¥lloo)v/Tmax XTX) = ¢ log® () } < n!1o8l0EM} 1 = 4 exp| —nlogd ————
n P(Zz<1)
+exp(—p)
2 1
> 6. /61032 < pl-log{logm} , = —
Pr{|lylloo = 6+/¢log”“(m)} <n —|—n+exp nlog Pz<l)

where Z ~ N(0,¢) and (; is a constant that depends on only ¢, ¢ and 6, (and is free of n and
p)-

The proof of this result is presented in the on-line appendix section A.5.3. Putting together
lemmas 1, 2, 8 and 9, we conclude that for ridge or smoothed elastic net regularized Poisson
regression we have ¢, (n) = 0{10g3/2(n)} and c;(n) = 0{10g3/2 m}.

In summary, in the high dimensional asymptotic setting, for all the examples that we have
discussed so far, cj(n) = 0{10g3/2(n)} and cr(n) = O{log3/2(n)}. Hence, in the results that we
shall see in the next section we assume that both c(n) and c¢(r) are polynomial functions of
log(n). Finally, we assume that the curvatures of the optimization problems that are involved
in expression (1) and (4) have a lower bound.
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Assumption 7. There is a constant v > 0, and a sequence g, — 0 such that foralli=1,...,n
Jnf omin (X diag[i{t3+ (1 -8, }]+ X diag[i;i {tB+ (1 — 1B, 1X;) > v (25)
with probability at least 1 — g,,. Here, oy (A) stands for the smallest singular value of A.

Assumption 7 means that optimization problems (1) and (4) are strongly convex, and strong
convexity is a standard assumption that is made in the analysis of high dimensional problems,
e.g. Van de Geer (2008) and Negahban et al. (2012). Moreover, if r(3) =~6%+ (1 — Nre(3),
and 0 <y <1, then v =2~.

Before we mention our main result, we should also mention that assumptions 7, 5 and 6 can
be weakened at the expense of making our final result look more complicated. For instance, the
Gaussianity of the rows of X can be replaced with the sub-Gaussianity assumption with minor
changes in our final result. We expect that our results (or slightly weaker results) will hold even
when the rows of X have heavier tails. However, for brevity we do not study such matrices in the
current paper. Furthermore, the smoothness of the second derivatives of the loss function and
the regularizer that is assumed in expressions (23) and (24) can be weakened at the expense of
slower convergence in theorem 3. We shall clarify this point in a footnote after expression (142)
in the proof in the on-line appendix.

4.2. Main theoretical result
Now on the basis of these results we bound the difference |ALO — LO|. The proof is given in
the on-line appendix section A.6.

Theorem 3. Let n/p =0y and assumption 5 hold with ppnax =c/p. Moreover, suppose that
assumptions 6 and 7 are satisfied, and that » is sufficiently large that g, + g, <0.5. Then with
probability at least

8n 8n .
1—4”6XP(—P)—F—W—%—%
the following bound is valid:
; s LB Hi |_Co
T T
max |X; B8, —X; B——= < —, 26
Isisn 1 . [(B) 1 —Hi| ~/p (20
where
72632 lo 5{c!2+ 3260 +3)?
Cot = {1+J60(J60+3)2C g(")}[c%(n)cz(n)ﬂ?(n)cg(n) G LT R 1
v log(p) v
@27

Recall that in Section 4.1 we proved that for many regularized regression problems in the gen-
eralized linear family both ¢ (n) = O{PolyLog(n)} and ¢, (n) = O{PolyLog(n) }, where the nota-
tion PolyLog(n) denotes a polynomial in log(n). These examples included ridge and smoothed
[1- (and elastic net) regularizers and logistic, robust, least squares and Poisson regression. More
specifically, the maximum degree that we observed for the logarithm was %, which happened
for Poisson regression. Furthermore, as mentioned in the previous section, in the high dimen-
sional asymptotic setting in which n, p — co and n/ p — é,, where 4, is a finite number bounded
away from zero, to keep the signal-to-noise ratio fixed in each observation (as p and n grow),
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we considered the scaling that npma,x = O(1). Combining these, it is straightforward to see that
Co(n)= 0{cf (n)c% (n)} = O{PolyLog(n)}. Therefore, the difference

. . LB Hy PolvL

max |xF3, —xFp— i _Hi_|_, fPolyLog(m)]
s 1:(B) 1 — Hii Jn

Theorem 3 proves the accuracy of the approximation of the leave-one-out estimate of the re-

gression coefficients. As a simple corollary of this result we can also prove the accuracy of our
approximation of LO.

Corollary 1. Suppose that all the assumptions that are used in theorem 3 hold. Moreover,
suppose that

_ max sup |¢(yi,XiTB/i+bi)| sc3(n)
=12 b <Co/ /P

with probability r,. Then, with probability at least

8n 8n -
1_4neXp(_P)—?—m—Qn—CIn_Vn,
IALO — LO| < &30 (28)
NGz

where C, is the constant that is defined in theorem 3.

The proof of this result can be found in the on-line appendix section A.8. As we discussed
before, in all the examples that we have seen so far Co//p is O{PolyLog(n)//n}. Hence, to
obtain the convergence rate of ALO to LO we need to find only an upper bound for c3(n).
Note that usually the loss function / that is used in the optimization problem is also used as the
function ¢ to measure the prediction error. Hence, assuming that ¢(-, ) =I(-,-), we study the
value of c3(n) for the examples that we discussed in Section 4.1.

(a) If ¢ is the loss function of lemma 3, then |<;5(y,-, xiTB)| <2, leading to ¢3(n) =2.

(b) If ¢ is the loss function of lemma 8, then |<b(y1-, xiTﬁ)| < 14 ||¥|loo. Furthermore, we proved
in lemma 9 that, under the data-generating mechanism that was described there, with high
probability [|y|lc < 6«/{Elog3 (n)}, leading to c3(n) =1+ 6\/{c~log3 n)}.

(c) For the pseudo-Huber-loss that is described in lemma 4, we have |$(y;, xl.T B)] <7, leading
to c3(n) =r.

(d) For the square loss

16(i. X} B+ b <1y =X Bl + 1bil <lyi —x{ B + jp

Hence, to obtain a proper upper bound we require more information about the estimate

Jé; /i~ Suppose that our estimates are obtained from the optimization problem that we

discussed in lemma 7. Then, on the basis of expressions (94) and (97) in the proof of

lemma 7 in the on-line appendix A.5.5

max |y —x; 3] < max |y;| +max |x/ 8, <2/{(cc + ) log(m)}

\/{10c(c5+ ag) log(n)}
+
Ay

with probability at most 4/n +n exp(—n + 1), leading to
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Fig. 4. ALO (m) and LO (m) mean-square error for elastic net linear regression |, 1 standard error interval
of LO): (a) n>p (n=1000; p =200; LO, 40.47 s; ALO, 0.30 s; fit, 0.03 s); (b) n=p (n=1000; p =1000; LO,
360.46 s; ALO, 4.72 s; fit, 0.33 s); (c) n< p (n=1000; p =10000; LO, 1377.37 s; ALO, 31.14 s; fit, 1.23 s)

20c(cé+ o2) log(n) } N Co
Ay vr

In summary, in the high dimensional asymptotic setting, for the regularized regression meth-
ods that were introduced in Section 4.1, such as least squares, logistic, Poisson and robust
regression, with r(3) =~32 + (1 — v)r*(3), and 0 <~ < 1, and assuming that ¢(-,-) =I(-,-), we
have that c3(n) = O{PolyLog(n)}, leading to |[ALO — LO| = O,{PolyLog(n)//n}. In short,
these examples show that ALO offers a consistent estimate of LO.

Finally, note that in the p fixed, n — oo regime, theorem 3 fails to yield JALO — LO|=0,(1).
This is just an artefact of our proof. In theorem 6, which is presented in the on-line appendix
section A.9, we prove that, under mild regularity conditions, the error between ALO and LO is
op(1/n) when n — oo and p is fixed. For brevity details are presented in the on-line appendix
section A.9.

c3(n) =2/{(c¢ + 03) log(n)} +\/{
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Fig. 5. ALO (m) and LO (m) misclassification errors (as a function of \) for lasso logistic regression (|, 1
standard error interval of LO): (a) n>p (n=1000; p =200; LO, 148.40 s; ALO, 0.16 s; fit, 0.14 s); (b) n=p
(n=1000; p =1000; LO, 960.41 s; ALO, 1.02 s; fit, 0.89 s); (c) n< p (n=1000; p =10000; LO, 1525.76 s;
ALO, 1.87 s; fit, 1.46 s)

5. Numerical experiments

5.1. Summary

To illustrate the accuracy and computational efficiency of approximate leave-one-out cross-
validation we apply it to synthetic and real data. We generate synthetic data, and compare
ALO and LO for elastic net linear regression in Section 5.2.1, lasso logistic regression in Section
5.2.2, and elastic net Poisson regression in Section 5.2.3. We emphasize that our simulations were
performed on a single personal computer, and we have not considered the effect of parallelization
on the performance of ALO and LO. In other words, the simulation results that are reported for
LO are based on its sequential implementation on a single personal computer. For real data, we
apply lasso, elastic net and ridge logistic regression to sonar returns from two undersea targets
in Section 5.3.1, and we apply lasso Poisson regression to real recordings from spatially sensitive
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neurons in Section 5.3.2. Our synthetic and real data examples cover various data shapes where
n>p,n=pandn<p.

Figs 4, 5, 6 and 7 and Fig. 8(e) reveal that ALO offers a reasonably accurate estimate of LO
for a large range of A. These figures show that ALO deteriorates for extremely small values of A,
especially when p > n. This is not a serious issue because the As minimizing LO and ALO tend
to be far from those small values.

The real data example in Section 5.3.1, illustrating ALO and LO in Fig. 7, is about classifying
sonar returns from two undersea targets by using penalized logistic regression. The neuroscience
example in Section 5.3.2 is about estimating an inhomogeneous spatial point process by using
an overcomplete basis from a sparsely sampled two-dimensional space. Given the spatial nature
of the problem, the design matrix X is very sparse, which fails to satisfy the dense Gaussian
design assumption that we made in theorem 3. Nevertheless, Fig. 8(e) illustrates the excellent
performance of approximate leave-one-out cross-validation in approximating LO in an example
where p=10000 and n=3133.

Fig. 2 compares the computational complexity (time) of a single fit, ALO and LO, as we
increase p while we keep the ratio n/p fixed. We consider various data shapes, models and
penalties. Fig. 2(a) shows time versus p for elastic net linear regression when n/p=>5. Fig. 2(b)
shows time versus p for lasso logistic regression when n/p =1. Fig. 2(c) shows time versus p for
elastic net Poisson regression when n/p = ﬁ. Finally, Fig. 8(e) shows that for the neuroscience
example approximate leave-one-out cross-validation takes 7 s in comparison with the 60428 s
that are required by leave-one-out cross-validation. All these numerical experiments illustrate the
significant computational saving that is offered by approximate leave-one-out cross-validation.
As it pertains to the reported run times, all fits in this paper were performed using a 3.1-GHz
Intel Core 17 MacBook Pro with 16 Gbytes of memory. All the code for the figures that are
presented in this paper are available from https://github.com/RahnamaRad/ALO.

5.2. Simulations

In all the examples in this section (Sections 5.2.1, 5.2.2, 5.2.3 and 5.2.4), we let the true unknown
parameter vector 3* € RP have k =n/10 non-zero coefficients. The k non-zero coefficients are
randomly selected, and their values are independently drawn from a zero-mean unit variance
Laplace distribution. The rows xlT, ...,x! of the design matrix X are independently drawn from
N(0, X). We consider two correlation structures:

(a) spiked, corr(X;;, X;j)=0.5, and.
(b) Toeplitz, COI‘I‘(Xl'j, Xij’) =0.9l/ -1,

3 is scaled such that the signal variance VaI'(XZT 3*) =1 regardless of the problem dimension. In
this section, all the fits and calculations of LO (and the 1-standard-error interval of LO) were
computed by using the glmnet package in R (Friedman et al., 2010), and ALO was computed
by using the alocv package in R (He et al., 2018).

5.2.1.  Linear regression with elastic net penalty
We set [(y|x'3) = %(y —x'B)2, r(B) = {(1-= a)/2}||ﬂ||§ 4+ a||Bll1 and a=0.5. We let the rows

XlT, .. .,X;{ of X have a spiked covariance and, to generate data, we sample y ~ N(X3*,1).
Moreover, ¢(y,x'3) = (y —x'3)? so that
1 n . T 3\ 2
ALO=1 % (yxﬂ)
n i=1 1 — Hii

with H= XS{XEXS + (11— a)I}_IXE. For various data shapes, i.e.n/pe {5, 1, %}, we depict
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Fig. 6. ALO (m) and LO (m) mean absolute errors (as a function of \) for elastic net Poisson regression (,
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ALO, 41.52 s; fit, 3.55 s)

- -

results in Fig. 4 where reported times refer to the required time to fit the model, to compute
ALO and LO for a sequence of 30 logarithmically spaced tuning parameters from 1 to 100.

5.2.2.  Logistic regression with lasso penalty
We set [(y|xTB) = —yxT @+ log{1 +exp(xT3} (the negative logistic log-likelihood) and r(3) =
131]1. We let the rows xlT, e, X;{ of X have a Toeplitz covariance and, to generate data, we sample

exp(x; %) }

; ~binomial{ ——————
g { I +exp(x] B%)

We take the misclassification rate as our measure of error, and 1(,15.} as prediction, where
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sonar data (Section 5.3.1) where n =208 and p =60 (|, 1-standard-error interval of LO): (a) ridge regression
(LO, 4.217 s; ALO, 0.062 s; fit, 0.016); (b) elastic net (LO, 46.884 s; ALO, 0.216 s; fit, 0.193 s); (c) lasso (LO,
129.466 s; ALO, 0.593 s; fit, 0.568 s)

1{,} is the indicator function, so that
1 n
ALO= n gl 1 = LT 34 4i,8) i)} a1 — Hi >0

where

H=Xs[X} diag{i(3)}Xs]"' X} diag{i(8)},

L(B)={1+exp(—x;B) ! -y
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and
ii(B) =exp(x[ B){1 +exp(x] B)} 2.

For various data shapes, i.e. n/pe {5, 1, ﬁ}, we depict results in Fig. 5 where reported times
refer to the required time to fit the model, to compute ALO and LO for a sequence of 30
logarithmically spaced tuning parameters from 0.1 to 10.

5.2.3.  Poisson regression with elastic net penalty
We set [(y|x13) =exp(yx T 3) — yx 3 (the negative Poisson log-likelihood),

r(B)=1{(1—a)/2}1BI3 + Bl

and a=0.5. We let the rows xlT, ...,X! of X have a spiked covariance and, to generate data, we
sample y; ~ Pmsson{exp(xTﬁ*)} We use the mean absolute error as our measure of error, and
exp(x' 3) as prediction, so that

n

1 :(B) Hj
ALO=-3|yi—
i) exp{ (61— H H

where H= XS{Xleag{l(ﬂ)}Xg +A1—a)}~ IXleag{l(,B)} 1:(B) =exp(x} B3) — y and [;(B) =
exp(xTﬂ) For various data shapes, i.e.n/p € {5, 1, & 10 J» we depict results in Fig. 6 where reported
times refer to the required time to fit the model, to compute ALO and LO for a sequence of 30
logarithmically spaced tuning parameters from 1 to 100.

5.2.4.  Timing simulations
To compare the timing of ALO with that of LO, we consider the following scenarios:

(a) elastic net linear regression, with rows of the design matrix having a spiked covariance,
data generated as described in Sections 5.2 and 5.2.1, and considered for a sequence of
10 logarithmically spaced tuning parameters from 1 to 100; we let n/p=15;

(b) lasso logistic regression, with rows of the design matrix having a Toeplitz covariance, data
generated as described in Sections 5.2 and 5.2.2, and considered for a sequence of 10
logarithmically spaced tuning parameters from 0.1 to 10; we letn/p=1;

(c) elastic net Poisson regression, with rows of the design matrix having a spiked covariance,
data generated as described in Sections 5.2 and 5.2.3, and considered for a sequence of
10 logarithmically spaced tuning parameters from 1 to 100; we let n/p=

The timings of a single fit, ALO and LO versus model complexity p are illustrated in Fig. 2. The
reported timings are obtained by recording the time that was required to find a single fit and
LO by using the glmnet package in R (Friedman et al., 2010), and to find ALO by using the
alocv package in R (He et al., 2018), all along the tuning parameters above. This process is
repeated five times to obtain the average timing.

5.3. Real data

5.3.1.  Sonar data

Here we use ridge, elastic net and lasso logistic regression to classify sonar returns collected
from a metal cylinder and a cylindrically shaped rock on a sandy ocean floor. The data consist
of a set of n =208 returns, 111 cylinder returns and 97 rock returns, and p =60 spectral features
extracted from the returning signals (Gorman and Sejnowski, 1988). We use the misclassification
rate as our measure of error. Numerical results comparing ALO and LO for ridge, elastic net and
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Fig. 9. (a) Spike locations (®) superimposed on an animal’s trajectory (@) (firing fields are areas covered
by a cluster of action potentials) and (b) the firing fields of a grid cell form a periodic triangular matrix tiling
the entire environment available to the animal: the figure is adapted from Moser et al. (2014)

lasso logistic regression are depicted in Fig. 7. The single fit and LO (and the 1-standard-error
interval of LO) were computed by using the glmnet package in R (Friedman et al., 2010), and
ALO was computed by using the alocv package in R (He ez al., 2018). The values of the tuning
parameters are a sequence of 30 logarithmically spaced tuning parameters between two values
automatically selected by the glmnet package.

5.3.2.  Spatial point process smoothing of grid cells: a neuroscience application

In this section, we compare ALO with LO on a real data set. This data set includes electrical
recordings of single neurons in the entorhinal cortex: an area in the brain that has been found
to be particularly responsible for the navigation and perception of space in mammals (Moser
et al., 2008). The entorhinal cortex is also one of the areas that is pathologically affected in the
early stages of Alzheimer’s disease, causing symptoms of spatial disorientation (Khan et al,
2014). Moreover, the entorhinal cortex provides input to another area, the hippocampus, which
is involved in the cognition of space and the formation of episodic memory (Buzsaki and Moser,
2013).

Electrical recordings of single neurons in the medial domain of the entorhinal cortex of freely
moving rodents have revealed spatially modulated neurons, called grid cells, firing action poten-
tials only around the vertices of two-dimensional hexagonal lattices covering the environment
in which the animal navigates. The hexagonal firing pattern of a single grid cell is illustrated in
Fig. 9(a). These grid cells can be categorized according to the orientation of their triangular
grid, the wavelength (distance between the vertices) and the phase (shift of the whole lattice).
See Fig. 9(b) for an illustration of the orientation and wavelength of a single grid cell.

The data that we analyse here consist of extra cellular recordings of several grid cells, and the si-
multaneously recorded location of the rat within a 300 cm x 300 cm box for roughly 20 min. (The
source of the data is Stensola et al. (2012). For a video of a single grid cell recorded in the medi-
cal entorhinal cortex see thecliphttps: / /www.youtube.com/watch?v=19GiLBXWAHI.)
Since the number of spikes that are fired by a grid cell depends mainly on the location of the ani-
mal, regardless of the animal’s speed and running direction (Hafting et al., 2005), it is reasonable
to summarize this spatial dependence in terms of a rate map 7(r), where 7(r)d¢ is the expected
number of spikes emitted by the grid cell in a fixed time interval dr, given that the animal is at
position r during this time interval (Rahnama Rad and Paninski, 2010; Pnevmatikakis et al.,
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2014; Dunn et al., 2015). In other words, if the rat passes the same location again, we again
expect the grid cell to fire at virtually the same rate, specifically according to a Poisson distribu-
tion with mean 7 (r)dz. (It is known that these rate maps can in some cases change with time but
in most cases it is reasonable to assume that they are constant. Moreover, the two-dimensional
surface that is represented by 7(r) is not the same for different grid cells.) For each grid cell,
the estimation of the rate map 7(r) is a first step towards understanding the cortical circuitry
underlying spatial cognition (Rowland et al., 2016). Consequently, the estimation of firing fields
without contamination from measurement noise or bias from oversmoothing will help to clarify
important questions about neuronal algorithms underlying navigation in real and mental spaces
(Buzsaki and Moser, 2013).

To be concrete, we discretize the two-dimensional space into an m x m grid, and we discretize
time into bins with width dr. In this example, dr is 0.4 s and m is 50. The experiment is 1252.9
s long, and therefore we have [1252.9/0.4] = 3133 time bins. In other words, n =3133. We use
vi€{0,1,2,3,...} to denote the number of action potentiazls that are observed in time interval
[(G —1)d¢,idr), where i=1,...,n. Moreover, we use r; € R™ to denote a vector composed of Os
except for a single 1 at the entry corresponding to the animal’s location within the m x m grid
during the time interval [(i — 1)dz, idf). We assume a log-linear model log{n(r)} = 1z, relating
the firing rate at location r € R™ to the latent vector z where the m x m 1221tent spatial process
that is responsible for the observed spiking activity is unravelled into z € R™" . The firing rate can
be written as 7n(r;) = exp(riTz). With this notation, riTz is the value of z at the animal’s location
during the time interval [(i — 1)dz, idr). In this vein, the distribution of observed spiking activity
can be written as

exp{—n(r;) }n(r;)”

yi! '
As mentioned earlier, the main goal is to estimate the two-dimensional rate map n(-), and a
large body of work has addressed the problem of estimating a smooth rate map from neural
data (DiMatteo et al., 2001; Gao et al., 2002; Kass et al., 2005; Cunningham et al., 2008, 2009;
Czanner et al., 2008; Paninski et al., 2010; Rahnama Rad and Paninski, 2010; Macke et al.,
2011; Pnevmatikakis et al., 2014). Here we employ an overcomplete basis to account for the
spatially localized sensitivity of grid cells. Since it is known that the rate map of any single grid
cell consists of bumps of elevated firing rates at various points in the two-dimensional space, as
illustrated in Fig. 9(a), it is reasonable to represent z as a linear combination of {%y,...,%,}:
an overcomplete basis in R? (Brown et al., 2001; Pnevmatikakis ez al., 2014; Dunn et al., 2015).
We compose the overcomplete basis by using truncated Gaussian bumps with various scales,
distributed at all pixels. The four basic Gaussian bumps that we use are depicted in Fig 10.
Since we use four truncated Gaussian bumps for each pixel, in this example, we have a total of
p=4m?=10000 basis functions. We employ the truncated Gaussian bumps

p(yilr) = (29)

Lo 5
eXp{ - ﬁ(ux + “y)}l{exp[f{1/(202)}(u§+u§)]>0.05}

where u, and u, are the horizontal and vertical co-ordinates. Define ¥ € R™*P as a matrix
composed of columns {#,... '¢I,} Furthermore define X; € R? as X;=2¥Tr;, and define
X € R"*P as a matrix composed of rows {X|,...,X, }. We normalize the columns of X, calling
the resulting matrix X. The columns of X € R’”” are unit normed. Forrnally, X=XI'  where
T' € RP*? is a diagonal matrix filled with the column norms of X. We use {xT,...,xT} to refer
to the rows of X, yielding n(r;) = exp(xTﬁ) Because of the above-mentioned rescaling, we have
the following relationship between the latent map z and 3: z= WI'3. Sparsity of 3 refers to our
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Fig. 10. The four truncated Gaussian bumps

prior understanding that the rate map of grid cells consists of bumps of elevated firing rates, at
various points in the two-dimensional space and, therefore, our estimation problem is

Béarﬁg gﬂn{ o[ — yilog{n()}] +AIIﬁII1}
€RP i=1

=arg min[ S {exp(x} B) — yix; B} + Anﬁul] .
BeRrr Li=I

Here we use the negative log-likelihood in equation (29) as the cost function, i.e. ¢(y,x'3) =
yxT 8 —exp(xTB8) +log(y!). We remind the reader that we use the ALO-formula that was ob-
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tained in theorem 1. Fig. 8 illustrates that ALO is a reasonable approximation of LO, allowing
computationally efficient tuning of A. To see the effect of A of the rate map, we also present
the maps resulting from small and large values of ), leading to undersmooth and oversmooth
rate maps respectively. As it pertains to the reported run times, all fittings in this section were
performed by using the glmnet package (Qian ef al., 2013) in MATLAB.

6. Concluding remarks

Leave-one-out cross-validation is an intuitive and conceptually simple risk estimation technique.
Despite its low bias in estimating the extrasample prediction error, the high computational
complexity of leave-one-out cross-validation has limited its applications for high dimensional
problems. In this paper, by combining a single step of the Newton method with low rank matrix
identities, we obtained an approximate formula for LO, called ALO. We showed how ALO can be
applied to popular non-differentiable regularizers, such as the lasso. With the aid of theoretical
results and numerical experiments, we showed that ALO offers a computationally efficient and
statistically accurate estimate of the extrasample prediction error in high dimensions.

Important directions for future work involve various approximations that further reduce the
computational complexity. The computational bottleneck of approximate leave-one-out cross-
validation is the inversion of the large generalized hat matrix H. This can make the application of
approximate leave-one-out cross-validation to ultrahigh dimensional problems computationally
challenging. Since the diagonals of our H-matrix can be represented as leverage scores of an
augmented X-matrix, scalable methods to compute the leverage score approximately may offer
a promising avenue for future work. For example Drineas et al. (2012) offered a randomized
method to estimate the leverage scores. However, the randomized algorithm that was presented
in Drineas et al. (2012) applies to the p < n case, making it challenging to apply these methods
to high dimensional settings where p is also very large. Nevertheless this is certainly a promising
direction for speeding up ALO-algorithms.

In another line of work, the GCV approach (Craven and Wahba, 1979; Golub et al., 1979)
approximates the diagonal elements of H with tr(H)/n. Computationally efficient randomized
estimates of tr(H) can be produced without having any explicit calculations of this matrix
(Deshpande and Girard, 1991; Wahba et al., 1995; Girard, 1998; Lin et al., 2000). The theoretical
study of the additional errors that are introduced by these randomized approximations, and the
scalable implementations of them, is another promising avenue for future work.
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