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Abstract

Machines consisting of bags of artificial neural networks (ANNs) have been constructed to connect 

nanoparticle features to the viability of a broad class of organisms upon exposure. The optimization 

of these machines is based on a relatively small data set but, through consensus across a bag of 

ANNs, predicts at a level of confidence comparable to the experiment and performs better than 

chance. The mining of the machine across the feature space allows for the discovery of design 

rules for nanoparticles with increased viability. As such, we demonstrate the efficacy of inversion 

as an approach to learn from the machine in the context of designing sustainable nanoparticles. 

For example, we find that in lithium NiMnCo oxide nanoparticles that increased manganese 

content is associated with greater viability, carbon dots reduce viability less than quantum dots, 

and gold nanoparticle coatings can significantly affect viability at high concentration.

I. Introduction

Machine learning (ML) techniques have helped revolutionize a number of scientific fields 

in the past decade because of their power in identifying relationships between data.1-6 The massive 

data troves available from consumers and social media have enabled the development of new tools 
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that are increasingly available for commercial and academic applications in other fields, including 

biology, computer science, and medicine.1-2, 7-12 ML has also been successfully used in chemistry 

in at least two significant and complementary ways:13 (i) Computational and theoretical chemists 

have used ML to build fast, accurate models of atomic and electronic behavior.14-35 While these 

models are not directly constructed from the underlying physical laws, they appear to infer them 

through data mining of high-accuracy computational data and have been seen to be powerful and 

accurate predictors of chemical behavior. (ii) Chemists have also used ML to find relationships in 

observed data sets of varied sizes and to plan synthetic routes for making new molecules, especially 

through models based on quantitative structure-activity relationships.36-51

Machine learning spans a broad set of available methods, from the relatively simple least 

squares linear regression to significantly more complex methods like random forest classification 

and neural network regression.52-54  While there are a large number of rules for distinguishing 

among ML methods, perhaps one of the most useful (and simple) relies on addressing how the 

underlying data is accessed by the machine. Each datum in a data set typically contains two types 

of entries: features and labels. Features are the entries that define the state—evoking the use of 

facial features in facial recognition. They are associated with entries called labels—evoking the 

names of individuals labeling faces in facial recognition. A particular set of features and labels 

(i.e. a single datum) is called an example. In least squares regression, the domain variables x are 

features and the range variables y are labels. While in the facial recognition problem, it is fairly 

clear which entries in an example are features and which is the label, in general, there is wide 

flexibility in the partitioning of the entries between features and labels. If the ML method requires 

the dataset to have both features and labels, it is supervised. If the machine learns from data 

consisting only of features, then the method is unsupervised. Clustering algorithms fall into this 
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second category while least squares regression falls into the first category. There also exist a 

number of semi-supervised methods which can work with or without labels.55 In this work, we use 

a supervised machine learning method, neural network regression, to find connections between 

nanomaterial properties as features and viability as the label. The generic structure of the artificial 

neural networks (ANNs) we employ is shown in Fig. 1, indicating the use of bagging and other 

ANN-optimization techniques described below. 

There is precedent for applying machine learning techniques to address problems in 

environmental and biomedical nanotechnology.12, 48, 56-64 Findlay et al. 65 created a model, based 

on random forest classification, that was able to predict the types of proteins present in Ag 

nanoparticle protein coronas. Recently, Jones et al. 66 successfully used data mining and decision 

trees to identify features predicting nanoparticle toxicity that remain relevant across multiple 

Figure 1: Schematic of the bagged artificial neural network (ANN) structure used in this 
work. Green nodes are the features in the input layer, blue nodes are elements within the 
hidden layers of each ANN, orange nodes are the output layer of each ANN, and the red 
node is the predicted label calculated through some kind of consensus of the orange nodes. 
The hidden layer nodes in each individual ANN are colored differently to emphasize that 
each is trained separately and thus they have generally different parameterizations and 
outputs. In this structure, processing of all inputs occurs separately within each ANN prior 
to recombination at the end. 
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unrelated studies. Applying ML to environmental nanotechnology remains challenging because 

such implementations tend to suffer from low generalizability due to the size and diversity of the 

nanomaterial datasets being limited by the high cost of the requisite experiments. Here, data from 

the Center for Sustainable Nanotechnology (CSN), primarily mined from the literature, has been 

used exclusively.67-76 While this is a relatively small data set—with just over 200 examples—it 

has the advantage of consistency across all of the samples providing a complete set of the desired 

features. 

The disadvantage of choosing a small data set to represent such complex quantitative 

structure-activity relationships is that many approaches, such as perturbation theory,59, 62-63, 77 

similarity modeling,40, 51, 58 and single ANNs, do not readily span the corresponding wide domain 

of features. Instead, throughout this work, groups of related ANNs are created and their predictions 

are averaged to give a final consensus prediction and uncertainty. There is precedent for this in the 

ML literature, where it is commonly termed “bagging” (bootstrap aggregating).78-82 Together, 

these networks form an aggregated machine called a “bag” of ANNs. We optimize and then 

implement such a bag of ANNs for the prediction of reduced nanoparticle toxicity, where this label 

is quantified in terms of organismal viability upon nanoparticle exposure. This is not an exclusive 

figure of merit and is mainly used here to provide a clear metric for the training, validation and 

prediction of the ANN machine. It is also an observable that is typically measured, and therefore 

readily available in the data. 

We find an ANN bag that makes better-than-chance predictions and which has uncertainty 

comparable to the experimental uncertainty. We have also partially inverted the ANN’s feature-

to-label paradigm by determining regions of the feature space resulting in increased viability. 

Identification of such inversion has been a goal of this field for some time, and several possible 
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solutions are available.28, 38, 83-85 Overall, the expected mean absolute error (MAE) of predictions 

produced by our ANN is somewhere between 0.2 and 0.3 on a viability scale in which 1.0 refers 

to no change in population upon exposure. Through our inversion, we learn from the machine in 

the sense that we uncover patterns or design rules for nanoparticle properties that lead to increased 

bacterial viability. It suggests subdomains in the space of composition and structure of lithium 

nickel magnesium cobalt oxide (NMC) nanosheets linked to targeted levels of viability, especially 

as regards the composition of Mn and Co. Gold nanoparticle (AuNP) coatings are found to 

influence their viability, with poly(allylamine hydrochloride) in particular leading to strong 

cellular responses. Finally, carbon dots are found to be strongly non-toxic regardless of precursor 

while quantum dots are found to be highly toxic, an effect that is worsened by the presence of a 

ZnS coating. These trends agree with available experimental results and suggest new nanoparticle 

compositions and features which should be fully characterized by experiment either to extend the 

database or to identify desired nanoparticle targets.

II. Materials and Methods

A. ANNs, parameters and hyperparameters

Each node in each layer of an ANN is connected to the nodes in the layers before and after 

it (Fig. 1). There are three types of layers – input, output, and hidden. The input layer receives the 

features from each example. The output layer produces the final result of the ANN which 

corresponds to the label of a given example. Between them, there are some number of hidden 

layers. These are termed “hidden” because they do not interact with objects outside of the network, 

unlike the input and output nodes. The output value nij represented by each node at layer i and row 

j is  

(1)𝑛𝑖𝑗 = 𝛼(∑𝜌𝑖 ― 1

𝑙 = 1𝑤𝑖𝑗(𝑖 ― 1)𝑙𝑛(𝑖 ― 1)𝑙 + 𝑏𝑖𝑗)
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where the links between nodes are identified with weights wijkl and each node is associated with a 

bias bij. For the input nodes, the nkl values are provided by the example being considered and the 

biases are always zero (there are no weights since the input node is the first layer). The nonlinear 

“activation function,” (·), increases the complexity of the representations that the ANN can 𝛼

produce. The complex set of transformations supplied by the layer structure combined with the 

non-linearity supplied by the activation functions allows ANNs to learn (or represent) extremely 

complex patterns and relationships between input and output data.3-5 Finally,  represents the 𝜌𝑖 ― 1

number of nodes in the prior layer. In this work, ANNs have been realized using Keras and 

Tensorflow version 1.14.0 in python.4, 86-87 The python libraries numpy, scipy, pandas, scikit-learn, 

python-ternary, and matplotlib were extensively used to process and visualize data, and Jupyter 

Notebooks were also employed.4, 88-94 Categorical features were transformed into numerical ones 

using one-hot encoding, as described in more detail below.3, 95

The parameters of the ANN are precisely the weights and biases. When an ANN is being 

trained, its parameters are typically updated through a method known as backpropagation. Briefly, 

the neural network is initialized with random values for its weights and biases. Then it is applied 

to some number of examples in sequence and produces output values that are generally different 

from the associated labels. The mean squared error between the set of ANN outputs and actual 

labels is used to define a loss (or cost) function,

(2)𝐶(𝑝) = 〈Δ𝐹2〉𝐸 =  〈(𝐹 ― 𝐿)2〉𝐸 ,

where L is the actual label for a particular example, F is the output value of the ANN, and the 

average is taken over examples E in the training set. In this work, the loss function is always the 

mean squared error over the specified data set. However, the mean absolute error (MAE) is often 

the reported metric of model performance and is also used here. This first moment function is 
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sometimes preferred to functions of the second moment —such as the cost function in Eq. 2— 

because its linearity allows averages of MAEs to also be a MAE. During training, backpropagation 

is directed by gradient descent: the gradient of the cost function with respect to the parameters is 

computed and used to calculate the new weights and biases. This process is generally repeated 

until the value of the cost function is static, at which point the ANN is considered to be optimized 

with respect to its parameters. The final parameter values depend on a number of factors. First, 

they depend on the specific set of training data used for optimization since the loss function is 

defined as the mean squared error over its examples. Second, they depend on the choice of the so-

called “hyperparameters” which comprise two broad classes of descriptors defined below.

One class of hyperparameters describes the structure of the ANN. It includes the choice of 

the activation function (·), the number of layers, and the number of nodes in each layer. The 𝛼

number of nodes per layer and the number of layers together determine the number of ANN 

parameters. Among the most commonly used ANN activation functions is the rectified linear unit 

(ReLU) which is

(3)𝛼ReLU(𝑥) = {𝑥,  𝑥 > 0
0,  𝑥 ≤ 0

There are a number of functions that act as improvements on the ReLU function, most of which 

seek to address the absence of a gradient in the function for values less than zero which can lead 

to neurons that “die” i.e. stop learning. Many of these functions also contain pre-specified or sub- 

parameters. For instance, the Leaky ReLU function is

(4)𝛼Leaky ReLU(𝑥) = { 𝑥,  𝑥 > 0
𝑒 𝑥,  𝑥 ≤ 0

where e is normally set to 0.01. These sub-parameters rarely need to be changed. There are also a 

number of activation functions that have generally sigmoidal behavior, but they have fallen out of 

favor due to relatively poor performance.3
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A second class of hyperparameters are those related to the training of the network 

parameters. Among these are the optimization algorithm, the batch size, and the number of training 

epochs. In most cases, datasets are too large to efficiently sample every example before taking a 

single gradient descent step. Instead, datasets are often broken up into smaller sections called 

“batches” during ANN parameter training. When every example in the dataset has been visited, an 

epoch is said to have passed. Together, the epoch number and batch size control the completeness 

of the ANN training. The optimization algorithm controls how the training steps are taken (i.e. 

how parameters are changed during training). As noted above, most of these algorithms are based 

on gradient descent, but are implemented in different ways. One of the most commonly used 

optimization algorithms is called Adaptive Moment Estimation (Adam), which modifies the 

distance of upcoming gradient steps depending on the recent history of the optimization.96 Like 

activation functions, optimization algorithms often contain pre-specified or sub- parameters that 

are intentionally not varied during training or optimization without loss of generality in the model’s 

function.

B. Default hyperparameters for divide-and-conquer optimization

Altogether, the parameters of an ANN depend on the specific set of examples used for 

training, the hyperparameters of the network related to its structure and the process for optimizing 

its parameters, expressed as

(5)𝐹 = 𝑓A(𝐼;𝑝, 𝐸,ℎ𝑝)

where fA is the map representing the action of the ANN on the domain of features I, and F is the 

output value of the ANN. The map is specified according to the training parameters p of the ANN, 

the set E of examples used to train the network, and the chosen hyperparameters hp. The efficiency 

and utility of an ANN with respect to its trainability and predictability is strongly dependent on 
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the choice of hyperparameters, and so they too require optimization. As our output label is a 

measure of nanotoxicity and our inputs are, in part, nanomaterial properties, this mapping bares 

similarity to quantitative structure activity/toxicity relationship modeling.36, 40, 58, 77  By adding 

information about the biological systems and environment to our feature set, we are able to cover 

cases where the structure and activity relationship is altered by the surrounding system. The 

features are described in more detail in section F below.  

Here, ANNs are built across a range of hyperparameter values so as to optimize the overall 

performance on a validation set (that was not used in the training of the ANNs.) Since the dataset 

was small, ANNs were generally validated using k-fold validation (kFV).97-100 In kFV, a set of k 

networks is created as in k-fold structuring (see below). Each ANN then predicts the outputs for 

the group of examples it was not trained on (its validation set). The MAE between the network 

outputs and the actual labels is recorded; this is then repeated for each network in the set. After k 

rounds, the mean of the model performance measures is taken, providing an estimate of the 

performance of any particular model having the same hyperparameters. As such, the final MAE 

provided by k-fold validation is 

(6)〈|𝛥𝐹|〉𝑘FV =
1
𝑘∑

𝑘
𝑖 = 1〈|𝑓𝐴( 𝐼𝑖;𝑝𝑖,𝐸𝑖,ℎ𝑝) ― 𝐿𝑖|〉

where Ii and Li are the features and labels of the group of examples that network i was not trained 

on, Ei are all other examples, and pi are the parameters acquired by the network through training 

on Ei with hyperparameters hp. We applied four-fold validation (4FV) throughout this work. For k 

less than 4, we would not have obtained sufficient statistics between the training sets to establish 

confidence. In practice, we did not find a need to move beyond k=4.

Because the hyperparameters are selected according to validation performance, 

information about the validation set “leaks” into the model. A “test set” is used to provide an 
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estimate of model performance on truly new data. Prior to the optimization of the hyperparameters 

of our model, a test set of 20 examples was selected randomly and then removed from the dataset. 

These examples were excluded from all forms of model validation and hyperparameter selection 

during training except for their use as a final test set. In our hyperparameter optimization, we tested 

the effectiveness of four or five possible values for each of the six hyperparameters. A complete 

combinatoric optimization across these values would require the creation of 40,000 individual 

ANNs. In order to eliminate some of these combinations, a layered grid search was performed.4-5 

In this procedure, pairs of hyperparameter values were examined together, while the values of the 

remaining hyperparameters were held fixed at default values. We chose these values either because 

they are commonly used in neural network regression or because they maximize model complexity 

without egregiously overfitting the data. Our default hyperparameters are: 5 hidden layers, 5 nodes 

in each hidden layer, ReLU activation, the Adam optimizer, 1000 training epochs, and a batch size 

of 8. Once hyperparameter values resulting in excessive damage to model performance were 

eliminated, the remaining hyperparameter choices were optimized together to find the best 

hyperparameter combination. In addition, all ANNs in this work limit the range of output node 

values to be greater than or equal to zero, as viability values cannot be negative. 
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Figure 2: (A) The relationship between error in viability predictions and the number of hidden layers in 
the model. (B) The relationship between error in viability predictions and the number of nodes per hidden 
layer in the model. (C) The relationship between optimization algorithm and activation function 
combinations and error in viability predictions. G, D, A, M, and N are the Adagrad, Adadelta, Adam, 
Adamax, and Nadam optimization algorithms, respectively. R, E, S, and L are the ReLU, ELU, SeLU, and 
Leaky ReLU activation functions, respectively. (D) The relationship between the number of training epochs 
and viability prediction error. Note that this is an x-log plot. (E) The relationship between the batch size 
and viability prediction error. In all plots, green lines are linear fits.
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C. Divide-and-conquer optimization of the hyperparameters

First, the number of hidden layers and the number of nodes per hidden layer were optimized 

by applying a grid search across both hyperparameters over the integer values between 1 and 5. 

The searched values were limited to this range in order to minimize the number of parameters in 

the model, which would otherwise increase quickly. With only 5 layers and 5 nodes in each layer, 

the ANN would contain 555 adjustable parameters. 4FV was performed on each of the ANNs 

corresponding to the 25 combinations of layer number and node number pairs leading to the results 

shown in Figs. 2A and 2B, respectively. Figure 2A displays  as a function of the number 〈|𝛥𝐹|〉4FV

of hidden layers. Here, there is a general increase in the MAE as a function of the number of hidden 

layers (p = 4.4 x 10-3, R = 0.55). Figure 2B presents the relationship between  and the 〈|𝛥𝐹|〉4FV

number of nodes in each hidden layer. There is an inverse relationship between these values (p = 

4.2 x 10-3, R = -0.55). These results lead us to favor restricting the number of layers to lower values 

( 3) and the number of nodes per layer to higher values ( 3).

A grid search was then performed for each of 20 combinatorial choices of the parameter 

optimization algorithm and node activation function. The results are shown in Fig. 2C. Of the 

activation functions, only ReLU has consistently bad performance, though Leaky ReLU does not 

perform well when paired with Adagrad. Comparison across the activation functions suggests that 

Elu (average MAE of 0.21), has the best performance of any of those tested (average MAE of 0.26 

across all activation functions). Nadam (0.24) has the best performance of the optimization 

algorithms tested, followed by Adadelta (0.25) and Adam (0.25).

Finally, the effect of changing the number of training epochs and the batch size was 

evaluated. Epoch numbers between 1 and 1,000 and batch sizes between 1 and 100 were explored. 

The results from 4FV on these ANNs is shown in Figs. 2D and 2E. The number of epochs (p = 4.4 
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x 10-3 , R = -0.61) had a significant effect on the resulting error, but the batch size (p = 0.20, R = 

0.30) did not. This effect from the epoch number should be expected: more training should 

generally result in a better model. However, one should still be wary of overfitting, particularly 

when smaller datasets are used. In section III.A, we use several tests to ensure that we have not 

overfit our data and that our models are trustworthy.

A limited grid search of all hyperparameters, informed by these findings, was then 

performed. ANNs with between 1 and 3 hidden layers, 3 and 5 nodes per hidden layer, and the Elu 

activation function were trained with Adam, Adadelta, or Nadam, with batch sizes of 25 or 100 

examples and for either 100 or 1000 epochs. This search required the training and evaluation of 

432 individual ANNs. The ANN structure with the best performance (MAE of 0.21  0.02) had 3 

hidden layers, 5 nodes in each hidden layer, the Elu activation function, and was trained with the 

Adadelta optimizer for 1000 epochs with a batch size of 25. 

D. Viability

Organism viability was chosen as a target for ANN training as it is an anti-correlated proxy 

for nanoparticle toxicity. Viability is a measure of the fraction of organisms that survive upon 

exposure to a substance, such as nanoparticles. The number or density of survivors is compared to 

a control where no foreign substance was introduced. Thus, viability normally deviates from 1 (i.e. 

the same number of organisms are present in both the experiment and control) and can even be 

greater than 1 if the relative survival is somehow enhanced by exposure to the substance. The 

minimum value of viability is 0, representing total organism death. The dataset used in this work 

contains 200 examples of organismal viability experiments extracted from prior publications of 

the Center for Sustainable Nanotechnology.67-76  While this dataset is relatively small, it allows us 

to make inferences about the best model hyperparameters, test methods of model validation, and 
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establish a framework for making predictions about nanoparticle viability from a given model. 

Viability, whether measured by colony counting or growth-based viability, is treated as the same 

variable, though it should be noted that colony counting has a higher intrinsic error.70 

E. Bagging 

A common method for increasing the power of machine learning predictions is to train 

collections of individual machines and group or combine their results in some way. This method 

is called “bagging,” short for “bootstrap aggregating.”78, 82, 99 In the context of ANNs, the networks 

are trained such that they have different parameters, and the outputs are averaged together. 

Together, these networks form a larger machine learning object called a “bag” of ANNs. The most 

direct way to obtain distinct parameters for the individual ANNs is to use distinct subsets of the 

training examples to train the networks, while leaving the hyperparameters constant. Thus, the 

output of a bag of ANNs is

  (7)𝐹 =
1
𝑁∑

𝑁
𝑖 = 1𝑓𝐴(𝐼; 𝑝𝑖, 𝐸𝑖,ℎ𝑝)

where N is the number of ANNs in the bag and other variables retain their meanings from Eq. 6. 

In this work, three methods are employed to produce the distinct example sets that are used to 

create the bags: (i)  In k-fold structuring (kFS), the dataset is shuffled and split evenly into k groups. 

Each of k networks is then trained using k-1 of these groups such that no two networks share the 

same training dataset. The collection of the resulting k models is the bag. The average of the values 

across the bag is its prediction, and an uncertainty can be obtained from the deviation between the 

prediction of the bag and the outputs from each of its models. (ii) In i iterated k-fold structuring (i-

kFS), k-fold structuring is performed i times, shuffling the data each time before it is split into k 

groups. This produces a bag containing i × k distinct networks. A useful feature of bags created 

using k-fold structuring and i iterated k-fold structuring is that the bags are guaranteed to have been 
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collectively trained on the whole dataset. (iii) In so-called random-fold structuring (rFS), distinct 

networks are trained on a random fold —viz, a randomly selected portion— of the dataset. This 

can be done as many times as desired without duplication (given a large enough dataset), producing 

very large bags. 

F. Data Preprocessing

The full dataset prior to pre-processing is provided in the Supporting Information, and the 

full list of the features accounted for in the data set are listed in Table 1. Prior to use, the data set 

was transformed in a number of ways. All feature values were normalized to have a standard 

deviation of 1 and a mean of 0. The base 10 logarithm of the concentration was used, rather than 

the concentration itself, as this improved model performance markedly. In order to operate on 

values of zero, a small value (10-9 ppm) was added to all concentration values. This did not alter 

the concentration of non-zero values (ranging from 10-4 to 104 ppm) in an appreciable way. NMC 

nanoparticle examples were characterized with a feature reporting the surface area of exposed 

NMC per liter as it approximately reflects the surface area exposed to solvent which is a 

characteristic that was found to be germane to viability in prior CSN work.72 For non-NMC 

examples, this value is by definition zero. In several cases, it was not possible to determine the full 

chemical makeup of a nanoparticle, and this is noted in the database and considered by the ANNs 

through a simple true/false variable noting whether the composition features reflected the complete 

makeup of the nanoparticle. Because ANNs can only interact with numerical features, non-

numerical (i.e. categorical) features were one-hot encoded. Consider a categorical feature I. In one-

hot encoding, the feature I is eliminated and new numerical features Ia are created for each category 

A. For each example E with feature value E(I), the value of Ia is

(8)𝐼𝑎 = {1,  𝐸(𝐼) = 𝐴
0,  𝐸(𝐼) ≠ 𝐴
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resulting in a set of new numerical features with the full information content of I. The new features 

Ia are called one-hot vectors or one-hot features. Nanoparticle composition is treated in a semi-

one-hot manner. Each element present in a nanoparticle in the database is given a separate feature 

Ia which is equal to the mol % of the given element in that nanoparticle. These feature engineering 

processes resulted in a total of 82 numerical features that were used by the ANNs for prediction.

Table 1: The features used to categorize the viability experiments in training the neural
networks are listed and sorted according to the type of values they exhibit (as noted in the columns) 
and the types of characteristics they describe (as noted in the rows).

Features Numerical Categorical Mixed
Nanomaterial 

Properties
Particle Diameter Per 

Dimension (nm), 
Concentration (mg/L),
Exposed NMC Surface 

Area (m2/g)

Type, Total Composition 
Knowledge, Capping 

Agent, Shape

Elemental Composition 
(mol %)

Organism 
Characteristics

Bacteria, Gram, Identity, 
Mutation, Viability 

Method

Experimental 
Conditions

pH, Natural Organic 
Matter (mg/L), Total 
Centrifugation Steps, 
Exposure Time (min)

Medium, Purification 
Method

III. Results and Discussion

A. Validation of the Machine: Better than Chance

The optimal ANN hyperparameterization (see Methods) was evaluated in its ability to lead 

to ANNs (or bags of ANNs) which can learn to predict viability values at a better than chance rate, 

its behavior when confronted with falsified data, and its performance on validation and test sets. 

To define “better than chance” predictions on the dataset, we find the MAE value that would be 

produced if the model prediction was performed according to two null hypotheses: N1 defined such 

that the model knows nothing about the data except the range of its labels, and N2 defined such 
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that the model knows both the label range and the frequency of label values. In both of these cases, 

the model would have no other information about how features are connected to labels, and its 

outputs can be represented by random selections from an appropriate probability distribution 

without direct reference to the input features. These outputs are generated using a random number 

generator and the corresponding MAE for a given realization of the model is

(9)〈|Δ𝑥𝑁𝐻
|〉 =

1
𝑀∑

𝑀
𝑖 = 1|𝑥𝑖(𝑓𝑖) ― 𝜉𝑖(𝑝𝐻)|

where  is a given data set with M examples consisting of labels  corresponding to features {𝑥𝑖(𝑓𝑖)} 𝑥𝑖

, respectively, and  is a random number chosen according to the  distribution consistent with 𝑓𝑖 𝜉𝑖 𝑝𝐻

the  hypothesis. The uniform chance distribution  represents the values generated by a 𝑁𝐻 𝑝1

uniform random number generator producing values between 0 and the maximum value in L. The 

frequency-weighted chance distribution, , is the frequency with which the labels appear in the 𝑝2

data set with no reference to the underlying features.  can be generated via random permutations 𝑝2

of the dataset’s labels. We computed the average MAE for a given null hypothesis by averaging 

the absolute differences between the true viability dataset and an ensemble of one million 

realizations of the “predictions” from the associated chance distribution. The resulting  〈|Δ𝑥𝑁1
|〉

was 0.87 and  was 0.49. The difference between  and  reflects the fact that 〈|Δ𝑥𝑁2
|〉 〈|Δ𝑥𝑁1

|〉 〈|Δ𝑥𝑁2
|〉

the label —namely, viability— of the examples in our system is not uniform between 0 and the 

maximum value in L. 

With the results of the null hypotheses in hand, a relevant figure of merit is the error of the 

ANN converged over possible training sets—viz. possible parameter sets for the ANN. In order to 

reach convergence, 25-4FV (i-4FV for  i = 25 different arbitrary four-fold partitionings of the 

examples; see Methods) was used and the resulting  was found to be 0.27  0.01, 〈|𝛥𝐹|〉25 ― 4FV

substantially smaller than the values seen for the null hypotheses for chance. Thus, we can 
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conclude that these ANNs are able to learn real connections between features and labels in the 

dataset. 

An additional test was performed in which an ensemble of fictitious data was generated by 

randomly producing feature values between 0 and 1 and label values between 0 and the maximum 

value in L such that the final data set had the same number of examples as the original dataset. 

There is little to no information content in this dataset, and thus it can be used to examine the 

performance of the ANN in the case of a null dataset. 25-4FV was used to obtain a bag of ANNs 

(as defined in the Methods section) whose regression represents the fictitious data. It led to a 

converged MAE  equal to 0.98  0.01. As hypothesized, this is much higher 〈|𝛥𝐹(null)|〉25 ― 4FV

than the MAE   seen for the actual examples. Thus, we conclude that the true dataset 〈|𝛥𝐹|〉25 ― 4FV

contains correlated information, not available in the null dataset, that can be learned by the ANN 

to predict viability.

Figure 3: (A) Comparison of the viability predictions of 100 ANNs with 
the experimental values. (B): Model performance of 100 ANNs on the 
test set. Better predictions are closer to the red Y = X line.

Page 18 of 39

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



B. Validation of the Machine: Accuracy Comparable to Experiment 

Because of our smaller dataset, single models are highly susceptible to bias in their 

predictions. Ensembles of ANNs can minimize the effect of individual model bias by cancelling 

opposing biases. The collection of such an ensemble is then a new model called a bag. Here, we 

validate bagged ANNs producing predictions of viability values and use a previously sequestered 

test set to obtain a final model performance estimate. In validation, one determines if the 

parameters that a particular model has been trained to are accurate through the quality of its 

predictions on the validation set. However, the validation data is also used to evaluate ANN 

structure (i.e. hyperparameters; see Methods) optimization and thus cannot be used as a 

representation of model performance on data the model has no direct information about. In testing, 

one examines the quality of hyperparameters by evaluating prediction quality on data excluded 

from the hyperparameter optimization process. 100 ANNs were trained using random-fold 

sampling (rFS, see Methods), training on 75 % of the dataset examples. The rFS bag has the same 

number of ANNs as the 25-4FV bag used above, and hence serves as a useful reference to whether 

the latter has any significant bias due to the less-random partitioning of the training examples. 

After each ANN was trained in the rFS set, it was used to predict values for the remaining quarter 

of the examples (used as a validation set) resulting in predictions of each label by a unique 

ensemble (bag) of approximately 25 ANNs. The results of this analysis are shown in Fig. 3A. This 

plot compares the ensemble viability predictions to the true viability values. The MAE between 

ensemble predictions and experimental values was 0.21, comparable to the accuracy found from 

25-4FV. 

During hyperparameter optimization, 20 randomly selected examples, termed a “test set,” 

were excluded from the dataset. Because these examples were not used to develop the model 
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structure, no information about them was incorporated into the model. As such, the model 

performance on these values is taken to represent the performance of the model on entirely new 

data and is used to evaluate the quality of the hyperparameters. The procedure used above for 

validation examples was repeated to evaluate the performance of a bag of 100 distinctly trained 

ANNs on this test set. The predicted values are compared to the experimental values in Fig. 4B, 

and the MAE is 0.23. ANN performance is good and likely not due to chance (p = 0.001, R = 

0.67). 

It is notable that the uncertainty reported in viability experiments using both growth-based 

viability and colony counting methods can range from 0 to 0.3.70 As reported above, the expected 

MAE of predictions of viability produced by our bags of ANNs is somewhere between 0.2 and 

0.3. Thus, an ANN bag produces predictions with a comparable level of confidence to the ground 

truth in the data set it has learned from. 

C. Learning from the Machine

ANNs are typically used to predict outputs given a set of inputs. However, it is tempting 

to invert them by way of determining the set of inputs —viz. features— that result in a given 

desired output —viz label. When using ANNs, there are several difficulties involved. First, a given 

output is quite likely to have many possible associated sets of inputs – ANNs often represent many-

to-one relationships.83 The fundamental complexity of ANNs is also challenging because they 

generally do not admit to a simple method for inverting the functional form of the ANN. There are 

several complex methods that have been developed for the inversion of ANNs. These include 

methods that directly invert backpropagation and algorithms that learn an inverse mapping from 

labels to features.28, 38, 83-85 Here, we use a scan across dynamic input variables because of its 

simplicity.

Page 20 of 39

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



A small bag of four ANNs was created using 4FS. Viability predictions were taken to be 

the average of the predictions of these distinct ANNs. Model inversion was attempted for several 

classes of nanoparticles — NMC nanosheets, gold nanospheres, and carbon and quantum dots. All 

predictions in this section are for Gram negative Shewanella oneidensis MR-1 bacteria (note that 

the dataset includes several different types of organisms). As “the dose makes the poison” — i.e. 

any material is toxic or nontoxic as some exposure level— concentration dependence is evaluated 

for all considered nanomaterials.101

For NMC nanoparticles, the effect of composition is shown in Fig. 4 across four 

representative cases, varying in concentration of nanoparticles. This scan includes only nanosheets 

as they have the highest surface area to volume ratio and thus the most dynamic viability response 

of NMC nanoparticles in the database. The viability is 1.0 at a concentration of 0 ppm regardless 

of composition, as expected. As the concentration increases, the region towards the right of the 

graph, corresponding to lower compositions of Mn and mixed compositions of Ni and Co, 

Figure 4: Predicted viability as a function of NMC nanosheet 
composition at 4 different total concentrations, as indicated. Grid lines 
reference the tick marks they are connected and parallel to.

A: 0 ppm B: 0.01 ppm

D: 100 ppmC: 1 ppm
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decreases in viability most quickly. At 100 ppm, high Mn nanosheets are still clearly preferred. 

However, mixed Mn/Ni nanoparticles show less toxicity than mixed Mn/Co nanoparticles. In 

terms of composition, the ANNs predicts toxicity as Mn < Ni < Co. Prior experiments have 

observed no Ni composition dependent effect on toxicity, which in Fig. 4 would appear as a color 

gradient along the Ni axis. At the Mn compositions examined in that study (~3 to 10 mol %), the 

ANN predicts weak Ni dependent effects unless the Ni mol % is particularly high or the NMC 

concentration is particularly large.76 This shows that our model is able to make testable viability 

predictions outside of the range of previously performed experiments, leading to proposed 

nanotechnology design rules. Other work has shown that increasing the relative composition of 

Mn and lowering that of Co or Ni decreases the toxicity of NMC nanoparticles, in agreement with 

the current work.102 These experiments measured oxygen consumption by bacteria, a type of data 

that was not considered by this ANN. Thus, our ANN is in agreement with experimental data 

beyond what it has been trained on. 

Figure 5: (A) Viability as a function of AuNP coating and concentration. (B) Comparison 
of concentration dependence of carbon and quantum dots.
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For gold nanospheres, the effect of nanoparticle coating was also determined from the 

optimal bag of ANNs. Specifically, the viability in response to several spherical nanoparticles with 

4.5 nm (core) diameters was determined as a function of concentration. These values are plotted 

in Fig. 5A. Shaded areas represent standard error across the four ANNs. The 3-mercaptopropionic 

acid (MPA) and 3-mercaptopropylamine (MPNH2) nanoparticles are predicted to have largely 

similar dose-response effects, while the poly(allylamine hydrochloride) (PAH) nanoparticles are 

expected to be much more toxic to the bacteria at high concentration; these trends are largely in 

agreement with experiment.67 

Finally, we compare the concentration-dependent effect on viability of carbon and quantum 

dots in Fig. 5B. Carbon dots (without phosphorus doping) made with citric acid (CA) or malic acid 

(MA) precursors are compared to CdSe quantum dots with and without an approximately 2 nm 

ZnS shell. While the error bars are generally fairly large due to the limitations of the training 

dataset, it is clear that carbon dots are predicted to have much less toxicity than quantum dots at 

equivalent concentrations. For carbon dots, changing the precursor material does not have a large 

effect on viability. For quantum dots, adding a ZnS shell strongly increases the nanoparticle 

toxicity. These trends are in overall agreement with prior experimental work.74-75 Moreover, we 

can now compare between the viability in response to carbon dots and quantum dots as predicted 

by the bag of ANNs at the same concentrations. Such a direct comparison was not available in the 

original data and illustrates the interpolative and extrapolative power of the bag of ANNs. 

IV. Conclusion

Using a diverse, yet limited database of experimental results, we developed a bag of ANNs 

for prediction of organism viability upon exposure to nanomaterials. Rigorous validation is 

undertaken to ensure that the predictions of the ANN families are accurate. The working machine 
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is a bag of ANNs whose consensus value is the prediction. It performs better than chance as 

quantified against null hypotheses in which the labels are randomly associated with features either 

for training or evaluation. Its uncertainty is comparable, but no worse, to that of the experiments 

in the underlying database used to generate it. 

The ANNs have been inverted to uncover relationships between the properties of 

nanoparticles and their toxicity to Gram negative bacteria that agree with prior experimental trends 

and imply new areas for experimental exploration. These properties —whether previously known 

or not— were not provided to the ANNs directly. Instead, they were encoded only through 

whatever correlations exist within the data set provided to the ANN, and hence the use of the ANN 

to learn them represents a pathway for their discovery. First, we found complex variation in 

organism viability in response to NMC nanosheets of varying composition. We also found that 

MPA and MPNH2 coated AuNPs have similar dose-dependent viability profiles, and PAH coated 

nanoparticles are predicted to lead to more dynamic viability response than either of the other two 

coated AuNPs. Finally, carbon dots are found to support much higher viability than quantum dots, 

regardless of concentration or carbon dot composition. Quantum dots with ZnS shells are found to 

lead to very low viability. Thus, ANNs can be used to uncover rules or principles connecting 

nanoparticle properties and their effects on viability.

In summary, in this work, we have achieved at least three novel aims: (1) We applied a 

neural net approach---including bagging---to connect molecular properties to macroscopic 

observables in a chemical context not attempted before. (ii) We addressed a class of problems for 

which the data set is often “small” and hence requires some care in applying machine learning to 

resolve it. (iii) We introduced an approach to use a bagged-neural net approach to both recover 

prediction and a kind of inversion.
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Supporting Information

The Supporting Information is available free of charge at TK. 

The Excel file, CSN_DataBase2020.xlsx, includes all of the data in the Center for 

Sustainable Nanotechnology (CSN) Nanoparticle Viability Database used in this work to 

construct the ANNs, and cites the corresponding papers from which it was drawn. 

Acknowledgements

Data used in this study for the training of ANNs was graciously provided by the CSN 

through deposits in an internal data repository called the NanoDatabase, from work performed by, 

but not limited, to Thu Nguyen, Sunipa Pramanik, Peter Clement, Benjamin Frank, Eric Melby, 

Bo Zhi, Joseph Buchman, Denise N. Williams, Tian Autumn Qiu, Natalie Hudson-Smith, Galya 

Orr, Howard Fairbrother, Z. Vivian Feng, Rebecca Klaper, and Christy Haynes. They are also 

acknowledged for providing interpretation and understanding of the diverse data streams. This 

work was supported by National Science Foundation under the NSF Center for Sustainable 

Nanotechnology (CSN), CHE-1503408. The CSN is part of the NSF Centers for Chemical 

Innovation Program.  

References

1. Mjolsness, E.; DeCoste, D. Machine Learning for Science: State of the Art and Future 
Prospects. Science 2001, 293, 2051-2055.
2. Jordan, M. I.; Mitchell, T. M. Machine Learning: Trends, Perspectives, and Prospects. 
Science 2015, 349, 255-260.
3. Chollet, F., Deep Learning with Python. 1st ed.; Manning Publications Co.: 2017.
4. Géron, A., Hands-on Machine Learning with Scikit-Learn and Tensorflow: Concepts, Tools, 
and Techniques to Build Intelligent Systems. 1st ed.; O'Reilly Media, Inc.: 2017.
5. Bonaccorso, G., Machine Learning Algorithms. Packt Publishing: 2017.

Page 25 of 39

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6. Carleo, G.; Cirac, I.; Cranmer, K.; Daudet, L.; Schuld, M.; Tishby, N.; Vogt-Maranto, L.; 
Zdeborová, L. Machine Learning and the Physical Sciences. Rev. Mod. Phys. 2019, 91, 045002.
7. Barrington, L.; Turnbull, D.; Lanckriet, G. Game-Powered Machine Learning. Proc. Natl. 
Acad. Sci. USA 2012, 109, 6411-6416.
8. Schmuker, M.; Schneider, G. Processing and Classification of Chemical Data Inspired by 
Insect Olfaction. Proc. Natl. Acad. Sci. USA 2007, 104, 20285-20289.
9. Belabbas, M.-A.; Wolfe, P. J. Spectral Methods in Machine Learning and New Strategies 
for Very Large Datasets. Proc. Natl. Acad. Sci. USA 2009, 106, 369-374.
10. Mellit, A.; Pavan, A. M. A 24-H Forecast of Solar Irradiance Using Artificial Neural Network: 
Application for Performance Prediction of a Grid-Connected Pv Plant at Trieste, Italy. Sol. Energy 
2010, 84, 807-821.
11. Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum 
Machine Learning. Nature 2017, 549, 195-202.
12. Adir, O.; Poley, M.; Chen, G.; Froim, S.; Krinsky, N.; Shklover, J.; Shainsky-Roitman, J.; 
Lammers, T.; Schroeder, A. Integrating Artificial Intelligence and Nanotechnology for Precision 
Cancer Medicine. Adv. Mater. 2019, 1901989.
13. Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine Learning for 
Molecular and Materials Science. Nature 2018, 559, 547-555.
14. Behler, J. Constructing High-Dimensional Neural Network Potentials: A Tutorial Review. 
Int. J. Quantum Chem. 2015, 115, 1032-1050.
15. Faber, F.; Lindmaa, A.; Lilienfeld, O. A. v.; Armiento, R. Crystal Structure Representations 
for Machine Learning Models of Formation Energies. Int. J. Quantum Chem. 2015, 115, 1094-
1101.
16. Ramakrishnan, R.; Dral, P. O.; Rupp, M.; von Lilienfeld, O. A. Big Data Meets Quantum 
Chemistry Approximations: The Δ-Machine Learning Approach. J. Chem. Theory Comput. 2015, 
11, 2087-2096.
17. Fernandez, M.; Bilić, A.; Barnard, A. S. Machine Learning and Genetic Algorithm Prediction 
of Energy Differences between Electronic Calculations of Graphene Nanoflakes. Nanotechnology 
2017, 28, 38LT03.
18. Bartók, A. P.; De, S.; Poelking, C.; Bernstein, N.; Kermode, J. R.; Csányi, G.; Ceriotti, M. 
Machine Learning Unifies the Modeling of Materials and Molecules. Sci. Adv. 2017, 3, e1701816.
19. Chmiela, S.; Tkatchenko, A.; Sauceda, H. E.; Poltavsky, I.; Schütt, K. T.; Müller, K.-R. 
Machine Learning of Accurate Energy-Conserving Molecular Force Fields. Sci. Adv. 2017, 3, 
e1603015.
20. Carrasquilla, J.; Melko, R. G. Machine Learning Phases of Matter. Nat. Phys. 2017, 13, 431-
434.
21. Ward, L.; Liu, R.; Krishna, A.; Hegde, V. I.; Agrawal, A.; Choudhary, A.; Wolverton, C. 
Including Crystal Structure Attributes in Machine Learning Models of Formation Energies Via 
Voronoi Tessellations. Phys. Rev. B 2017, 96, 024104.
22. Gómez-Bombarelli, R.; Aspuru-Guzik, A., Machine Learning and Big-Data in Computational 
Chemistry. In Handbook of Materials Modeling: Methods: Theory and Modeling, Andreoni, W.; 
Yip, S., Eds. Springer International Publishing: Cham, 2018; pp 1-24.

Page 26 of 39

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



23. Wu, Z.; Ramsundar, B.; Feinberg, Evan N.; Gomes, J.; Geniesse, C.; Pappu, A. S.; Leswing, 
K.; Pande, V. Moleculenet: A Benchmark for Molecular Machine Learning. Chem. Sci. 2018, 9, 
513-530.
24. Sifain, A. E.; Lubbers, N.; Nebgen, B. T.; Smith, J. S.; Lokhov, A. Y.; Isayev, O.; Roitberg, A. 
E.; Barros, K.; Tretiak, S. Discovering a Transferable Charge Assignment Model Using Machine 
Learning. J. Phys. Chem. Lett. 2018, 9, 4495-4501.
25. Smith, J. S.; Nebgen, B.; Lubbers, N.; Isayev, O.; Roitberg, A. E. Less Is More: Sampling 
Chemical Space with Active Learning. J. Chem. Phys. 2018, 148, 241733.
26. Afzal, M. A. F.; Cheng, C.; Hachmann, J. Combining First-Principles and Data Modeling for 
the Accurate Prediction of the Refractive Index of Organic Polymers. J. Chem. Phys. 2018, 148, 
241712.
27. Ribeiro, J. M. L.; Bravo, P.; Wang, Y.; Tiwary, P. Reweighted Autoencoded Variational 
Bayes for Enhanced Sampling (Rave). J. Chem. Phys. 2018, 149, 072301.
28. Blaschke, T.; Olivecrona, M.; Engkvist, O.; Bajorath, J.; Chen, H. Application of Generative 
Autoencoder in De Novo Molecular Design. Mol. Inform. 2018, 37, 1700123.
29. Lamim Ribeiro, J. M.; Tiwary, P. Toward Achieving Efficient and Accurate Ligand-Protein 
Unbinding with Deep Learning and Molecular Dynamics through Rave. J. Chem. Theory Comput. 
2019, 15, 708-719.
30. Smith, J. S.; Nebgen, B. T.; Zubatyuk, R.; Lubbers, N.; Devereux, C.; Barros, K.; Tretiak, S.; 
Isayev, O.; Roitberg, A. E. Approaching Coupled Cluster Accuracy with a General-Purpose Neural 
Network Potential through Transfer Learning. Nat. Commun. 2019, 10, 2903.
31. Wang, Y.; Ribeiro, J. M. L.; Tiwary, P. Past–Future Information Bottleneck for Sampling 
Molecular Reaction Coordinate Simultaneously with Thermodynamics and Kinetics. Nat. 
Commun. 2019, 10, 3573.
32. Häse, F.; Fdez. Galván, I.; Aspuru-Guzik, A.; Lindh, R.; Vacher, M. How Machine Learning 
Can Assist the Interpretation of Ab Initio Molecular Dynamics Simulations and Conceptual 
Understanding of Chemistry. Chem. Sci. 2019, 10, 2298-2307.
33. Tuckerman, M. E. Machine Learning Transforms How Microstates Are Sampled. Science 
2019, 365, 982-983.
34. Afzal, M. A. F.; Haghighatlari, M.; Ganesh, S. P.; Cheng, C.; Hachmann, J. Accelerated 
Discovery of High-Refractive-Index Polyimides Via First-Principles Molecular Modeling, Virtual 
High-Throughput Screening, and Data Mining. J. Phys. Chem. C 2019, 123, 14610-14618.
35. Noe, F.; Olsson, S.; Kohler, J.; Wu, H. Boltzmann Generators: Sampling Equilibrium States 
of Many-Body Systems with Deep Learning. Science 2019, 365, eaaw1147.
36. Roy, K.; Kar, S.; Das, R. N., Chapter 1 - Background of QSAR and Historical Developments. 
In Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk 
Assessment, Roy, K.; Kar, S.; Das, R. N., Eds. Academic Press: Boston, 2015; pp 1-46.
37. Raccuglia, P.; Elbert, K. C.; Adler, P. D. F.; Falk, C.; Wenny, M. B.; Mollo, A.; Zeller, M.; 
Friedler, S. A.; Schrier, J.; Norquist, A. J. Machine-Learning-Assisted Materials Discovery Using 
Failed Experiments. Nature 2016, 533, 73-76.
38. Miyao, T.; Kaneko, H.; Funatsu, K. Inverse QSPR/QSAR Analysis for Chemical Structure 
Generation (from y to x). J. Chem. Inf. Model. 2016, 56, 286-299.

Page 27 of 39

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



39. Chowdhury, A. J.; Yang, W.; Walker, E.; Mamun, O.; Heyden, A.; Terejanu, G. A. Prediction 
of Adsorption Energies for Chemical Species on Metal Catalyst Surfaces Using Machine Learning. 
J. Phys. Chem. C 2018, 122, 28142-28150.
40. Simón-Vidal, L.; García-Calvo, O.; Oteo, U.; Arrasate, S.; Lete, E.; Sotomayor, N.; González-
Díaz, H. Perturbation-Theory and Machine Learning (Ptml) Model for High-Throughput Screening 
of Parham Reactions: Experimental and Theoretical Studies. J. Chem. Inf. Model. 2018, 58, 1384-
1396.
41. Bartel, C. J.; Millican, S. L.; Deml, A. M.; Rumptz, J. R.; Tumas, W.; Weimer, A. W.; Lany, S.; 
Stevanović, V.; Musgrave, C. B.; Holder, A. M. Physical Descriptor for the Gibbs Energy of 
Inorganic Crystalline Solids and Temperature-Dependent Materials Chemistry. Nat. Commun. 
2018, 9, 4168.
42. Coley, C. W.; Green, W. H.; Jensen, K. F. Machine Learning in Computer-Aided Synthesis 
Planning. Acc. Chem. Res. 2018, 51, 1281-1289.
43. Sanchez-Lengeling, B.; Aspuru-Guzik, A. Inverse Molecular Design Using Machine 
Learning: Generative Models for Matter Engineering. Science 2018, 361, 360-365.
44. Ahneman, D. T.; Estrada, J. G.; Lin, S.; Dreher, S. D.; Doyle, A. G. Predicting Reaction 
Performance in C–N Cross-Coupling Using Machine Learning. Science 2018, 360, 186-190.
45. Sanchez-Lengeling, B.; Roch, L. M.; Perea, J. D.; Langner, S.; Brabec, C. J.; Aspuru-Guzik, A. 
A Bayesian Approach to Predict Solubility Parameters. Adv. Theory Simul. 2019, 2, 1800069.
46. Hachmann, J.; Afzal, M. A. F.; Haghighatlari, M.; Pal, Y. Building and Deploying a 
Cyberinfrastructure for the Data-Driven Design of Chemical Systems and the Exploration of 
Chemical Space. Mol. Simulat. 2018, 44, 921-929.
47. Popova, M.; Isayev, O.; Tropsha, A. Deep Reinforcement Learning for De Novo Drug 
Design. Sci. Adv. 2018, 4, eaap7885.
48. Aykol, M.; Hegde, V. I.; Hung, L.; Suram, S.; Herring, P.; Wolverton, C.; Hummelshøj, J. S. 
Network Analysis of Synthesizable Materials Discovery. Nat. Commun. 2019, 10, 2018-2018.
49. Zhang, Y.; Mesaros, A.; Fujita, K.; Edkins, S. D.; Hamidian, M. H.; Ch’ng, K.; Eisaki, H.; 
Uchida, S.; Davis, J. C. S.; Khatami, E., et al. Machine Learning in Electronic-Quantum-Matter 
Imaging Experiments. Nature 2019, 570, 484-490.
50. Varsou, D.-D.; Tsoumanis, A.; Afantitis, A.; Melagraki, G., Enalos Cloud Platform: 
Nanoinformatics and Cheminformatics Tools. In Ecotoxicological Qsars, Roy, K., Ed. Springer US: 
New York, NY, 2020; pp 789-800.
51. Toyao, T.; Maeno, Z.; Takakusagi, S.; Kamachi, T.; Takigawa, I.; Shimizu, K.-i. Machine 
Learning for Catalysis Informatics: Recent Applications and Prospects. ACS Catal. 2020, 10, 2260-
2297.
52. Dreiseitl, S.; Ohno-Machado, L. Logistic Regression and Artificial Neural Network 
Classification Models: A Methodology Review. J. Biomed. Inform. 2002, 35, 352-359.
53. Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J. C.; Sheridan, R. P.; Feuston, B. P. Random 
Forest:  A Classification and Regression Tool for Compound Classification and QSAR Modeling. J. 
Chem. Inf. Comput. Sci. 2003, 43, 1947-1958.
54. Grömping, U. Variable Importance Assessment in Regression: Linear Regression Versus 
Random Forest. Am. Stat. 2009, 63, 308-319.

Page 28 of 39

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



55. Weston, J.; Ratle, F.; Mobahi, H.; Collobert, R., Deep Learning Via Semi-Supervised 
Embedding. In Neural Networks: Tricks of the Trade: Second Edition, Montavon, G.; Orr, G. B.; 
Müller, K.-R., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 2012; pp 639-655.
56. Liu, R.; Cohen, Y. Nanoinformatics for Environmental Health and Biomedicine. Beilstein J. 
Nanotechnol. 2015, 6, 2449-2451.
57. Jones, D. E.; Ghandehari, H.; Facelli, J. C. A Review of the Applications of Data Mining and 
Machine Learning for the Prediction of Biomedical Properties of Nanoparticles. Comput. Meth. 
Prog. Bio. 2016, 132, 93-103.
58. Kleandrova, V. V.; Feng, L.; Speck-Planche, A.; Cordeiro, M. N. D. S., QSAR-Based Studies 
of Nanomaterials in the Environment. In Pharmaceutical Sciences: Breakthroughs in Research and 
Practice, IGI Global: Hershey, PA, USA, 2017; pp 1339-1366.
59. Concu, R.; Kleandrova, V. V.; Speck-Planche, A.; Cordeiro, M. N. D. S. Probing the Toxicity 
of Nanoparticles: A Unified in Silico Machine Learning Model Based on Perturbation Theory. 
Nanotoxicology 2017, 11, 891-906.
60. Findlay, M. R.; Freitas, D. N.; Mobed-Miremadi, M.; Wheeler, K. E. Machine Learning 
Provides Predictive Analysis into Silver Nanoparticle Protein Corona Formation from 
Physicochemical Properties. Environ. Sci. Nano 2018, 5, 64-71.
61. Ha, M. K.; Trinh, T. X.; Choi, J. S.; Maulina, D.; Byun, H. G.; Yoon, T. H. Toxicity Classification 
of Oxide Nanomaterials: Effects of Data Gap Filling and Pchem Score-Based Screening 
Approaches. Sci. Rep. 2018, 8, 3141.
62. González-Durruthy, M.; Manske Nunes, S.; Ventura-Lima, J.; Gelesky, M. A.; González-
Díaz, H.; Monserrat, J. M.; Concu, R.; Cordeiro, M. N. D. S. MitoTarget Modeling Using ANN-
Classification Models Based on Fractal SEM Nano-Descriptors: Carbon Nanotubes as 
Mitochondrial F0F1-ATPase Inhibitors. J. Chem. Inf. Model. 2019, 59, 86-97.
63. Halder, A. K.; Melo, A.; Cordeiro, M. N. D. S. A Unified in Silico Model Based on 
Perturbation Theory for Assessing the Genotoxicity of Metal Oxide Nanoparticles. Chemosphere 
2020, 244, 125489.
64. Afantitis, A.; Melagraki, G.; Isigonis, P.; Tsoumanis, A.; Varsou, D. D.; Valsami-Jones, E.; 
Papadiamantis, A.; Ellis, L.-J. A.; Sarimveis, H.; Doganis, P., et al. NanoSolveIT Project: Driving 
Nanoinformatics Research to Develop Innovative and Integrated Tools for in Silico Nanosafety 
Assessment. Comput. Struct. Biotechnol. J. 2020, 18, 583-602.
65. Findlay, M. R.; Freitas, D. N.; Mobed-Miremadi, M.; Wheeler, K. E. Machine Learning 
Provides Predictive Analysis into Silver Nanoparticle Protein Corona Formation from 
Physicochemical Properties. Environ. Sci.: Nano 2018, 5, 64-71.
66. Labouta, H. I.; Asgarian, N.; Rinker, K.; Cramb, D. T. Meta-Analysis of Nanoparticle 
Cytotoxicity Via Data-Mining the Literature. ACS Nano 2019, 13, 1583-1594.
67. Feng, Z. V.; Gunsolus, I. L.; Qiu, T. A.; Hurley, K. R.; Nyberg, L. H.; Frew, H.; Johnson, K. P.; 
Vartanian, A. M.; Jacob, L. M.; Lohse, S. E., et al. Impacts of Gold Nanoparticle Charge and Ligand 
Type on Surface Binding and Toxicity to Gram-Negative and Gram-Positive Bacteria. Chem. Sci. 
2015, 6, 5186-5196.
68. Mensch, A. C.; Hernandez, R. T.; Kuether, J. E.; Torelli, M. D.; Feng, Z. V.; Hamers, R. J.; 
Pedersen, J. A. Natural Organic Matter Concentration Impacts the Interaction of Functionalized 
Diamond Nanoparticles with Model and Actual Bacterial Membranes. Environ. Sci. Technol. 2017, 
51, 11075-11084.

Page 29 of 39

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



69. Qiu, T. A.; Meyer, B. M.; Christenson, K. G.; Klaper, R. D.; Haynes, C. L. A Mechanistic Study 
of Tio2 Nanoparticle Toxicity on Shewanella Oneidensis MR-1 with Uv-Containing Simulated Solar 
Irradiation: Bacterial Growth, Riboflavin Secretion, and Gene Expression. Chemosphere 2017, 
168, 1158-1168.
70. Qiu, T. A.; Nguyen, T. H. T.; Hudson-Smith, N. V.; Clement, P. L.; Forester, D.-C.; Frew, H.; 
Hang, M. N.; Murphy, C. J.; Hamers, R. J.; Feng, Z. V., et al. Growth-Based Bacterial Viability Assay 
for Interference-Free and High-Throughput Toxicity Screening of Nanomaterials. Anal. Chem. 
2017, 89, 2057-2064.
71. Qiu, T. A.; Torelli, M. D.; Vartanian, A. M.; Rackstraw, N. B.; Buchman, J. T.; Jacob, L. M.; 
Murphy, C. J.; Hamers, R. J.; Haynes, C. L. Quantification of Free Polyelectrolytes Present in 
Colloidal Suspension, Revealing a Source of Toxic Responses for Polyelectrolyte-Wrapped Gold 
Nanoparticles. Anal. Chem. 2017, 89, 1823-1830.
72. Hang, M. N.; Hudson-Smith, N. V.; Clement, P. L.; Zhang, Y.; Wang, C.; Haynes, C. L.; 
Hamers, R. J. Influence of Nanoparticle Morphology on Ion Release and Biological Impact of 
Nickel Manganese Cobalt Oxide (NMC) Complex Oxide Nanomaterials. ACS Appl. Nano Mater. 
2018, 1, 1721-1730.
73. Melby, E. S.; Cui, Y.; Borgatta, J.; Mensch, A. C.; Hang, M. N.; Chrisler, W. B.; Dohnalkova, 
A.; Van Gilder, J. M.; Alvarez, C. M.; Smith, J. N., et al. Impact of Lithiated Cobalt Oxide and 
Phosphate Nanoparticles on Rainbow Trout Gill Epithelial Cells. Nanotoxicology 2018, 12, 1166-
1181.
74. Williams, D. N.; Pramanik, S.; Brown, R. P.; Zhi, B.; McIntire, E.; Hudson-Smith, N. V.; 
Haynes, C. L.; Rosenzweig, Z. Adverse Interactions of Luminescent Semiconductor Quantum Dots 
with Liposomes and Shewanella Oneidensis. ACS Appl. Nano Mater. 2018, 1, 4788-4800.
75. Zhi, B.; Gallagher, M. J.; Frank, B. P.; Lyons, T. Y.; Qiu, T. A.; Da, J.; Mensch, A. C.; Hamers, 
R. J.; Rosenzweig, Z.; Fairbrother, D. H., et al. Investigation of Phosphorous Doping Effects on 
Polymeric Carbon Dots: Fluorescence, Photostability, and Environmental Impact. Carbon 2018, 
129, 438-449.
76. Buchman, J.; Bennett, E.; Wang, C.; Abbaspour Tamijani, A.; Bennett, J.; Hudson, B.; 
Green, C.; Clement, P.; Zhi, B.; Henke, A., et al. Nickel Enrichment of Next-Generation NMC 
Nanomaterials Alters Material Stability, Causing Unexpected Dissolution Behavior and Observed 
Toxicity to S. Oneidensis MR-1 and D. Magna. Environ. Sci. Nano 2020, 7, 571-587.
77. Ambure, P.; Halder, A. K.; González Díaz, H.; Cordeiro, M. N. D. S. QSAR-Co: An Open 
Source Software for Developing Robust Multitasking or Multitarget Classification-Based QSAR 
Models. J. Chem. Inf. Model. 2019, 59, 2538-2544.
78. Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123-140.
79. Opitz, D. W.; Maclin, R. F. In An Empirical Evaluation of Bagging and Boosting for Artificial 
Neural Networks, Proceedings of International Conference on Neural Networks (ICNN'97), 12-12 
June 1997; 1997; pp 1401-1405 vol.3.
80. Cunningham, P.; Carney, J.; Jacob, S. Stability Problems with Artificial Neural Networks 
and the Ensemble Solution. Artif. Intell. Med.. 2000, 20, 217-225.
81. Moretti, F.; Pizzuti, S.; Panzieri, S.; Annunziato, M. Urban Traffic Flow Forecasting through 
Statistical and Neural Network Bagging Ensemble Hybrid Modeling. Neurocomputing 2015, 167, 
3-7.

Page 30 of 39

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



82. Khwaja, A. S.; Naeem, M.; Anpalagan, A.; Venetsanopoulos, A.; Venkatesh, B. Improved 
Short-Term Load Forecasting Using Bagged Neural Networks. Electr. Pow. Syst. Res. 2015, 125, 
109-115.
83. Jensen, C. A.; Reed, R. D.; Marks, R. J.; El-Sharkawi, M. A.; Jae-Byung, J.; Miyamoto, R. T.; 
Anderson, G. M.; Eggen, C. J. Inversion of Feedforward Neural Networks: Algorithms and 
Applications. Proc. IEEE 1999, 87, 1536-1549.
84. Mousavi, A.; Baraniuk, R. G. In Learning to Invert: Signal Recovery Via Deep Convolutional 
Networks, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing 
(ICASSP), 5-9 March 2017; 2017; pp 2272-2276.
85. Shrikumar, A.; Greenside, P.; Kundaje, A. Learning Important Features through 
Propagating Activation Differences. PMLR 2017, 70, 3145-3153.
86. Chollet, F. Keras, GitHub: https://github.com/fchollet/keras, 2015.
87. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G. S.; Davis, A.; 
Dean, J.; Devin, M., et al. Tensorflow: Large-Scale Machine Learning on Heterogeneous 
Distributed Systems. arXiv 2016, arXiv:1603.04467.
88. Oliphant, T. Python for Scientific Computing. Comput. Sci. Eng. 2001, 9, 10-20.
89. Hunter, J. D. Matplotlib: A 2d Graphics Environment. Comput. Sci. Eng. 2007, 9, 90-95.
90. McKinney, W. In Data Structures for Statistical Computing in Python, Proceedings of the 
9th Python in Science Conference, Walt, S. v. d.; Millman, J., Eds. 2010; pp 51-56.
91. Walt, S. v. d.; Colbert, S. C.; Varoquaux, G. The Numpy Array: A Structure for Efficient 
Numerical Computation. Comput. Sci. Eng. 2011, 13, 22-30.
92. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; 
Prettenhofer, P.; Weiss, R.; Dubourg, V., et al. Scikit-Learn: Machine Learning in Python. J. Mach. 
Learn. Res. 2011, 12, 2825-2830.
93. Kluyver, T.; Ragan-Kelley, B.; Pérez, F.; Granger, B.; Bussonnier, M.; Frederic, J.; Kelley, K.; 
Hamrick, J.; Grout, J.; Corlay, S., et al., Jupyter Notebooks – a Publishing Format for Reproducible 
Computational Workflows. In Positioning and Power in Academic Publishing: Players, Agents and 
Agendas, Loizides, F.; Schmidt, B., Eds. IOS Press: 2016; pp 87-90.
94. Harper, M.; Weinstein, B.; tgwoodcock; Simon, C.; chebee7i; Morgan, W.; Knight, V.; 
Swanson-Hysell, N.; Evans, M.; jl, b., et al. Marcharper/Python-Ternary: Version 1.0.6, GitHub: 
https://github.com/marcharper/python-ternary, 2019.
95. Alaya, M. Z.; Bussy, S.; Gaïffas, S.; Guilloux, A. Binarsity: A Penalization for One-Hot 
Encoded Features in Linear Supervised Learning. arXiv 2017, 1703.08619.
96. Kingma, D. P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, 
1412.6980v9.
97. Fushiki, T. Estimation of Prediction Error by Using K-Fold Cross-Validation. Stat. Comput. 
2009, 21, 137-146.
98. Jiang, P.; Chen, J. Displacement Prediction of Landslide Based on Generalized Regression 
Neural Networks with K-Fold Cross-Validation. Neurocomputing 2016, 198, 40-47.
99. Barrow, D. K.; Crone, S. F., Crogging (Cross-Validation Aggregation) for Forecasting — a 
Novel Algorithm of Neural Network Ensembles on Time Series Subsamples. In The 2013 
International Joint Conference on Neural Networks, 2013.
100. Bengio, Y.; Grandvalet, Y. No Unbiased Estimator of the Variance of K-Fold Cross-
Validation. J. Mach. Learn. Res. 2004, 5, 1089-1105.

Page 31 of 39

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://github.com/fchollet/keras
https://github.com/marcharper/python-ternary


101. Frank, P.; Ottoboni, M. A., The Dose Makes the Poison: A Plain-Language Guide to 
Toxicology. John Wiley & Sons: 2011.
102. Gunsolus, I. L.; Hang, M. N.; Hudson-Smith, N. V.; Buchman, J. T.; Bennett, J. W.; Conroy, 
D.; Mason, S. E.; Hamers, R. J.; Haynes, C. L. Influence of Nickel Manganese Cobalt Oxide 
Nanoparticle Composition on Toxicity toward Shewanella Oneidensis MR-1: Redesigning for 
Reduced Biological Impact. Environ. Sci. Nano 2017, 4, 636-646.

Page 32 of 39

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



TOC Graphic

Viability

X%
Nanomaterial

properties

Biological
characteristics

Page 33 of 39

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Page 34 of 39

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



0 1 2 3 4 5 6

Hidden Layers

0.0

0.2

0.4

0.6

0.8

1.0
M
A
E

A

0 1 2 3 4 5 6

Nodes per Hidden Layer

0.0

0.2

0.4

0.6

0.8

1.0

M
A
E

B

G
R

G
E

G
S

G
L

D
R

D
E

D
S

D
L

A
R

A
E

A
S

A
L

M
R

M
E

M
S

M
L

N
R

N
E

N
S

N
L

0.0

0.2

0.4

0.6

0.8

1.0

M
A
E

C

100 101 102 103

Epochs

0.0

0.2

0.4

0.6

0.8

1.0

M
A
E

D

0 20 40 60 80 100

Batch Size

0.0

0.2

0.4

0.6

0.8

1.0

M
A
E

E

Page 35 of 39

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



0 1 2 3
Prediction

0

1

2

3
Ex

pe
rim

en
t

A

0 1 2 3
Prediction

0

1

2

3

Ex
pe

rim
en

t

B

Y = X

Page 36 of 39

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



A: 0 ppm B: 0.01 ppm

D: 100 ppmC: 1 ppm
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