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14 Abstract

17 Machines consisting of bags of artificial neural networks (ANNs) have been constructed to connect
19 nanoparticle features to the viability of a broad class of organisms upon exposure. The optimization
of these machines is based on a relatively small data set but, through consensus across a bag of
24 ANN:Ss, predicts at a level of confidence comparable to the experiment and performs better than
26 chance. The mining of the machine across the feature space allows for the discovery of design
28 rules for nanoparticles with increased viability. As such, we demonstrate the efficacy of inversion
as an approach to learn from the machine in the context of designing sustainable nanoparticles.
33 For example, we find that in lithtum NiMnCo oxide nanoparticles that increased manganese
35 content is associated with greater viability, carbon dots reduce viability less than quantum dots,

and gold nanoparticle coatings can significantly affect viability at high concentration.

45 I. Introduction

48 Machine learning (ML) techniques have helped revolutionize a number of scientific fields
50 in the past decade because of their power in identifying relationships between data.!*® The massive

data troves available from consumers and social media have enabled the development of new tools

56 * E-Mail: r.hernandez@jhu.edu
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that are increasingly available for commercial and academic applications in other fields, including
biology, computer science, and medicine.! 712 ML has also been successfully used in chemistry
in at least two significant and complementary ways:'3 (i) Computational and theoretical chemists
have used ML to build fast, accurate models of atomic and electronic behavior.'4-3> While these
models are not directly constructed from the underlying physical laws, they appear to infer them
through data mining of high-accuracy computational data and have been seen to be powerful and
accurate predictors of chemical behavior. (ii) Chemists have also used ML to find relationships in
observed data sets of varied sizes and to plan synthetic routes for making new molecules, especially
through models based on quantitative structure-activity relationships.36-51

Machine learning spans a broad set of available methods, from the relatively simple least
squares linear regression to significantly more complex methods like random forest classification
and neural network regression.>?->* While there are a large number of rules for distinguishing
among ML methods, perhaps one of the most useful (and simple) relies on addressing how the
underlying data is accessed by the machine. Each datum in a data set typically contains two types
of entries: features and labels. Features are the entries that define the state—evoking the use of
facial features in facial recognition. They are associated with entries called labels—evoking the
names of individuals labeling faces in facial recognition. A particular set of features and labels
(i.e. a single datum) is called an example. In least squares regression, the domain variables x are
features and the range variables y are labels. While in the facial recognition problem, it is fairly
clear which entries in an example are features and which is the label, in general, there is wide
flexibility in the partitioning of the entries between features and labels. If the ML method requires
the dataset to have both features and labels, it is supervised. If the machine learns from data

consisting only of features, then the method is unsupervised. Clustering algorithms fall into this
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second category while least squares regression falls into the first category. There also exist a
number of semi-supervised methods which can work with or without labels.> In this work, we use
a supervised machine learning method, neural network regression, to find connections between
nanomaterial properties as features and viability as the label. The generic structure of the artificial
neural networks (ANNs) we employ is shown in Fig. 1, indicating the use of bagging and other
ANN-optimization techniques described below.

There is precedent for applying machine learning techniques to address problems in
environmental and biomedical nanotechnology.!? 48 36-64 Findlay et al. % created a model, based
on random forest classification, that was able to predict the types of proteins present in Ag
nanoparticle protein coronas. Recently, Jones et al. % successfully used data mining and decision

trees to identify features predicting nanoparticle toxicity that remain relevant across multiple
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Figure 1: Schematic of the bagged artificial neural network (ANN) structure used in this
work. Green nodes are the features in the input layer, blue nodes are elements within the
hidden layers of each ANN, orange nodes are the output layer of each ANN, and the red
node is the predicted label calculated through some kind of consensus of the orange nodes.
The hidden layer nodes in each individual ANN are colored differently to emphasize that
each is trained separately and thus they have generally different parameterizations and
outputs. In this structure, processing of all inputs occurs separately within each ANN prior
to recombination at the end.
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unrelated studies. Applying ML to environmental nanotechnology remains challenging because
such implementations tend to suffer from low generalizability due to the size and diversity of the
nanomaterial datasets being limited by the high cost of the requisite experiments. Here, data from
the Center for Sustainable Nanotechnology (CSN), primarily mined from the literature, has been
used exclusively.®’-7¢ While this is a relatively small data set—with just over 200 examples—it
has the advantage of consistency across all of the samples providing a complete set of the desired
features.

The disadvantage of choosing a small data set to represent such complex quantitative
structure-activity relationships is that many approaches, such as perturbation theory, 6263, 77
similarity modeling,4-3!- 58 and single ANNSs, do not readily span the corresponding wide domain
of features. Instead, throughout this work, groups of related ANNs are created and their predictions
are averaged to give a final consensus prediction and uncertainty. There is precedent for this in the
ML literature, where it is commonly termed “bagging” (bootstrap aggregating).’8-82 Together,
these networks form an aggregated machine called a “bag” of ANNs. We optimize and then
implement such a bag of ANNSs for the prediction of reduced nanoparticle toxicity, where this label
is quantified in terms of organismal viability upon nanoparticle exposure. This is not an exclusive
figure of merit and is mainly used here to provide a clear metric for the training, validation and
prediction of the ANN machine. It is also an observable that is typically measured, and therefore
readily available in the data.

We find an ANN bag that makes better-than-chance predictions and which has uncertainty
comparable to the experimental uncertainty. We have also partially inverted the ANN’s feature-
to-label paradigm by determining regions of the feature space resulting in increased viability.

Identification of such inversion has been a goal of this field for some time, and several possible
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solutions are available.?3 33 83-85 Qverall, the expected mean absolute error (MAE) of predictions
produced by our ANN is somewhere between 0.2 and 0.3 on a viability scale in which 1.0 refers
to no change in population upon exposure. Through our inversion, we learn from the machine in
the sense that we uncover patterns or design rules for nanoparticle properties that lead to increased
bacterial viability. It suggests subdomains in the space of composition and structure of lithium
nickel magnesium cobalt oxide (NMC) nanosheets linked to targeted levels of viability, especially
as regards the composition of Mn and Co. Gold nanoparticle (AuNP) coatings are found to
influence their viability, with poly(allylamine hydrochloride) in particular leading to strong
cellular responses. Finally, carbon dots are found to be strongly non-toxic regardless of precursor
while quantum dots are found to be highly toxic, an effect that is worsened by the presence of a
ZnS coating. These trends agree with available experimental results and suggest new nanoparticle
compositions and features which should be fully characterized by experiment either to extend the
database or to identify desired nanoparticle targets.

I1. Materials and Methods

A. ANNs, parameters and hyperparameters

Each node in each layer of an ANN is connected to the nodes in the layers before and after
it (Fig. 1). There are three types of layers — input, output, and hidden. The input layer receives the
features from each example. The output layer produces the final result of the ANN which
corresponds to the label of a given example. Between them, there are some number of hidden
layers. These are termed “hidden” because they do not interact with objects outside of the network,
unlike the input and output nodes. The output value n; represented by each node at layer i and row
jis

ny = a(Z)jwij - vyma— 11 + by) W
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where the links between nodes are identified with weights w;;; and each node is associated with a
bias b;. For the input nodes, the n; values are provided by the example being considered and the
biases are always zero (there are no weights since the input node is the first layer). The nonlinear
“activation function,” a(-), increases the complexity of the representations that the ANN can
produce. The complex set of transformations supplied by the layer structure combined with the
non-linearity supplied by the activation functions allows ANNSs to learn (or represent) extremely
complex patterns and relationships between input and output data.>> Finally, p; _ 1 represents the
number of nodes in the prior layer. In this work, ANNs have been realized using Keras and
Tensorflow version 1.14.0 in python.* 86-87 The python libraries numpy, scipy, pandas, scikit-learn,
python-ternary, and matplotlib were extensively used to process and visualize data, and Jupyter
Notebooks were also employed.* 884 Categorical features were transformed into numerical ones
using one-hot encoding, as described in more detail below.? %

The parameters of the ANN are precisely the weights and biases. When an ANN is being
trained, its parameters are typically updated through a method known as backpropagation. Briefly,
the neural network is initialized with random values for its weights and biases. Then it is applied
to some number of examples in sequence and produces output values that are generally different
from the associated labels. The mean squared error between the set of ANN outputs and actual
labels is used to define a loss (or cost) function,

C(p) = (aF?); = ((F — L)*)g, )
where L is the actual label for a particular example, F is the output value of the ANN, and the
average is taken over examples E in the training set. In this work, the loss function is always the
mean squared error over the specified data set. However, the mean absolute error (MAE) is often

the reported metric of model performance and is also used here. This first moment function is
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sometimes preferred to functions of the second moment —such as the cost function in Eq. 2—
because its linearity allows averages of MAE:s to also be a MAE. During training, backpropagation
is directed by gradient descent: the gradient of the cost function with respect to the parameters is
computed and used to calculate the new weights and biases. This process is generally repeated
until the value of the cost function is static, at which point the ANN is considered to be optimized
with respect to its parameters. The final parameter values depend on a number of factors. First,
they depend on the specific set of training data used for optimization since the loss function is
defined as the mean squared error over its examples. Second, they depend on the choice of the so-
called “hyperparameters” which comprise two broad classes of descriptors defined below.

One class of hyperparameters describes the structure of the ANN. It includes the choice of
the activation function a(-), the number of layers, and the number of nodes in each layer. The
number of nodes per layer and the number of layers together determine the number of ANN
parameters. Among the most commonly used ANN activation functions is the rectified linear unit
(ReLU) which is

x, x>0
aReLu(X) = {0, x<0 3)

There are a number of functions that act as improvements on the ReLU function, most of which
seek to address the absence of a gradient in the function for values less than zero which can lead
to neurons that “die” i.e. stop learning. Many of these functions also contain pre-specified or sub-

parameters. For instance, the Leaky ReLLU function is

x, x>0
Creary Rt () = {0 ¥ ¥2 0 @

where e is normally set to 0.01. These sub-parameters rarely need to be changed. There are also a
number of activation functions that have generally sigmoidal behavior, but they have fallen out of

favor due to relatively poor performance.3
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A second class of hyperparameters are those related to the training of the network
parameters. Among these are the optimization algorithm, the batch size, and the number of training
epochs. In most cases, datasets are too large to efficiently sample every example before taking a
single gradient descent step. Instead, datasets are often broken up into smaller sections called
“batches” during ANN parameter training. When every example in the dataset has been visited, an
epoch is said to have passed. Together, the epoch number and batch size control the completeness
of the ANN training. The optimization algorithm controls how the training steps are taken (i.e.
how parameters are changed during training). As noted above, most of these algorithms are based
on gradient descent, but are implemented in different ways. One of the most commonly used
optimization algorithms is called Adaptive Moment Estimation (Adam), which modifies the
distance of upcoming gradient steps depending on the recent history of the optimization.”® Like
activation functions, optimization algorithms often contain pre-specified or sub- parameters that
are intentionally not varied during training or optimization without loss of generality in the model’s
function.

B. Default hyperparameters for divide-and-conquer optimization

Altogether, the parameters of an ANN depend on the specific set of examples used for
training, the hyperparameters of the network related to its structure and the process for optimizing
its parameters, expressed as

F = fa(l;p, Ehyp) ®)
where f4 is the map representing the action of the ANN on the domain of features 7, and F is the
output value of the ANN. The map is specified according to the training parameters p of the ANN,
the set £ of examples used to train the network, and the chosen hyperparameters 4,. The efficiency

and utility of an ANN with respect to its trainability and predictability is strongly dependent on
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the choice of hyperparameters, and so they too require optimization. As our output label is a
measure of nanotoxicity and our inputs are, in part, nanomaterial properties, this mapping bares
similarity to quantitative structure activity/toxicity relationship modeling.3¢ 4% 58 77 By adding
information about the biological systems and environment to our feature set, we are able to cover
cases where the structure and activity relationship is altered by the surrounding system. The
features are described in more detail in section F below.

Here, ANNSs are built across a range of hyperparameter values so as to optimize the overall
performance on a validation set (that was not used in the training of the ANNs.) Since the dataset
was small, ANNs were generally validated using k-fold validation (kFV).*7-190 In kFV, a set of k
networks is created as in k-fold structuring (see below). Each ANN then predicts the outputs for
the group of examples it was not trained on (its validation set). The MAE between the network
outputs and the actual labels is recorded; this is then repeated for each network in the set. After £
rounds, the mean of the model performance measures is taken, providing an estimate of the
performance of any particular model having the same hyperparameters. As such, the final MAE
provided by k-fold validation is

I4F gy = 221 {IFaClipoEahy) = Li) (©)
where /;and L, are the features and labels of the group of examples that network i was not trained
on, E; are all other examples, and p; are the parameters acquired by the network through training
on E; with hyperparameters /,. We applied four-fold validation (4FV) throughout this work. For k
less than 4, we would not have obtained sufficient statistics between the training sets to establish
confidence. In practice, we did not find a need to move beyond k=4

Because the hyperparameters are selected according to validation performance,

information about the validation set “leaks” into the model. A “test set” is used to provide an
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estimate of model performance on truly new data. Prior to the optimization of the hyperparameters
of our model, a test set of 20 examples was selected randomly and then removed from the dataset.
These examples were excluded from all forms of model validation and hyperparameter selection
during training except for their use as a final test set. In our hyperparameter optimization, we tested
the effectiveness of four or five possible values for each of the six hyperparameters. A complete
combinatoric optimization across these values would require the creation of 40,000 individual
ANNES. In order to eliminate some of these combinations, a layered grid search was performed.*-
In this procedure, pairs of hyperparameter values were examined together, while the values of the
remaining hyperparameters were held fixed at default values. We chose these values either because
they are commonly used in neural network regression or because they maximize model complexity
without egregiously overfitting the data. Our default hyperparameters are: 5 hidden layers, 5 nodes
in each hidden layer, ReLU activation, the Adam optimizer, 1000 training epochs, and a batch size
of 8. Once hyperparameter values resulting in excessive damage to model performance were
eliminated, the remaining hyperparameter choices were optimized together to find the best
hyperparameter combination. In addition, all ANNs in this work limit the range of output node

values to be greater than or equal to zero, as viability values cannot be negative.

ACS Paragon Plus Environment

Page 10 of 39



Page 11 of 39

oNOYTULT D WN =

The Journal of Physical Chemistry

1.0 1.0
1A 1B
0.8+ ¢ 0.8+ )
LuO.GW 0.6+
<
=
0.4+ 0.4+
0.2+ i 0.2+ *
0.0 F—— R 0.0 — f f F——F—
0 1 2 4 5 6 0 1 2 3 4 5 6
0 Hidden Layers Nodes per Hidden Layer
1.
C
0.8+
|_|_|0.6”
<
=
0.4+
0.2+
007" 0 2 W w Je wWwon Je Wwon Jdewoan J
OO0 00U NN 0000 <L <SS s 5 5= 2222
1.0 1.0
1D 1E
0.8 0.8+ |
L 06 * 0.6 1
<
=
0.4+ 0.4+
0.2+ 0.2+
0.0+ - -+ - 0.0+ + } + } + } + } + }
10° 10! 102 103 0 20 40 60 80 100
Epochs Batch Size

Figure 2: (A) The relationship between error in viability predictions and the number of hidden layers in
the model. (B) The relationship between error in viability predictions and the number of nodes per hidden
layer in the model. (C) The relationship between optimization algorithm and activation function
combinations and error in viability predictions. G, D, A, M, and N are the Adagrad, Adadelta, Adam,
Adamax, and Nadam optimization algorithms, respectively. R, E, S, and L are the ReLU, ELU, SelL. U, and
Leaky ReL U activation functions, respectively. (D) The relationship between the number of training epochs
and viability prediction error. Note that this is an x-log plot. (E) The relationship between the batch size
and viability prediction error. In all plots, green lines are linear fits.

ACS Paragon Plus Environment



oNOYTULT D WN =

The Journal of Physical Chemistry

C. Divide-and-conquer optimization of the hyperparameters

First, the number of hidden layers and the number of nodes per hidden layer were optimized
by applying a grid search across both hyperparameters over the integer values between 1 and 5.
The searched values were limited to this range in order to minimize the number of parameters in
the model, which would otherwise increase quickly. With only 5 layers and 5 nodes in each layer,
the ANN would contain 555 adjustable parameters. 4FV was performed on each of the ANNs
corresponding to the 25 combinations of layer number and node number pairs leading to the results
shown in Figs. 2A and 2B, respectively. Figure 2A displays (|AF|)4ry as a function of the number
of hidden layers. Here, there is a general increase in the MAE as a function of the number of hidden
layers (p = 4.4 x 103, R = 0.55). Figure 2B presents the relationship between (|AF|)4py and the
number of nodes in each hidden layer. There is an inverse relationship between these values (p =
4.2 x 103, R=-0.55). These results lead us to favor restricting the number of layers to lower values
(£ 3) and the number of nodes per layer to higher values (> 3).

A grid search was then performed for each of 20 combinatorial choices of the parameter
optimization algorithm and node activation function. The results are shown in Fig. 2C. Of the
activation functions, only ReLU has consistently bad performance, though Leaky ReLU does not
perform well when paired with Adagrad. Comparison across the activation functions suggests that
Elu (average MAE of 0.21), has the best performance of any of those tested (average MAE of 0.26
across all activation functions). Nadam (0.24) has the best performance of the optimization
algorithms tested, followed by Adadelta (0.25) and Adam (0.25).

Finally, the effect of changing the number of training epochs and the batch size was
evaluated. Epoch numbers between 1 and 1,000 and batch sizes between 1 and 100 were explored.

The results from 4FV on these ANNSs is shown in Figs. 2D and 2E. The number of epochs (p = 4.4
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x 103, R =-0.61) had a significant effect on the resulting error, but the batch size (p = 0.20, R =
0.30) did not. This effect from the epoch number should be expected: more training should
generally result in a better model. However, one should still be wary of overfitting, particularly
when smaller datasets are used. In section III.A, we use several tests to ensure that we have not
overfit our data and that our models are trustworthy.

A limited grid search of all hyperparameters, informed by these findings, was then
performed. ANNs with between 1 and 3 hidden layers, 3 and 5 nodes per hidden layer, and the Elu
activation function were trained with Adam, Adadelta, or Nadam, with batch sizes of 25 or 100
examples and for either 100 or 1000 epochs. This search required the training and evaluation of
432 individual ANNs. The ANN structure with the best performance (MAE of 0.21 £ 0.02) had 3
hidden layers, 5 nodes in each hidden layer, the Elu activation function, and was trained with the
Adadelta optimizer for 1000 epochs with a batch size of 25.

D. Viability

Organism viability was chosen as a target for ANN training as it is an anti-correlated proxy
for nanoparticle toxicity. Viability is a measure of the fraction of organisms that survive upon
exposure to a substance, such as nanoparticles. The number or density of survivors is compared to
a control where no foreign substance was introduced. Thus, viability normally deviates from 1 (i.e.
the same number of organisms are present in both the experiment and control) and can even be
greater than 1 if the relative survival is somehow enhanced by exposure to the substance. The
minimum value of viability is 0, representing total organism death. The dataset used in this work
contains 200 examples of organismal viability experiments extracted from prior publications of
the Center for Sustainable Nanotechnology.®’-7¢ While this dataset is relatively small, it allows us

to make inferences about the best model hyperparameters, test methods of model validation, and
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establish a framework for making predictions about nanoparticle viability from a given model.
Viability, whether measured by colony counting or growth-based viability, is treated as the same
variable, though it should be noted that colony counting has a higher intrinsic error.”®
E. Bagging

A common method for increasing the power of machine learning predictions is to train
collections of individual machines and group or combine their results in some way. This method
is called “bagging,” short for “bootstrap aggregating.”’® 329 In the context of ANNSs, the networks
are trained such that they have different parameters, and the outputs are averaged together.
Together, these networks form a larger machine learning object called a “bag” of ANNs. The most
direct way to obtain distinct parameters for the individual ANNSs is to use distinct subsets of the
training examples to train the networks, while leaving the hyperparameters constant. Thus, the

output of a bag of ANNs is

1
F =58 fa(l; Py Evhy) -

where N is the number of ANNSs in the bag and other variables retain their meanings from Eq. 6.
In this work, three methods are employed to produce the distinct example sets that are used to
create the bags: (i) In k-fold structuring (kFS), the dataset is shuffled and split evenly into k£ groups.
Each of k£ networks is then trained using k-1 of these groups such that no two networks share the
same training dataset. The collection of the resulting £ models is the bag. The average of the values
across the bag is its prediction, and an uncertainty can be obtained from the deviation between the
prediction of the bag and the outputs from each of its models. (ii) In i iterated k-fold structuring (i-
kFS), k-fold structuring is performed i times, shuffling the data each time before it is split into k£
groups. This produces a bag containing i x k distinct networks. A useful feature of bags created

using k-fold structuring and i iterated k-fold structuring is that the bags are guaranteed to have been
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collectively trained on the whole dataset. (ii1) In so-called random-fold structuring (rFS), distinct
networks are trained on a random fold —viz, a randomly selected portion— of the dataset. This
can be done as many times as desired without duplication (given a large enough dataset), producing
very large bags.
F. Data Preprocessing

The full dataset prior to pre-processing is provided in the Supporting Information, and the
full list of the features accounted for in the data set are listed in Table 1. Prior to use, the data set
was transformed in a number of ways. All feature values were normalized to have a standard
deviation of 1 and a mean of 0. The base 10 logarithm of the concentration was used, rather than
the concentration itself, as this improved model performance markedly. In order to operate on
values of zero, a small value (10 ppm) was added to all concentration values. This did not alter
the concentration of non-zero values (ranging from 10 to 10* ppm) in an appreciable way. NMC
nanoparticle examples were characterized with a feature reporting the surface area of exposed
NMC per liter as it approximately reflects the surface area exposed to solvent which is a
characteristic that was found to be germane to viability in prior CSN work.”” For non-NMC
examples, this value is by definition zero. In several cases, it was not possible to determine the full
chemical makeup of a nanoparticle, and this is noted in the database and considered by the ANNs
through a simple true/false variable noting whether the composition features reflected the complete
makeup of the nanoparticle. Because ANNs can only interact with numerical features, non-
numerical (i.e. categorical) features were one-hot encoded. Consider a categorical feature /. In one-
hot encoding, the feature / is eliminated and new numerical features /, are created for each category

A. For each example E with feature value E(1), the value of /, is

1, E() =4
1a=[0, EEI%;&A ®)
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resulting in a set of new numerical features with the full information content of /. The new features
1, are called one-hot vectors or one-hot features. Nanoparticle composition is treated in a semi-
one-hot manner. Each element present in a nanoparticle in the database is given a separate feature
1, which is equal to the mol % of the given element in that nanoparticle. These feature engineering
processes resulted in a total of 82 numerical features that were used by the ANNs for prediction.

Table 1: The features used to categorize the viability experiments in training the neural

networks are listed and sorted according to the type of values they exhibit (as noted in the columns)
and the types of characteristics they describe (as noted in the rows).

Features Numerical Categorical Mixed
Nanomaterial Particle Diameter Per Type, Total Composition Elemental Composition
Properties Dimension (nm), Knowledge, Capping (mol %)
Concentration (mg/L), Agent, Shape
Exposed NMC Surface
Area (m?/g)
Organism Bacteria, Gram, Identity,
Characteristics Mutation, Viability
Method
Experimental pH, Natural Organic Medium, Purification
Conditions Matter (mg/L), Total Method

Centrifugation Steps,
Exposure Time (min)

II1. Results and Discussion

A. Validation of the Machine: Better than Chance

The optimal ANN hyperparameterization (see Methods) was evaluated in its ability to lead
to ANNs (or bags of ANNs) which can learn to predict viability values at a better than chance rate,
its behavior when confronted with falsified data, and its performance on validation and test sets.
To define “better than chance” predictions on the dataset, we find the MAE value that would be
produced if the model prediction was performed according to two null hypotheses: N, defined such

that the model knows nothing about the data except the range of its labels, and N, defined such
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that the model knows both the label range and the frequency of label values. In both of these cases,
the model would have no other information about how features are connected to labels, and its
outputs can be represented by random selections from an appropriate probability distribution
without direct reference to the input features. These outputs are generated using a random number

generator and the corresponding MAE for a given realization of the model is

(Jaxn, ) = 720 Jxi(FD) — Eon)] ©)
where {x;(f;)} is a given data set with M examples consisting of labels x; corresponding to features
fi, respectively, and &; is a random number chosen according to the py distribution consistent with
the Ny hypothesis. The uniform chance distribution p; represents the values generated by a
uniform random number generator producing values between 0 and the maximum value in L. The
frequency-weighted chance distribution, p,, is the frequency with which the labels appear in the
data set with no reference to the underlying features. p, can be generated via random permutations
of the dataset’s labels. We computed the average MAE for a given null hypothesis by averaging
the absolute differences between the true viability dataset and an ensemble of one million
realizations of the “predictions” from the associated chance distribution. The resulting (|AxN1|>
was 0.87 and (|AxN2|> was 0.49. The difference between (|AxN1|) and (|AxN2|) reflects the fact that
the label —namely, viability— of the examples in our system is not uniform between 0 and the
maximum value in L.

With the results of the null hypotheses in hand, a relevant figure of merit is the error of the
ANN converged over possible training sets—viz. possible parameter sets for the ANN. In order to
reach convergence, 25-4FV (i-4FV for i = 25 different arbitrary four-fold partitionings of the

examples; see Methods) was used and the resulting (|AF|);s5 _ 4y Was found to be 0.27 £ 0.01,

substantially smaller than the values seen for the null hypotheses for chance. Thus, we can
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Figure 3: (4) Comparison of the viability predictions of 100 ANNs with
the experimental values. (B): Model performance of 100 ANNs on the
test set. Better predictions are closer to the red Y = X line.

conclude that these ANNs are able to learn real connections between features and labels in the
dataset.

An additional test was performed in which an ensemble of fictitious data was generated by
randomly producing feature values between 0 and 1 and label values between 0 and the maximum
value in L such that the final data set had the same number of examples as the original dataset.
There is little to no information content in this dataset, and thus it can be used to examine the
performance of the ANN in the case of a null dataset. 25-4FV was used to obtain a bag of ANNs
(as defined in the Methods section) whose regression represents the fictitious data. It led to a

converged MAE (|AF (null)|)25 — 4pv equal to 0.98 £ 0.01. As hypothesized, this is much higher
than the MAE (|A4F|);s5 _ 45y seen for the actual examples. Thus, we conclude that the true dataset

contains correlated information, not available in the null dataset, that can be learned by the ANN

to predict viability.

ACS Paragon Plus Environment

Page 18 of 39



Page 19 of 39

oNOYTULT D WN =

The Journal of Physical Chemistry

B. Validation of the Machine: Accuracy Comparable to Experiment

Because of our smaller dataset, single models are highly susceptible to bias in their
predictions. Ensembles of ANNs can minimize the effect of individual model bias by cancelling
opposing biases. The collection of such an ensemble is then a new model called a bag. Here, we
validate bagged ANNSs producing predictions of viability values and use a previously sequestered
test set to obtain a final model performance estimate. In validation, one determines if the
parameters that a particular model has been trained to are accurate through the quality of its
predictions on the validation set. However, the validation data is also used to evaluate ANN
structure (i.e. hyperparameters; see Methods) optimization and thus cannot be used as a
representation of model performance on data the model has no direct information about. In testing,
one examines the quality of hyperparameters by evaluating prediction quality on data excluded
from the hyperparameter optimization process. 100 ANNs were trained using random-fold
sampling (rFS, see Methods), training on 75 % of the dataset examples. The rFS bag has the same
number of ANNSs as the 25-4FV bag used above, and hence serves as a useful reference to whether
the latter has any significant bias due to the less-random partitioning of the training examples.
After each ANN was trained in the rFS set, it was used to predict values for the remaining quarter
of the examples (used as a validation set) resulting in predictions of each label by a unique
ensemble (bag) of approximately 25 ANNSs. The results of this analysis are shown in Fig. 3A. This
plot compares the ensemble viability predictions to the true viability values. The MAE between
ensemble predictions and experimental values was 0.21, comparable to the accuracy found from
25-4FV.

During hyperparameter optimization, 20 randomly selected examples, termed a “test set,”

were excluded from the dataset. Because these examples were not used to develop the model
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structure, no information about them was incorporated into the model. As such, the model
performance on these values is taken to represent the performance of the model on entirely new
data and is used to evaluate the quality of the hyperparameters. The procedure used above for
validation examples was repeated to evaluate the performance of a bag of 100 distinctly trained
ANNSs on this test set. The predicted values are compared to the experimental values in Fig. 4B,
and the MAE is 0.23. ANN performance is good and likely not due to chance (p = 0.001, R =
0.67).

It is notable that the uncertainty reported in viability experiments using both growth-based
viability and colony counting methods can range from 0 to 0.3.7° As reported above, the expected
MAE of predictions of viability produced by our bags of ANNs is somewhere between 0.2 and
0.3. Thus, an ANN bag produces predictions with a comparable level of confidence to the ground
truth in the data set it has learned from.

C. Learning from the Machine

ANNSs are typically used to predict outputs given a set of inputs. However, it is tempting
to invert them by way of determining the set of inputs —viz. features— that result in a given
desired output —viz label. When using ANNSs, there are several difficulties involved. First, a given
output is quite likely to have many possible associated sets of inputs — ANNs often represent many-
to-one relationships.®3 The fundamental complexity of ANNSs is also challenging because they
generally do not admit to a simple method for inverting the functional form of the ANN. There are
several complex methods that have been developed for the inversion of ANNs. These include
methods that directly invert backpropagation and algorithms that learn an inverse mapping from
labels to features.?® 3% 83-85 Here, we use a scan across dynamic input variables because of its

simplicity.
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Figure 4: Predicted viability as a function of NMC nanosheet
composition at 4 different total concentrations, as indicated. Grid lines
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A small bag of four ANNs was created using 4FS. Viability predictions were taken to be
the average of the predictions of these distinct ANNs. Model inversion was attempted for several
classes of nanoparticles — NMC nanosheets, gold nanospheres, and carbon and quantum dots. All
predictions in this section are for Gram negative Shewanella oneidensis MR-1 bacteria (note that
the dataset includes several different types of organisms). As “the dose makes the poison” — i.e.
any material is toxic or nontoxic as some exposure level— concentration dependence is evaluated
for all considered nanomaterials.!?!

For NMC nanoparticles, the effect of composition is shown in Fig. 4 across four
representative cases, varying in concentration of nanoparticles. This scan includes only nanosheets
as they have the highest surface area to volume ratio and thus the most dynamic viability response
of NMC nanoparticles in the database. The viability is 1.0 at a concentration of 0 ppm regardless
of composition, as expected. As the concentration increases, the region towards the right of the

graph, corresponding to lower compositions of Mn and mixed compositions of Ni and Co,
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Figure 5: (A) Viability as a function of AuNP coating and concentration. (B) Comparison
of concentration dependence of carbon and quantum dots.

decreases in viability most quickly. At 100 ppm, high Mn nanosheets are still clearly preferred.
However, mixed Mn/Ni nanoparticles show less toxicity than mixed Mn/Co nanoparticles. In
terms of composition, the ANNs predicts toxicity as Mn < Ni < Co. Prior experiments have
observed no Ni composition dependent effect on toxicity, which in Fig. 4 would appear as a color
gradient along the Ni axis. At the Mn compositions examined in that study (~3 to 10 mol %), the
ANN predicts weak Ni dependent effects unless the Ni mol % is particularly high or the NMC
concentration is particularly large.”® This shows that our model is able to make testable viability
predictions outside of the range of previously performed experiments, leading to proposed
nanotechnology design rules. Other work has shown that increasing the relative composition of
Mn and lowering that of Co or Ni decreases the toxicity of NMC nanoparticles, in agreement with
the current work.!%? These experiments measured oxygen consumption by bacteria, a type of data
that was not considered by this ANN. Thus, our ANN is in agreement with experimental data

beyond what it has been trained on.
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For gold nanospheres, the effect of nanoparticle coating was also determined from the
optimal bag of ANNSs. Specifically, the viability in response to several spherical nanoparticles with
4.5 nm (core) diameters was determined as a function of concentration. These values are plotted
in Fig. 5A. Shaded areas represent standard error across the four ANNs. The 3-mercaptopropionic
acid (MPA) and 3-mercaptopropylamine (MPNH2) nanoparticles are predicted to have largely
similar dose-response effects, while the poly(allylamine hydrochloride) (PAH) nanoparticles are
expected to be much more toxic to the bacteria at high concentration; these trends are largely in
agreement with experiment.®’

Finally, we compare the concentration-dependent effect on viability of carbon and quantum
dots in Fig. 5B. Carbon dots (without phosphorus doping) made with citric acid (CA) or malic acid
(MA) precursors are compared to CdSe quantum dots with and without an approximately 2 nm
ZnS shell. While the error bars are generally fairly large due to the limitations of the training
dataset, it is clear that carbon dots are predicted to have much less toxicity than quantum dots at
equivalent concentrations. For carbon dots, changing the precursor material does not have a large
effect on viability. For quantum dots, adding a ZnS shell strongly increases the nanoparticle
toxicity. These trends are in overall agreement with prior experimental work.”#7> Moreover, we
can now compare between the viability in response to carbon dots and quantum dots as predicted
by the bag of ANNSs at the same concentrations. Such a direct comparison was not available in the
original data and illustrates the interpolative and extrapolative power of the bag of ANNS.

IV. Conclusion

Using a diverse, yet limited database of experimental results, we developed a bag of ANNs
for prediction of organism viability upon exposure to nanomaterials. Rigorous validation is

undertaken to ensure that the predictions of the ANN families are accurate. The working machine
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is a bag of ANNs whose consensus value is the prediction. It performs better than chance as
quantified against null hypotheses in which the labels are randomly associated with features either
for training or evaluation. Its uncertainty is comparable, but no worse, to that of the experiments
in the underlying database used to generate it.

The ANNs have been inverted to uncover relationships between the properties of
nanoparticles and their toxicity to Gram negative bacteria that agree with prior experimental trends
and imply new areas for experimental exploration. These properties —whether previously known
or not— were not provided to the ANNs directly. Instead, they were encoded only through
whatever correlations exist within the data set provided to the ANN, and hence the use of the ANN
to learn them represents a pathway for their discovery. First, we found complex variation in
organism viability in response to NMC nanosheets of varying composition. We also found that
MPA and MPNH, coated AuNPs have similar dose-dependent viability profiles, and PAH coated
nanoparticles are predicted to lead to more dynamic viability response than either of the other two
coated AuNPs. Finally, carbon dots are found to support much higher viability than quantum dots,
regardless of concentration or carbon dot composition. Quantum dots with ZnS shells are found to
lead to very low viability. Thus, ANNs can be used to uncover rules or principles connecting
nanoparticle properties and their effects on viability.

In summary, in this work, we have achieved at least three novel aims: (1) We applied a
neural net approach---including bagging---to connect molecular properties to macroscopic
observables in a chemical context not attempted before. (i1) We addressed a class of problems for
which the data set is often “small” and hence requires some care in applying machine learning to
resolve it. (iii) We introduced an approach to use a bagged-neural net approach to both recover

prediction and a kind of inversion.
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Supporting Information

The Supporting Information is available free of charge at TK.
The Excel file, CSN_DataBase2020.xIsx, includes all of the data in the Center for
Sustainable Nanotechnology (CSN) Nanoparticle Viability Database used in this work to

construct the ANNs, and cites the corresponding papers from which it was drawn.
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