
40 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Netlist Analysis and Transformations Using SpyDrNet

Dallin Skouson‡§∗, Andrew Keller‡§, Michael Wirthlin‡§

F

Abstract—Digital hardware circuits (i.e., for application specific integrated cir-
cuits or field programmable gate array circuits) can contain a large number of
discrete components and connections. These connections are defined by a data
structure called a "netlist". Important information can be gained by analyzing
the structure of the circuit netlist and relationships between components. Many
specific circuit manipulations require component reorganization in hierarchy and
various circuit transformations. SpyDrNet is an open-source netlist analysis and
transformation tool written in Python that performs many of these functions.
SpyDrNet provides a framework for netlist representation, querying, and modifi-
cation that is netlist format independent and generalized for use in a wide variety
of applications. This tool is actively used to enhance circuit reliability and error
detection for circuits operating in harsh radiation environments.

Index Terms—Hardware Design, Netlists, EDA, CAD

Introduction

Digital hardware circuits can contain a large number of discrete
components and connections. These components work together
through their connections to implement a digital hardware design.
Digital hardware circuits are commonly implemented on applica-
tion specific integrated circuits (ASICs) or on field programmable
gate arrays (FPGAs). Discrete components and connections in
a digital hardware circuit can be associated with a number of
specific attributes. All of this information can be stored inside
a graph-like data structure called a "netlist" which details each
component and connection along with their respective attributes.

Netlists come in many different formats and organizational
structures, but common constructs abound (within EDIF, structural
Verliog, and structural VHDL, etc.) [LS89], [JB94]. Most netlist
formats have a notion of primitive or basic circuit components that
form a basis from which any design can be created. If the contents
of a circuit component is unknown, it is treated as a blackbox.
Primitive or basic components and blackboxes are viewed as
leaf cells. Cells are also referred to as modules, or definitions.
Leaf definitions can then be instanced individually inside a larger
non-leaf definitions. Definitions and instances contain connection
points called pins, which are sometimes grouped together into
ports. Nets connect pins together. Nets are also referred to as wires
and can be grouped into a collection of nets called a bus or cable.

* Corresponding author: dallinskouson@byu.edu
‡ NSF Center for Space, High-Performance, and Resilient Computing
(SHREC)
§ Department of Electrical and Computer Engineering, Brigham Young Uni-
versity

Copyright © 2020 Dallin Skouson et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

SpyDrNet provides a common framework for representing,
querying, and modifying netlists from which application specific
analysis and transformation functions can be built. The data
structure used to represent netlists is designed to provide quick
pointer access to neighboring elements and it is designed to be
extensible so that format specific constructs can be stored along
with the netlist for preservation when the netlist is exported. This
ability supports the representation of a wide variety of netlist
formats.

SpyDrNet is currently implemented in Python and provides a
Python interface so that it can easily integrate with other Python
packages such as NetworkX [HSS08] and PyEDA [CD15]. These
library packages have been used in tandem with SpyDrNet to
rapidly develop new analysis techniques for better understanding
the connectivity and relationships between circuit components as
part of reliability research. The Python platform also makes this
tool readily available to anyone interested in the community and
easily extensible.

This paper presents the SpyDrNet framework, a few use cases,
and highlights its use in the development of advanced reliability
enhancement techniques. This tool originates from a long line
of reliability research focused on improving the reliability of
computer circuits implemented on static random access memory
based (SRAM-based) FPGAs [JHW+08], [PCC+08], [JW10].

Related Work

The predecessor to SpyDrNet, BYU EDIF Tools [Bri20]. The
BYU EDIF tools provide two benefits. First, it provides an API
for working with electronic design interchange format (EDIF)
netlists. Second, the BYU EDIF Tools includes the Brigham
Young University and Los Alamos National Laboratory Triple
Modular Redundancy (BL-TMR) Tool. The BL-TMR tool pro-
vides a rich set of features for the automated insertion of circuit
redundancy for the application of fault-tolerance techniques on
digital hardware circuits. These tools have been used extensively
in FPGA reliability research [JHW+08], [PCC+08], [JW10].

The BYU EDIF Tools have limitations that motivate the
development of SpyDrNet. First, the framework of the BYU EDIF
Tools is closely tied to the EDIF netlist format, which makes it
challenging to use with alternate netlist formats. Second, the BYU
EDIF Tools are primarily intended for use with netlists targeting
specific FPGAs. Finally, though not a limitation per se, the BYU
EDIF Tools are written in Java and migrating to Python is a
motivating factor.

SpyDrNet aims to provide a framework that is netlist for-
mat independent and generalized for use in a wide variety of
applications. Tools with functionality similar to SpyDrNet exist,

mailto:dallinskouson@byu.edu


NETLIST ANALYSIS AND TRANSFORMATIONS USING SPYDRNET 41

HDL Synthesis Netlist SpyDrNet Transformed Netlist Generate Hardware 
Files

Fig. 1: The path of a design using SpyDrNet.

but they tend to be tied to a specific device, architecture, netlist
format, or vendor. Some tools with similar functionality such
as Vivado [Xil20] or Verific [Ver20] are proprietary. Other tools
such as RapidWright [LK18] and Tincr [WN14] are intended for
customizing the low-level physical implementation of a netlist on
a vendor specific hardware platform. LiveHD [liv] is open-source
tool that provides rapid synthesis and simulation updates to small
changes in hardware description languages (HDLs). Its framework
and language support focuses on the whole design cycle (from
logic synthesis, to simulation, to place and route, and tapeout)
whereas SpyDrNet focuses specifically on working with structural
netlists (i.e., netlists that do not change based on netlist inputs).

SpyDrNet Tool Flow

Electronic designs may flow through a number of steps before they
are built, packaged, or programmed into their target device. For
example, these designs may be created in a hardware description
language, synthesized into a netlist, then placed, routed, and
packaged into a target file which will be used to fabricate the
device. A CAD tool can modify the functionality of the final
design at any of these stages. The earlier stages in the design
flow are slightly less static. Constructs may be optimized out of
the design, and the actual hardware implementation of a construct
may be unknown. Later in the design process constructs are more
stable, but the design is also generally harder to work with (binary
files, complex device specific information, etc). By working at the
netlist level, SpyDrNet is able to avoid many of the pitfalls of both
aspects of the design process.

Figure 1 represents how a design can be prepared and pro-
cessed prior to and after using SpyDrNet. Many designs start
as a hand written hardware description language and are then
converted into a netlist using a synthesizer. Netlists are then passed
through additional tools to create a design file to be physically
implemented.

SpyDrNet currently includes a parser and composer that
imports and exports netlists written in EDIF. Figure 2 shows
how the SpyDrNet framework can be used to parse, analyze,
transform, and compose netlists in many different formats. Parsers
populate an intermediate representation of the netlist in memory
using information provided by the input file. With the netlist in
intermediate representation, analysis and transformation of the
netlist can take place. Once the design is in a state where the user
is satisfied, a composer exports the netlist into a desired format.
Using the SpyDrNet framework, additional parsers and composers
can be written for additional netlist formats.

The Intermediate Representation

The intermediate representation is a generic structural netlist
representation employed by SpyDrNet. Structural netlists refer
to a class of netlists that represent the interconnection of prima-
tive circuit components. These netlists are useful because when
modifying netlists for reliability we are less concerned with the

Intermediate
Representation

Original
Netlist

Parser Composer

Modified
Netlist

Analysis
• Connectivity
• Clock Domains
• Utilization, etc.

Transformation
• Triple Modular Redundancy
• Duplication With Compare
• Partial variants, etc.

EDIF
VHDL

Verilog
Other

EDIF
VHDL

Verilog
Other

Fig. 2: Processing a netlist in SpyDrNet. Note that Verilog and VHDL
refer to the structural subset of these languages.

general purpose of the circuit and more concerned with how that
circuit is implemented. Users can manipulate the structure while in
memory and write out a supported format using one of the export
modules or composers that is included with SpyDrNet. Built into
the intermediate representation is an API for manipulating the
datastructure.

The data structure was built with a focus on simplifying access
to adjacent points in the netlist. In some cases where simple
accessors could be added at additional memory cost, the accessors
were added. One example of this is the bidirectional references
implemented throughout the netlist. This ideology resulted in a
slightly longer running time in some cases (and shorter in others),
but speed was taken into account as these decisions were made.
If a feature significantly increased the run time of the tests, it was
examined and optimized.

Primary Data Structures

A short description of some of the data structure components is
provided. The constructs behind a structural Netlist are Libraries,
Definitions, Instances, Ports, and Cables. Figure 3 shows the
connectivity between these components.

Netlist Library Definition Cable

Port

Instance

InnerPin

OuterPin

Wire

Fig. 3: Highlights the connectivity between components in the inter-
mediate representation.

Element: This is the base class for all components of
a netlist. Some components are further classified as first class
elements. First class elements have a name field as well as a
properties field.

Definition: These first class elements are sometimes called
cells or modules in other representations. They hold all of the
information about what their instances contain.



42 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Instance: This first class element is a place holder to be
replaced with the sub-elements of the corresponding definition
upon build. It is contained in a different definition to its own. In
the case of the top level instance it is the place holder that will be
replaced by the entire netlist when it is implemented

Port: The Port element can be thought of as containing
the information on how a Definition connects the outside world to
the elements (instances and cables) it contains.

Cable: Cables are bundles of wires that connect compo-
nents within a definition. They connect ports to their destination
pins.

Pin: These objects represent points of connection between
instances or ports and wires. Pins can be divided into inner and
outer pin categories. The need for these distinctions lies in the
fact that definitions may have more than one instance of itself.
Thus components connected on the inside of a definition need to
connect to pins related to the definition will connect to inner pins
on the definition. Each of these inner pins will correspond to one
or more outer pins on instances of the corresponding definition. In
this way instances can be connected togehter while still allowing
components within a definition to connect to the ports of that
definition.

Wire: Wires are grouped inside cables and are elements
that help hold connection information between single pins on
instances within a definition and within it’s ports.

Fig. 4: Structure of the Intermediate Representation. An asterisk
references a definition.

Support for Multiple Netlist Formats

In addition to holding a generic netlist data structure, the universal
netlist representation can hold information specific to individual
formats. This is done through the inclusion of metadata dictionar-
ies in many of the SpyDrNet objects.

Parsers can take advantage of the flexibility of the metadata
dictionary to carry extra information that source formats present
through the tool. This includes information such as comments,
parameters, and properties.

In addition, the metadata dictionary can be used to contain any
desired user data. Because SpyDrNet is implemented in Python,
any data type can be used for the key value in these dictionaries.

Callback Framework

A callback framework was implemented in SpyDrNet to support
real time analysis of netlist modifications. Callbacks can assist
with applications that make incremental changes to the netlist
followed with an analysis of the netlist to determine what more
needs to changed. Alternatively users may wish to be warned
of violations of design rules such as maintaining unique names.
Without callbacks these checks could be performed over the whole
netlist data structure on user demand which would add complexity
for the end user.

SpyDrNet’s callbacks allow users to create plugins that can
keep track of the current state of the netlist as changes are made.
Currently, a namespace manager is included with SpyDrNet.
The callback framework is able to watch changes to the netlist,
including addition and removal of elements, as well as changes in
naming and structure of the netlist.

Listeners may register to hear these changes as they happen.
Each listener is called in the order in which it was registered
and may update itself as it sees the netlist change. Plugins
that implement listeners can be created and added through the
API defined register functions. In general listener functions are
expected to receive the same parameters as the function on which
they listen.

Modularity Within SpyDrNet

In order to support expansion to a wide variety of netlists, our
intermediate representation was designed to reflect a generic
netlist data structure. Care was taken to ensure that additional user
defined constructs could be easily included in the netlist.

Because of the generic nature of the netlist representation,
additional netlist parsers and composers can be built separately
and still take full advantage of the existing modification passes
available in SpyDrNet. To build a parser or composer requires no
more advanced knowledge than an end user may have from using
the API to design a custom analysis or modification pass on the
netlist.

Other functionality has been added on top of the core of
SpyDrNet, including plugin support and the ability to modifiy
the netlist at a higher level. These utility functions are used by
applications. This layered approach aims to aid in code reusability
and reliability allowing lower level functionality to be tested
before the higher level functionality is added on.

Analysis and Transformation

SpyDrNet provides a framework for the analysis and transfor-
mation of structural netlists. Structural netlists (i.e., a list of
circuit components and their connects) capture a hardware design



NETLIST ANALYSIS AND TRANSFORMATIONS USING SPYDRNET 43

that is ready for physical implementation where hardware files
can be generated (see Figure 1). Information such as component
importance or influence can be understood by examining structural
relationships between components. Modifications made to the
structural netlist are reflected in the hardware implementation.

The analysis and transformation capabilities presented in sec-
tion form a basis from which custom analysis and transformation
functions can be built for specific applications. One current appli-
cation that benefits from these capabilities is the implementation of
duplication with compare (DWC) and triple modular redundancy
(TMR) to circuit designs, which is discussed later on. Using Spy-
DrNet’s analysis and transformations allows end-users to rapidly
develop custom functions for specific needs.

Utility Functions

SpyDrNet has several high level features currently included. All
of these features have an impact on the overall netlist structure but
several are most useful when included in other applications. This
section will highlight some of the simpler high level features that
are currently implemented in SpyDrNet.

Basic Functionality

Functionality is provided through the API to allow for creation and
modification of elements in the netlist data structures. Sufficient
functionality is provided to create a netlist from the ground
up, and read all available information from a created netlist.
Netlist objects are completely mutable and allow for on demand
modification. This provides a flexible framework upon which users
can build and edit netlists data structures. The basic functionality
includes functionality to create new children elements, modify
the properties of elements, delete elements, and change the re-
lationships of elements. All references bidirectional and otherwise
are maintained behind the scenes to ensure the user can easily
complete modification passes on the netlist while maintaining a
valid representation.

The mutability of the objects in SpyDrNet is of special
mention. Many frameworks require that the object’s name be set
on creation, and disallow any changes to that name. SpyDrNet, on
the other hand, allows name changes as well as any other changes
to the connections, and properties of the objects. The callback
framework, as discussed in another section, provides hooks that
allow checks for violations of user defined rules if desired.

Examples of some of the basic functionality are highlighted in
the following code segment. Relationships, such as the reference
member of the instances and the children of these references are
members of the SpyDrNet objects. Additional key data can be
accessed as members of the classes. Other format specific data
can be accessed through dictionary lookups. Since the name is
also key data but, is not required it can be looked up through
either access method as noted in one of the single line comment.
import spydrnet as sdn

netlist = sdn.load_example_netlist_by_name(
'fourBitCounter')

top_instance = netlist.top_instance

def recurse(instance, depth):
'''print something like this:
top

child1
child1.child

child2

child2.child'''
s = depth * "\t"

#instance.name could also be instance["NAME"]
print(

s, instance.name,
"(", instance.reference.name, ")")

for c in instance.reference.children:
recurse(c, depth + 1)

recurse(top_instance, 0)

Hierarchy

Netlists can be hierarchical or they can be flat (see Figure 5).
Hierarchical netlists contain non-leaf instances, which instance a
definition that contains additional instances. Flat netlists contain
only leaf instances, which instance a definition that is void of
additional instances. SpyDrNet supports hierarchy and perform-
ing analysis and transformations across hierarchical boundaries.
SpyDrNet focuses on structural netlists that are static (i.e., netlists
that do not change based on inputs to the netlist).

Top_Inst (Top_Def)
Mid_Inst_A (Mid_Def)

Leaf_Inst_A (Leaf_Def)
Leaf_Inst_B (Leaf_Def)
Leaf_Inst_C (Leaf_Def)

Mid_Inst_B (Mid_Def)
Leaf_Inst_A (Leaf_Def)
Leaf_Inst_B (Leaf_Def)
Leaf_Inst_C (Leaf_Def)

Mid_Inst_C (Mid_Def)
Leaf_Inst_A (Leaf_Def)
Leaf_Inst_B (Leaf_Def)
Leaf_Inst_C (Leaf_Def)

Top_Inst (Top_Def)
Mid_Inst_A/Leaf_Inst_A (Leaf_Def)
Mid_Inst_A/Leaf_Inst_B (Leaf_Def)
Mid_Inst_A/Leaf_Inst_C (Leaf_Def)
Mid_Inst_B/Leaf_Inst_A (Leaf_Def)
Mid_Inst_B/Leaf_Inst_B (Leaf_Def)
Mid_Inst_B/Leaf_Inst_C (Leaf_Def)
Mid_Inst_C/Leaf_Inst_A (Leaf_Def)
Mid_Inst_C/Leaf_Inst_B (Leaf_Def)
Mid_Inst_C/Leaf_Inst_C (Leaf_Def)

Fig. 5: A hierarchical netlist (left) versus a flat netlist (right).

Hierarchy is by default a component of many netlist formats.
One of the main advantages to including hierarchy in a design
is the ability to abstract away some of the finer details on a
level based system, while still including all of the information
needed to build the design. The design’s hierarchical information
is maintained in SpyDrNet by having definitions instanced within
other definitions.

SpyDrNet allows the user to work with the structure of a
netlist directly, having only one of each instance per hierarchical
level, but it also allows the user view the netlist instances in a
hierarchical context through the use of hierarchical references as
outlined below. Some other tools only provide the hierarchical
representation of the design.

There are drawbacks and advantages to each view on the
netlist, but the inclusion of a hierarchical view helps allow users
to make the fewest possible unneeded changes to the design.
Additionally there are several advantages to maintaining hierarchy,
smaller file sizes are possible in some cases, as sub components
do not need to be replicated. Simulators may have an easier time
predicting how the design will act once implemented [DIR+04].
Further research could be done to analyze the impact of hierarchy
on later compilation steps.

Flattening

SpyDrNet has the ability to flatten hierarchical designs. One
method to remove hierarchy from a design is to move all of the sub
components to the top level of the netlist repeatedly until each sub
component at the top level is a terminal instance, where no more
structural information is included below that instance’s level.



44 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Flattening was added to SpyDrNet because there are some
algorithms which can be applied more simply on a flat design.
Algorithms in which a flat design may be simpler to work with
are graph analysis, and other algorithms where the connections
between low level components are of interest.

Included is an example of how one might flatten a netlist in
SpyDrNet.
import spydrnet as sdn
from sdn.flatten import flatten

netlist = sdn.load_example_netlist_by_name(
'fourBitCounter')

#flattens in place. netlist will now be flat.
flatten(netlist)

Uniquify

Uniquify ensures that each non-terminal instance is unique, mean-
ing that it and it’s definition have a one to one relationship. Non-
unique definitions and instances may exist in most netlist formats.
One such example could be a four bit adder that is composed
of four single bit adders. Assuming that each single bit adder is
composed of more than just a single component on the target
device, and that the single bit adders are all identical, the design
may just define a single single bit adder which it uses in four
places. To uniquify this design, new matching definitions for single
bit adders would be created for each of the instances of the original
single bit adder and the instances that correspond would be pointed
to the new copied definitions. Thus each of the definitions would
be left with a single instance.

The uniquify algorithm is very useful when modifications are
desired on a specific part of the netlist but not to all instances
of the particular component. For example in the four bit adder,
highlighted in the previous paragraph of this section, if we assume
that the highest bit does not need a carry out, the single bit adder
there could be simplified. However, if we make modifications to
the single bit adder before uniquifying the modifications will apply
to all four adders. If we instead uniquify first then we can easily
modify only the adder of interest.

Currently Uniquify is implemented to ensure that the entire
netlist contains only unique definitions. This is one approach to
uniquify, however an interesting area for future exploration is that
of uniquify on demand. Or some other approach to only ensure
and correct uniquification of modified components only. This is
left for future work.

The following code example shows uniquify being used in
SpyDrNet.
import spydrnet as sdn
from sdn.uniquify import uniquify

netlist = sdn.load_example_netlist_by_name(
'fourBitCounter')

uniquify(netlist)

Clone

Cloning is another useful algorithm currently implemented in
SpyDrNet. Currently all of the components in a netlist can be
cloned from pins and wires to whole netlist objects. Upon initial
inspection clone seems simple. However, there is some complexity
when it comes to the connections between individual components.
Some explanation is provided here.

Clone could be implemented a number of ways. We attempted
to find the logical method for our clone algorithm at each level
of the data structure. Our overall guiding principles were that at
each level, lower level objects should maintain their connections,
the cloned object should not belong to any other object, and
the cloned object should not maintain its horizontal connections.
There are of course some exceptions to these rules which seemed
judicious. One such example is that when cloning an instance,
That instance will maintain its original corresponding definition,
unless the corresponding definition is also being cloned as in the
case of cloning a whole library or netlist (in which case the new
cloned definition will be used).

Additionally connection modification was done at a level
lower than the API in order to maintain consistency as different
components were cloned. This promoted code reuse in the clone
implementation and helped minimize the number of dictionaries
used.

The clone algorithm is very useful while implementing some
of the higher level algorithms such as TMR and DWC with
compare that we use for reliability research. In these algorithms
cloning is essential, and having it built into the tool helps simplify
their implementation.

The example code included in this section will clone an
element and then add that element back into the netlist which
it originally belonged to. Comments are included for most lines in
this example to illuminate why each step must be taken.
import spydrnet as sdn

netlist = sdn.load_example_netlist_by_name(
'hierarchical_luts')

#index found by printing children's names
sub = netlist.top_instance.reference.children[2]
sub_clone =

sub.clone()

#renamed needed to be added back into the netlist
sub_clone.name = "sub_clone"

#this line adds the cloned instance into the netlist
netlist.top_instance.reference.add_child(sub_clone)

Hierarchical References

SpyDrNet includes the ability to create a hierarchical reference
graph of all of the instances, ports, cables, and other objects which
may be instantiated. The goal behind hierarchical references is to
create a graph on which other tools, such as NetworkX can more
easily build a graph. each hierarchical reference will be unique,
even if the underlying component is not unique. These components
are also very light weight to minimize memory impact since there
can be many of these in flight at one time.

The code below shows how one can get and print hierarchical
references. The hierarchical references can represent any spydrnet
object that may be instantiated in a hierarchical manner.
top = netlist.top_instance
child_instances = top.reference.children

for h in sdn.get_hinstances(child_instances):
print(h, type(h.item).__name__)

Getter Functions

SpyDrNet includes getter functions which are helpful in the anal-
ysis and transformation of netlists. These functions were created



NETLIST ANALYSIS AND TRANSFORMATIONS USING SPYDRNET 45

to help a user more quickly traverse the netlist. These functions
provide the user with quick access to adjacent components. A
call to a getter function can get any other related elements from
the existing element that the user has a handle to (see Figure
6). Similar to clone there are multiple methods which could be
used to implement a correct getter function. We again strove to
apply the most logical and consistent rules for the getter functions.
There are some places in which the object returned may not be
the only possible object to be returned. In these cases generators
are returned. In cases in which there are two possible classes of
relationships upon which to return objects, the user may specify
whether they would like to get the more inward related or outward
related objects. For example, a port may have outer pins on
instances or inner pins within the port in the definition. Both of
these pins can be obtained separately by passing a flag.

Definition

Port

InnerPin

Library

Netlist

Definition

Port

InnerPin

Library

Netlist

Cable Cable

Wire

Instance

OuterPin

Wire

Instance

OuterPin

HRef HRef

Fig. 6: Getter functions are able to get sets of any element related to
any other element.

In the example only a few of the possible getter functions are
shown. The same pattern can be used to get any type of object
from another however. Each call to a getter function returns a
generator.

Example Applications

SpyDrNet may be used for a wide variety of applications. SpyDr-
Net grew out of a lab that is focused primarily on improving circuit
reliability and security. An application that has had strong influ-
ence over its development is that of enhancing circuit reliability
in harsh radiation environments through partial circuit replication
[PCC+08]. When a particle of ionizing radiation passes through
an integrated circuit, it can deposit enough energy to invert values
stored in memory cells [JED06]. An FPGA is a computer chip that
can be used to implement custom circuits. SRAM-based FPGA
stores a circuits configuration in a large array of memory. When

radiation corrupts an FPGA configuration memory, it can corrupt
the underlying circuit and cause failure.

One of our areas of research involves finding ways to design
more reliable circuits to be programmed onto existing, non spe-
cialized, FPGAs. These modifications are useful for designers that
deploy many FPGAs as well as designers that plan on deploying
circuits in high radiation environments where single event upsets
can disrupt the normal operation of devices. These reliability
focused modifications require some analysis of netlist structure
as well as modifications in the netlist.

SpyDrNet was created to help automate this process and
allow our researchers to spend more time studying the resulting
improved circuitry and less time modifying the circuit itself.
It is important to note that some care needs to be taken to
ensure that redundancy modifications are not removed by down
stream optimizations in implementation. Reliability modifications
to netlists are often optimized away. One common adjustment
to a netlist for reliability purposes, is a replication of various
components. Often when tools see the same functionality with
a theoretical identical result they will attempt to remove the
duplicated portion and provide two outputs on a single instance.
This defeats the purpose of the reliability modifications. Using
and modifying netlists allows us to bypass those optimizations
and gives more control over how our design is built. Below are
some details on using SpyDrNet for higher level transformation
and analysis techniques applicable to reliability applications.

Triple Modular Redundancy

TMR is one method by which circuits can be made more reliable.
TMR triplicates portions of the circuit to allow the circuit to
continue to provide the correct result even under some cases of
error. Voters are inserted between triplicated circuit components
to pass the most common result on to the next stage of the circuit
[PCC+08]. Figure 7 shows two typical layouts for TMR. The top
half of the image shows a triplicated circuit with a single voter that
feeds into the next stage of the circuit. The bottom of the figure
shows a triplicated voter layout such that even a single voter failure
may be tolerated.

Fig. 7: Triple modular redundancy with a single voter and triplicated
voters. [tmr]



46 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

TMR has been applied using SpyDrNet. The current imple-
mentation selects subsets of the circuit to replicate. Then a voter
insertion algorithm creates and inserts the voter logic between
triplicated layers. Later, reduction voting is added to the output,
connecting the triplicated logic in place of the original implemen-
tation. The ability of SpyDrNet to carry hierarchy through the
tool was taken advantage of by the TMR implementation. This
allows the triplicated design to take advantage of the benefits of
hierarchy including, improved place and route steps on the target
FPGA. Previous work with the BYU EDIF Tools [Bri20] required
a flattened design to accomplish TMR on a netlist. The triplicated
design was programmed to an FPGA after being processed using
SpyDrNet.

Duplication With Compare

Circuit

Circuit

Compare

Compare

Fig. 8: Duplication with compare showing the duplicated circuitry
and duplicated violation flags.

DWC is a reliability algorithm in which the user will duplicate
components of the design and include comparators on the output
to try present a flag that will be raised when one of the circuits
goes down [JHW+08]. Like TMR’s voters, the comparators can
be duplicated as well to ensure that if a comparator goes down at
least one of the comparators will flag an issue.

DWC was again implemented on SpyDrNet. Once again this
was able to take advantage of SpyDrNet’s hierarchy and maintain
that through the build. Comparators were created and inserted and
the selected portion of the design was duplicated. The resulting
circuits were programmed to an FPGA after being read into
SpyDrNet, modified and written back out. As with TMR the
existing implementation on the BYU EDIF Tools [Bri20] required
that the design be flattened before being processed.

Clock Domain Analysis

In hardware various clocks are often used in different portions
of the circuit. Sometimes inputs and outputs will come in on a
different clock before they reach the main pipeline of the circuit.
At the junctions between clock domains circutry should not be
triplicated in TMR. If it is triplicated it may result in steady state
error on the output because the signals from the three inputs may
reach the crossing at different times and be registered improperly
[LNW10]. This can make the overall reliability of the system
lower than it otherwise would be.

In order to find these locations. Clock domains have been
examined using SpyDrNet. The basic methodology for doing this
was to find the clock ports on the various components in the design
which have them and trace those clocks through the netlist. The
resulting connected components form a clock domain. When a
triplication pass encountered the boundry between domains the
triplicated circuit could be reduced to a single signal to cross the
boundry.

Graph Analysis and Feedback

While triplictaing a design users must determine the best location
to insert voters in the design. Voters could be inserted liberally
at the cost of the timing of the critical path. Alternatively sparse
voter insertion can yield a lower reliability. One consideration to
take into account is that voters inserted on feedback loops in the
directional graph represented by the netlist can help correct the
circuit’s state more readily. One study concluded that inserting
voters after high fanout flip flops in a design yielded good
results. [JW10] This voter insertion algorithm was implemented
on SpyDrNet after doing analysis using NetworkX [HSS08] to
find the feedback loops.

Future Direction

As SpyDrNet matures, several new features are planned to benefit
SpyDrNet’s users. Several of the upcoming features are discussed
here but a more complete roadmap is maintained with the project’s
repository.

Additional netlist format parsers and composers are planned.
Supplying additional parser and composers will open the door
for users to more easily use SpyDrNet with a wider variety
of technologies and device vendor tools. This work will enable
conversion between formats as well, which will provide greater
flexibility for end users. Some vendor tools only accept specific
netlist formats. Converting netlist formats would provide further
possibilities.

Plans to integrate more closely with other open source tools
in analysis and hardware design have been made. These plans
include further work to ensure NetworkX and other SciPy utilities
can be easily leveraged by SpyDrNet. Integrating with additional
open source electionic design tools is also of interest, which could
help make SpyDrNet a useful part of an open source design flow.

SpyDrNet was designed to be generic and modular to allow
for support of a wide variety of netlist formats. Device specific
information is not included in SpyDrNet. Future work may include
providing a framwork to maintain and make use of device specific
data. Such a framework could simplify a number of different
applications that require device specific information. Device data
of interest may include device resource constraints, clock prop-
agation behavior, and limitations on how components can be
implemented on a specific technology. Providing users a simpler
way of maintaining and utilizing this data will help improve the
flexibility of the tool.

Several portions of SpyDrNet could be sped up by accelerating
them in C/C++. Parseing netlists can take several minutes for very
large designs using the current implementation. An accelerated
verion of the current parser would be of use in the future as
more users with increasingly complex designs become interested
in SpyDrNet.

Conclusion

SpyDrNet is a framework created to be as flexible as possible
while still meeting the needs of reliability related research. We
have worked to ensure that this tool is capable of a wide variety
of netlist modifications.

Although this tool is new, a few reliability applications have
been built on SpyDrNet. Because of these applications we feel
confident that this tool can be helpful to others. SpyDrNet is
released on github under an open source licence. New users are
welcome to use and contribute to the SpyDrNet tools.



NETLIST ANALYSIS AND TRANSFORMATIONS USING SPYDRNET 47

Acknowledgment

This work was supported by the Utah NASA Space Grant Con-
sortium and by the I/UCRC Program of the National Science
Foundation under Grant No. 1738550.

REFERENCES

[Bri20] Brigham Young University. BYU EDIF Tools [online]. 2020.
URL: https://sourceforge.net/projects/byuediftools/.

[CD15] Chris Drake. PyEDA: Data Structures and Algorithms for Elec-
tronic Design Automation. In Kathryn Huff and James Bergstra,
editors, Proceedings of the 14th Python in Science Conference,
pages 25 – 30, 2015. doi:10.25080/Majora-7b98e3ed-
004.

[DIR+04] P. Daglio, D. Iezzi, D. Rimondi, C. Roma, and S. Santapa.
Building the hierarchy from a flat netlist for a fast and accurate
post-layout simulation with parasitic components. In Proceed-
ings Design, Automation and Test in Europe Conference and
Exhibition, volume 3, pages 336–337 Vol.3, Feb 2004. doi:
10.1109/DATE.2004.1269268.

[HSS08] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring
network structure, dynamics, and function using networkx. In
Gaël Varoquaux, Travis Vaught, and Jarrod Millman, editors,
Proceedings of the 7th Python in Science Conference, pages 11
– 15, Pasadena, CA USA, 2008.

[JB94] Jen-Jen Lung and J. Bhasker. Verilog netlist as an exchange
language. In International Verilog HDL Conference, pages 10–
14, March 1994. doi:10.1109/IVC.1994.323754.

[JED06] Measurement and reporting of alpha particle and terrestrial cosmic
ray-induced soft errors in semiconductor devices, 2006. URL:
https://www.jedec.org/sites/default/files/docs/JESD89A.pdf.

[JHW+08] J. Johnson, W. Howes, M. Wirthlin, D. L. McMurtrey, M. Caffrey,
P. Graham, and K. Morgan. Using duplication with compare
for on-line error detection in fpga-based designs. In 2008
IEEE Aerospace Conference, pages 1–11, March 2008. doi:
10.1109/AERO.2008.4526470.

[JW10] Jonathan M Johnson and Michael Wirthlin. Voter Insertion
Algorithms for {FPGA} Designs Using Triple Modular Re-
dundancy. In Proceedings of the 18th Annual ACM/SIGDA
International Symposium on Field Programmable Gate Arrays,
FPGA ’10, pages 249–258, New York, NY, USA, 2010. ACM.
doi:10.1145/1723112.1723154.

[liv] LiveHD: Live hardware development. https://github.com/masc-
ucsc/livehd.

[LK18] C. Lavin and A. Kaviani. Rapidwright: Enabling custom crafted
implementations for fpgas. In 2018 IEEE 26th Annual Inter-
national Symposium on Field-Programmable Custom Computing
Machines (FCCM), pages 133–140, April 2018. doi:10.1109/
FCCM.2018.00030.

[LNW10] Y. Li, B. Nelson, and M. Wirthlin. Synchronization techniques for
crossing multiple clock domains in fpga-based tmr circuits. IEEE
Transactions on Nuclear Science, 57(6):3506–3514, Dec 2010.
doi:10.1109/TNS.2010.2086075.

[LS89] W. Li and H. Switzer. A unified data exchnage environment
based on edif. In Proceedings of the 26th ACM/IEEE Design
Automation Conference, DAC ’89, page 803–806, New York,
NY, USA, 1989. Association for Computing Machinery. doi:
10.1145/74382.74534.

[PCC+08] Brian Pratt, Michael Caffrey, James F Carroll, Paul Graham,
Keith Morgan, and Michael Wirthlin. Fine-grain SEU mitigation
for FPGAs using partial TMR. IEEE Transactions on Nuclear
Science, 55(4):2274–2280, aug 2008. doi:10.1109/TNS.
2008.2000852.

[tmr] Graphical Representation of TMR. Mewtow / CC BY-
SA (https://creativecommons.org/licenses/by-sa/4.0). URL:
https://commons.wikimedia.org/wiki/File:Triple_Modular_
Redundancy_et_sa_variante_am%C3%A9lior%C3%A9e.png.

[Ver20] Verific Design Automation, Inc. Verific Design Automation
[online]. 2020. URL: https://www.verific.com/.

[WN14] B. White and B. Nelson. Tincr — a custom cad tool framework
for vivado. In 2014 International Conference on ReConFigurable
Computing and FPGAs (ReConFig14), pages 1–6, Dec 2014.
doi:10.1109/ReConFig.2014.7032560.

[Xil20] Xilinx, Inc. Vivado Design Suite [online]. 2020. URL: https:
//www.xilinx.com/products/design-tools/vivado.html.

https://sourceforge.net/projects/byuediftools/
http://dx.doi.org/10.25080/Majora-7b98e3ed-004
http://dx.doi.org/10.25080/Majora-7b98e3ed-004
http://dx.doi.org/10.1109/DATE.2004.1269268
http://dx.doi.org/10.1109/DATE.2004.1269268
http://dx.doi.org/10.1109/IVC.1994.323754
https://www.jedec.org/sites/default/files/docs/JESD89A.pdf
http://dx.doi.org/10.1109/AERO.2008.4526470
http://dx.doi.org/10.1109/AERO.2008.4526470
http://dx.doi.org/10.1145/1723112.1723154
http://dx.doi.org/10.1109/FCCM.2018.00030
http://dx.doi.org/10.1109/FCCM.2018.00030
http://dx.doi.org/10.1109/TNS.2010.2086075
http://dx.doi.org/10.1145/74382.74534
http://dx.doi.org/10.1145/74382.74534
http://dx.doi.org/10.1109/TNS.2008.2000852
http://dx.doi.org/10.1109/TNS.2008.2000852
https://commons.wikimedia.org/wiki/File:Triple_Modular_Redundancy_et_sa_variante_am%C3%A9lior%C3%A9e.png
https://commons.wikimedia.org/wiki/File:Triple_Modular_Redundancy_et_sa_variante_am%C3%A9lior%C3%A9e.png
https://www.verific.com/
http://dx.doi.org/10.1109/ReConFig.2014.7032560
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html

	Introduction
	Related Work
	SpyDrNet Tool Flow
	The Intermediate Representation
	Primary Data Structures
	Support for Multiple Netlist Formats

	Callback Framework
	Modularity Within SpyDrNet

	Analysis and Transformation
	Utility Functions
	Basic Functionality
	Hierarchy
	Flattening
	Uniquify
	Clone
	Hierarchical References
	Getter Functions

	Example Applications
	Triple Modular Redundancy
	Duplication With Compare
	Clock Domain Analysis
	Graph Analysis and Feedback

	Future Direction
	Conclusion
	Acknowledgment
	References

