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SUMMARY & CONCLUSIONS 

Triple modular redundancy (TMR) is commonly employed 
to increase the reliability and mean time to failure (MTTF) of a 
system. This improvement can be shown by using a continuous 
time Markov chain. However, typical Markov chain models do 
not model common cause failures (CCF), which is a singular 
event that simultaneously causes failure in multiple redundant 
modules. 

This paper introduces a new Markov chain to model CCF 
in TMR with repair systems. This new model is compared to 
the idealized models of TMR with repair without CCF. The 
fundamental limitations that CCF imposes on the system are 
shown and discussed. In a motivating example, it is seen that 
CCF imposes a limitation of 51× on the reliability improvement 
in a system with TMR and repair compared to a simplex system, 
(i.e., without TMR).  A case study is also presented where the 
likelihood of CCF is reduced by a factor of 18× using various 
mitigation techniques. Reducing the CCF compounds the 
reliability improvement of TMR with repair and leads to a 
overall system reliability improvement of 10,000× compared to 
the simplex system as supported by the proposed model. 

1 INTRODUCTION 

Triple modular redundancy (TMR) with repair is a 
common fault mitigation strategy for increasing the reliability 
of a system. Applying TMR allows the system to tolerate 
failures limited to one of the redundant modules. If multiple 
modules fail or are in a failure state at the same time, then TMR 
is defeated and the system is no longer protected. Provisioning 
a repair mechanism allows the system to correct itself. The 
system will operate correctly as long as the repair mechanism 
prevents failures from accumulating in multiple modules. 

TMR with repair is very effective at increasing the 
reliability of a system; but when a single event causes multiple 
modules to fail, then no amount of repair can prevent the system 
from failing. TMR is often thought of as a catch all to protect 
any system from failure, and repair is often believed to 
monotonically improve the effectiveness of TMR overtime as 
the repair rate increases with respect to the failure rate. In truth, 

if only one module could fail at a time, then TMR with an 
increasing repair rate would improve the reliability of the 
system without bound. But single events can affect failure in 
multiple modules and thereby thwart TMR with repair as a 
system-level protection scheme.  

This paper proposes a reliability model for common cause 
failure (CCF) in systems with TMR and repair, it examines the 
implications of CCF on such a system, and it presents an 
insightful case study that highlights the impact that CCF can 
have on a TMR system with repair and the benefits that can be 
obtained from mitigating CCF. When the repair rate in a TMR 
system with repair is much larger than the failure rate, then even 
a small likelihood of CCF can have significant impact on the 
reliability of the system. In fact, CCF imposes a fundamental 
limit on the reliability improvement that can be obtained by 
protecting a system with TMR and repair. This paper explores 
all of these facets and contributes novel insights into 
understanding the impact of CCF on systems with TMR and 
repair. 

Using the proposed reliability model, the impact of CCF on 
the reliability of a system with TMR and repair can be 
quantified. CCF impacts the overall system reliability and it 
places a limit on the improvement in reliability that can be 
gained from increasing the repair rate of the system. Both 
aspects can be quantified using the proposed model.  

2 MOTIVATION 

TMR with repair has traditionally been modeled using a 
Markov chain [1]. Markov chains can be used to derive the 
theoretical continuous time reliability and mean time to failure 
(MTTF) of the system. The theoretical equations for the 
reliability and MTTF of TMR with repair show that both 
metrics should improve as the repair rate increases [2]. In fact, 
as the repair rate approaches infinity, the estimated MTTF also 
approaches infinity. This makes TMR with repair an attractive 
fault mitigation technique for systems where the repair rate is 
relatively much higher than the fault rate. 

A limitation in the traditional TMR Markov chain model is 
that it assumes that a single fault will affect only one redundant 
module, thus there must be two separate module failure events 
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to cause a system failure. Generally, this is how TMR fails, but 
under some circumstances it is possible for a single event to 
cause system failure or for a single fault to simultaneously 
affect multiple redundant modules. These types of events are 
often referred to as common cause failure (CCF) [3].  A Markov 
chain reliability model can be constructed for TMR and repair 
that would also take CCF into account by allowing the system 
failure due to a single fault. This paper seeks to adapt current 
Markov chain reliability models for systems with TMR and 
repair so that they also take CCF into consideration. 

Mathematical models are often used to represent potential 
fault tolerant mitigation techniques. Markov chains are useful 
because metrics such as reliability as a function of time and the 
MTTF can be derived and analyzed. The typical TMR with 
repair system can be modeled using the Markov chain shown in 
Figure 1. 

 

 
Figure 1 – TMR with Repair Markov Chain 

There are three states in this Markov chain. The first state, 
S0, is the normal operation state where all three TMR modules 
are operating correctly. The second state, S1, is the impaired 
operation state where one of the TMR modules has failed. The 
third state, S2, is the failed state where two or more of the TMR 
modules have failed. The states are connected by three arcs. The 
first arc transitions from S1 to S2 and represents a single module 
failing. This occurs at three times the module failure rate, ". The 
second arc is from S2 to S1 and represents the module repair rate, #. The third is from S2 to S3 and represents another module 
failure. This occurs at two times the module failure rate since 
there are only two correctly functioning modules in S1.  

Most of the mathematical models for TMR carry an inherit 
assumption: each of the redundant modules fail independently. 
This assumption exists since in the typical TMR with repair 
Markov chain there is no connection between the normal 
operation state, S0, and the failed state, S2. This implies that for 
the system to fail, it must pass through the impaired operation 
state, S1, which requires two separate events for the system to 
fail, (i.e., a single event cannot cause the system to enter S3). 

This assumption becomes apparent when analyzing the 
MTTF of the TMR with repair system (see Equation 1). The 
maximum MTTF for any non-zero failure rate can be found by 
setting the repair rate, #, to infinity (see Equation 2). An infinite 
repair rate suggests that any single TMR module failures are 
repaired instantaneously. At an infinite repair rate, the system 
cannot fail because whenever the system transitions into state 
S1, it immediately transitions back into state S0. MTTF$%&'()* =  +, ;  MTTF-./ = 0,123,4                 (1) lim256(MTTF-./) = 7                                   (2) lim256(Improvement-./) = .--89:;.--8<=>?@AB = 7       (3) 

For many systems (if not all systems), it is possible for 
multiple modules to fail simultaneously. This would represent 
a single event that causes system failure. Because the modules 
fail simultaneously, there is no opportunity for a repair element 
to repair one of the modules before the other module fails. In 
the Markov chain, this translates to a connection between the 
normal and impaired operation states, S0 and S1, and the failed 
state, S2. These types of failures are called common cause 
failures (CCF). CCF refers to any single event that 
simultaneously causes multiple TMR modules to fail. 

This paper seeks to explore the implications of CCF on 
system with TMR and repair because real world systems 
experience this phenomenon and because current models do not 
adequately emphasis the impact that CCF can have on systems 
with TMR and repair. Specifically, the interplay between the 
likelihood of CCF, the failure rate of individual modules, and 
the repair rate of the system needs to be deciphered. As part of 
the motivation for this work, an insightful example is presented 
and related works are discussed. 

2.1 Related Work 

 The concept of common cause of failures (CCF) has been 
considered on reliability modeling in nuclear and aviation 
industries for decades [4-5].  In nuclear plants, CCF has been 
modeled using the beta-factor model introduced in [6]. The 
beta-factor model assigns a probability of C to an event that 
causes failures in the remaining components.  The C parameter 
can be seen as the fraction of failures that cause all components 
to fail. Thus, the system will have a CCF rate of "CCF = CD; 
where D is the failure rate of a single component. 

In [3], a discussion around several extensions of the beta 
model is presented such as the multi beta-factor model, the 
multiple greek letter model, and the binomial failure rate model.  
All of the discussed models are presented in the context of 
power plants and lack the notion of a repair mechanism. 

For TMR systems, voters can be seen as an example of a 
CCF. In [7], the notion of imperfect voters for TMR systems is 
discussed. The discussion shows that the small area the 
imperfect voters use compromises the reliability improvement 
provided by TMR. As for most of the previous work, the work 
on [7] does not cover the use of a repair mechanism while 
considering the imperfect voters. 

In [8] authors present a method to compute the reliability 
in the presence of CCF. The method uses a direct modeling 
approach based on a Venn diagram that yields a linear function 
of the reliability. The model does not consider repair. Without 
considering repair, the limits imposed by the CCF failure rate 
on the reliability of a TMR system with repair cannot be 
examined. 

In [9] the authors proposed a method to incorporate CCF 
in system analysis. Their method applies Markov modeling in 
dynamic fault trees.  The resulting Markov model is a 
straightforward TMR model with additional transitions from 
the working state to the failure state. The model lacks a repair 
mechanism and the authors do not show an analysis of the 
proposed model. 

Another Markov model for a TMR design with CCF is 
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presented in [10]. Their model is specific to their design which 
is a TMR system with active hardware redundancy which has 
fault-masking and detection. Their Markov model includes a 
repair mechanism but does not include CCF.  

The model we propose is a Markov chain for TMR systems 
that include both CCF and repair. The proposed general model 
is compared to an ideal TMR model with and without a repair 
mechanism. This comparison provides insight into the 
fundamental limitations that CCF imposes to TMR systems 
with repair. 

2.2 Motivating Example 

Our proposed model is applicable to many systems. An 
interesting example is to apply this model to electronic circuits 
implemented on a field programmable gate arrays (FPGA). 
These circuits are subject to faults caused by ionizing radiation. 
Ionizing radiation can upset the values stored in the devices 
configuration memory cells, which can change in the 
functionality of the intended circuit and result in system failure 
[11]. Applying TMR to FPGA circuits protects the circuit from 
configuration upsets in radioactive environments such as space-
based systems. Upsets in configuration memory can be repaired 
on-the-fly by continuously checking for and correcting upsets 
as they are encountered. The repair rate can be set very high on 
these systems compared to the upset rate, (e.g., one-hundred 
thousand checks to one upset or higher). In theory, this 
configuration should yield a system that is extremely reliable in 
the presence of harsh radiation. 

Based on the traditional Markov models for TMR with 
repair, the reliability of an FPGA system using TMR with repair 
should be relatively high. However, the improvements in 
system failure rate measured in testing are much lower than 
expected [12]. After carefully analyzing the behavior of the 
system with a variety of artificial upsets, (i.e., purposeful 
corruption of configuration memory), it was found that some 
upsets cause two or more of the circuit modules to fail, (i.e., a 
CCF), which violated the assumption that a single fault can 
cause only one module to fail. TMR defeat has also been 
observed in situations where a single energetic atomic particle 
causes multiple configuration memory cells to upset at the same 
time [13]. 

Another study of a TMR circuit on an FPGA showed the 
limitations imposed by CCF [14]. The authors tested the circuit 
using a method called fault injection, where single faults are 
intentionally introduced into the circuit to observe the circuit 
behavior. A fault injection study essentially tests at an infinite 
repair rate, (as only one fault is ever present in the system at a 
given time). The ideal model of TMR suggests that no failures 
should be observed in the TMR circuit, and there should be an 
infinite improvement over the unmitigated circuit. Instead, the 
results in Table 1 show that the circuit only saw a 51x 
improvement in design sensitivity over the unmitigated circuit, 
and there were single faults that could cause TMR failure. This 
motivated us to create a way to model the behavior of CCF so 
we could more accurately estimate the improvement offered by 
TMR. 

 

Table 1 – CCF in a TMR circuit on an FPGA [14] 

Circuit/Metric Unmitigated TMR 
Faults 1,831,859 29,443,885 

Failures 6,501 2,037 
Sensitivity .355% .00692% 

Improvement 1.0x 51.3x 
 

3 MODELING COMMON CAUSE FAILURE IN TMR 

Modeling the impact of CCF on TMR systems requires 
adaptation of existing models. In this section, two different 
models are explored. First, a model is presented that considers 
the impact of CCF on a TMR system without repair. Second, a 
model is presented that considers the impact of CCF on a TMR 
system with repair. Both models aid the understanding of the 
impact that CCF has on the reliability improvement of a TMR 
system.  

To model CCF in TMR systems, two additional arcs can be 
added to the Markov chain. The first arc is added from state S0 
to S2 which represents direct TMR system failure from a single 
event. This can model any event that simultaneously affects two 
or more TMR modules. The second arc that needs to be added 
is from S1 to S2. Even when one TMR module has failed (which 
is the case in S1), there are still events that can affect multiple 
domains, which needs to be accounted for. Both of these arcs 
have the CCF failure rate, i.e., "EE8.  

In a more general context, "EE8 can be analyzed with 
relation to the mode failure rate, ". This can be done by 
employing a simple ratio using the variable F, "EE8 = F".                                          (4) 
Four different values of F were chosen for the analysis to 
explore how different rates of CCF affect the system. The four 
values are F = (1, .1, .01, .001). The next two subsections 
explore how CCF affects TMR systems with and without repair. 

3.1 TMR Without Repair 

Figure 2 shows the Markov chain for TMR without repair, 
but with CCF. As previously explained, two arcs have been 
added to the traditional model, from states S0 and S1 to state S2, 
with the CCF failure rate, "EE8.  

 

 
Figure 2 – TMR with CCF and No Repair 

The Markov chain can then be used to derive the 
reliability functions [2], which have been plotted in Figure 3. 

This chart has three main takeaways: 
! For values of F G .1, TMR with and without CCF are 

nearly identical; 
! For values of . 1 G F < 1, TMR with CCF may be better or 

worse than the Simplex system; 
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! For values of F H 1, TMR makes the system worse than 
Simplex. 

Figure 3 – Plots of TMR with CCF and No Repair 

3.2 TMR With Repair 

Similar to the TMR without repair model, the Markov chain 
for TMR with repair can be altered to account for CCF, as 
shown in Figure 4. Compared to the model in Figure 1, only 
the two new arcs are added from states S0 and S1 to S2. Figure 
5, shows the effects that CCF has on the reliability of a system 
with a high repair rate. 

 

 
Figure 4 – TMR with CCF and Repair 

There are a few trends that can be observed from these 
charts. One observation is the effect CCF has on the system as 
the CCF rate becomes larger. When F = 1 the system digresses 
back into the Simplex system. This trend is clearly observed in 
Figure 4 where the plots for the Simplex system and the TMR 
system with F = 1 are nearly identical. TMR will not be 
beneficial to the system if the CCF rate is too high. 

As the CCF rate "EE8 becomes lower than the module 
failure rate ", the reliability over time of the TMR system 
increases. This varies according to how "EE8 compares to ". As F 5 0 the system approaches the reliability of the ideal TMR 
system with repair and no CCF. How fast it approaches the ideal 
TMR system depends on the repair rate # relative to the failure 
rate ". 

Equations for the MTTF of a system with TMR, repair and 
CCF are also derived from the Markov model. Equation 5 gives 
the MTTF of such a system with respect to CCF ratio, F, the 
single module failure rate, ", and the system repair rate, #. 
Equation 6 gives the MTTF limit as the repair rate approaches 
infinity and Equation 7 shows how the improvement of a 

system with TMR and repair is limited by CCF rate. 

Figure 5 – Plots of TMR with CCF and a High Repair Rate 

Without CCF, the reliability of a system with TMR and 
repair can be improved without bound by increasing the 
reliability rate. With CCF, improvement is limited. The 
limitation imposed is the inverse of the CCF rate. MTTF-./ I%JK EE8 = 01L1MN3,10,L1,L412L                  (5) lim256(MTTF-./ I%JK EE8) = +L, = +,OOP                 (6) Improvement-./ I%JK EE8 = .--89:; Q=RS TTU.--8<=>?@AB = +L     (7) 

At high repair rates, even low values of "EE8 can have a 
significant impact on the system. This is not to say that the 
system digresses back into the Simplex system, but the 
difference in reliability between the TMR system with CCF and 
the ideal system grows. In Figure 5  where # = 10,000", all 
three of the TMR with CCF systems are significantly different 
from the ideal system. As the repair rate increases in order of 
magnitude, the CCF rate must be reduced by the same orders of 
magnitude in order to realize the full benefits of TMR with 
repair. 

4 APPLICATION EXAMPLE 

In a previous work [12], we set out to improve the TMR 
circuit reliability by reducing the CCF rate. We did this by 
implementing a mitigation technique called PCMF.  We can use 
the results of the fault injection test reported in that paper to 
theoretically analyze the improvements, using the equations 
presented in this paper. The results of the fault injection test for 
the unmitigated, TMR and PCMF circuits are reported in Table 
2. The PCMF circuit is the TMR circuit with an additional CCF 
mitigation technique applied. 

From the table, the sensitivity for the unmitigated circuit 
23456. 78. 9:8. ;36458. <=>54?8. ?=98@. >-8-@. AB%-'CD%)-2. The 
sensitivities for the TMR and PCMF circuits would be the CCF 
<=>54?8. ?=98E@. >-8-@.ACCF=1.83x10-5 and 1.25x10-6, for the TMR 
and PCMF. G>?G4>9E@. ?8EH8G9>I85J-.KE>LM. 9:8. I=548E. <3?. A. =L6.
ACCF 9:8.I=548E.3<.N.<3?.8=G:.3<.9:8.G>?G4>9E.G=L.78.G=5G45=986.
4E>LM. 1O4=9>3L. (-. P:>E. 23456. ?8E459. >L. NTMR=1.36x10-3 and 
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NPCMF=9.32x10-5-.P:8L.4E>LM. 9:8.I=548E. <3?.N. G3;7>L86.2>9:.
Equation 7, the improvements can be calculated. This would 
result in ITMR=7.34x102 and IPCMF=1.07x104, which are the 
improvements that are reported (before rounding). This 
=HH5>G=9>3L.E:32E.9:=9.7J.?864G>LM.9:8.QQF.?=98@.3?.5328?>LM.N@.
the reliability of the TMR system can be greatly improved. 

Table 2 – CCF Mitigation in a TMR circuit on  

an FPGA [12] 

Circuit/Metric Unmitigated TMR PCMF 
Faults 2,193,073 2,351,568 2,396,265 

Failures 29,436 43 3 
Sensitivity 1.34x10-2 1.83x10-5 1.25x10-6 

Improvement 1x 730x 11,000x 
 

5 CONCLUSION 

This paper has proposed a new Markov chain to model 
systems that employ TMR with repair but are also susceptible 
to CCF. By using the new model we have shown that the 
reliability and MTTF of these systems is limited by the CCF 
rate. The system cannot improve past the CCF rate even when 
the repair rate of the system is set very high.  

For future work we plan on continuing to explore the 
theoretical limits imposed by CCF. We plan on exploring the 
tradeoffs between increasing the repair rate and decreasing the 
CCF rate. We would also like to extend the model for other 
systems, such as systems with partial TMR and systems that 
employ partitioning. 
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