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Figure 1: Left. WristBot being used by a participant. Right. Screenshot of the virtual environment showing an avatar controlled

by user’s wrist movements.

ABSTRACT

Proprioception or body awareness is an essential sense that aids
in the neural control of movement. Proprioceptive impairments
are commonly found in people with neurological conditions such
as stroke and Parkinson’s disease. Such impairments are known
to impact the patient’s quality of life. Robot-aided proprioceptive
training has been proposed and tested to improve sensorimotor
performance. However, such robot-aided exercises are implemented
similar to many physical rehabilitation exercises, requiring task-
specific and repetitive movements from patients. Monotonous na-
ture of such repetitive exercises can result in reduced patient moti-
vation, thereby, impacting treatment adherence and therapy gains.
Gamification of exercises can make physical rehabilitation more
engaging and rewarding. In this work, we discuss our ongoing
efforts to develop a game that can accompany a robot-aided wrist
proprioceptive training exercise.
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1 INTRODUCTION

Proprioception, the sense of body awareness, is essential for normal
motor function. Proprioceptive deficits are common in neurological
conditions [Coupar et al. 2012; Konczak et al. 2009]. Such deficits
cause a decline in precision of goal-directed movements, and al-
tered postural and spinal reflexes resulting in balance and gait
problems [Rothwell et al. 1982]. Proprioceptive training is an in-
tervention aiming to improve proprioceptive function [Aman et al.
2015]. Previous work has established the efficacy of a robot-aided
proprioceptive training using WristBot [Elangovan et al. 2017, 2018,
2019]. The WristBot (Figure 1. Left) is a three degrees-of-freedom
(3-DoF) exoskeleton robot that allows full range of motion (ROM),
delivers precise haptic, position, and velocity stimuli at the wrist,
and accurately encodes wrist position across time. Additional de-
tails about the WristBot can found in [Cappello et al. 2015].
Nevertheless, while the WristBot has demonstrated its efficacy,
it shares a limitation that is often encountered in rehabilitation
settings. In a clinical setting, patients are often required to perform
task-specific and repetitive movements [Kwakkel et al. 1999]. Initial
patient enthusiasm to complete such activities rapidly declines as
a result of the monotonous nature of movements. Patient engage-
ment can be improved by complementing therapy with a virtual
environment (VE). Prior research has shown that users have fa-
vored exercises complemented with a VE rather than conventional
approaches [Hoffman et al. 2014]. Thus, our project objective is to
turn these tedious movements into an interactive VE experience.
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2 GAMIFICATION OF PROPRIOCEPTIVE
TRAINING

Gamification process accounted for two key considerations: (1) the
game should foster patient motivation and attention (2) and be
clinically meaningful. To address these objectives, we reviewed
the literature on game development [Bond 2014; Fullerton 2018]
and identified four essential components: (1) Variability, (2) Feed-
back, (3) Rewards, and (4) a Compelling Purpose. The user will
be gradually exposed to increasing levels of difficulty, which will
likely reduce user frustrations. The user will receive meaningful
feedback on concurrent metrics (e.g., Optimal ROM), as well as on
previous treatment sessions. During game progress, the user will be
alerted about deviations from the target movement requirements.
Achievement badges will be rewarded to the user upon reaching
therapy milestones, such as target ROM. Lastly, to encourage game
completion, we establish an interesting backstory and a meaningful
character arc for our virtual avatars. The developed game will be
adaptable based on the user’s current clinical status, thus, making
the game clinically meaningful. The clinician will have the ability
to prescribe exercises based on user needs such as 1 DoF vs 3 DoF
movements, continuous vs discrete movements, and strength train-
ing vs mobility training. WristBot will provide supportive forces
aiding the user to achieve therapy milestones.

Gamified exercise is being developed using the Unity Game En-
gine, Python and libraries which interface with the WristBot. The
game closely resembles an endless runner type game (Figure 1.
Right) and utilizes the WrsitBot’s 3-DoF functionality to interact
with the VE. Wrist flexion, extension, and abduction can be used to
traverse their environment. The remaining 3 movements will allow
interactions with their VE in unique ways, such as opening/closing
doors, crouching, and pulling levers. In the VE, coins are strategi-
cally placed to maximize and improve the use of available ROM.
Upon contact with either a wall or obstacle, visual feedback will be
provided in the form of avatar damage and coin deduction. Conse-
quently, users achieve improved mobility.

In Python, the connection between Unity and the WristBot li-
brary is managed through the use of a local WebSocket, a protocol
for two-way communication over a single Transmission Control
Protocol (TCP) connection [Fette and Melnikov 2011]. Through the
WebSocket, reciprocal data are transferred between the WristBot
and Unity. For example, wrist kinematic data will be streamed to
the game while game progress is being relayed to the WristBot
library. Game progress data will be utilized to compute and de-
liver haptic feedback to the user. Haptic feedback provided in the
form of haptic assistance will aid users to improve their available
ROM, while haptic resistance will improve muscle strength within
the desired ROM. The clinical motive of the game is to transition
the user from use of haptic assistance to resistance during game
play. WristBot will adapt haptic feedback based on time spent and
progress achieved in game play.

3 USABILITY TESTING

Usability testing will be conducted to ensure proper game usage by
the clinical population and healthcare professionals. Specifically,
the usability testing will evaluate areas such as 1) ease of game
play, 2) game efficiency, and 3) user engagement. We will test the
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assumptions in each of these areas are accurately depicted in game
development and met during game play. For example, we expect
online visual feedback of deviations from target to help user focus
on achieving the movement requirements. The users will be asked to
verify the benefits of visual feedback in modifying their movements.
Similarly, other assumptions such as performance badges and coins
as rewards, and increase in difficulty levels will be evaluated. A
common pitfall of usability studies involving physical rehabilitation
setting is not recruiting from the representative population, most
notably elderly population [Laver et al. 2017] as age has been shown
to interfere with interactions in VE [Meldrum et al. 2012]. Therefore,
to ensure our game is intuitive, we will recruit representative users
from our patient populations.
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