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ABSTRACT

In recent years, significant attention has been devoted towards

integrating deep learning technologies in the healthcare domain.

However, to safely and practically deploy deep learning models

for home health monitoring, two significant challenges must be

addressed: the models should be (1) robust against noise; and (2)

compact and energy-efficient. We propose Rest, a new method that

simultaneously tackles both issues via 1) adversarial training and

controlling the Lipschitz constant of the neural network through

spectral regularization while 2) enabling neural network compres-

sion through sparsity regularization. We demonstrate that Rest

produces highly-robust and efficient models that substantially out-

perform the original full-sized models in the presence of noise. For

the sleep staging task over single-channel electroencephalogram

(EEG), the Rest model achieves a macro-F1 score of 0.67 vs. 0.39

achieved by a state-of-the-art model in the presence of Gaussian

noise while obtaining 19× parameter reduction and 15×MFLOPS

reduction on two large, real-world EEG datasets. By deploying

these models to an Android application on a smartphone, we quan-

titatively observe that Rest allows models to achieve up to 17×

energy reduction and 9× faster inference. We open source the code

repository with this paper: https://github.com/duggalrahul/REST.
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• Applied computing → Health informatics; • Computing

methodologies→ Supervised learning by classification.
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1 INTRODUCTION

As many as 70 million Americans suffer from sleep disorders that

affects their daily functioning, long-term health and longevity. The

long-term effects of sleep deprivation and sleep disorders include

an increased risk of hypertension, diabetes, obesity, depression,

heart attack, and stroke [1]. The cost of undiagnosed sleep apnea

alone is estimated to exceed 100 billion in the US [28].

A central tool in identifying sleep disorders is the hypnogramÐ

which documents the progression of sleep stages (REM stage,Non-

REM stages N1 to N3, andWake stage) over an entire night (see

Fig. 1, top). The process of acquiring a hypnogram from raw sen-

sor data is called sleep staging, which is the focus of this work.

Traditionally, to reliably obtain a hypnogram the patient has to un-

dergo an overnight sleep studyÐcalled polysomnography (PSG)Ðat

a sleep lab while wearing bio-sensors that measure physiological

signals, which include electroencephalogram (EEG), eyemovements

* Both authors contributed equally to this research.
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Figure 1: Top: we generate hypnograms for a patient in the

SHHS test set. In the presence of Gaussian noise, our Rest-

generated hypnogram closely matches the contours of the

expert-scored hypnogram. Hypnogram generated by a state-

of-the-art (SOTA) model by Sors et al. [32] is considerably

worse. Bottom:wemeasure energy consumed (in Joules) and

inference time (in seconds) on a smartphone to score one

night of EEG recordings. Rest is 9X more energy efficient

and 6X faster than the SOTA model.

(EOG), muscle activity or skeletal muscle activation (EMG), and

heart rhythm (ECG). The PSG data is then analyzed by a trained

sleep technician and a certified sleep doctor to produce a PSG re-

port. The hypnogram plays an essential role in the PSG report,

where it is used to derive many important metrics such as sleep

efficiency and apnea index. Unfortunately, manually annotating

this PSG is both costly and time consuming for the doctors. Recent

research has proposed to alleviate these issues by automatically

generating the hypnogram directly from the PSG using deep neural

networks [6, 34]. However, the process of obtaining a PSG report

is still costly and invasive to patients, reducing their participation,

which ultimately leads to undiagnosed sleep disorders [33].

One promising direction to reduce undiagnosed sleep disorders is

to enable sleep monitoring at the home using commercial wearables

(e.g., Fitbit, Apple Watch, Emotiv) [21]. However, despite significant

research advances, a recent study shows that wearables using a





REST: Robust and Efficient Neural Networks
for Sleep Monitoring in the Wild WWW ’20, April 20ś24, 2020, Taipei, Taiwan

EEG data. In [9], the authors develop a multi-modal deep learning

architecture for sleep stage prediction that achieves state-of-the-art

accuracy. As we demonstrate later in this paper (Section 4.5), these

sleep staging models are frequently susceptible to noise and suffer

a large performance drop in its presence (see Figure 1). In addition,

these DNNs are often overparameterized (Section 4.6), making de-

ployment to mobile devices and wearables difficult. Through Rest,

we address these limitations and develop noise robust and efficient

neural networks for edge computing.

2.2 Noise & Adversarial Robustness

Adversarial robustness seeks to ensure that the output of a neural

network remains unchanged under a bounded perturbation of the

input; or in other words, prevent an adveresary from maliciously

perturbing the data to fool a neural network. Adversarial deep learn-

ing was popularized by [17], where they showed it was possible to

alter the class prediction of deep neural network models by care-

fully crafting an adversarially perturbed input. Since then, research

suggests a strong link between adversarial robustness and noise

robustness [15, 20, 35]. In particular, [15] found that by performing

adversarial training on a deep neural network, it becomes robust

to many forms of noise (e.g., Gaussian, blur, shot, etc.). In contrast,

they found that training a model on Gaussian augmented data led

to models that were less robust to adversarial perturbations. We

build upon this finding of adversarial robustness as a proxy for

noise robustness and improve upon it through the use of spectral

regularization; while simultaneously compressing the model to a

fraction of its original size for mobile devices.

2.3 Model Compression

Model compression aims to learn a reduced representation of the

weights that parameterize a neural network; shrinking the computa-

tional requirements for memory, floating point operations (FLOPS),

inference time and energy. Broadly, prior art can be classified into

four directionsÐpruning [19], quantization [31], low rank approx-

imation [37] and knowledge distillation [22]. For Rest, we focus

on structured (channel) pruning thanks to its performance benefits

(speedup, FLOP reduction) and ease of deployment with regular

hardware. In structured channel pruning, the idea is to assign a mea-

sure of importance to each filter of a convolutional neural network

(CNN) and achieve desired sparsity by pruning the least impor-

tant ones. Prior work demonstrates several ways to estimate filter

importanceÐmagnitude of weights [24], structured sparsity regular-

ization [36], regularization on activation scaling factors [26], filter

similarity [13] and discriminative power of filters [40]. Recently

there has been an attempt to bridge the area of model compres-

sion with adversarial robustness through connection pruning [18]

and quantization [25]. Different from previous work, Rest aims to

compress a model by pruning whole filters while imparting noise

tolerance through adversarial training and spectral regularization.

Rest can be further compressed through quantization [25].

3 REST: NOISE-ROBUST & EFFICIENT
MODELS

Rest is a new method that simultaneously compresses a neural

network while developing both noise and adversarial robustness.

3.1 Overview

Our main idea is to enable Rest to endow models with these prop-

erties by integrating three careful modifications of the traditional

training loss function. (1) The adversarial training term, which

builds noise robustness by training on adversarial examples (Sec-

tion 3.2); (2) the spectral regularization term, which adds to the

noise robustness by constraining the Lipschitz constant of the neu-

ral network (Section 3.3); and (3) the sparsity regularization term

that helps to identify important neurons and enables compression

(Section 3.4). Throughout the paper, we follow standard notation

and use capital bold letters for matrices (e.g., A), lower-case bold

letters for vectors (e.g., a).

3.2 Adversarial Training

The goal of adversarial training is to generate noise robustness

by exposing the neural network to adversarially perturbed inputs

during the training process. Given a neural network f (X;W) with

input X, weightsW and corresponding loss function L(f (X;W), y),

adversarial training aims at solving the following min-max problem:

min
W

[
E

X,y∼D

(
max
δ ∈S

L(f (X + δ ;W), y)

)]
(1)

Here D is the unperturbed dataset consisting of the clean EEG

signals X ∈ RKin×KL (Kin is the number of channels and KL is

the length of the signal) along with their corresponding label y.

The inner maximization problem in (1) embodies the goal of the

adversaryÐthat is, produce adversarially perturbed inputs (i.e.,

X + δ ) that maximize the loss function L. On the other hand, the

outer minimization term aims to build robustness by countering

the adversary through minimizing the expected loss on perturbed

inputs.

Maximizing the inner loss term in (1) is equivalent to finding

the adversarial signal Xp = X + δ that maximally alters the loss

function L within some bounded perturbation δ ∈ S . Here S is

the set of allowable perturbations. Several choices exist for such

an adversary. For Rest, we use the iterative Projected Gradient

Descent (PGD) adversary since it’s one of the strongest first order

attacks [27]. Its operation is described below in Equation 2.

X
(t+1)
p = X

(t)
p + Πτ

[
ϵ · sign

{
∇
X
(t)
p
L
(
f (X
(t)
p ;W), y

) }]
(2)

Here X
(0)
p = X and at every step t , the previous perturbed input

X
(t−1)
p is modifiedwith the sign of the gradient of the loss, multiplied

by ϵ (controls attack strength). Πτ is a function that clips the input

at the positions where it exceeds the predefined L∞ bound τ . Finally,

after niter iterations we have the Rest adversarial training term

Ladv in Equation 3.

Ladv = L(f (X
(niter )
p ;W), y) (3)

3.3 Spectral Regularizer

The second term in the objective function is the spectral regulariza-

tion term, which aims to constrain the change in output of a neural

network for some change in input. The intuition is to suppress the

amplification of noise as it passes through the successive layers of
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Algorithm 1: Noise Robust & Efficient Neural Network Training (Rest)

Input: Model weights W, EEG signal X and label y from dataset D, spectral regularization λo , sparsity regularization λд , learning rate

α , perturbation strength ϵ , maximum PGD iterations niter and model sparsity s

Output: Noise robust, compressed neural network

(1) Train the full model with Rest loss LR :

for epoch = 1 to N do

for minibatch B ⊂ D do

for X ∈ B do

X
(1)
p = X

for k=1 to niter do

X
(k+1)
p = X

(k)
p + Πτ (ϵ · sign(∇X(k)p

L(f (X
(k)
p ;W), y)))

Wgrad ← E
X,y∼D

|▽WLR(Xp, y;W)|

where LR = L(f (Xp ;W), y)

︸             ︷︷             ︸
adversarial training

+ λo

N∑
layer l=1

∥(W(l))TW(l) − I∥2

︸                                  ︷︷                                  ︸
spectral regularization

+ λд

N∑
layer l=1

∥γ (l )∥1

︸                ︷︷                ︸
sparsity regularization

W←W − α ·Wgrad

(2) Prune the trained model:

Globally prune filters fromW having smallest γ values until
nf (W

′)

nf (W)
≤ s . Constrain layerwise sparsity so

nf (W
′(l))

nf (W
(l))
≥ 0.1.

(3) Re-train the pruned model:

Retrain compressed network f (X;W′) using adversarial training and spectral regularization (no sparsity regularization).

a neural network. In this section we show that an effective way

to achieve this is via constraining the Lipschitz constant of each

layer’s weights.

For a real valued function f : R→ R the Lipschitz constant is

a positive real value C such that | f (x1) − f (x2)| ≤ C |x1 − x2 |. If

C > 1 then the change in input is magnified through the function

f . For a neural net, this can lead to input noise amplification. On

the other hand, if C < 1 then the noise amplification effect is

diminished. This can have the unintended consequence of reducing

the discriminative capability of a neural net. Therefore our goal is to

set the Lipschitz constant C = 1. The Lipschitz constant for the lth

fully connected layer parameterized by the weight matrixW(l) ∈

R
Kin×Kout is equivalent to its spectral norm ρ(W(l)) [12]. Here the

spectral norm of amatrixW is the square root of the largest singular

value of WTW. The spectral norm of a 1-D convolutional layer

parameterized by the tensorW(l) ∈ RKout×Kin×Kl can be realized by

reshaping it to a matrix W(l) = RKout×(KinKl ) and then computing

the largest singular value.

A neural network of N layers can be viewed as a function f (·)

composed of N sub-functions f (x) = f1(·) ◦ f2(·) ◦ ... fN (x). A

loose upper bound for the Lipschitz constant of f is the product

of Lipschitz constants of individual layers or ρ(f ) ≤
∏N

i=1 ρ(fi )

[12]. The overall Lipschitz constant can grow exponentially if the

spectral norm of each layer is greater than 1. On the contrary, it

could go to 0 if spectral norm of each layer is between 0 and 1. Thus

the ideal case arises when the spectral norm for each layer equals

1. This can be achieved in several ways [12, 14, 38], however, one

effective way is to encourage orthonormality in the columns of the

weight matrix W through the minimization of ∥WTW − I∥ where

I is the identity matrix. This additional loss term helps regulate the

singular values and bring them close to 1. Thus we incorporate the

following spectral regularization term into our loss objective, where

λo is a hyperparameter controlling the strength of the spectral

regularization.

LSpectral = λo

N∑
i=1

∥(W(i))TW(i) − I∥2 (4)

3.4 Sparsity Regularizer & Rest Loss Function

The third term of the Rest objective function consists of the sparsity

regularizer. With this term, we aim to learn the important filters in

the neural network. Once these are determined, the original neural

network can be pruned to the desired level of sparsity.

The incoming weights for filter i in the lth fully connected (or 1-

D convolutional) layer can be specified asW
(l)
i, : ∈ R

Kin (orW
(l)
i, :, : ∈

R
Kin×KL ). We introduce a per filter multiplicand γ

(l )
i that scales

the output activation of the ith neuron in layer l . By controlling

the value of this multiplicand, we realize the importance of the

neuron. In particular, zeroing it amounts to dropping the entire filter.

Note that the L0 norm on the multiplicand vector ∥γ (l )∥0, where

γ (l ) ∈ RKout , can naturally satisfy the sparsity objective since it

counts the number of non zero entries in a vector. However since

the L0 norm is a nondifferentiable function, we use the L1 norm

as a surrogate [23, 26, 36] which is amenable to backpropagation

through its subgradient.

To realize the per filter multiplicand γ
(l )
i , we leverage the per

filter multiplier within the batch normalization layer [26]. In most
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modern networks, a batchnorm layer immediately follows the con-

volutional/linear layers and implements the following operation.

B
(l )
i =

©­«
A(l) − µ

(l)
i

σ
(l )
i

ª®¬
γ
(l )
i + β

(l )
i (5)

HereA
(l)
i denotes output activation of filter i in layer l while B

(l)
i

denotes its transformation through batchnorm layer l ; µ(l ) ∈ RKout ,

σ (l ) ∈ RKout denote the mini-batch mean and standard deviation

for layer l ’s activations; and γ (l ) ∈ RKout and β (l ) ∈ RKout are

learnable parameters. Our sparsity regularization is defined on γ (l )

as below, where λд is a hyperparameter controlling the strength of

sparsity regularization.

LSparsity = λд

N∑
i=1

∥γ (l )∥1 (6)

The sparsity regularization term (6) promotes learning a subset

of important filters while training the model. Compression then

amounts to globally pruning filters with the smallest value of mul-

tiplicands in (5) to achieve the desired model compression. Pruning

typically causes a large drop in accuracy. Once the pruned model is

identified, we fine-tune it via retraining.

Now that we have discussed each component of Rest, we present

the full loss function in (7) and the training process in Algorithm 1.

A pictorial overview of the process can be seen in Figure 2.

LR = L(f (Xp ;W), y)

︸             ︷︷             ︸
adversarial training

+ λo

N∑
i=1

∥(W(i))TW(i) − I∥2

︸                            ︷︷                            ︸
spectral regularization

+ λд

N∑
i=1

∥γ (l )∥1

︸           ︷︷           ︸
sparsity regularization

(7)

4 EXPERIMENTS

We compare the efficacy of Rest neural networks to four baseline

models (Section 4.2) on two publicly available EEG datasetsÐSleep-

EDF from Physionet [16] and Sleep Heart Health Study (SHHS)

[30]. Our evaluation focuses on two broad directionsÐnoise ro-

bustness and model efficiency. Noise robustness compares the

efficacy of each model when EEG data is corrupted with three types

of noise: adversarial, Gaussian and shot. Model efficiency compares

both static (e.g., model size, floating point operations) and dynamic

measurements (e.g., inference time, energy consumption). For dy-

namic measurements which depend on device hardware, we deploy

each model to a Pixel 2 smartphone.

4.1 Datasets

Our evaluation uses two real-world sleep staging EEG datasets.

• Sleep-EDF: This dataset consists of data from two studiesÐage

effect in healthy subjects (SC) and Temazepam effects on sleep

(ST). Following [34], we use whole-night polysomnographic sleep

recordings on 40 healthy subjects (one night per patient) from

SC. It is important to note that the SC study is conducted in

the subject’s homes, not a sleep center and hence this dataset is

inherently noisy. However, the sensing environment is still rela-

tively controlled since sleep doctors visited the patient’s home

to setup the wearable EEG sensors. After obtaining the data, the

recordings are manually classified into one of eight classes (W,

N1, N2, N3, N4, REM, MOVEMENT, UNKNOWN); we follow the

steps in [34] and merge stages N3 and N4 into a single N3 stage

and exclude MOVEMENT and UNKNOWN stages to match the

five stages of sleep according to the American Academy of Sleep

Medicine (AASM) [4]. Each single channel EEG recording of 30

seconds corresponds to a vector of dimension 1 × 3000. Similar

to [32], while scoring at time i , we include EEG recordings from

times i − 3, i − 2, i − 1, i . Thus we expand the EEG vector by con-

catenating the previous three time steps to create a vector of size

1 × 12000. After pre-processing the data, our dataset consists of

42,191 EEG recordings, each described by a 12,000 length vector

and assigned a sleep stage label from Wake, N1, N2, N3 and REM

using the Fpz-Cz EEG sensor (see Table 1 for sleep stage break-

down). Following standard practice [34], we divide the dataset

on a per-patient, whole-night basis, using 80 % for training, 10 %

for validation, and 10 % for testing. That is, a single patient is

recorded for one night and can only be in one of the three sets

(training, validation, testing). The final number of EEG record-

ings in their respective splits are 34,820, 5345 and 3908. While

the number of recordings appear to differ from the 80-10-10 ratio,

this is because the data is split over the total number of patients,

where each patient is monitored for a time period of variable

length (9 hours ± few minutes.)

• Sleep Heart Health Study (SHHS): The Sleep Heart Health

Study consists of two rounds of polysomnographic recordings

(SHHS-1 and SHHS-2) sampled at 125 Hz in a sleep center envi-

ronment. Following [32], we use only the first round (SHHS-1)

containing 5,793 polysomnographic records over two channels

(C4-A1 and C3-A2). Recordings are manually classified into one

of six classes (W, N1, N2, N3, N4 and REM). As suggested in [4],

we merge N3 and N4 stages into a single N3 stage (see Table 1 for

sleep stage breakdown). We use 100 distinct patients randomly

sampled from the original dataset (one night per patient). Similar

to [32], we look at three previous time steps in order to score the

EEG recording at the current time step. This amounts to concate-

nating the current EEG recording of size 1×3750 (equal to 125 Hz

× 30 Hz) to generate an EEG recording of size 1×15000. After this

pre-processing, our dataset consists of 100,065 EEG recordings,

each described by a 15,000 length vector and assigned a sleep

stage label from the same 5 classes using the Fpz-Cz EEG sensor.

We use the same 80-10-10 data split as in Sleep-EDF, resulting

Dataset W N1 N2 N3(N4) REM Total

Sleep-EDF 8,168 2,804 17,799 5,703 7,717 42,191

SHHS 28,854 3,377 41,246 13,409 13,179 100,065

Table 1: Dataset summary outlining thenumber of 30 second

EEG recordings belonging to each sleep stage class.
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in 79,940 EEG recordings for training, 9999 for validation, and

10,126 for testing.

4.2 Model Architecture and Configurations

We use the sleep staging CNN architecture proposed by [32], since

it achieves state-of-the-art accuracy for sleep stage classification

using single channel EEG. We implement all models in PyTorch

0.4. For training and evaluation, we use a server equipped with

an Intel Xeon E5-2690 CPU, 250GB RAM and 8 Nvidia Titan Xp

GPUs. Mobile device measurements use a Pixel 2 smartphone with

an Android application running Tensorflow Lite1. With [32] as the

architecture for all baselines below, we compare the following 6

configurations:

(1) Sors [32]: Baseline neural network model trained on unper-

turbed data. This model contains 12 1-D convolutional layers

followed by 2 fully connected layers and achieves state-of-the-

art performance on sleep staging using single channel EEG.

(2) Liu [26]: We train on unperturbed data and compress the Sors

model using sparsity regularization as proposed in [26].

(3) Blanco [7]:We use same setup from Liu above. During test time,

the noisy test input is filtered using a bandpass filter with cutoff

0.5Hz-40Hz This technique is commonly used for removing

noise in EEG analysis [7].

(4) Ford [15]: We train and compress the Sors model with spar-

sity regularization on input data perturbed by Gaussian noise.

Gaussian training parameter cд = 0.2 controls the perturbation

strength during training; identified through a line search in

Section 4.4.

(5) Rest (A): Our compressed Sors model obtained through adver-

sarial training and sparsity regularization. We use the hyperpa-

rameters: ϵ = 10, niter= 5/10 (SHHS/Sleep-EDF), where ϵ is a

key variable controlling the strength of adversarial perturbation

during training. The optimal ϵ value is determined through a

line search described in Section 4.4.

(6) Rest (A+S): Our compressed Sors model obtained through

adversarial training, spectral and sparsity regularization. We

set the spectral regularization parameter λo = 3 × 10−3 and

sparsity regularization parameter λд = 10−5 based on a grid

search in Section 4.4.

All models are trained for 30 epochs using SGD. The initial learn-

ing rate is set to 0.1 and multiplied by 0.1 at epochs 10 and 20; the

weight decay is set to 0.0002. All compressed models use the same

compression method, consisting of weight pruning followed by

model re-training. The sparsity regularization parameter λд = 10−5

is identified through a grid search with λo (after determining ϵ

through a line search). Detailed analysis of the hyperparameter

selection for ϵ , λo and λд can be found in Section 4.4. Finally, we

set a high sparsity level s = 0.8 (80% neurons from the original

networks were pruned) after observation that the models are over-

parametrized for the task of sleep stage classification.

1TensorFlow Lite: https://www.tensorflow.org/lite

4.3 Evaluation Metrics

Noise robustness metrics To study the noise robustness of each

model configuration, we evaluate macro-F1 score in the presence

of three types of noise: adversarial, Gaussian and shot. We select

macro-F1 since it is a standard metric for evaluating classification

performance in imbalanced datasets. Adversarial noise is defined at

three strength levels through ϵ = 2/6/12 in Equation 2; Gaussian

noise at three levels through cд = 0.1/0.2/0.3 in Equation 8; and

shot noise at three levels through cs = 5000/2500/1000 in Equa-

tion 9. These parameter values are chosen based on prior work

[20, 27] and empirical observation. For evaluating robustness to

adversarial noise, we assume the white box setting where the at-

tacker has access to model weights. The formulation for Gaussian

and shot noise is in Equation 8 and 9, respectively.

Xgauss = X + N (0, cg · σtrain) (8)

In Equation 8, σtrain is the standard deviation of the training

data and N is the normal distribution. The noise strengthÐlow,

medium and highÐcorresponds to cд = 0.1/0.2/0.3.

Xnorm =
X − xmin

xmax − xmin

X′ = clip0,1

(
Poisson(Xnorm.cs)

cs

)
Xshot = X′.(xmax − xmin) + xmin

(9)

In Equation 9, xmin ,xmax denote the minimum and maximum

values in the training data; and clip0,1 is a function that projects

the input to the range [0,1].

Model efficiencymetrics To evaluate the efficiency of eachmodel

configuration, we use the following measures:

• Parameter Reduction: Memory consumed (in KB) for storing

the weights of a model.

• Floating point operations (FLOPS): Number of multiply and

add operations performed by the model in one forward pass.

Measurement units are Mega (106).

• Inference Time: Average time taken (in seconds) to score one

night of EEG data. We assume a night consists of 9 hours and

amounts to 1,080 EEG recordings (each of 30 seconds). This is

measured on a Pixel 2 smartphone.

• Energy Consumption: Average energy consumed by a model

(in Joules) to score one night of EEG data on a Pixel 2 smartphone.

Tomeasure consumed energy, we implement an infinite inference

loop over EEG recordings until the battery level drops from

100% down to 85%. For each unit percent drop (i.e., 15 levels),

we log the number of iterations Ni performed by the model.

Given that a standard Pixel 2 battery can deliver 2700 mAh at

3.85 Volts, we use the following conversion to estimate energy

consumed E (in Joules) for a unit percent drop in battery level

E = 2700
1000
× 3600 × 3.85. The total energy for inferencing over an

entire night of EEG recordings is then calculated as E
Ni
× 1080

where Ni is the number of inferences made in the unit battery

drop interval. We average this for every unit battery percentage
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Adversarial Gaussian Shot

Data Method Compress No noise Low Med High Low Med High Low Med High

S
le
e
p
-E
D
F

Sors [32] ✗ 0.67 ± 0.02 0.57 ± 0.02 0.51 ± 0.04 0.19 ± 0.06 0.66 ± 0.03 0.60 ± 0.03 0.39 ± 0.08 0.58 ± 0.04 0.42 ± 0.08 0.11 ± 0.03

Liu [26] ✓ 0.69 ± 0.02 0.52 ± 0.07 0.41 ± 0.07 0.09 ± 0.02 0.67 ± 0.02 0.53 ± 0.02 0.28 ± 0.04 0.52 ± 0.03 0.31 ± 0.04 0.06 ± 0.01

Blanco [7] ✓ 0.68 ± 0.01 0.51 ± 0.06 0.40 ± 0.06 0.09 ± 0.02 0.65 ± 0.02 0.54 ± 0.04 0.31 ± 0.10 0.53 ± 0.04 0.34 ± 0.09 0.08 ± 0.02

Ford [15] ✓ 0.64 ± 0.01 0.59 ± 0.01 0.60 ± 0.02 0.31 ± 0.08 0.65 ± 0.01 0.67 ± 0.02 0.57 ± 0.03 0.67 ± 0.02 0.60 ± 0.02 0.10 ± 0.01

Rest (A) ✓ 0.66 ± 0.02 0.64 ± 0.02 0.64 ± 0.02 0.61 ± 0.02 0.66 ± 0.02 0.67 ± 0.01 0.66 ± 0.01 0.67 ± 0.01 0.66 ± 0.01 0.42 ± 0.06

Rest (A+S) ✓ 0.69 ± 0.01 0.67 ± 0.02 0.66 ± 0.01 0.61 ± 0.03 0.69 ± 0.01 0.68 ± 0.01 0.67 ± 0.02 0.68 ± 0.01 0.67 ± 0.02 0.42 ± 0.08

S
H
H
S

Sors [32] ✗ 0.78 ± 0.01 0.62 ± 0.03 0.46 ± 0.03 0.33 ± 0.00 0.64 ± 0.03 0.43 ± 0.02 0.35 ± 0.04 0.69 ± 0.02 0.59 ± 0.03 0.45 ± 0.01

Liu [26] ✓ 0.77 ± 0.01 0.61 ± 0.02 0.49 ± 0.04 0.34 ± 0.03 0.66 ± 0.05 0.45 ± 0.05 0.34 ± 0.04 0.70 ± 0.04 0.62 ± 0.04 0.47 ± 0.05

Blanco [7] ✓ 0.77 ± 0.01 0.60 ± 0.03 0.47 ± 0.04 0.33 ± 0.02 0.64 ± 0.07 0.43 ± 0.05 0.34 ± 0.04 0.67 ± 0.06 0.59 ± 0.05 0.46 ± 0.04

Ford [15] ✓ 0.62 ± 0.02 0.59 ± 0.01 0.62 ± 0.00 0.59 ± 0.05 0.66 ± 0.00 0.75 ± 0.04 0.47 ± 0.10 0.65 ± 0.00 0.68 ± 0.01 0.74 ± 0.04

Rest (A) ✓ 0.70 ± 0.01 0.68 ± 0.00 0.70 ± 0.01 0.67 ± 0.01 0.72 ± 0.01 0.76 ± 0.01 0.58 ± 0.03 0.72 ± 0.01 0.74 ± 0.01 0.76 ± 0.01

Rest (A+S) ✓ 0.72 ± 0.01 0.69 ± 0.01 0.70 ± 0.01 0.69 ± 0.02 0.74 ± 0.01 0.77 ± 0.01 0.62 ± 0.03 0.73 ± 0.01 0.75 ± 0.01 0.78 ± 0.00

Table 4: Meta Analysis: Comparison of macro-F1 scores achieved by each model. The models are evaluated on Sleep-EDF and

SHHS datasets with three types and strengths of noise corruption. We bold the compressed model with the best performance

(averaged over 3 runs) and report the standard deviation of each model next to the macro-F1 score. Rest performs better in

all noise test measurements.

(2) Spectral Regularization Improves Performance Rest (A+

S) consistently improves upon Rest (A), indicating the useful-

ness of spectral regularization towards enhancing noise robust-

ness by constraining the Lipschitz constant.

(3) SHHS Performance Better Than Sleep-EDF Performance is

generally better on the SHHS dataset compared to Sleep-EDF.

One possible explanation is due to the SHHS dataset being less

noisy in comparison to the Sleep-EDF dataset. This stems from

the fact that the SHHS study was performed in the hospital

setting while Sleep-EDF was undertaken in the home setting.

(4) Benign & Adversarial Accuracy Trade-off Contrary to the

traditional trade-off between benign and adversarial accuracy,

Rest performance matches Liu in the no noise setting on sleep-

EDF. This is likely attributable to the noise in the Sleep-EDF

dataset, which was collected in the home setting. On the SHHS

dataset, the Liu model outperforms Rest in the no noise setting,

where data is captured in the less noise prone hospital setting.

Due to this, Rest models are best positioned for use in noisy

environments (e.g., at home); while traditional models are more

effective in controlled environments (e.g., sleep labs).

II.MesoAnalysis: Per-class PerformanceWevisualize and iden-

tify class-wise trends using confusionmatrix heatmaps (Fig. 4). Each

confusion matrix describes a model’s performance for a given level

of noise (or no noise). A model that is performing well should have a

dark diagonal and light off-diagonal. We normalize the rows of each

confusion matrix to accurately represent class predictions in an

imbalanced dataset. When a matrix diagonal has a value of 1 (dark

blue, or dark green) the model predicts every example correctly;

the opposite occurs at 0 (white). Analyzing Figure 4, we identify

the following key insights:

(1) Rest Performs Well Across All Classes Rest accurately

predicts each sleep stage (W, N1, N2, N3, REM) across multiple

types of noise (Fig. 4, bottom 3 rows), as evidenced by the dark

diagonal. In comparison, each baseline method has considerable

performance degradation (light diagonal) in the presence of

noise. This is particularly evident on the Sleep-EDF dataset (left

half) where data is collected in the noisier home environment.

(2) N1 Class Difficult to PredictWhen no noise is present (Fig. 4,

top row), each method performs well as evidenced by the dark

diagonal, except on the N1 sleep stage class. This performance

drop is likely due to the limited number of N1 examples in the

datasets (see Table 1).

(3) IncreasedMisclassification Towards łWakež Class On the

Sleep-EDF dataset, shot and adversarial noise cause the baseline

models to mispredict classes as Wake. One possible explanation

is that the models misinterpret the additive noise as evidence for

the wake class which has characteristically large fluctuations.

III. Granular Analysis: Single-patient Hypnograms We want

tomore deeply understand how ourRestmodels counteract noise at

the hypnogram level. Therefore, we select a test set patient from the

SHHS dataset, and generate and visualize the patient’s overnight

hypnograms using the Sors and Rest models on three levels of

Gaussian noise corruption (Figure 5). Each of these hypnograms

is compared to a trained technicians hypnogram (expert scored in

Fig. 5), representing the ground-truth. We inspect a few more test

set patients using the above approach, and identify multiple key

representative insights:

(1) Noisy Environments Require RobustModelsAs data noise

increases, Sors performance degrades. This begins at the low

noise level, further accelerates in the medium level and reaches
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Figure 4: Meso Analysis: Class-wise comparison of model predictions. The models are evaluated over the SHHS test set per-

turbed with different noise types. In each confusionmatrix, rows are ground-truth classes while columns are predicted classes.

The intensity of a cell is obtained by normalizing the score with respect to the class membership. When a cell has a value of

1 (dark blue, or dark green) the model predicts every example correctly, the opposite occurs at 0 (white). A model that is

performing well would have a dark diagonal and light off-diagonal. Rest has the darkest cells along the diagonal on both

datasets.
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Figure 5: Granular Analysis: Comparison of the overnight hypnograms obtained for a patient in the SHHS test set. The hypno-

grams are generated using the Sors (left) and Rest (right) models in the presence of increasing strengths of Gaussian noise.

When no noise is present (top row), bothmodels performwell, closelymatching the ground truth (bottom row). However, with

increasing noise, Sors performance rapidly degrades, while Rest continues to generate accurate hypnograms.
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