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Abstract

Thermal light-curve analysis is a powerful approach to probe the thermal structures of exoplanetary atmospheres,
which are greatly influenced by the planetary obliquity and eccentricity. Here we investigate the thermal light curves
of eccentric-tilted exoplanets across various radiative timescales, eccentricities, obliquities, and viewing geometries
using results of shallow-water simulations presented in Ohno & Zhang. We also achieve an analytical theory of the
thermal light curve that can explain general trends in the light curves of tilted exoplanets. For tilted planets in circular
orbits, the orbital phase of the flux peak is largely controlled by either the flux from the hot spot projected onto the
orbital plane or the pole heated at the summer solstice, depending on the radiative timescale τrad, planetary day Porb,
and obliquity θ. We find that tilted planets potentially produce the flux peak after the secondary eclipse when obliquity
is θ90° for the hot regime τrad=Prot or θ18° for the cool regime τrad?Prot. For tilted planets in eccentric
orbits, the shape of the light curve is considerably influenced by the heating at the periapse. The flux peak occurring
after the secondary eclipse can be used to distinguish tilted planets from nontilted planets when the periapse takes
place before the secondary eclipse. Our results could help to constrain exoplanet obliquities in future observations.
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1. Introduction

As stated in Ohno & Zhang (2019; Paper I), planetary
obliquity—the angle between the planet rotation axis and its
orbital normal—potentially encapsulates information about
planetary climate (e.g., Williams & Kasting 1997; Williams
& Pollard 2003; Kane & Torres 2017) and the formation and
evolutionary history of the planet (e.g., Chambers 2001; Winn
& Holman 2005; Kokubo & Ida 2007). Thus, retrieving
exoplanet obliquities from observations will offer new clues to
many important problems on those planets. To constrain the
exoplanet obliquity, a number of observational methods have
been proposed to date, for example, oblateness measurement
(e.g., Seager & Hui 2002), spin–orbit tomography (Fujii &
Kawahara 2012; Kawahara 2016), polarimetry (de Kok et al.
2011), and eclipse mapping (Rauscher 2017). However, no
exoplanet obliquity has yet been successfully measured.

Observation of a thermal light curve—a time variation of
planetary flux—is a promising way to constrain the exoplanet
obliquity. The light-curve observations probe horizontal temper-
ature distributions on exoplanets, which are strongly associated
with atmospheric dynamics (for a recent review, see Parmentier
& Crossfield 2017). A number of previous studies have
thoroughly investigated the light curves for tidally locked
exoplanets with zero obliquity using general circulation models
(GCMs; e.g., Cooper & Showman 2005; Fortney et al. 2006;
Showman et al. 2009; Kataria et al. 2014; Oreshenko et al. 2016;
Parmentier et al. 2016; Komacek et al. 2017; Zhang & Showman
2017; Steinrueck et al. 2018; Komacek & Abbot 2019). Several
studies have also investigated thermal light curves for non-
synchronized exoplanets. For example, Showman et al. (2015)
examined the light curves of warm and hot Jupiters with various
rotation periods and showed that a slower-rotating planet
produced a larger amplitude of the light curve for a given stellar
irradiation (see also Rauscher & Kempton 2014). Penn & Vallis
(2017, 2018) also studied the light curves of Earth-like exoplanets
with various rotation periods and velocities of the substellar

point. They showed that planets potentially produce the flux peak
before or after the secondary eclipse, depending on the rotation
period, substellar velocity, and gravity wave speed. Kataria et al.
(2013) investigated the thermal light curves of eccentric hot
Jupiters and found that the shape of the light curve highly
depends on viewing geometry (see also Langton & Laughlin
2008; Lewis et al. 2010, 2014, 2017). Although the above studies
have focused on the light curves of nonsynchronized exoplanets,
all of them have assumed zero planetary obliquity.
The pioneering study of Gaidos & Williams (2004)

investigated the infrared light curves of Earth-like planets with
nonzero obliquities using an energy balance model and showed
that the shape of the light curve is sensitive to the obliquity and
the orbital phase of the equinoxes. Langton & Laughlin (2007)
examined the light curves of a hot Jupiter with obliquity of 90°
using a shallow water model. They suggested the shape of the
light curves for both nontilted and tilted planets are very similar.
Recently, Rauscher (2017) investigated atmospheric circulations
on planets with nonzero obliquities and the resulting thermal
light curves. It was found that the thermal light curve is
influenced by not only obliquity but also the viewing orientation.
In addition, it was also suggested that the peak offset—the
orbital phase of the flux peak compared to the secondary eclipse
(Parmentier & Crossfield 2017)—is independent of the planetary
obliquity. However, Rauscher (2017) only investigated the light
curves of planets in the dynamical regime controlled by
diurnally averaged insolation. As shown in Paper I, horizontal
temperature patterns are significantly different at different
regimes, which may result in different light curves. Moreover,
Rauscher (2017) only investigated the light curves of planets in a
circular orbit. Because orbital eccentricity is much more difficult
to damp than planetary obliquity by the stellar tides during
planetary migration (Peale 1999), it is expected that tilted3
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3 In this study, “tilted” does not mean the inclined orbital plane, namely, a
nonzero orbital inclination. Here “tilted” means that the planet rotation axis is
misaligned to its orbital normal.
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planets are also likely to have nonzero eccentricities, another
factor influencing the atmospheric dynamics and transit light
curves.

In this study, we investigate the thermal light curves of
eccentric-tilted exoplanets (ET planets) across a range of
relevant parameters: radiative timescale, obliquity, eccentricity,
and viewing geometry. Then we discuss how to potentially
infer the obliquity from the observations. The organization of
this paper is as follows. We overview the dynamical regimes of
ET planets in Section 2. We present a general analytical theory
for the thermal light curve for arbitrary obliquity, radiative
timescale, and viewing geometry in Section 3. We show the
synthetic thermal light curves of ET planets and discuss
the observable signature of nonzero obliquity in Section 4. We
summarize this paper in Section 5.

2. Overview of the Dynamical Regimes

Here we first briefly summarize the dynamical regimes of ET
planets demarcated in Paper I, where we simulated atmospheric
circulations on ET planets using a one-and-a-half-layer shallow-
water model. The model results will be used to calculate the
synthetic thermal light curves in this paper. In Paper I, it was
shown that the dynamical patterns can be demarcated into five
regimes using the radiative timescale and obliquity, as
summarized in Figure 1. For a strongly illuminated planet where
the radiative timescale τrad is much shorter than the planetary day
Prot (regime (I) in Figure 1), the atmospheric circulation is
controlled by instantaneous heating patterns. The atmosphere
also exhibits a strong day–night temperature contrast and the
eastward-shifted hot spot from the substellar point, originating
from a time delay of the atmospheric response to the heating.
When the radiative timescale τrad is longer than the planetary day
Prot but shorter than the planetary year Porb (regimes (II) and (III)
in Figure 1), the circulation is controlled by the diurnally
averaged insolation. In this regime, the atmosphere experiences a
significant seasonal variation and an intense heating in the polar
regions if the obliquity θ is higher than the critical value (≈18°;
see Section 2 of Paper I). For a cold planet where the radiative
timescale τrad is much longer than the planetary year Porb

(regimes (IV) and (V) in Figure 1), the circulation is eventually
controlled by the annually averaged insolation. In this regime,
seasonal variations disappear, and the circulation pattern is nearly
time-invariant throughout the planetary orbit, although the
temperature and flow patterns are different for θ54° and
θ54°. Planets with retrograde rotations (i.e., θ> 90°) behave
similarly to those with 180°− θ as long as the planetary day is
much shorter than the planetary year, which is true for the solar
system planets, except for Venus. We showed that the regime
classification is also applicable to planets in eccentric orbits (for
more details, see Paper I).
One can expect several implications of the dynamical

regimes on the resulting light curves. For planets with short
radiative timescales (τrad= Prot), the light curve has a large
amplitude because of the strong day–night contrast. The peak
offset of the light curve would be controlled by the hot spot
shifted from the substellar point, as well as that for a close-in
planet. For an intermediate regime ( t P Prot rad orb), planets
with large obliquity (θ 18°) would produce the light curve
with a large amplitude because of a significant seasonality. For
planets with very long radiative timescales (t  Prad orb), the
light curve would be almost flat, since the temperature pattern
is nearly time invariable throughout the planet orbit. We will
demonstrate these behaviors using both analytical models and
numerical simulations in subsequent sections.

3. Analytical Theory of Thermal Light Curves for
Tilted Planets

In this section, we present an analytical model of thermal light
curves for tilted planets. Previous studies also derived analytical
models of light curves for tidally locked planets (Zhang &
Showman 2017; Hammond & Pierrehumbert 2018), eccentric
planets (e.g., Cowan & Agol 2011), and nonsynchronized planets
(Penn & Vallis 2017); however, all of them assumed planets with
zero obliquities. Here we construct the analytical theory that
predicts the orbital phase of the flux peak fpeak and the amplitude
of the light curves as a function of arbitrary radiative timescale,
obliquity, and viewing geometry. The complete derivation of the
theory is summarized in Appendices A.1–A.4. The most

Figure 1. Schematic diagram of dynamical regimes for ET planets modified from those in Paper I, with a specific focus on temperature patterns. Each panel shows the
snapshot of the height field (color scales) and flow pattern (arrows) taken from Paper I.
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important assumption in our theory is that the emergent flux from
the planet mainly consists of the flux from the hot spot shifted
from the substellar point and the heated pole (see Figure 1).
The thermal light curve thus originates from the time evolution
of the hot spot and the heated pole only (Equation (42) in
Appendix A.4). The analytical theory well explains the numerical
results (Section 4.1) and offers insights into the basic behaviors of
the light curves of tilted planets.

For convenience, we introduce the parameter Λ, defined as a
phase angle between the secondary eclipse fsec and the northern
summer solstice fsol (see Figure 2),

L º - ( )f f . 1sol sec

Here Λ characterizes the viewing geometry; for example, the
northern summer solstice takes place before (after) the
secondary eclipse for negative (positive) Λ. Note that one can
assume fsec=0 for planets in circular orbits. For a given Λ, the
emergent flux F can be calculated as a function of orbital phase
from the secondary eclipse f (Equation (48) in Appendix A.4):

p q j y
j q j y
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Here we adopt the shallow-water framework in Paper I. Here H
is the mean atmospheric height on the nightside (i.e., gH is the
mean geopotential on the nightside), Δh is the difference of
the equilibrium height between the substellar point and the
nightside (see Paper I), ψ is the dimensionless parameter
defined as (Equation (38) in Appendix A.3)
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and Ct and jpeak are the parameters controlling the amplitude
and flux peak phase of the light curve, given by Equations (49)
and (50) in Appendix A.4. The parameters depend on the
phase shift of the hot spot from the substellar point on the
equatorial plane j, which can be evaluated by solving (see
Appendix A.2)
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where g is the surface gravity, and p=v R P2ss p rot is the
substellar velocity. In the case of ξ?1, the phase shift is
simply j x» - ( )tan 11 . Equation (2) gives the orbital phase of
the flux peak fpeak as

j= L - ( )f . 6peak peak

We note that the theory is basically applicable to planets in
circular orbits. For eccentric orbits, because the true anomaly is
not a linear function of time, one needs to perform a numerical
integration to evaluate the emergent flux, and therefore no
explicit close form is presented here (but it is still a predictive
theory from first principles). We only focus on the analytical
cases for circular orbits.
We present the limiting behavior of the analytical theory to

clarify what mechanism is controlling the peak offset for tilted
planets. In the limit of a short radiative timescale (τrad= Prot),
the shape of the light curve is mainly dominated by the flux
from the shifted hot spot. This is similar to cases for close-in
synchronized planets, but the problem is more complicated
because the equatorial plane on a tilted planet is misaligned
with the orbital plane on which the subobserver point moves.
When the flux is only contributed by the shifted hot spot, the
angle jpeak is expressed as (see Appendix A.1 for the
derivation)
j

j j q
q j q j q

=
L + L

+ L - L
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When the original phase shift on the equatorial plane j is
sufficiently small, which may be valid in the limit of a short
radiative timescale and weak zonal flow, the equation is
approximated by (Equation (27) in Appendix A.1)

j j q» L + ( )cos . 8peak

Therefore, the orbital phase of the flux peak is given by

j q» - ( )f cos . 9peak

Equation (9) can be interpreted as that the shape of the light
curve is controlled by the “projected hot spot” onto the orbital
plane in the limit of a short radiative timescale. It is worth
noting that the peak offset only depends on the original phase
shift and obliquity in this regime.

Figure 2. Schematic illustration of the geometry for ET planets. The gray dotted curves show the orbit trajectory, the red dots represent the orbital phases of the
periapse, the green arrows represent the planetary rotation axis projected on the orbital plane, and the black dots are the orbital phases of the secondary eclipse. From
left to right, the secondary eclipse takes place at f=90°, 0°, and −90°, sequentially. The difference of the light-curve shape is also induced by Λ, which is defined as
the angle from orbital phase between the secondary eclipse fsec and the northern summer solstice fsol (see Section 4).
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The shifted hot spot hardly contributes on the total emergent
flux as the radiative timescale increases because the height field
becomes more homogenized in longitude (see Figure 1). In the
limit of a long radiative timescale (τrad? Prot), the emergent
flux is dominated by the flux from the polar region, which is
strongly heated at around the solstice. When the light curve is
only dominated by the flux from the polar region, the phase of
the flux peak is equivalent to the phase at which the height field
in the pole is maximized, which is approximately given by (see
Appendix A.3 for the derivation)

pt
» L + -

⎛
⎝⎜

⎞
⎠⎟ ( )f

P
tan

2
, 10peak

1 rad

orb

where we have assumed that the orbital period is much longer
than the radiative timescale (ψ?1). When the radiative
timescale is much longer than the orbital period (ψ=1),
the emergent flux no longer shows a time variation because
the height fields are nearly constant throughout the planetary
orbit (see also Equation (41) in Appendix A.3). Equation (10)
indicates that the orbital phase of the flux peak is determined
by the time lag behind the “seasonal polar heating” from
the solstice. In the next section, we demonstrate that the
“projected hot spot” and “seasonal polar heating” control the
shape of the light curves of tilted exoplanets using the numerical
calculations.

4. Synthetic Thermal Light Curves

We studied the thermal light curves of ET planets using the
results of shallow-water simulations presented in Paper I.
The thermal light curve can be calculated as a time variation of
the emergent flux F from the hemisphere facing to the observer.
Following previous studies using a shallow-water model
(Zhang & Showman 2014; Penn & Vallis 2017), we calculate
the synthetic thermal light curves by integrating the height
fields simulated in Paper I over the visible hemisphere as a
proxy of the emergent flux,

ò ò f f l=
p

p

p

-
( ) ( )( · ) ( · ) ( )r r r rF t h t d dcos , 11

0

2

2

2

obs obs

where h is the atmospheric height from the shallow-water
model, f is the latitude, λ is the longitude, and robs is the point
vector from the distant planet to the observer referred to as the
subobserver point (Rauscher 2017). The subobserver latitude
fobs is related to Λ as

f q= L ( )sin sin cos . 12obs

Here ( )x is the Heaviside step function accounting for the
fact that the hemisphere not facing the observer is invisible,
defined as

 =
<{( ) ( )x x

x
1 when 0
0 when 0.

13

We note here that the light curve calculated in Equation (11)
does not take into account the telescope integration time in real
observations. If the integration time is long, the light curve will
be essentially smeared out in a certain time window.

4.1. Tilted Planets in Circular Orbits

First, we show the thermal light curves of tilted planets in a
circular orbit for different τrad, θ, and Λ (Figure 3). For circular
orbits, one can assume fsec=0°. We also plot the light curves
of nontilted planets for comparison. Following the convention,
the flux peak occurring before the secondary eclipse is referred
to a positive peak offset, while the peak occurring after the
secondary eclipse is referred to a negative peak offset
(Parmentier & Crossfield 2017).
For nontilted planets, the light curves always show the

positive peak offsets when the radiative timescale is short (top
row of Figure 3). To better understand how the planet looks at
each orbital phase, we show the height fields on the visible
hemisphere on top of the light curves (Figure 4). As seen in
panel (A) of Figure 4, the positive peak offset is caused by the
eastward shift of the hot spot from the substellar point due to a
time delay of the height field in response to stellar irradiation.
As the radiative timescale increases, the height field is more
homogenized in longitude (see Figure 1). Therefore, as the
radiative timescale increases, the light-curve amplitude is
weaker, and the light curve eventually becomes flat, as shown
in the middle and bottom rows of Figure 3. These behaviors are
consistent with the synthetic light curves for nonsynchronized
planets in a circular orbit in previous studies (Showman et al.
2015; Penn & Vallis 2017, 2018; Rauscher 2017).
For planets with nonzero obliquities, as shown in Figure 3,

the behaviors of the thermal light curves are very complex,
depending on the radiative timescale, planetary obliquity, and
viewing geometry. These complex behaviors are mainly caused
by the geometric effect of the “projected hot spot” and the effect
of the “seasonal polar heating” argued in Section 3. The former
effect is responsible for light curves in regime (I)—those with
short radiative timescales (τrad= Prot). The latter effect is
mainly responsible for regime (III)—those with long radiative
timescales (τrad? Prot) and large obliquities (18°). For planets
with very weak seasonality in regimes (II), (IV), and (V), the
light curves are almost flat because the height fields are nearly
constant throughout the planetary orbit (Figure 3).
In the case of τrad=0.1 day (top row in Figure 3), both the

amplitude and peak offset of the light curves appreciably vary
with obliquity because of the aforementioned geometrical
effect. Interestingly, the dependence of obliquity on amplitude
is different for different viewing geometry characterized by Λ.
For Λ=±90° geometry, in which the observer is facing the
equator at the secondary eclipse (see Figure 2), the amplitude
of the light curve decreases with increasing obliquity (top left
panel of Figure 3). On the other hand, for Λ=0° geometry, in
which the solstice occurs at the secondary eclipse and the
observer views the polar region then, the amplitude increases
with increasing obliquity (top right panel of Figure 3).
According to the analytical light curve, the amplitude of the
light curve is scaled by q j yL( )C , , ,t (Section 3). In the limit
of short radiative timescales, the amplitude factor Ct can be
approximated by q j jL( )C , , cos , where C is given by
Equation (25) in Appendix A.1. The prefactor q j L( )C , , for
Λ=90° is given by (Equation (30) in Appendix A.1)

j j q= +L= ∣ ( )C cos sin cos . 1490
2 2 2

Therefore, the amplitude decreases with increasing obliquity
for Λ=90°, in agreement with Figure 3. This is qualitatively
due to the fact that the projected maximum emission flux of the
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hot spot along the line of sight to the observer will be smaller if
the obliquity is higher in this geometry. On the other hand, the
prefactor C for Λ=0° is given by (Equation (31) in
Appendix A.1)

q j q j q

= + +L=∣ ( ) ( )C sin cos cos sin cos . 150

2 2 2 2 2

Here the prefactor C is nearly unity for all obliquities as long as
the phase shift of the hot spot is small, while Figure 3 indicates
that the amplitude increases with increasing obliquity. This is
due to the fact that the actual light curve is obtained from the
disk-integrated flux. The hot spot is less smoothed out at the
polar region but more smoothed out at the equator, as seen in

panels (A) and (C) in Figure 4, which induces the higher disk-
integrated flux from the polar region than that from the equator.
For a short radiative timescale (τrad= Prot), the phase (or

time) of the peak in the light curve approaches the secondary
eclipse as obliquity increases for Λ=±90° and 0°. According
to Equation (9), the phase of the flux peak approaches the
secondary eclipse as the obliquity approaches θ=90°, which is
consistent with the trends of the peak offset. This is qualitatively
originated from the fact that the equatorial and orbital planes
will be more and more misaligned with each other as the
obliquity increases. For example, in the Λ=90° and θ=90°
case (panel (B) in Figure 4), the equatorial plane is essentially
perpendicular to the orbital plane; thus, the observer will always
see the flux peak from the projected hot spot occurring right at

Figure 3. Thermal light curves of planets in circular orbits for different τrad, θ, and Λ. The vertical and horizontal axes are the emergent flux normalized by the time-
averaged flux and the time from the secondary eclipse, respectively. From top to bottom, each the rows show the cases of τrad=0.1, 5, and 100 days, respectively.
The columns, from left to right, show the cases of Λ=±90°, ±45°, and 0°, respectively. The black, navy, purple, red, and orange lines show the light curves for
θ=0°, 10°, 30°, 60°, and 90°, respectively. The vertical dotted lines denote the time of the secondary eclipse. For the left and middle columns, the solid lines are the
light curves of planets whose northern summer solstice takes place before the secondary eclipse (Λ<0), while the dotted lines are for the planets with summer
solstice after the secondary eclipse (Λ>0). The green filled and open arrows denote the time of summer solstice that occurs before (Λ<0) and after (Λ>0) the
secondary eclipse, respectively.
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the secondary eclipse. On the other hand, the peak in the light
curve moves toward the phase before and after the secondary
eclipse for Λ=−45° and 45°, respectively. This phase shift
from the secondary eclipse is caused by the flux from the polar
region that enhances the total emergent flux around the solstice
when the obliquity is high. For example, in the Λ=45° and
θ=90° case, in which the solstice takes place after the
secondary eclipse (panel (D) in Figure 4), the polar region
undergoes strong heating around the solstice, and the peak in
the light curve also occurs near there. Note that the effect of
polar heating is not responsible for Λ=±90° because the polar
region is no longer visible to the observer in that geometry.

In the case of τrad=5 days (middle row of Figure 3), the
shapes of the light curves are significantly different from those
of τrad=0.1 day. For planets with obliquity smaller than 18°

(regime II), the light curves look nearly flat. The phase offset, if
there is one, is shifted before the secondary eclipse. In this
regime, because of the weak seasonality, the peak offset is still
determined by the projected hot spot rather than the seasonal
polar heating. On the other hand, the light curves of highly
tilted planets exhibit noticeable peaks. This is caused by the
polar heating occurring at around the solstice, which produces a
strong emergent flux (see Figure 1). Since the polar heating
occurs if the obliquity is higher than 18° in this regime
(Section 2), a planet with θ>18° potentially exhibits a flux
variation in the light curve. In this regime, since there is a
significant time lag in the heating in the polar region (panel (E)
in Figure 4), the flux peak occurs after the solstice, as seen in
the light curves for Λ=±45° and 90° (middle and right panels
in Figure 3). This can also be known from Equation (10), which

Figure 4. Typical shapes of light curves with height fields on the visible hemisphere. The vertical axis is the same as in Figure 3, and the horizontal axis is the orbital
phase from the secondary eclipse. The radiative timescale is τrad=0.1 day for panels (A)–(D) and (F) and τrad=5 days for panel (E). The gray dotted and pink
dashed-dotted lines denote the phase of secondary eclipse and the northern summer solstice, respectively.
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shows the phase of the flux peak pt» L +f P2peak rad orb. The
light curves behave nearly flat in the geometry with Λ=±90°
(left panel in Figure 3), in which the subobserver point is at
the equator and the flux from the poles is negligible. For
Λ=±90°, highly tilted planets produce double flux peaks in
the light curves. This is caused by the flux from the equatorial
region heated at the vernal and autumn equinoxes. The bimodal
light curve for this specific geometry can be also seen in
previous studies (Gaidos & Williams 2004; Rauscher 2017).

The remarkable feature is that a tilted planet produces a flux
peak after the secondary eclipse in some cases, for example, the
light curves for Λ=0 and θ�30° (middle right panel of
Figure 3). This originates from the fact that the phase of the
flux peak highly depends on the orbital phase of the solstice
when the high latitudes are illuminated. The middle row of
Figure 3 shows that the flux peak could occur after the
secondary eclipse for θ=30°, 60°, and 90°. Note that Λ>0
corresponds to the northern summer solstice occurring after the
secondary eclipse (see Figure 2). Because there is also a time
lag in the polar heating, the maximum temperature tends to
occur after the solstice and secondary eclipse, as seen in
Figure 3. These behaviors are in agreement with Rauscher
(2017), in which the peaks of the light curves tend to occur
after the secondary eclipse. Therefore, one can infer that the
obliquity is higher than about 18° if the negative peak offset is
found for planets with a long radiative timescale, as classified
into regimes (II) and (III). However, it would be difficult to
identify the exact value of the obliquity only from the peak
offset because the peak offset is controlled by solstice phase Λ
and independent of obliquity (Equation (10)).

In the case of τrad=100 days (bottom row of Figure 3), the
light curves are almost flat for all obliquities. The amplitudes of
the light curves are at least an order of magnitude smaller than
the light curves for τrad=5 days. This is simply because, in
regimes (IV) and (V), the height fields are controlled by the
annual mean insolation and do not change throughout the
planet orbit (Section 2).
We also show the light curves for planets with retrograde

rotations (i.e., θ> 90°) in Figure 5. For τrad=0.1 day, the peak
of the light curve occurs significantly after the secondary eclipse
as the obliquity approaches θ=180°. This is again caused by
the aforementioned geometrical effect. The eastward displace-
ment of the hot spot on the equatorial plane is still present for
θ>90° (see Paper I). Because the hot spot projected on the
orbital plane effectively shifts westward for the observer when
θ>90° (see Equation (9) and panel (F) of Figure 4), the flux
peak occurs after the secondary eclipse. For τrad=5 days, the
shape of the light curve is nearly the same between planets with
θ (Figure 3) and 180°− θ (Figure 5). This is because the
geometrical effect shown in panel (F) of Figure 4 disappears for
a planet with a long radiative timescale and a longitudinally
homogenized height field (see Figure 1). In this regime, the
shape of the light curve is largely determined by the flux from
the poles, which only depends on the subobserver latitude fobs
and Λ. Since the subobserver latitude for the case with θ is
identical to that with 180°− θ (see Equation (12)), the two
planets produce nearly the same light curves for the same Λ.
We summarize the peak offset calculated from our 2D

simulations, as well as the prediction of our analytical theory
for tilted planets with various radiative timescales, obliquities,
and viewing geometries, in Figure 6. As seen in Figure 6, our

Figure 5. Same as Figure 3 but for planets with retrograde rotation (i.e., θ > 90°). The top and bottom rows show the cases of τrad=0.1 and 5 days, respectively. The
black, lemon, light green, and peacock green lines show the light curves for θ=0°, 120°, 150°, and 180°, respectively.
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analytical theory well captures the general trends of the peak
offset of the light curves of tilted planets. For short radiative
timescales (left panel of Figure 6), the phase of the flux peak is
mainly controlled by the shifted hot spot. The flux peak tends to
occur near the secondary eclipse as the obliquity approaches
θ=90° and intrinsically occurs after the secondary eclipse for
planets with retrograde rotation (θ> 90°). For long radiative
timescales (right panel of Figure 6), the phase of the flux peak is
mainly determined by the time lag of the polar heating behind the
solstice Λ, but the peak offsets for planets with small obliquities
(θ 18°) are still influenced by the projected hot spot.

In most cases, our analytical predictions agree very well with
the simulation results. The analytical predictions for τrad=
0.1 day and Λ=±45° deviate little from the numerical results.
This is probably caused by the fact that the analytical model
currently ignores the meridional heat transport for a time
evolution of the height field at the pole. The left panel of
Figure 6 shows that the light curves without polar flux (dotted
lines) underestimate the magnitude of the peak offset, while
those with polar flux produce the peak close to the orbital phase
of the summer solstice. This means that the flux from the polar
region is overestimated. The light curves for τrad=5 days and
Λ=±90° are also completely different from the numerical
results. In this specific case, the emergent fluxes from the hot
spot and the polar region are not important, and the light curves
show double flux peaks (see the left middle panel of Figure 3).
But also note that the light curves are almost flat in these cases.

In summary, for planets in circular orbits, nontilted planets
always exhibit a positive peak offset, while tilted planets
potentially exhibit a negative peak offset if the solstice takes
place after the secondary eclipse and/or the planet is retrograde
rotating. For hot planets with a short radiative timescale in
regime (I), the planets with retrograde rotation produce the flux
peak after the secondary eclipse because of the geometrical
effect. Therefore, the negative peak offset potentially indicates
θ�90° for planets with a short radiative timescale. For
relatively cold planets with a long radiative timescale in

regimes (II) and (III), the peak of the light curve occurs after
the secondary eclipse because of the polar heating at the
solstice. Since the polar heating occurs for θ�18°, one can
use the negative peak offset as a diagnosis of high obliquity
θ�18°. However, it should be pointed out that the negative
peak offset can also be produced by other mechanisms, for
example, the presence of clouds (Demory et al. 2013;
Oreshenko et al. 2016; Parmentier et al. 2016), a westward
shift of the hot spot caused by a rotation slower than the orbital
motion (Rauscher & Kempton 2014), trapped Rossby waves
for slow substellar motion (Penn & Vallis 2017, 2018), and
time-varying winds caused by magnetic fields (Rogers 2017).
Therefore, one must be cautious when interpreting the negative
peak offset seen in the light curves in future observations.

4.2. Thermal Light Curves of ET Planets

For a planet with a nonzero eccentricity, the shape of the
thermal light curve depends not only on eccentricity e, obliquity
θ, and Λ but also on the true anomaly of the secondary eclipse
fsec. The situation could be highly complicated if we discuss
every possible geometry. In this study, for simplicity, we follow
a similar discussion in Kataria et al. (2013), which also
examined the light curves for eccentric planets. We only discuss
the geometries of fsec=0° and ±90°, as shown in Figure 2.
Figures 7 and 9 show the light curves of ET planets for a variety
of θ and Λ for τrad=0.1 and 5 days. The light curves for
τrad=100 days are nearly flat, so we omit them in this section.
When the radiative timescale is short, the eccentricity effect

tends to produce a sharp peak near the periapse, where the planet
undergoes intense irradiation from the central star. Generally
speaking, eccentricity leads to the shape of the light curve that is
narrow around the periapse because the time duration for
orbiting around the periapse is very short. For τrad=0.1 day
(Figure 7), one can see that the light curves for both tilted and
nontilted planets are peaked at around the periapse regardless of
the position of the solstice. This is because the magnitude of the
height field is primarily determined by the equilibrium value in

Figure 6. Peak offset of light curves of tilted planets as a function of obliquity. The left and right panels show the peak offsets for τrad=0.1 and 5 days, respectively.
The horizontal axis is the planetary obliquity, and the vertical axis is the peak offset defined as - = -f f fsec peak peak. The dots show the peak offsets calculated by our
2D simulations for different Λ. The solid lines show the peak offset predicted by a universal analytical solution (Equation (50) in Appendix A.4), where the original
phase shift of the hot spot j is obtained by solving Equation (4). The dotted lines in the left and right panels denote the peak offset derived from the formula assuming
the flux from only the projected hot spot (Equation (7)) and only the pole (Equation (10)), respectively. When the light curve has several peaks, as seen the case of
τrad=5 days and Λ=90° (Figure 3), we measure the peak offset using the largest peak.
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the limit of the short radiative timescale. If the solstice does not
take place at the periapse, the height field will be maximized at
the periapse and produce the flux peak near the periapse instead
of the solstice in the light curve (Figure 7).

As noted, for eccentric planets, the shape of the light curve
depends on the viewing geometry. To better explain the effects
of the viewing geometry, we show light curves and height
fields on the visible hemisphere at an orbital phase around the
secondary eclipse for fsec=0° and ±90° in Figure 8. For
nontilted planets with a short τrad (left columns of Figure 8), the
observed flux peak depends on both the viewing geometry and
the hot-spot displacement. If the periapse passage occurs before
the secondary eclipse (for example, fsec= 90°; left panel of
Figure 2), the strong emergent flux can be observed at around
the periapse because the hot spot is displaced toward the
observer (bottom left panel of Figure 8). By contrast, if the

periapse passage occurs after the secondary eclipse (for
example, fsec=−90°; right panel of Figure 2), the hot spot is
displaced away from the observer at the periapse, and the peak
flux is smaller than the former case with fsec=90° (top left
panel of Figure 8). If the secondary eclipse occurs right at the
periapse (middle panel of Figure 2), the strong flux peak occurs
slightly before the secondary eclipse because of the eastward
displacement of the hot spot (middle left panel of Figure 8).
These behaviors are seen in the light curves in Figure 7. Our
results are also qualitatively consistent with the light curves
from the 3D simulations of planets in eccentric orbits in Kataria
et al. (2013), which showed that the peak of the light curve is
relatively weak for fsec=−90° (ω= 360° in their context).
The peak offset is insensitive to the obliquity because the

emergent flux is largely controlled by the intense heating at the
periapse; however, an amplitude of the light curve is drastically

Figure 7. Thermal light curves of ET planets for different θ, fsec, and Λ. The radiative timescale and eccentricity are τrad=0.1 day and e=0.5. Each axis is the same
as in Figure 3. The rows, from top to bottom, exhibit the light curves for the viewing geometry of fsec=−90°, 0°, and 90°, respectively. The columns, from left to
right, show the cases of Λ=±90°, ±45°, and 0°, respectively. The different colored lines are the light curves for planets with different obliquity. The blue dotted
lines denote the time of periapse passage. The green filled and open arrows denote the time of summer solstice that occurs before (Λ<0) and after (Λ>0) the
secondary eclipse, respectively.
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influenced by the obliquity. For example, in the case of
fsec=−90° (top row of Figure 7), a tilted planet exhibits a
light curve with a large peak as the obliquity approaches
θ=90°. The reason is that, in contrast to the nontilted planets,
where the hot spot is displaced away from the observer in this
geometry, the emergent flux is dominated by the flux from the
heated pole that is still visible at the periapse (see top right
panel of Figure 8). For obliquity θ>90°, the hot spot is
displaced toward the observer at the periapse because of the
retrograde rotation (Section 4.1), leading to a large peak in the
light curve. On the other hand, in the case of fsec=90° (bottom
row of Figure 7), the hot spots on highly tilted planets are not
displaced toward the observer at the periapse (see bottom right

panel of Figure 8). Therefore, the flux peak occurs closer to the
secondary eclipse where the equilibrium height field is smaller
than that for the periapse. Specifically, for obliquity θ>90°,
the hot spot is displaced away from the observer as in nontilted
planets for fsec=−90°. As a result, for fsec=90°, the higher θ
case has a smaller peak amplitude in the light curve. Therefore,
for eccentric planets with a short radiative timescale in regime
(I), it would be difficult to infer the planetary obliquity from the
peak offset. Alternatively, a light curve with an abnormally
large or small peak might imply a high obliquity of the planet
in the geometry where the secondary eclipse occurs before
( fsec=−90°) and after ( fsec= 90°) the periapse passage,
respectively.

Figure 8. Light curves with height fields on the visible hemispheres. The radiative timescale and eccentricity are set as τrad=0.1 day and e=0.5, respectively. The
left column shows the light curves and height field maps for θ=0°, while the right column shows those for θ=90°, and the viewing geometry is set to Λ=0.
The rows, from top to bottom, show the light curves and height field maps for fsec=−90°, 0°, and 90°, respectively. The snapshot of the height field on the visible
hemisphere is taken at t=−0.2, −0.1, 0, 0.1, and 0.2 Porb, where t=0 is set to the secondary eclipse timing. The times of the secondary eclipse and periapse passage
are denoted as the gray dotted lines and blue dashed-dotted lines, respectively.
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As the radiative timescale increases, the peak of the light
curve lags behind the planet periapse passage, as seen in the case
of τrad=5 days (Figure 9). Figure 10 shows the light curves and
height fields on the visible hemisphere around the secondary
eclipse for τrad=5 days. For nontilted planets, the light curves
are always peaked a little behind the periapse passage due to a
delayed response of the height field to the stellar heating (left
column of Figure 10). In contrast to the cases of τrad=0.1 day,
the shape of the light curve depends less on the viewing
geometry, since the height field is nearly homogenized in
longitude. This is why the shapes of the light curves of nontilted
planets at different viewing geometries look roughly similar,
although the phase of the flux peak also depends on fsec.

For tilted planets, the light curves for θ=10° and 180° are
superposed on those for nontilted planets, while the light curves
for θ=30°, 60°, 90°, 120°, and 150° look different. In
addition, light curves for θ=30° and 60° are almost super-
posed on those for θ=150° and 120°, respectively. This
behavior is similar to the cases of circular-orbit planets

(Section 4.1). This indicates that the shape of the light curve
is influenced by the polar heating that occurs for obliquity
θ>18°. However, for Λ=±90°, the light curves for all
obliquities are superposed on each other because the flux from
the poles is negligible in this geometry. In other words, the
light curves of the tilted planets with equinox at the secondary
eclipse are indistinguishable from those of the nontilted planets.
For the ET planets with a long radiative timescale, the peak

offset of the light curve from the secondary eclipse is more
influenced by the obliquity than the planets with short radiative
timescales. For example, in the cases of Λ=45° (solid lines in
the middle column of Figure 9), the phase of the flux peak is
shifted toward the phase of the solstice from the periapse
passage. As obliquity increases, the peak flux is enhanced if the
solstice is close to the periapse, as in the case of fsec=−90°
and 0° (top and middle rows), and weakened if the solstice is
far away from the periapse, as in the case of fsec=90° (bottom
row). Take Λ=0° as a clearer example (right column); since
there is a time delay in the response of the height field to the

Figure 9. Same as Figure 7, but for τrad=5 days.
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stellar heating, the flux peak shows a time lag behind the
solstice phase (see right column of Figure 10). In summary,
when the radiative timescale is as long as classified into regime
(II) and (III), the peak offset of the tilted planet is substantially
controlled by the solstice phase, while the nontilted planets
produce the flux peak around the periapse.4

As shown above, eccentricity significantly affects the shape
of the light curve. Does it help us to infer the obliquities
of eccentric planets? Here we emphasize that the eccentricity
e and fsec are a priori known parameters from observations,
while the obliquity θ and fsol are a priori unknown parameters.
If the radiative timescale is significantly short, the flux peak is
strongly restricted at around the periapse, where the irradiation
is maximum. In that case, the peak offset depends less on

obliquity (see Figure 7). Therefore, in terms of peak offset, it
seems difficult to distinguish tilted planets from nontilted
planets, although obliquity significantly affects the peak
amplitude that might offer clues to infer the obliquity. On the
other hand, planets with relatively long radiative timescales (in
regimes II and III) are better candidates for retrieving the
information on the obliquity using the peak offset. This is
because the shape of the light curve easily deviates from that of
nontilted planets once the obliquity (use 180°− θ for θ> 90°)
exceeds 18° and the polar heating occurs.
Specifically, we suggest that the observational geometry in

which the secondary eclipse takes place after the periapse (i.e.,
fsec>0°, for example) offers a good opportunity to infer the
obliquity. In that geometry, the light curve of a nontilted planet
tends to exhibit a positive peak offset (i.e., flux peak before the
secondary eclipse) because the flux peak is controlled by the
heating at the periapse (Figures 9 and 10), although it would also

Figure 10. Same as Figure 8, but for τrad=5 days.

4 Note that in some architecture, the solstice will also occur around the
periapse.
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depend on the radiative timescale. On the other hand, the light
curve of a tilted planet potentially exhibits a negative peak offset
(i.e., flux peak after the secondary eclipse) because the emergent
flux is substantially influenced by the obliquity and the orbital
phase of the solstice (the cases of Λ=0° and 45° in Figure 9, for
example). Summarizing, a negative peak offset might indicate a
nonzero obliquity (at least, θ> 18°) if the planet is orbiting where
the periapse takes place before the secondary eclipse ( >f 0sec ).

What radiative timescale is better to infer the obliquity of
eccentric planets in that geometry? If the radiative timescale is
too short, a tilted planet produces the flux peak before the
secondary eclipse. Thus, a longer radiative timescale is
preferred. On the other hand, if the radiative timescale is too
long, nontilted planets also show the flux peak after the
secondary eclipse because of the time delay of the height field
response from heating at the periapse. Therefore, to use the
negative peak offset as a diagnosis of nonzero obliquity, the
radiative timescale should not significantly exceed a critical
timescale. Assuming a nontilted planet produces the flux peak
after the periapse passage by a time lag of ∼τrad, the critical
timescale may be given as the duration a planet takes to travel
from the periapse to the secondary eclipse. The time duration of
planet traveling can be calculated from the Kepler equation,
given by Murray & Dermott (1999),
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Figure 11 shows the critical radiative timescale normalized by the
orbital period (dashed line) and results from the light curves
simulated by the shallow-water model (stars and crosses). We
find that tilted planets produce a negative peak offset, while
nontilted planets produce a positive peak offset for the radiative
timescale close to∼τcrit. Tilted planets are still distinguishable for
a radiative timescale longer than the critical timescale because
nontilted planets produce the flux peak after the periapse passage
with a time lag smaller than τrad (for example, see Figure 9).
This is due to the fact that the incoming stellar flux rapidly
decreases as a planet moves far away from the periapse. The
critical radiative timescale is roughly ∼0.1Porb for fsec=90°.

We now attempt to evaluate the temperature range corresp-
onding to the critical radiative timescale, although in a very
crude way. The radiative timescale is roughly evaluated as
(Showman & Guillot 2002)
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where Pph is the photospheric temperature, cp is the specific heat
of the atmosphere, and σ is the Stefan–Boltzmann constant.

If we assume Porb=30 days, cp=1.3×104 J kg−1 K−1, g=
21m s−2, and Pph=250–670mbar (Showman et al. 2015;
Rauscher 2017), a critical radiative timescale of ∼3 days
corresponds to a temperature of ∼600–900 K. This suggests
that eccentric Jupiter-size planets with equilibrium temperatures
of ∼600–900 K might be good candidates to infer nonzero
obliquities in future observations. However, it should be noted
that an actual radiative timescale is determined by complex
atmospheric properties, such as chemical and thermal structures
(e.g., Li et al. 2018). Further studies with realistic radiative
transfer will be needed to revisit the estimate here.

5. Summary and Discussion

We have investigated the thermal light curves of ET planets
for a variety of radiative timescales, obliquities, orientations of
rotation axis, eccentricities, and viewing geometries using the
results of the shallow-water simulations presented in Paper I.
We have also achieved an analytical theory of thermal light
curves for tilted planets for arbitrary radiative timescale,
obliquity, and viewing geometry (Section 3, Appendix). We
discussed how the radiative timescale, obliquity, and eccen-
tricity affect the shape of the light curves and suggested the
diagnosis to infer exoplanetary obliquities. Our findings are
summarized as follows.
(1) The shape of the thermal light curve is significantly

influenced by the planetary obliquity (Section 4.1). For tilted
planets with a short radiative timescale, as in regime (I), the
peak offset is determined by the hot spot projected onto the
orbital plane. Because of the geometrical effect, tilted planets
with retrograde rotation (θ> 90°) produce the flux peak after
the secondary eclipse, which is significantly different from
nontilted planets.
(2) For tilted planets with a long radiative timescale, as in

regimes (II) and (III), the peak of the light curve is largely

Figure 11. Critical radiative timescales (dashed line; Equation (18)) as a
function of eccentricity. We assume a viewing geometry of fsec=90°. The
green stars indicate the parameters for which tilted planets yield a negative peak
offset while nontilted planets yield a positive peak offset, confirmed by the
light curves from our shallow-water simulations. The red and blue crosses
indicate the parameters for which tilted planets yield a positive peak offset and
nontilted planets yield a negative peak offset, respectively. The simulations
were carried out for fsec=fsol=θ=90°.
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controlled by the flux from the heated pole if the obliquity is
θ>18°. Since the polar flux is maximized at around the
summer solstice, tilted planets exhibit the flux peak after the
secondary eclipse if the solstice takes place after the secondary
eclipse.

(3) Our analytical theory of thermal light curves also well
explains the basic behaviors observed in numerical light
curves. In summary, a negative peak offset (the peak after
the secondary eclipse) potentially implies a planetary obliquity
θ>90° if the radiative timescale is short and θ>18° if the
radiative timescale is long, although some other possibilities
cannot be ruled out.

(4) The shape of the light curve is also significantly
influenced by eccentricity (Section 4.2). Because the planet
undergoes more intense heating around the periapse, nontilted
planets exhibit a flux peak around the periapse. For tilted
planets with a short radiative timescale, the light curve also
shows a flux peak around the periapse regardless of the orbital
phase of the summer solstice, leading to a degeneracy of the
peak offsets between the tilted and nontilted planets. On the
other hand, the obliquity significantly increases or decreases
the peak amplitude of the light curve, depending on the
viewing geometry, which might offer hints to infer the
obliquity if one observes the light curve with an abnormally
large or small amplitude.

(5) For tilted planets with a long radiative timescale, the
polar heating around the solstice moderately affects the shape
of the light curve if the obliquity is higher than 18°. Since both
the peak offset and the amplitude are easily influenced by the
obliquity on planets with relatively long radiative timescales,
they might be better candidates for the observational search for
tilted exoplanets.

(6) We suggest that the observational geometry in which the
secondary eclipse takes place after the periapse offers a good
opportunity to infer the obliquity of a planet in an eccentric
orbit (Section 4.2). In this geometry, tilted planets potentially
produce the flux peak after the secondary eclipse, whereas
nontilted planets produce the peak before the secondary
eclipse, when the periapse passage occurs, although it also
depends on the radiative timescale. We suggest that, if the
negative peak offset is observed in this geometry, it might
imply a tilted planet with an obliquity at least higher than 18°.

Although a tilted planet potentially produces a negative peak
offset, we should note that there are also other mechanisms
causing the negative peak offset in the thermal light curve, as
mentioned in Section 4.1. It was suggested that, if the planetary
day is longer than the planetary year, a nontilted planet also
produces a flux peak after the secondary eclipse (Rauscher &
Kempton 2014). For very hot planets where a significant
ionization of alkali metals takes place, the interaction between
atmospheres and magnetic fields potentially causes westward
jets, leading to a negative peak offset (Rogers 2017). If the
substellar-point velocity is slower than the Kelvin wave speed,
the hot spot is prograde to the substellar point, and the flux
peak can take place after the secondary eclipse (Penn & Vallis
2017, 2018). Therefore, one needs to interpret the negative
peak offset with caution.

We should also note that the presence of clouds produces
reflected light from the atmosphere that has a significant impact
on the shape of the light curve. Recent photometric observa-
tions have detected the negative peak offset for several planets

(Demory et al. 2013; Angerhausen et al. 2015; Esteves et al.
2015; Shporer & Hu 2015; Armstrong et al. 2016; Dang et al.
2018), but it probably suggests the presence of clouds in the
dayside hemisphere (Oreshenko et al. 2016; Parmentier et al.
2016). The significance of the effects depends on the optical
properties and spatial distributions of the clouds, which were
recently investigated by cloud microphysical models (e.g.,
Helling et al. 2008; Lee et al. 2015; Gao & Benneke 2018;
Ohno & Okuzumi 2018; Ormel & Min 2018; Powell et al.
2018), as well as atmospheric circulation models with cloud
microphysics (Lee et al. 2016; Lines et al. 2018). Future
investigations of atmospheric dynamics coupled with cloud
formation would offer clues to shed light on the diversity of
exoplanet light curves and their implications for planetary
obliquities.
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Appendix
Analytical Theory of the Light Curves for Tilted Planets

Here we construct an analytical theory to predict the light
curves for tilted planets. We first present the theory for planets
with short radiative timescales, in which the light curve is
controlled by the hot spot projected onto the orbital plane, in
Appendix A.1 and then those for planets with long radiative
timescales, in which the flux from the polar region is important,
in Appendix A.3. The theory to evaluate the peak offset for
nontilted planets is also presented in Appendix A.2. Finally,
with some assumptions, we construct a universal model of light
curves for tilted planets in Appendix A.4.

A.1. Projected Hot Spot for Planets with Short
Radiative Timescales

For τrad=Prot, the emergent flux is mainly dominated by
the flux from the hot spot displaced from the substellar point.
Therefore, the emergent flux might be diagnosed by the hot-
spot vector rhs projected onto the subobserver point vector robs,
i.e., ·r rhs obs. The hot-spot vector rhs is related to the substellar
point vector rss, which is given by (for derivation, see
Dobrovolskis 2009, 2013)
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Because the movements of the substellar and subobserver
points due to the planetary rotation are the same, one can
simplify the problem in a nonrotating framework. Substituting
Ωrot=0 into Equation (20), the substellar point movement is
expressed by
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where we assume fsec=0 for planets in circular orbits and thus
fsol=Λ. In this context, f expresses the orbital phase from the
secondary eclipse. Since the subobserver point is identical to
the substellar point at the secondary eclipse ( f= 0), the
subobserver point is given by
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On the other hand, the hot spot displaced from the substellar
point by the phase shift j (hereafter called the original phase
shift) is given by
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Now the projection factor  º ·r robs hs is obtained as
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where q j L( )C , , is the prefactor controlling the light curve
amplitude, given by

The projection factor  is maximized at the orbital phase of

*
j= L -f , where
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As seen in Equation (26), the peak offset of the tilted planet in
regime (I) is determined in a very complex manner. But if one
crudely assumes that the phase shift of the hot spot j is small,
which might be valid in the limit of short radiative timescales
and weak zonal winds, the problem is greatly simplified. In that

case, Equation (26) can be approximated as
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where we truncate the terms of j higher than second order.
Equation (27) indicates that, for a small phase shift of the hot
spot, the flux peak occurs at j q= -f cos , which is just the
projection of the original phase shift onto the orbital plane.
Here we show some examples to interpret the light curves for

a short radiative timescale in Section 4.1. In the simplest case,
the projection factor for a nontilted planet (θ=0) is given by

 j= +q=∣ ( ) ( )fcos , 280

where  q= ∣ 0 is maximized at j= -f and thus the flux peak
occurs before the secondary eclipse. On the other hand, for
θ=180°, the projection factor is given by

 j= -q= ∣ ( ) ( )fcos , 29180

where  q= ∣ 180 is maximized at j=f and thus the flux peak
occurs after the secondary eclipse. For another example, the
projection factor for planets in the geometry of Λ=90° is
given by

 j j q j= + +L= ∣ ( ) ( )fcos sin cos cos , 3090
2 2 2
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where j q j= - ( )tan cos tan90
1 and the flux peak occurs at

j= -f 90. On the other hand, the projection factor for Λ=0°
is also given by
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where j q j q j q= +- ( ( ))tan cos sin sin cos cos0
1 2 2 and the

flux peak occurs at j= -f 0.

A.2. Original Phase Shift of the Hot Spot

The original phase shift of the hot spot j can be evaluated
from linearized shallow-water equations. Without the drag and
Coriolis term, a linearized shallow-water equation at the equator
can be written as (for the derivation, see Penn & Vallis 2017)


l

x x l l
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¢
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d
h h cos cos , 32

where  is the Heaviside step function defined as
Equation (13), ¢ = -h h H is the difference of the height
from the mean value, l l p¢ = + t P2 rot is the longitude from
the substellar point moving westward, and ξ is the nondimen-
sional parameter given by
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where p=v R P2ss p rot is the substellar velocity. Note that the
substellar point is assumed to move westward since we have
assumed Prot ≪ Porb. The analytical solution of Equation (32)
for p l p- < <2 2 is given by
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where we adopt a periodic boundary condition at l p¢ =  2
and ±π following Zhang & Showman (2017). The phase shift
of the hot spot j can be found as a solution of l¢ ¢ =dh d 0, i.e.,
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The solution of this equation cannot be explicitly shown but
can be numerically obtained. In the limit of ξ?1, the phase
shift is expressed by j x» - ( )tan 11 .

A.3. Evaluation of the Flux from the Polar Region

For planets with long radiative timescales of τrad?Prot, the
hot spot is less important for the total emergent flux. When the
obliquity is small, as in regime (II), the shape of the light curve is
still influenced by the projected hot spot argued in Appendix A.1.
On the other hand, if the planetary obliquity is high, as in regime
(III), the total flux is largely dominated by the flux from the polar
region. To evaluate the flux from the polar region, we construct a
simple kinematic model of the height field evolution at the pole.
When the meridional heat transport is inefficient, the time
evolution of the height field at the pole is expressed by
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This equation can be solved in the same way as Equation (32).
Again adopting the periodic boundary condition at f=Λ±π/2
and Λ±π, we obtain the height field evolution at the pole,
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The height field at the pole is maximized when ¢ =dh df 0pole

is satisfied, i.e.,
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Again, one needs to solve this equation numerically. But, in the
limit of ψ?1, the phase of the maximum height field is

given by
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This indicates that the flux from the polar region is maximized
after the planet passes the solstice. Therefore, the phase of the
light curve occurs after the solstice passage, which is in
agreement with the light curves in regime (III) in Figure 3.
Equation (39) also indicates that the phase of the flux peak
from the polar region is independent of the obliquity, which
explains why planets with different obliquities produce a flux
peak at the same orbital phase for fixed Λ in Figure 3. Rauscher
(2017) assumed that the diurnally averaged insolation, and thus
the simulated light curves, should fall into this regime.
Figure 12 shows the peak offset retrieved from the light curves
in Rauscher (2017) and our analytical model (Equation (10)).
The theory presented here excellently matches the results of
Rauscher (2017), implying that the flux from the polar region
indeed controls the shape of the light curves in this regime.
The light curves for regimes (IV) and (V) can also be

understood from the limit of ψ=1. In the limit of ψ=1, the
height field at the pole is approximated as

y q
y p

py
¢ » D - L +

+ L -⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )h h fsin sin

4 4 7

3
. 41pole

In this case, the flux peak occurs at f=Λ+π/2, and this is
consistent with the light curves for regimes (IV) and (V) in
Figure 3, although the light curves are nearly flat because the
amplitude scales as y qDh sin .

A.4. Universal Formula of Peak Offset for Tilted Planets in
Circular Orbits

We now attempt to derive a universal formula of the peak
offset for tilted planets. The transition from the short-τrad limit
to the long-τrad and high-obliquity limit occurs when the flux

Figure 12. Comparison with the peak offset simulated by Rauscher (2017).
The stars denote the peak offset in the light curves simulated by Rauscher
(2017), where we only plot for light curves with clear peaks. The red and green
stars show the peak offset in viewing geometries of fobs=θ and θ/2,
respectively. The dotted lines show the prediction of our analytical theory
(Equation (40)). We set Prot=10 hr, Porb=10 days, and τrad=2.3 days,
calculated by Equation (19), with Pph=667 mbar and Teq=880 K, which are
equivalent to the parameters used in Rauscher (2017).
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from the polar region becomes stronger than the flux from the
hot spot shifted from the substellar point. To express the
smooth transition of these two limits, we construct a toy model;
the height field is excited from the mean value only at the
shifted hot spot and the pole. In this context, the height field is
expressed as

d d= + ¢ - + -( )( ( ) ( )) ( )r r r r rh H h , 42hs pole

where δ is the delta function. Substituting Equation (42) into
Equation (11), the diagnosis of the emergent flux is given by
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where f′ is the angle from the subobserver latitude (i.e.,
f¢ = - ( · )r rcos 1

obs ) and λ′ is the longitude on the plane
perpendicular to the subobserver point vector. Equation (43)
yields
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The first, second, and third terms express the emergent flux
from the mean height field, shifted hot spot, and pole,

respectively. Inserting Equation (35) into Equation (34) with
λ′=j, the height field at the hot spot is given by
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Therefore, using Equation (24), the second term is expressed as
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where we focus on the orbital phase around the flux peak
( > 0) and thus   =( ) 1. On the other hand, from
Equation (37), the flux from the pole is expressed by
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Here we only consider the case of y  1 and truncate the last
term in the bracket of Equation (47) because the light curve is
nearly flat in the limit of ψ=1. From Equations (46) and (47),

we obtain the total emergent flux as
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where q j yL( )C , , ,t is the prefactor controlling the light-
curve amplitude, given by
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The total flux is maximized at j= L -fpeak peak, where

In the limit of short radiative timescales (ψ?1) and small
obliquities, Equation (50) returns to Equation (26). On the
other hand, in the limit of radiative timescales longer than the
planet day (i.e., ξ=1 and thus j p 2), Equation (50)
returns to j y» - - ( )tan 1peak

1 . Consequently, the phase of
the flux peak can be evaluated by j= L -fpeak peak with
Equation (50) for arbitrary radiative timescales, obliquities, and
viewing geometries.
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