
NONLINEAR STUDIES - www.nonlinearstudies.com
Vol. 27, No. 2, pp. 505-528, 2020

c© CSP - Cambridge, UK; I&S - Florida, USA, 2020

A study of chaos and its control in a harvested tri-trophic
food chain model with alternative food source and diffusion
effect

Binayak Nath 1, Jingjing Lyu2, Rana D. Parshad3, Krishna Pada Das 4? , Anuraj Singh 5

1Department of Physics, Mahadevananda Mahavidyalaya
Monirampore, P.O.-Barrackpore,Kolkata 700120, India

2 Clarkson University,Department of Mathematics
Potsdam, NY, 13699, USA

3 Iowa State University,Department of Mathematics
Ames, IA, 50011, USA

4 Department of Mathematics, Mahadevananda Mahavidyalaya
Monirampore, P.O.-Barrackpore, Kolkata 700120, India

5 ABV-Indian Institute of Information Technology & Management,
Gwalior 474015, India

? Corresponding Author. E-mail: krishnaisi@yahoo.co.in

Abstract. The present paper explores a tri-trophic food chain model with alternative food source for
prey species and harvesting in prey and intermediate predator. We perform the local dynamical anal-
ysis of the model system. We also derive conditions for Turing instability in the diffusive model. To
investigate the global dynamics we have performed extensive numerical experiments in the both non-
diffusive and diffusive system. We find that harvesting has an important role in preventing chaotic
dynamics and sustaining the ecosystem. It is noticed that alternative food also has a stabilizing effect
on chaotic dynamics and leads a stable dynamics through chaos, period-doubling and limit cycles.
Thus both the harvesting parameter and alternative food may be considered as key biological param-
eters for controlling chaotic dynamics in three species food chain models. In the diffusive system we
observe that the harvesting parameter and alternative food may cause Turing instability.

2010 Mathematics Subject Classification: 34D20, 34C23, 35B36, 35K57, 92B05, 92D25
Keywords: Turing instability, diffusive food chains, stability, alternative food, harvesting, stable focus, Hopf bifurcation.



506 Binayak Nath, Jingjing Lyu, Rana D. Parshad, Krishna Pada Das, Anuraj Singh

1 Introduction

The analysis of food chains has been a major area of research in ecology and applied mathematics
in recent years. A food chain represents the predator-prey relationships in an ecosystem, between
species linked by trophic interaction. The pioneering work on chaos in three species food chains by
Hastings and Powell [22] shows chaotic dynamics could exist in natural food webs. Subsequently,
a variety of models incorporating different kinds of ecological factors are proposed and analyzed to
suppress chaos.

Following the work of Hastings and Powell [22], Ruxton [39] studied the probability of extinction
for a system of linked populations and showed that it decreases for weakly linked systems. MaCann
and Hastings [27] analyzed the effect of the addition of omnivory to a food chain model and found that
it has the ability of suppressing chaos. Xu and Li [47] used intraspecific density dependence (IDD),
an important ecological factor, in food chain models to control chaos. Maionchi et al. [28] showed
significant changes in the dynamics of the system by introducing local predator-prey interactions.
Younghae Do et al. [11] analyzed a three-species food chain system with hybrid type of functional
responses and concluded that it can exhibit chaotic dynamics. Gakkhar and Singh [20] showed that
four-dimensional models may show stable dynamics in contrast to chaotic dynamics that occurred in
three species food chain. Thus the intermediate predator plays an important role in reducing chaos.
Zhang et al. [49] considered an experimental marine food chain and showed that feeding selectivity
plays an important role in the transfer of energy along marine food chains. Greenhalgh et al.[19]
investigated the features of a predator-prey model with disease amongst the prey and ratio-dependent
functional response for both infected and susceptible prey.

Now we briefly discuss about the importance of harvested food chain in ecological systems. Har-
vesting represents population reduction due to hunting or capturing individuals or removal of crops
from the fields. It may be considered as a stabilizing factor when there are chaotic population dynam-
ics. Chaudhuri [7, 8] analyzed combined harvesting of two competing fish species and considered the
perspective of dynamic optimization of a two competing fish species. Dai and Tang [10] considered a
predator-prey model with constant rate of harvesting in two interacting species independently. Bairagi
et al.[3] showed harvesting practices may play an important role in a host-parasite systems and it is
possible to control the cyclic behavior of the system using impulsive harvesting effort. Madhusudanan
et al.[29] studied the effect of harvesting on prey species and showed that it has a strong impact on the
population dynamics. Ali khan et al.[1] used threshold harvesting strategy to obtain steady behaviour
from a chaotic fish population. Liu and Bai[26] established sufficient and necessary criteria for the
existence of optimal harvesting policy.

Alternative food source for predators is also a very important factor that can influence the dy-
namical behavior of a food chain system significantly. Generally predators do not depend on a sin-
gle prey species rather they will switch to alternative food when the preferred prey density is low.
It is well-known that when prey density drops below a threshold value, optimally foraging preda-
tors will switch to alternative food. Werner and Hall [45] considered a model demonstrating optimal
prey choice by the bluegill sunfish. Joern[4] analyzed switching among four alternative grasshopper
species by the grasshopper sparrow (Ammodramus savannarun)through frequency-dependent preda-
tion. Colombo and Krivan[5] discussed strategies describing selective feeding and switching for a
one-predator two-prey system. Fryxell and Lundberg[13] showed that patterns of partial prey pref-
erence are more stabilizing than perfect optimal diet selection. Minus van Baalen et al.[2] showed
that if switching to alternative food is unable to stabilize the equilibrium, it may prevent unbounded
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oscillations in the system. Sahoo and Poria[42] showed that chaos in a predator-prey system can be
controlled by increasing quantity of additional food to top predator.

The effects of diffusion in food chain models also plays a crucial role in the dynamics of the
system. Individual species migrate where their population density is perhaps less, in order to get
more food. Diffusion also includes ecological interaction such as searching for shelter, mates and
absconding from predators, infection risks etc. Su et al.[44] proposed a reaction-diffusion population
model with time delay effect and studied the long time dynamical behavior of the system whereas
Zhao and Wei [48] considered a reaction-diffusion plankton system with delay and toxic substances
effect. Ndam et al.[34] considered a model in an aquatic habitat and studied the effects of cross-
diffusion of the intermediate and the top predator. Zuo and Wei [50] studied the stability in a delayed
predator-prey model with diffusion effect. Dhar and Jatav [9] considered a delayed stage-structured
predator-prey model with impulsive diffusion between the territories of the two predators. Guin and
other authors [40, 14, 15, 16, 17] studied the predator-prey system with cross-diffusion effect and
stationary pattern formation and discussed the control of pattern formation of the populations and its
biological relevance. Rao et al.[38] studied the dynamics of the predator-prey model with constant
time delay and diffusion in both prey and predator. They showed that diffusion can either stabilize or
destabilize the system, large delay can destabilize the system and the combination of diffusion and
delay can intensify the instability of the system.

2 Model formulation

The HP model [22] with pairwise interactions between three species, namely, X , Y, Z, which incor-
porates a Holling type II functional response in both consumer species, namely Y and Z is as follows:

dX
dT

= R0X
(

1− X
K0

)
−C1A1Y X

B1 +X
dY
dT

=
A1Y X
B1 +X

− A2Y Z
B2 +Y

−D1Y (2.1)

dZ
dT

=
C2A2Y Z
B2 +Y

−D2Z.

Here X is the numbers of the species at the lower level of the food chain, Y the numbers of the species
that preys upon X , and Z the numbers of the species that preys upon Y . Here T is time. The constant
R0 is the intrinsic growth rate and the constant K0 is the carrying capacity of the species X . The
constants C1 and C2 are conversion rates of prey to predator for the species Y and Z respectively; D1
and D2 are constant death rates for species Y and Z respectively. The constants Ai and Bi for i=1,2 are
maximal predation rate and half saturation constants for Y and Z respectively. Hastings and Powell
[22] demonstrated that the dynamic interaction between prey and predators in simple three-species
food chain is chaotic in a certain region of parametric space.

Assume that the predator is a generalist one and may switch to another prey when the preferred
prey is low in numbers. To keep the model simple and analytically tractable, it is also assumed that
the additional food is not dynamic in nature and available at a specific constant level either by nature
or by an external agency. This simplification is justified for many arthropod predators[2]. By above
assumptions the system(2.1) can be written as the following set of nonlinear ordinary differential
equations:
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dX
dT

= R0X
(

1− X
K0

)
−C1A1ΠY X

B1 +X
dY
dT

=
A1ΠY X
B1 +X

+(1−Π)Y − A2Y Z
B2 +Y

−D1Y (2.2)

dZ1

dT
=

C2A2Y Z
B2 +Y

−D2Z

Here Π (0≤ Π≤ 1) is a alternative food resource parameter that measures the coupling strength
of intermediate predator with its focal prey and alternative food. Π = 1 implies that intermediate
predators feed only on focal prey and the systems (2.1) and (2.2), in this case, are identical. The other
extreme case arises when Π = 0 In this latter case, intermediate predators do not consume its focal
prey and their growth solely depends on the alternative prey. We are interested about the situation
where 0 < Π < 1. This is the case where intermediate predator consume both its focal prey and
alternative prey.

Here we have considered harvesting in prey and intermediate predator to obtain rich dynamics.
We use the term harvesting as a removal of species due to some need, perhaps policy driven. For-
mulating reasonable harvesting policies is indisputably one of the major and interesting problems
in ecology and economics and has been well studied. The exploitation of biological resources and
harvest of population species are commonly practiced in fishery, forestry, agriculture and wildlife
management. Harvesting has sometimes been considered as a stabilizing factor, a destabilizing factor
or even oscillation-inducing factor. The problem of predator-prey interactions under constant rate of
harvesting or constant quota of harvesting has been studied by many authors.

By above assumptions the system(2.2) can be written as the following set of nonlinear ordinary
differential equations:

dX
dT

= R0X
(

1− X
K0

)
−C1A1ΠY X

B1 +X
−E1X

dY
dT

=
A1ΠY X
B1 +X

+(1−Π)Y − A2Y Z
B2 +Y

−D1Y −E2Y (2.3)

dZ
dT

=
C2A2Y Z
B2 +Y

−D2Z

To reduce the number of parameters and to determine which combinations of parameters control
the behavior of the system, we dimensionalise the system with the following scalling

x =
X
K0

, y =
C1Y
K0

, z =
C1Z
C2K0

and t = R0T

Then the system (2.3) takes the form (after some simplification)

dx
dt

= x(1− x)− a1πxy
1+b1x

− e1x

dy
dt

=
a1πxy

1+b1x
+(1−π)y− a2yz

1+b2y
−d1y− e2y (2.4)

dz
dt

=
a2yz

1+b2y
−d2z
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where
a1 =

A1K0

R0B1
, b1 =

K0

B1
,a2 =

C2A2K0

C1R0B2
,b2 =

K0

C1B2
,

d1 =
D1

R0
, d2 =

D2

R0
, e1 =

E1

R0
, e2 =

E2

R0
, π = Π,1−π =

1−Π

R0
, (0≤ π≤ 1)

System (2.4) has to be analyzed with the following initial conditions:

x(0)> 0, y(0)> 0, z(0)> 0.

This model gives a system of three ordinary differential equations for the three state variables: lower
level prey X, consumer species Y that preys on X and consumer species Z that preys on Y. The
nondimensional model is describled as follows:

dx
dt

= x(1− x)− a1πxy
1+b1x

− e1x

dy
dt

=
a1πxy

1+b1x
+(1−π)y− a2yz

1+b2y
−d1y− e2y

dz
dt

=
a2yz

1+b2y
−d2z

(2.5)

Table 1 Table summarizing the symbol of parameters used in system(3).

Dimentionalised parameters Biological significance of parameters
a1 =

A1K0
R0B1

Maximal predation rate of intermediate predator
a2 =

C2A2K0
C1R0B2

Maximal predation rate of top predator
b1 =

K0
B1

Half saturation constant in the functional
response for intermediate predator

b2 =
K0

C1B2
Half saturation constant in the functional

response for top predator
d1 =

D1
R0

Death rate of intermediate predator
d2 =

D2
R0

Death rate of top predator
e1 =

E1
R0

Harvesting rate of the prey population
e2 =

E2
R0

Harvesting rate of intermediate predator
π = Π Alternative food for intermediate predator

3 Equilibria and their existence and local and global stability of equilibrium points

3.1 Equilibria

To get the equibria points ,we need to solve the following equations:

x(1− x)− a1πxy
1+b1x

− e1x = 0 (3.1)
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a1πxy
1+b1x

+(1−π)y− a2yz
1+b2y

−d1y− e2y = 0 (3.2)

a2yz
1+b2y

−d2z = 0 (3.3)

There are 4 equilibria, Q1,Q2,Q3,Q4, on the boundary and 1 interior equilibrium,Q.

3.1.1 Boundary equilibria

The equilibria on the boundary are given by

Q1 = (0,0,0)

Q2 = (0,
d2

a2−b2d2
,−π+d1 + e2−1

a2−b2d2
)

Q3 = (1− e1,0,0)

Q4 = (
π+d1 + e2−1

πa1−πb1−b1d1−b1e2 +b1
,

− π(e1−1)(a1−b1)−b1(d1 + e2−1)(1− e1)+π+d1 + e2−1
(πa1−πb1−b1d1−b1e2 +b1)2 ,0)

(3.4)

Q1 is stable if 1− e1 < 0 and 1−π−d1− e2 < 0 and unstable if 1− e1 ≥ 0 or 1−π−d1− e2 ≥ 0.
Q2 is unfeasible. Q3 is unstable.
Q4 is stable if B2d2−Cb2d2+Ca2

B2−Cb2
> 0 and unstable if B2d2−Cb2d2+Ca2

B2−Cb2
≥ 0 where

A = π+d1 + e2−1

B = πa1−b1A

C = πa1(e1−1)−b1e1A+b1A+A

(3.5)

3.1.2 Interior equilibrium

To find the interior equilibrium, Q = (x∗,y∗,z∗), we solve y∗ = d2
a2−b2d2

from equation (3.3). Then
equations (3.1)-(3.3) can be simplified as solving the following two equations

b1x2 +(b1e1−b1 +1)x+
πa1d2

a2−b2d2
+ e1−1 = 0 (3.6)

(b2d2−a2)(1+b1x)z+(1−π−d1e2)(1+b1x)+πa1x = 0 (3.7)

The solution of (3.6) is given by

x1 =
−C1 +

√
C2

1−4C0C2

2C2

x2 =
−C1−

√
C2

1−4C0C2

2C2

(3.8)

where
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C2 = b1

C1 = (b1e1−b1 +1)

C0 =
πa1d2

a2−b2d2
+ e1−1

(3.9)

The existence of (3.8) implies C2
1−4C0C2 ≥ 0, to show

C2
1−4C0C2 =

(1− e1)
2(a2−b2d2)b2

1
a2−b2d2

− (4πa1d2−2(1− e1)(a2−b2d2))b1

a2−b2d2
+1

≥ 0
(3.10)

It is enough to show
4πa1d2−2(1− e1)(a2−b2d2)< 0 (3.11)

Then we have
a2−b2d2 >

2πa1d2

1− e1
(3.12)

To simplify the calculation,we will always assume 0 < e1 < 1. Then we will only need to consider
x∗ = x1 since x2 < 0 due to C2 > 0 and C0 < 0. The condition (3.12) also implies x1 > 0. Define
A = π+d1 + e2−1. Then z∗ is given by

z∗ =
(πa1−b1A)x∗−A

(1+b1x∗)(a2−b2d2)
(3.13)

And z∗ > 0 if

a1 >
(2+b1(1− e1))A

π(1− e1)
(3.14)

Therefore, the interior equilibrium is given by

Q = (
−C1 +

√
C2

1−4C0C2

2C2
,

d2

a2−b2d2
,

(πa1−b1A)x∗−A
(1+b1x∗)(a2−b2d2)

) (3.15)

And the equilibrium Q is feasible if

a2−b2d2 >
2πa1d2

1− e1
, −b1e1 +b1−1 >

2b1A
πa1−b1A

(3.16)

3.2 Stability analysis of interior equilibrium points

The Jocabian matrix of this system about Q = (x∗,y∗,z∗) is

J =

 J11 J12 0
J21 J22 J23
0 J32 0


where

J11 = 1−2x∗− a1πy∗

(1+b1x∗)2 − e1 (3.17)
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J12 =−
a1πx∗

1+b1x∗
(3.18)

J21 =
a1πy∗

(1+b1x∗)2 (3.19)

J22 =
b2d2(a2−b2d2)z∗

a2
(3.20)

J23 =−
a2y∗

1+b2y∗
(3.21)

J32 =
a2z∗

(1+b2y∗)2 (3.22)

Under the feasibility conditions (3.16), note that J12 < 0,J21 > 0,J22 > 0,J23 < 0 and J32 > 0. The
sign of J11 is undertermined.
The characteristic equation is given by

λ
3 +R2λ

2 +R1λ+R0 = 0 (3.23)

where

R2 =−(J11 + J22) (3.24)

R1 = J11J22− J12J21− J23J32 (3.25)

R0 = J11J23J32 (3.26)

By Routh Hurwitz stability criteria, all eigenvalues of (3.23) have negative real part if and only if

R0 > 0,R2 > 0,R1R2−R0 > 0 (3.27)

Theorem 3.1. The interior equilibrium Q is unstable if J11 > 0.

If J11 < 0, then we can state the following theorem

Theorem 3.2. The interior equilibrium Q is locally stable if J11J22− J12J21 >
J22J23J32
J11+J22

> 0 and J11 <
−J22.

Proof. By Routh Hurwitz criteria, R0 > 0 implies J11 < 0 and R2 > 0 gives J11 <−J22.

R1R2−R0 =−J2
11J22 + J11J12J21− J11J2

22 + J12J21J22 + J22J23J32

=−J11J22(J11 + J22)+ J12J21(J11 + J22)+ J22J23J32

=−(J11 + J22)(J11J22− J12J21)+ J22J23J32

(3.28)

Theorem 3.3. The interior equilibrium Q is unstable if J11J22− J12J21 < 0.
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4 Hopf bifurcation

Now we will investigate the Hopf bifurcation for the system in terms of parameter e1. In this paper,
we will follow the method developed by Liu [41]. The hopf bifurcation at e1 = e∗1 can occur iff
R1(e∗1),R0(e∗1), and φ(e∗1) = R2(e∗1)R1(e∗1)−R0(e∗1) are smooth functions of e1 in an open interval of
e∗1 ∈ R such that:

1. R1(e∗1)> 0,R0(e∗1)> 0, and φ(e∗1) = R2(e∗1)R1(e∗1)−R0(e∗1) = 0.
2. dφ(e1)

de1
|e1=e∗1 6= 0.

And we will numerically check e1 exists since it is very hard to solve mathematically.

5 Spatially Explicit Model

Since species disperse in space in search of food, shelter, mates and to avoid predators, spatially
dispersing populations are often modeled via partial differential equations (PDE)/spatially explicit
models of interacting species, as well as various others, [30, 35, 37, 12, 23]. In this section we shall
investigate the effects of diffusion in our earlier described models. We state the form of the spatially
explicit model

∂x
∂t

= D1∆x+ x(1− x)− a1πxy
1+b1x

− e1x (5.1)

∂y
∂t

= D2∆y+
a1πxy

1+b1x
+(1−π)y− a2yz

1+b2y
−d1y− e2y

∂z
∂t

= D3∆z+
a2yz

1+b2y
−d2z

We prescribe Neumann boundary conditions and suitable positive initial conditions. Here
x(x

′
, t),y(x

′
, t),z(x

′
, t) are the concentrations/population densities of the prey, the juvenile predator

and the adult predator, at any given time t respectively.

5.1 Functional preliminaries and local solutions

We now present various function space notations and definitions that will be used frequently. The
usual norms in the spaces Lp(Ω), L∞(Ω) and C

(
Ω
)

are respectively denoted by

||x||pp=
1
|Ω|

∫
Ω

∣∣∣x(x′)∣∣∣p dx
′
,

||x||∞=max
x′∈Ω

∣∣∣x(x′)∣∣∣ .
It is well known under the “regularizing effect principle” to prove global existence of solutions to

(5.1) , [24], it suffices to derive uniform estimates on the Lp, norms of the reaction terms, on [0,Tmax),
for some p > n/2, where n, is the spatial dimension of the domain Ω, and the reaction terms in our
setting are given in (5.1). Here Tmax denotes the eventual blowing-up time in L∞(Ω). The following
local existence result is well known [43].
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Lemma 5.1. The system (5.1) admits a unique, classical solution (x,y,z) on [0,Tmax)×Ω. If Tmax < ∞

then
lim

t↗Tmax
{‖x(t, .)‖

∞
+‖y(t, .)‖

∞
+‖z(t, .)‖

∞
}= ∞. (5.2)

Proof. Since the reaction terms are continuously differentiable in the positive octant, then for any
initial data in C

(
Ω
)

or Lp(Ω), p ∈ (1,+∞), it is easy to check directly their Lipschitz continuity on
bounded subsets of the domain of a fractional power of the operator I3 (d1,d2,d3)

t
∆, where I3 the

three dimensional identity matrix, ∆ is the Laplacian operator and ()t denotes the transposition.

5.2 Control of mass and L1(Ω) estimates

Note in order to derive global existence via application of [24], we are required to derive uniform
in time Lp(Ω) estimates on the reaction terms in (5.1), for p > n

2 . We will restrict our selves to the
case n = 1,2. We begin by deriving the result in 1d, that is the n = 1 case. We proceed by adding up
the equations in (5.1), define the grouped variable W = x+ y+ z, and integrate the above equation in
space to obtain

d
dt

∫
Ω

W (x
′
, t)dx

′

=
∫

Ω

(x(1− x)− e1x+((1−π)−d1− e2)y−d2z)dx
′

≤max((rγ−1),((1−π)−d1− e2))
∫

Ω

W (x, t)dx
′

(5.3)

Now the uniform in time L1(Ω) bound on W , and thus on x,y,z easily follows via applying Gron-
wall’s lemma on the above, on any time interval [0,T ], to yield

||x||L1(Ω) ≤ ||x0||L1(Ω)e
(max((rγ−1),((1−π)−d1−e2)))T , (5.4)

||y||L1(Ω) ≤ ||y0||L1(Ω)e
(max((rγ−1),((1−π)−d1−e2)))T , (5.5)

||z||L1(Ω) ≤ ||z0||L1(Ω)e
(max((rγ−1),((1−π)−d1−e2)))T , (5.6)

with the bound depending on only the final time t = T . Thus in order to control any of the reaction
terms we have to control in essence terms of the form a1πxy

1+b1x

|| a1πxy
1+b1x

||L1(ΩT )

≤ || a1πx
1+b1x

||L∞(ΩT )

∫
ΩT

ydx
′

≤ a1π

b1

∫ T

0
||y0||L1(Ω)e

(max((rγ−1),((1−π)−d1−e2)))T

(5.7)

This follows from the L1(Ω) estimate on y, via (5.4). Thus we have L1(ΩT ) control of the reaction
terms. Thus we see we can uniformly bound all of the reaction terms in L1(ΩT ), and by bootstrap
argument then bound them uniformly in Lp to deduce global existence [24].
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Now we provide a few details to cover the n = 2 case. For this case we need to make uniform
estimates on the reaction terms in Lp(Ω), where p > 2

2 = 1. Thus a uniform (in time estimate, where
the estimate can depend on the final time t = T ) in L2(Ω) will suffice.

The estimate on x follows trivially via comparison with the diffusive logistic equation. Thus we
have

||x||22 ≤C.

Here the C is a pure constant and does not depend on time. We now multiply the equation for y
and integrate by parts over Ω. Thus we obtain

d
dt
||y||22 +D2||∇y||22

=
∫

Ω

a1πxy2

1+b1x
dx
′
+(1−π− e2−d2)||y||22−

∫
Ω

a2πzy2

1+b2z
dx
′

≤ (
a1π

b1
+ |1−π− e2−d2|)||y||22

(5.8)

Thus using positivity and Gronwall’s equality we obtain, that for any t ∈ [0,T ] we have the estimate

||y||22 ≤ ||y0||22e(
a1π

b1
+|1−π−e2−d2|)T .

The uniform bound on z follows similarly. Thus we can now state the following theorem,

Theorem 5.1. Consider the spatially explicit three species model (5.1), where the spatial dimension of
the physical domain is n = 1,2. Solutions to this model are classical, that is (x,y,z)∈C1(0,T ;C2(Ω)),
and exist globally in time.

5.3 Turing Instability Theory

In this section we investigate Turing instability in system (5.1). We uncover both spatio-temporal
and spatial patterns, and provide the details of the Turing analysis. We derive conditions where the
unique positive interior equilibrium point (x∗,y∗,z∗) is stable with diffusion, and unstable due to the
action of diffusion, with a small perturbation to the positive interior equilibrium point. We firstly lin-
earize model (5.1) about the homogeneous steady state, we introduce both space and time-dependent
fluctuations around (x∗,y∗,z∗). This is given as

x = x∗+ x̂(ε, t), (5.9a)

y = y∗+ ŷ(ε, t), (5.9b)

z = z∗+ ẑ(ε, t), (5.9c)

where |x̂(ε, t)| � x∗, |ŷ(ε, t)| � y∗, |ẑ(ε, t)| � z∗. Conventionally, we choose û(ξ, t)
v̂(ξ, t)
r̂(ξ, t)

=

η1
η2
η3

eλt+ikε,
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where ηi for i = 1,2,3 are the corresponding amplitudes, k is the wavenumber, λ is the growth rate of
perturbation in time t and ε is the spatial coordinate. Substituting (5.9) into (5.1) and ignoring higher
order terms including nonlinear terms, we obtain the characteristic equation is given by

(J−λI− k2D)

η1
η2
η3

= 0, (5.10)

where

D =

D1 0 0
0 D2 0
0 0 D3

 ,

J =


1−2x∗− a1πy∗

(1+b1x∗)2 − e1 − a1πx∗
1+b1x∗ 0

a1πy∗

(1+b1x∗)2
b2d2(a2−b2d2)z∗

a2
− a2y∗

1+b2y∗

0 a2z∗
(1+b2y∗)2 0

=

J11 J12 J13
J21 J22 J23
J31 J32 J33

 ,
and I is a 3×3 identity matrix.
For the non-trivial solution of (5.10), we require that∣∣∣∣∣∣

J11−λ− k2D1 J12 J13
J21 J22−λ− k2D2 J23
J31 J32 J33−λ− k2D3

∣∣∣∣∣∣= 0,

which gives a dispersion relation corresponding to (x∗,y∗,z∗) where α∗ = 1+ b1x∗, β∗ = 1+ b2y∗.
To determine the stability domain associated with (x∗,y∗,z∗), we rewrite the dispersion relation as a
cubic polynomial function given as

P(λ(k2)) = λ
3 +µ2(k2)λ2 +µ1(k2)λ+µ0(k2), (5.11)

with coefficients

µ2(k2) = (D1 +D2 +D3)k2− (J11 + J22 + J33),

µ1(k2) = J11J33 + J11J22 + J22J33− J32J23− J12J21

− k2((D3 +D1)J22 +(D2 +D1)J33 +(D2 +D3)J11
)

+ k4(D2D3 +D2D1 +D1D3),

µ0(k2) = J11J32J23− J11J22J33 + J12J21J33

+ k2(D1(J22J33− J32J23)+D2J11J33 +D3(J22J11− J12J21)
)

− k4(D2D1J33 +D1D3J22 +D2D3J11
)
+ k6D1D2D3.

By Routh-Hurwitz criterion for stability, Re(λ) < 0 in model (5.1) around equilibrium point
(x∗,y∗,z∗) (i.e (x∗,y∗,z∗) is stable) if and only if these conditions hold:

µ2(k2)> 0, µ1(k2)> 0, µ0(k2)> 0 and [µ2µ1−µ0](k2)> 0. (5.12)
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Where as violating either of the above conditions implies instability (i.e Re(λ) > 0). We now
require conditions where an homogeneous steady state (x∗,y∗,z∗) will be stable to small perturbation
in the absence of diffusion and unstable in the present of diffusion with certain k values. Meaning, we
require that around the homogeneous steady state (x∗,y∗,z∗)

Re(λ(k2 > 0))> 0, for somek andRe(λ(k2 = 0))< 0,

where we consider k to be real and positive even though k can be complex. This behavior is called
Diffusion driven instability. Models that exhibits this behavior in 2 or 3 species have been extensively
studied in [31, 21, 46], were several different patterns was observed. In order for homogeneous steady
state (u∗,v∗,r∗) to be stable (in the absence of diffusion) we need

µ2(k2 = 0)> 0, µ1(k2)> 0, µ0(k2 = 0)> 0 and [µ2µ1−µ0](k2 = 0)> 0,

whereas with diffusion (k2 > 0) we look for conditions where we can drive the homogeneous steady
state to be unstable, this can be achieved by studying the coefficient of (5.11). In order to achieve this
we reverse at least one of the signs in (5.12). For this we have to first study µ2(k2). Irrespective of the
value of k2, µ2(k2) will be positive since J11 +J22 +J33 is always less than zero. Therefore we cannot
depend on µ2(k2) for diffusion driven instability to occur. Hence for diffusion driven instability to
occur in our case, we only depend on the 2 conditions which are

µ0(k2) and [µ2µ1−µ0](k2). (5.13)

Both functions are cubic functions of k2, which has the form as

G(k2) = HH + k2DD +(k2)2CC +(k2)3BB, withBB > 0, andHH > 0.

The coefficient of G(k2) are standard, see [21].
To drive either µ0(k2) or [µ2µ1−µ0](k2) to negative for some k, we basically need to find the minimum
k2 referred to as the minimum turing point (k2

T ) such that G(k2 = k2
T )< 0. This minimum Turing point

occurs when
∂G/∂(k2) = 0,

which when solved for k2 we obtain

k2 = k2
T =
−CC +

√
C2

C−3BBDD

3BB
,

which ensures k2 is real and positive such that ∂2G/∂2(k2)> 0, by which we require either

DD < 0 or CC < 0, (5.14)

which ensures that

C2
C−3BBDD > 0.

Therefore G(k2)< 0, if at k2 = k2
T

Gmin(k2) = 2C3
C−9DDCCBB−2(C2

C−3DDBB)
3/2 +27B2

BHH < 0. (5.15)

Hence (5.14)-(5.15) are necessary and sufficient conditions for (x∗,y∗,z∗) to produce diffusion driven
instability, which leads to emergence of patterns. Also to first establish stability when k = 0, HH in
each case has to be positive.
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Fig. 1 (a)Figure depicts the time series chaotic oscillation of all three species for a1 = 4.8, a2 = 0.1, b1 = 3.0, b2 =

2.2, e1 = 0.02, e2 = 0.01, π = 0.01.
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Fig. 2 Figure indicates the bifurcation diagram for β ∈ [1.5,3.0] and also indicates that system shows stable focus, limit
cycle, period-doubling and chaos and other parameter values given in the Figure1.

6 Numerical results and discussion

We have modified the model of Hastings and Powell[22] by introducing harvesting and alternative
food. Hastings and Powell[22] observed stable focus, limit cycle, period doubling and chaotic dynam-
ics of the system by changing half saturation constant b1. Our aim is, first to observe the exchange of
states (stability-limit cycle-period-doubling-chaos) in our modified system for different values of b1
and subsequently to observe the system under the variation of harvesting parameter and alternative
food resource parameter. Thus we first observe the dynamics of proposed system for variation of half
saturation constant b1. Here we use Matlab Software for solving our proposed system with the help
of Matlab code ode45 and keeping the initial condition x = 0.89765, y = 0.087792 and z = 8.7794
through out the numerical simulations. We observe that the system shows chaotic oscillations for b1
and we also observe strange chaotic tea-cup attractor (see Figure1). To observe the clear dynamical
behaviour of the system, we draw a bifurcation diagram with respect to b1 and the system shows
stable focus, limit cycle, period-doubling and chaos for 1.5≤ b1 ≤ 3.0. It is noticed that the system is
stable around the interior equilibrium point for 1.5≤ b1 ≤ 2.1 (see Figure (2a)) and for 2.1≤ b1 < 2.2
it shows limit cycle oscillations (see Figure (2b)). The period-doubling is observed for 2.2≤ b1 < 2.4
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Fig. 3 (a) Figure depicts that strange tea-cup chaotic attractor for e1 = 0.05; (b) Figure shows the period-doubling for
e2 = 0.086; (c) Figure depicts the limit cycle periodic solution e1 = 0.12; (d) Figure shows the stable focus for e1 = 0.15
and other parameter values given in Figure 1.

(see Figure (2c)). Finally, chaotic dynamics is observed for 2.4 ≤ b1 ≤ 3.0 (Figure (2d)). However
we observe finally the chaotic teacup attractor. The dynamics within the attractor are given roughly
as follows. Starting in the ”handle” of the ”teacup”, the system moves to the wide part of the teacup
and then spirals along the teacup to the narrow end, entering the handle again. In terms of the species
behaviour, the top predator Z crashes, allowing wide swings in the population levels of X and Y . As
Z increases in numbers, the swings in X and Y become damped, until Z causes the levels of Y to
crash. This leads to a crash in Z and an outbreak in X , starting the process again. The sequence of
events in terms of species numbers, always follows the same general pattern. What is unpredictable
is the timing. One way to express this is that the time between crashes of species Z varies in an erratic
fashion. Also, the number of peaks in species Y between major crashes varies and the population size
at the peaks varies.

We observe that system enters into chaotic dynamics from stable focus from the Figure (2). Food
chain model suggests that chaotic behavior may be much more common in natural systems with inter-
acting producers and consumers (Predators and prey) than Hassel et al.[25] predicted on the basis of
one species discrete time models. It is our interpretation that chaos ultimately arises in this food chain
model because of the tendency for predator-prey systems to oscillate. One predator-prey subsystem,
for concreteness say X and Y oscillate at one frequency, while another, Y and Z oscillate at a different
frequency; the frequencies are determined by the model parameters. In particular, the interaction at
the higher trophic levels has a longer natural period because the average lifetime of the top predators
is longer than the average lifetime of the consumers at the lower trophic levels. The two systems are
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Fig. 4 Figure indicates the bifurcation diagram for e1 ∈ [0.02,0.2] and depicts the chaos, period-double, limit cycle and
stable focus and other parameter values given in the Figure1.

coupled through species Y because the predator in one is the prey in the other. We conjecture that
when the period of one oscillation is not some multiple of the other frequency (i.e. the frequencies are
incommensurate) chaos arises in a manner similar to the occurrence of chaos in periodically forced
oscillations. Food webs depict a complex net coupled producer-consumer interactions; accordingly
one should not be surprised to find many subsystems within a food web going through the oscillations
that are a common feature of all predator-prey systems. It seems unlikely that the frequencies of all
the linked subsystems will be commensurate. Accordingly, one expects that at least some, perhaps
most of the linked predator-prey subsystems may be simultaneously undergoing chaotic oscillations.
It is instructive to compare this view with the three species study (a predator consuming two compet-
ing prey) of Gilpin [18], in which chaotic behavior was identified. Typically, one does not associate
oscillations with competition models based on results from two species Lotka-Volterra competition
[32]. However, once three or more species are allowed, oscillations can occur [33, 36]. We conjecture
that food webs containing a number of competing species can also go chaotic in the same way as our
consumer-producer food chain does.

To observe the effect of harvesting and alternative food in our proposed system, we first increase
the harvesting parameters, keeping the half-saturation constant b1 fixed at b1 = 3.0. In our model
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Fig. 5 Figure indicates that system shows chaos, period-doubling, limit cycle and stable focus for variation of e2 ∈
[0.01,0.4] and other parameter values given in the Figure1.

harvesting parameters e1, e2 and alternative food resource parameter π are important in controlling
chaotic dynamics. We first vary e1 and observe the clear dynamics such as chaos, period-double,
limit cycle and stable focus. It is noticed that system shows strange chaotic attractor for e1 = 0.05
(see Figure(3)a). If we increase the value of e1 from 0.05 to 0.086 system shows period-doubling
(see Figure(3)b). From Figure(3c), it is observed that system shows periodic limit cycle solution for
e1 = 0.12. Finally we have observed that system enters into stable focus for e1 = 0.15 (see Figure(3d)).
To observe clear picture we draw bifurcation diagram with respect to e1 (see Figure(4)) and from this
figure we observe that system enters into period-doubling from chaotic dynamics, limit cycle from
period-doubling, finally stable focus from limit cycle oscillations. It is very interesting that harvesting
in prey species stabilizes the chaotic dynamics. Now we explain the stabilization mechanism. When
values of harvesting is low the chaotic dynamics remains same in the system but when the values of
harvesting is high system settle down into stable focus. When harvesting of prey species is increasing
population level of prey species decreases and intermediate and top predator also decrease due to
scarcity of food. Such type of decreasing of population level stabilizes the chaotic oscillations. We
also observe the dynamics of the system for variation of harvesting parameter e2. We observe from
Figure(5) that system shows chaos when the values of e2 is low but chaos reduces to stable focus
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Fig. 6 (a)Figure shows the strange tea-cup chaotic attractor for π = 0.95; (b) Figure shows the multiple periodic solution
for π = 0.83; (c) Figure shows periodic limit cycle solution for π = 0.8 and other parameter values given in Figure 1.

for higher values of e1. We explain the biological reason for reducing chaos into stable focus for
increasing e2. When e2 is increased the population level of intermediate predator decreases and prey
population increases but top-predator decreases due to scarcity of food. This type of competition
reduces chaos.

We now observe the consequences of alternative food on the system dynamics. First we fix the
value of b1 at 3.0 so that the system exhibits chaos and then we gradually decrease the value of π to
observe the changed dynamics. We have plotted solution trajectories (Figure(6)) for different values
of π, where 0 < π < 1. These figures show that the irregular behaviour of the system becomes regular
as the intermediate predator shifts to alternative food. A bifurcation diagram (Figure(7)) with π as the
bifurcation parameter has also been presented to show the variation in the system dynamics when π is
smoothly varied. This figure demonstrates that the system returns to regular oscillations from chaotic
oscillations through period-halving bifurcations as π is gradually decreased from its maximum value.

Here we demonstrate Turing patterns that form in 1D. The initial condition used is a small pertur-
bation around the positive homogeneous steady state given as
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Fig. 7 Figure indicates that the system shows different dynamical behaviour such as chaos, multiple periodic solution and
limit cycle for variation of π ∈ [0.7,1.0] and other parameter values given in the Figure1.
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Fig. 8 Here we demonstrate that alternative food can indeed induce Turing instability. The densities of the three species
are shown as contour plots in the x-t plane (1 dimensional in space). The long-time simulation yields spatial patterns.

x = x∗+η1cos2(nr)(r > 0)(r < π),

y = y∗+η2cos2(nr)(r > 0)(r < π),

z = z∗+η3cos2(nr)(r > 0)(r < π),
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Fig. 9 The densities of the three species are shown as contour plots in the x-t plane (1 dimensional in space). The long-time
simulation yields spatial patterns.
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Fig. 10 Here we found no Turing as π = 1.

where ηi = 0.005 ∀i.
We choose parameters a1 = 4.2,a2 = 2,b1 = 5,b2 = 0.1,e1 = 0.8,e2 = 0.2,π= 0.8,d1 = 0.01,d2 =

0.05, and simulate the PDE system (5.1) to obtain spatial patterns as seen in Figure 8.
We next choose parameter values as a1 = 4,a2 = 1.5,b1 = 4,b2 = 0.1,e1 = 0.8,e2 = 0.1,π =

0.7,d1 = 0.01,d2 = 0.05, and x∗ = 0.1400,y∗ = 0.0334z∗ = 0.2283 , then simulate system (5.1) to
obtain spatial patterns as seen in Figure 9.

Remark 6.1. Next we want to investigate the effect of removing the alternative food, on the Turing
instability in the system. We numerically investigate the situation without alternative food, that is,
π = 1, we found no Turing here as Figure. 10. We use the parameter set as Figure.9 and replace π = 1.
This shows a certain amount of alternative food can induce Turing instability.

In the present paper we modified the HP model by introducing harvesting in populations. We
worked out the conditions for which the system is stable around different equilibria. Hastings and
Powell [22] observed stability, limit cycle, period-doubling and finally chaos in simple tri-trophic
food chain model by increasing half saturation constant b1. However, the introduction of harvesting
in the populations change the dynamics of the original model. From our numerical simulations we
observe that by increasing the harvesting parameters the system enters into period-doubling from
chaos, limit cycle solution from period-doubling and finally settles down to a steady state solution, a
stable situation when other parameters are fixed. Thus increase in the harvesting rates not only prevent
the system from entering into chaotic region, but also stabilizes the coexistence steady state.

We observe that chaotic oscillations in a tri-trophic food chain model is common, and control of
such oscillation is utmost important from ecological as well as economic viewpoint. From our analysis
it is clear that harvesting free system enters into chaos from stable focus for increasing b1. It is also
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observed that chaotic behaviour due to enhancement of half saturation constant can be prevented by
increasing the harvesting effort on population. Thus we may conclude that harvesting in tri-trophic
food chain model may be used as biological control for stabilizing chaotic dynamics, if any. There
are various practical directions herein. Cropper and DiResta [6] studied the effects of harvesting on
Florida commercial sponge population. They concluded that unregulated harvesting might lead to a
decline in the sponge population and affects the benthic community composition.

7 Conclusion

The present study explores a mathematical model of a tri-trophic food chain with alternative food
and harvesting. Here we consider alternative food for prey species and harvesting in prey and inter-
mediate predator. We have rigorosly shown the local stability of different equilibrium points. These
theorems highlight some biological threshold conditions which determine the stability of the differ-
ent equilibrium points. We pay attention to the Hopf-bifurcation and observed that e1 has the critical
value above which system exhibits Hopf-bifurcation. We also study Turing instability by considering
diffusion in our proposed model, and have derived the conditions for Turing instability. To get insight
into the global dynamics of our proposed model we have performed extensive numerical simulation
in the ODE system as well as the diffusive system. Firstly we have observed chaotic dynamics via
the standard period-doubling route, by increasing the value of b1. Secondly we have tried to control
such chaotic dynamics by using harvesting parameter as well as alternative food. We have found that
if we increase the value of e1, the system settles into a stable focus through different dynamics such
as chaos, period-doubling and limit cycle. Similar dynamics are observed for variation of e2. So we
may conclude that both harvesting parameters play an important role to get a stable and sustainable
ecosystem by preventing chaotic dynamics. We also find that alternative food has a stabilizing effect
on chaotic dynamics. By varying the alternative food we find that chaos will disappear. Our results
show that the harvesting parameter and alternative food are the two biological parameters which play
an important role to prevent chaotic dynamics and lead to a stable ecosystem where the concerned
three species persist, in the ODE case. However, in the diffusive system we have observed that har-
vesting parameter and alternative food cause instability of the system. Thus the effect of alternative
food seems to be different in the ODE and PDE cases, stabilizing in the former, but destabilizing in
the latter. This is highly interesting and warrants further study. Such directions will be the subject of
our future investigations.
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