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ABSTRACT
Personalized medicine has received increasing attentions among scientific
communities in recent years. Because patients often have heterogenous
responses to treatments, discovering individualized treatment rules (ITR) is
an important component of precision medicine. To that end, one needs to
develop a proper decision rule using patient-specific characteristics to
maximize the expected clinical outcome, i.e. the optimal ITR. Recently,
outcome weighted learning (OWL) has been proposed to estimate optimal
ITR under a weighted classification framework. Since most of commonly
used loss functions are unbounded, the resulting ITR may suffer similar
effects of outliers as the corresponding classifiers. In this paper, we propose
robust OWL (ROWL) to build more stable ITRs using a new family of
bounded and non-convex loss functions. Moreover, we extend the pro-
posed ROWL method to the multiple treatment setting under the angle-
based classification structure. Our theoretical results show that ROWL is
Fisher consistent, and can provide the estimation of rewards’ ratios for the
resulting ITRs. We develop an efficient difference of convex functions algo-
rithm (DCA) to solve the corresponding nonconvex optimization problem.
Through analysis of simulated examples and a real medical dataset, we
demonstrate that the proposed ROWL method yields more competitive
performance in terms of the empirical value function and the misclassifica-
tion error than several existing methods.

ARTICLE HISTORY
Received 25 September 2017
Accepted 16 September 2018

KEYWORDS
Angle-based classifiers;
multiple treatments; non-
convex optimization;
precision medicine;
robustness; soft and hard
classification

1. Introduction

In modern medical studies, especially study of chronic diseases, patients can show significant
heterogeneity in response to different treatments. For example, a treatment may work well for
some patients with certain characteristics, but may have no effect for others (Ellsworth et al. 2010;
Mancinelli et al. 2000). The target of personalized medicine is to maximize the clinical outcome or
reward of patients. To improve the effect of treatments significantly, one should find proper
individualized treatment rules (ITR), based on the patients’ genomic or prognostic information,
rather than a “one size fits all” approach. The optimal ITR is a function with maximum expected
benefit from the treatment, which maps from the patient characteristics’ space into the treatment
decision space.
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In the recent literature, many machine learning techniques have been introduced to build the
optimal ITR, especially for the scenario with binary treatments. There are two main strategies to
estimate an ITR. One is the regression-based methods, which model the conditional mean of
outcome based on covariates, treatments and their interaction effects (Fan et al. 2017; Qian and
Murphy 2011; Tian et al. 2014; Xiao et al. 2019; Zhang et al. 2012). The other is the classification-
based methods, which convert the estimation of the optimal ITR into a weighted classification
problem. Zhao et al. (2012) proposed an outcome weighted learning (OWL) strategy which connects
the ITR problem with the weighted support vector machine. Zhou et al. (2017) extended the OWL
and proposed residual weighted learning (RWL) under the weighted classification framework.
Furthermore, Liu et al. (2016) generalized OWL techniques to estimate binary dynamic treatment
regimens. Laber and Zhao (2015) devised a new estimation method based on decision trees to obtain
the optimal ITR.

Despite the great success in ITR estimation with binary treatments, extending the idea for
multiple treatment scenarios is still not fully explored. For estimating ITRs with multiple treatments,
one can design similar methods under the weighted multicategory classification framework. One
typical approach is to use the sequential binary methods, such as one-versus-rest (OVR) and one-
versus-one (OVO), which reduce the problem into multiple binary ones. Such extensions can be
suboptimal, since they do not use the data jointly (Liu 2007). Another approach is to handle all
treatments together using simultaneous classification methods. Recently, Chen et al. (2018)
employed a data duplicate strategy to solve the ITR estimation problem with multiple ordinal
treatments. To estimate ITRs with multiple treatments, Zhang et al. (2019) proposed a weighted
angle-based classifier with a flexible margin-based loss function, which includes the original binary
OWL as a special case.

For classification-based ITR estimation methods, the performance heavily depends on how
well the corresponding classifier works. In the large-margin classification literature, it is known
that classifiers using unbounded loss functions may suffer from the existence of extreme out-
liers. In practice, misclassified points that are far from points of their own classes may have
large loss values and heavily affect the performance. Wu and Liu (2007) pointed out that
truncation of the unbounded loss helps to decrease the impact of outliers and yield more stable
classifier. Zhang et al. (2018) utilized the truncated hinge loss function for robust multicategory
classification. Instead of truncating the loss functions, Wu and Liu (2013) and Fu et al. (2018)
proposed new adaptively weighted large-margin classification techniques to achieve robustness.
The truncated loss function is bounded and consequently can be more robust to outliers. Our
motivation is to develop robust weighted classification methods for robust single-stage ITR
estimation.

In this article, we design a new family of robust large-margin loss functions, which are smooth
and bounded, and apply them to estimate robust ITRs. We name the proposed method as robust
outcome weighted learning (ROWL). ROWL is a unified large margin angle-based ITR learning
framework to handle binary and multiple treatment problems, and the estimated ITRs can be more
stable to outliers. Moreover, the ITR estimator from ROWL is Fisher consistent, and can provide
estimated ratio of clinical rewards for each treatment pair, which offers more information on the
estimated ITR. For implementation of ROWL, we develop an efficient difference of convex functions
algorithm (DCA) to solve the corresponding nonconvex problem.

The rest of this article is organized as follows. In Section 2, we briefly review ITR and the OWL
for ITR learning with binary and multiple treatments, and propose a new family of loss functions
and introduce our ROWL method. In Section 3, we present several nice statistical properties for
ROWL, including Fisher consistency and theoretical ratios of clinical rewards under some condi-
tions. We design the efficient DCA to solve the nonconvex optimization problem of ROWL in
Section 4. Simulated examples as well as an application to a real medical dataset are used to
demonstrate the effectiveness of ROWL in Section 5. Some discussions are given in Section 6. All
proofs are included in the Appendix.
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2. Methodology

We first review some basic concepts and notations of ITR estimation with binary and multiple
treatments, and introduce several classification-based ITR estimation approaches in Section 2.1. We
propose a new family of robust loss functions, and build the corresponding angle-based framework
for estimating robust ITR with multiple treatments in Section 2.2.

2.1. Individualized treatment rule and outcome weighted learning

We assume the training data T ¼ fðxi; ai; riÞ; i ¼ 1; . . . ; ng are from an underlying distribution

PðX;A;RÞ, where xi 2 X � R
d denotes the prognostic variables of a patient, the treatment ai 2 A ¼

f1; . . . ; kg is independent of predictor X, and ri 2 R is the corresponding clinical outcome of
a patient, namely, reward. Without loss of generality, we assume larger values of R are more
desirable. Thus, an ITR is a decision rule which maps from the space of prognostic variables X
into the space of treatments A. Among all possible rules, an optimal ITR is the one which maximizes
the expected reward among all possible rules. Our learning target is to estimate the optimal ITR.

We denote the distribution of ðX;A;RÞ by P and expectation with respect to P by E. For any rule
A ¼ DðXÞ, it means that the treatment is determined by rule D, and let PD be the conditional distribution
fX;A;RjA ¼ DðXÞg. The expectation with respect to P

D is ED. We assume that PrðA ¼ aÞ > 0 for any
a 2 f1; . . . ; kg. It can be verified that PD is absolutely continuous with respect to P, and the Radon-

Nikodym derivative dPD

dP ¼ 11ða¼DðXÞÞ
πa

, where 11ð�Þ is the indicator function, and πa ¼ PrðA ¼ aÞ. Then, the
expected reward under the given ITR D is

E
DðRÞ ¼

ð
RdPD ¼

ð
R
dPD

dP
dP ¼

ð
R
11ðA ¼ DðXÞÞ

πA
dP ¼ E

11ðA ¼ DðXÞÞ
πA

R

� �
:

Consequently, the optimal ITR D� can be defined as D� 2 arg sup
D

E
11ðA¼DðXÞÞ

πA
R

h i
. If D� is an

optimal ITR for any x 2 X , it indicates that the expected reward corresponding to D� is larger than
any other treatments in f1; . . . ; kgnD�ðxÞ. One can show that finding D� is equivalent to finding the
minimizer of the following problem,

E
11ðA�DðXÞÞ

πA
R

� �
¼

ð
R
11ðA�DðXÞÞ

πA
dP: (2:1)

The term in (2.1) can be regarded as a weighted misclassification error rate, which converts ITR
learning into a classification problem. Based on the observed dataset T , one can approximate the
weighted misclassification error via the empirical loss

1
n

Xn
i¼1

ri
πai

11ðai�DðxiÞÞ: (2:2)

The main goal is to find a minimizer D̂n of (2.2) with respect to D. However, because the involved
0–1 loss is discontinuous and nonsmooth, solving problem (2.2) directly can be NP-hard and
intractable. To that end, one can apply a surrogate loss function instead of the 0–1 loss. In particular,
when k ¼ 2 with encoded treatment labels A ¼ f�1;þ1g, for a single decision function f , DðxÞ can
be expressed as signðf ðxÞÞ to estimate ITR. Similar to the ordinary binary classifier with a general
surrogate loss ,ð�Þ, under the standard lossþ penalty regularization framework, the outcome
weighted learning (OWL) method for ITR estimation solves the following problem

min
f2F

1
n

Xn
i¼1

ri
πai

,ðai f ðxiÞÞ þ λJð f Þ; (2:3)
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where F is the candidate space for f , the first part of the objective function is the empirical loss term
on the training dataset, Jð f Þ is a penalty term on f to prevent overfitting, and λ > 0 is a tuning
parameter to control the balance of loss and penalty. For example, when the hinge loss is employed,
problem (2.3) becomes SVM-type OWL (Zhao et al. 2012).

Although the OWL framework (2.3) allows the use of different loss functions to obtain various
ITR estimators, there still exists several drawbacks in practice. First, the original OWL in Zhao et al.
(2012) requires all outcomes be nonnegative, and such a requirement can be too strict. Second, the
ITR estimation by OWL can be easily affected by a simple shift of outcomes, which makes the
corresponding ITR unstable. To overcome these drawbacks, Zhou et al. (2017) proposed a two-step
procedure, residual weight learning (RWL). Because clinical outcomes may not be comparable
among subjects with different clinical covariates, they first built a regression model between clinical
outcomes and clinical covariates. After removing common covariates effects, the residuals can be
more comparable. Second, they solve the residual weighted classification problem with a smoothed
ramp loss function. Due to the use of this special loss, Zhou et al. (2017) also showed that RWL can
achieve robustness to some extent.

So far, the aforementioned OWL and RWL methods only focus on ITR estimation with binary
treatments. When there are multiple treatments (k> 2), the corresponding ITR learning can be more
complicated. One direct approach is to use sequential binary methods, which may yield suboptimal
performance (Liu 2007; Zhang et al. 2019). Another approach is to build a k-category simultaneous
classifier using k functions with a sum-to-zero constraint (Lee et al. 2004; Liu and Yuan 2011; Zhang
and Liu 2013). Such a constraint can help to reduce the parameter space, and ensure good statistical
properties such as Fisher consistency. However, solving the corresponding optimization problem
needs more extra computational cost.

To further improve multicategory classifiers, Zhang and Liu (2014) recently proposed
a multicategory angle-based classification framework using k� 1 functions without the sum-to-
zero constraint, which can enjoy more efficient computation. In this paper, we focus on the angle-
based classification to handle ITR problems with multiple treatments, and propose a new family of
loss functions to achieve robust ITR estimation in Section 2.2.

2.2. Robust outcome weighted learning

The angle-based classification structure is well designed for multicategory classification problems.
Under the angle-based framework, we propose a new robust OWL (ROWL) method to handle ITR
problems with multiple treatments. First, we briefly introduce the angle-based structure. Define
a simplex W in R

k�1 with k-vertex vectors fW1; . . . ;Wkg standing for k class labels, such that

W j ¼
1ffiffiffiffiffiffi
k�1

p 1k�1; j ¼ 1

� 1þ
ffiffi
k

p

ðk�1Þ3=2
1k�1 þ

ffiffiffiffiffiffi
k

k�1

q
ej�1; 2 � j � k

8<
: ;

where 1k�1 2 R
k�1 is a vector of 1’s, and ej 2 R

k�1 is a vector of 0’s except the jth element being 1.

Consider a ðk� 1Þ-component decision function f ¼ ðf1; . . . ; fk�1ÞT 2 R
k�1, which maps x from

the original space into R
k�1. The vector f can introduce k angles fffð f ðxÞ;W jÞ; j ¼ 1; . . . ; kg, with

respect to k vertices. The prediction rule for newly observed data x is
ŶðxÞ ¼ arg minjffð f ðxÞ;W jÞ ¼ arg maxjh f ðxÞ;W ji. Therefore, for an arbitrary binary surrogate
loss function ,ð�Þ, Zhang and Liu (2014) proposed the large margin angle-based classification
with the following optimization problem,

min
f2F

1
n

Xn
i¼1

,ðh f ðxiÞ;WaiiÞ þ λJð f Þ: (2:4)
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Without the redundant sum-to-zero constraint which is imposed on usual simultaneous classifiers,
the angle-based classifier can achieve a faster computational speed, and better classification
performance.

Among various large-margin classifiers, there are two main groups of methods: hard and soft
classifiers (Liu et al. (2011)). Determined by its loss function, a hard classifier such as the SVM only
focuses on estimating the decision boundary, while a soft classifier such as logistic regression can
estimate the class conditional probability and the decision boundary simultaneously. The perfor-
mances of soft and hard classifiers depend on the particular classification problems and the primary
learning goal. The large-margin unified machine (LUM) loss proposed by Liu et al. (2011) covers
a broad range of margin-based classifiers, including both hard and soft ones.

To generalize binary OWL methods to multicategory treatment scenarios, a natural direction is to
connect multicategory angle-based classification methods with the OWL strategy. For instance,
Zhang et al. (2019) proposed a multicategory outcome weighted margin-based learning method.
Using LUM loss functions, they investigated the effects of soft and hard classifiers for ITR
estimation.

Despite developments in angle-based classifiers, the corresponding classification-based ITRs
can possibly suffer from the effect of potential outliers, which may result in unstable perfor-
mance. In the classification literature, the choice of loss functions has an important impact on the
performance of classifiers. Thus, finding a proper robust loss function is necessary and mean-
ingful, and it is the key to build robust classifiers. In this paper, we propose a new family of
robust loss functions as follows,

VðuÞ ¼ 1þ 1
ρ ½1� eρu�; if u< 0

e�u; if u 	 0
;

�
(2:5)

where ρ> 0 is the scale parameter to control the height of VðuÞ. The loss VðuÞ is smooth and upper
bounded by 1þ 1

ρ . It is a hybrid loss with two separate parts. The positive part is the exponential loss

which is used in Adaboost. The negative part is the truncated exponential loss, which targets on
controlling the influences of outliers. Such a loss function with a proper ρ can yield a robust and soft
classifier.

The left panel of Figure 1 displays the plots of Vð�Þ with several settings of ρ. We can see that the
robust loss Vð�Þ forms a very rich family. Note that ρ plays an important role for Vð�Þ, and it also
determines the decaying speed and the height of the left part. When ρ increases, the left part of Vð�Þ
becomes more flat. In particular, we investigate several interesting settings of ρ as follows, which can
connect some well-known loss functions and classifiers.

505-
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Figure 1. Plots of proposed loss V(u) with ρ = 0.5, 1, 2 and ρ ! 0þ1 (left), and plots of proposed loss and the truncated hinge
loss (right).
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If ρ ! 0þ, the limit of VðuÞ is 1� u for u< 0, and the positive part remains the same as before. It
has an interesting connection with the hinge loss and exponential loss. As a consequence, the
corresponding classifier can be viewed as a hybrid of the standard SVM and Adaboost, which is
a special example of the LUM family (Liu et al. 2011). Such a smooth limiting loss results in a soft
classifier.

If ρ ! þ1, the limit of VðuÞ is minðe�u; 1Þ, which can be regarded as the truncated exponential
loss at the origin. Such a truncated loss was also studied by Wu and Liu (2007), and it can yield
robust performance. The nonsmoothness of the limiting function creates the corresponding hard
classifier.

If ρ 2 ð0;þ1Þ, the robust loss Vð�Þ is closely related to the truncated hinge loss proposed by
Wu and Liu (2007). To illustrate this, we show the figures of Vð�Þ with ρ ¼ 1 and truncated hinge
loss at � 1 on the right panel of Figure 1. Note that Vð�Þ can be viewed as an envelope of the
truncated hinge loss, and it is upper bounded by the truncated hinge loss at � 1

ρ . Therefore,

similar to the truncated hinge loss, the proposed loss Vð�Þ is robust to outliers as well. The robust
smooth loss function Vð�Þ leads to a soft classifier, while the nonsmooth truncated hinge loss only
delivers a hard classifier.

Based on the above discussions, we can conclude that among different values of the scale
parameter ρ, the proposed robust loss function VðuÞ ranges from convex to nonconvex, and covers
a spectrum of classifiers from soft to hard ones.

Besides robustness, another challenging problem is how to deal with observations with negative
rewards. When there exists negative rewards, the resulting object function of the original OWL
becomes nonconvex. In order to keep the objective function convex, Zhao et al. (2012) recom-
mended to shift all rewards by a constant to ensure positiveness of all weights. Zhou et al. (2017)
noted that such a constant shift for the rewards may yield suboptimal estimators, and proposed the
nonconvex RWL method. To better handle the data with negative rewards, Chen et al. (2018) and
Zhang et al. (2019) made a distinction between the positive and negative rewards, and proposed
a new inverted loss function for negative rewards. Depending on the sign of observed clinical
outcome value r, the modified loss function for , is

,rðuÞ ¼
,ðuÞ if r 	 0;
,ð�uÞ if r < 0 ðthe inverted lossÞ;

�

which can be simplified as ,rðuÞ ¼ ,ðsign ðrÞ � uÞ. The inverted loss preserves the convexity of
optimization, which efficiently alleviates the impact of nonnegative rewards.

Under the angle-based framework, we utilize the modified robust loss to estimate robust ITR with
multiple treatments, and propose the ROWL method with the optimization problem as follows,

min
f2F

1
n

Xn
i¼1

jrij
πai

VðsignðriÞ � h f ðxiÞ;WaiiÞ þ λJð f Þ: (2:6)

The unified ROWL framework can deal with both binary and multicategory treatment problems,
and estimate robust ITR with both positive and negative rewards. ROWL with ρ > 0 is a soft
classifier-based ITR estimation technique. The objective function of ROWL with ρ> 0 is nonconvex,
thus it is more complicated and challenging to implement than the ordinary convex OWL.

Similar to RWL in Zhou et al. (2017), we can also extend residual weighting techniques to
ROWL. First, we estimate the main effect model between clinical outcomes and prognostic
covariates, and assume the estimated regression model be ~r ¼ ĝðxÞ. Second, we obtain the fitted
residuals fr̂i ¼ ri � ĝðxiÞ; i ¼ 1; . . . ; ng as new “outcomes”, and use them to replace the ri in the
ROWL framework (2.6). Thus, this residual-based ROWL generalizes the original binary RWL in
Zhou et al. (2017) to handle multiple treatment problems.
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3. Statistical properties

We explore some theoretical properties of the proposed ROWL, including Fisher consistency in
Section 3.1, and estimation of the rewards’ ratio for the resulting ITR in Section 3.2.

3.1. Fisher consistency

Fisher consistency is a desirable theoretical property of a classification loss function (Lin 2002; Liu
2007), and is also known as “classification calibration” (Bartlett et al. 2006). For angle-based
classification ITR learning, Fisher consistency of multicategory cases is more involved than that of
binary settings (Zhang et al. 2019). Here, we consider a general loss ,ð�Þ, which includes Vð�Þ as
a special case. Based on outcome-weighted and angle-based ITR learning, one can define the
conditional expected loss for a certain x 2 X as follows,

SðxÞ ¼ E
jRj
πA

,ðsignðRÞ � h f ðXÞ;WAiÞjX ¼ x

� �
; (3:1)

where the expectation is taken with respect to the marginal distribution of ðR;AÞ for a given x. Set
the theoretical minimizer of SðxÞ as f �ðxÞ ¼ arg minf SðxÞ. Note that f � depends on the loss function
,ð�Þ. For classification-based ITR learning, it is Fisher consistent when the predicted treatment based
on f � leads to the largest expected outcome, i.e. arg maxah f �ðxÞ;Wai ¼ arg maxjRjðxÞ, where

RjðxÞ ¼
ð
ðRjX ¼ x;A ¼ jÞdP is the expected reward for the given treatment j at a fixed x.

Define the positive part of a conditional reward to be Rþ
j ðxÞ ¼

ð
ðRjX ¼ x;A ¼ jÞ11ðR> 0ÞdP, and

the negative part to be R�
j ðxÞ ¼

ð
ðRjX ¼ x;A ¼ jÞ11ðR< 0ÞdP. One can check that

RjðxÞ ¼ Rþ
j ðxÞ þ R�

j ðxÞ. For treatment j on patients with the predictor vector x, correspondingly,

Rþ
j ðxÞ and R�

j ðxÞ can be used to measure the positive and adverse effects. The next assumption

requires that Rþ
j ðxÞ and R�

j ðxÞ of the best treatment for a given patient should not be small.

Assumption 1. For a patient with the predictor vector x, denote the best treatment by j (i.e.,
RjðxÞ > RiðxÞ for any i�j). The reward of the best treatment should be positive, i.e., RjðxÞ> 0.
Moreover, Rþj ðxÞ 	 Rþi ðxÞ and R�j ðxÞ 	 R�i ðxÞ for any i�j, and these two equalities cannot hold
simultaneously.

Assumption 1 is desirable and reasonable, and often necessary for practical problems. In parti-
cular, for any patient, we should expect that the best treatment does not have a large probability of
adverse effects, and its adverse effects are relatively mild. We also hope that the best treatment has
a high probability of positive effects, and its positive effects are relatively strong.

For ITR learning with binary treatments, Zhao et al. (2012) showed the SVM-type OWL enjoyed
Fisher consistency for all non-negative rewards. For the multi-treatment ITR estimation with
arbitrary rewards, Zhang et al. (2019) addressed a sufficient condition to achieve Fisher consistency,
which required that the employed loss be convex and strictly decreasing. Our focus here is on the
new robust nonconvex loss function Vð�Þ, which has not yet been considered by previous results.

For finding optimal ITR with multiple treatments, the following theorem shows another sufficient
condition to achieve Fisher consistency.

Theorem 1. For ITR learning using (3.1), and suppose Assumption 1 is valid, then the method is
Fisher consistent if ,ð�Þ is differentiable with ,0ðuÞ< 0 for all u.
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Compared with the conditions of Theorem 5 in Zhang et al. (2019), Theorem 1 emphasizes on
smoothness instead of convexity for loss function. Since the new robust loss Vð�Þ with ρ 2 ½0;þ1Þ
satisfy the conditions in Theorem 1, we can conclude that they are always Fisher consistent.
However, the special case with ρ ! þ1 and VðuÞ ¼ minðe�u; 1Þ may be an exception of
Theorem 1, due to its nondifferentiability. The following theorem shows the Fisher consistency for
this special loss.

Theorem 2. For ITR learning using (3.1) with a specified loss ,ðuÞ ¼ minðe�u; 1Þ, and suppose
Assumption 1 is valid, then the corresponding method is Fisher consistent.

Therefore, by Theorem 1 and 2, we can claim that for the loss function Vð�Þ with ρ 2 ½0;1�, the
corresponding ROWLmethod enjoys Fisher consistency, even there exists instances with negative rewards.

3.2. Estimation for ratios of rewards

In standard margin-based classification, besides label prediction, the conditional probability of
belonging to each class can be very meaningful and informative as well. Thus, the class condi-
tional probability estimation is an important problem in classification (Wang et al. 2008; Zhang
and Liu 2013, 2014). In particular, for soft classification-based ITR learning, the estimated ratio
of clinical rewards for each treatment pair is needed, rather than the class conditional probability.
Such information may help doctors to further compare treatments for deciding prescriptions
(Zhang et al. 2019). Here, we focus on the ratios of expected rewards for all treatment pairs.

Consider the angle-based ITR learning with a general smooth loss ,ð�Þ in (3.1). The following
theorem demonstrates theoretical estimation for the ratio of expected rewards’ pair under certain
conditions.

Theorem 3 For an arbitrary differentiable loss function ,ð�Þ with ,0ðuÞ< 0, if all k random rewards
satisfy that R 	 0, then for any i�j 2 f1; . . . ; kg, we have

ci; j ¼
RiðxÞ
RjðxÞ

¼
,0ðh f �ðxÞ;W jiÞ
,0ðh f �ðxÞ;W iiÞ

:

Note that Theorem 3 covers Theorem 6 in Zhang et al. (2019) as a special example, and does not
require the convexity of loss function ,ð�Þ. Furthermore, we can apply Theorem 3 for the robust loss

Vð�Þ. For the ROWL using (2.6), once f̂ ðxÞ is obtained for a new patient with clinical covariates x, we

can estimate the ratio of rewards between ith and jth treatments by V 0ðh f̂ ðxÞ;W jiÞ
V 0ðh f̂ ðxÞ;WiiÞ

.

4. Computational algorithms

When utilizing the unbounded loss VðuÞ with ρ ¼ 0 (denoted as V0ðuÞ), consequently, problem (2.6)
is convex if V0ðuÞ and Jðf Þ are convex. Then it can then be solved by classical optimization methods,
such as those in Boyd and Vandenberghe (2004).

Here, we focus on developing optimization algorithms for the proposed ROWL (2.6) with
nonconvex loss VðuÞðρ> 0Þ, which requires special nonconvex minimization techniques. Note
that VðuÞ can be decomposed as a difference of two convex functions, VðuÞ ¼ SðuÞ � TðuÞ,
where

SðuÞ ¼ 1� u; if u< 0
e�u; if u 	 0

�
and TðuÞ ¼

1
ρ ½eρu � 1� � u; if u< 0
0; if u 	 0:

�
:

Figure 2 illustrates the decomposition for VðuÞ with ρ ¼ 1. Utilizing the fact V ¼ S� T, we design
an efficient DCA to handle ROWL (An and Tao 1997; Liu et al. 2005; Wu and Liu 2007). DCA solves
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the nonconvex minimization problem via minimizing a sequence of convex subproblems, and its
procedure can be summarized in Algorithm 1 as follows.

Algorithm 1. [The DCA procedure for minimizing Q(Θ) ¼ Qvex(Θ)þ Qcav(Θ)]
1. Initialize Θ0.

2. Repeat Θtþ1 ¼ arg minΘQvexðΘÞ þ @QcavðΘÞ
@Θ

���
Θ¼Θt

;Θ

� �
until convergence of Θt .

We show the technical details of DCA for the linear case in Section 4.1, and then extend them to
the nonlinear setting through kernel mapping in Section 4.2.

4.1. Linear learning

Let fqðxÞ ¼ βTq xi þ bqðq ¼ 1; . . . ; k� 1Þ, where βq 2 R
d and bq are parameters of interest. We

employ L2 penalty Jð f Þ ¼ 1
2

Pk�1
q¼1 β

T
q βq to prevent overfitting. For simplicity of the notations,

denote the vector of parameters as Θ ¼ ðb1; . . . ; bk�1; β
T
1 ; . . . ; β

T
k�1Þ

T . Based on the decomposi-
tion V ¼ S� T, the linear learning for the ROWL method solves the following optimization
problem,

min
Θ

QðΘÞ ¼ λ

2

Xk�1

q¼1

βTq βq þ
1
n

Xn
i¼1

jrij
πai

SðsignðriÞ � h f ðxiÞ;WaiiÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
QvexðΘÞ

þ � 1
n

Xn
i¼1

jrij
πai

TðsignðriÞ � h f ðxiÞ;WaiiÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
QcavðΘÞ

;

(4:1)
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Figure 2. Plots of the functions S(u); T(u), and V(u) with V ¼ S� T and ρ ¼ 1.
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where the defined QvexðΘÞ and QcavðΘÞ represent the convex and concave parts respectively. Then at
the ðt þ 1Þth iteration, DCA solves the following optimization problem,

min
Θ

QvexðΘÞ þ
Pk�1

q¼1

@QcavðΘÞ
@βq

���
Θ¼Θt

; βq

� �
þ

Pk�1

q¼1
bq

@QcavðΘÞ
@bq

���
Θ¼Θt

¼ λ
2

Pk�1

q¼1
βTq βq þ 1

n

Pn
i¼1

jrij
πai

SðsignðriÞ � h f ðxiÞ;WaiiÞ

� 1
n

Pn
i¼1

jrij
πai

T0ðsignðriÞ � h f ðtÞðxiÞ;WaiiÞsignðriÞ � h f ðxiÞ;Waii
n o

;

(4:2)

where f ðtÞq ðxÞ ¼ xTβðtÞq þ bðtÞq for q ¼ 1; . . . ; k� 1, and T0ðuÞ is the first order derivatives of TðuÞ.
The unconstrained subproblem (4.2) can be solved by the standard nonlinear convex minimiza-

tion techniques. Here, we turn to a typical quasi–Newton algorithm, limited-memory Broyden-
Fletcher-Goldfarb-Shanno (Nocedal 1980, L-BFGS) method. Since L-BFGS method can handle
smooth objective functions efficiently, it works well in practice. For more details on L-BFGS, one
can see Nocedal and Wright (2006).

4.2. Kernel learning

The kernel function Kð�; �Þ is a positive-definite function mapping fromX 
 X to R . When linear kernel
Kðx; zÞ ¼ xTz is applied, the corresponding classifier reduces to the linear case in Section 4.1. Various
kernel functions can help to achieve complicated nonlinear decision boundaries. In the literature, the

Gaussian kernel with a scale parameter σ > 0, i.e. Kσðx; zÞ ¼ exp �kx�zk2
2σ2


 �
, is commonly used.

According to the representer theorem (Kimeldorf and Wahba 1971; Wahba 1990), we assume that
fqðxjÞ ¼

Pn
i¼1 vi;qKðxi; xjÞ þ bq ¼ vTqK j þ bqðq ¼ 1; . . . ; k� 1Þ, where K is an n
 n kernel matrix

for all training data with the ði; jÞ-th element being Kðxi; xjÞ, K j is the jth column of K, and vq 2 R
n

is the vector of coefficients. Denote all interested parameters as Θ ¼ ðb1; . . . ; bk�1; vT1 ; . . . ; v
T
k�1Þ

T .
Then the optimization problem of kernel ROWL can be expressed as

min
Θ

QðΘÞ ¼ λ

2

Xk�1

q¼1

vTqKvq þ
1
n

Xn
i¼1

jrij
πai

SðsignðriÞ � h f ðxiÞ;WaiiÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
QvexðΘÞ

þ � 1
n

Xn
i¼1

jrij
πai

Tðh f ðxiÞ;WaiiÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
QcavðΘÞ

:

(4:3)

Following a similar procedure in Section 4.1, the convex subproblem of (10) at the ðt þ 1Þth iteration
is given by

min
Θ

QvexðΘÞ þ
Xk�1

q¼1

@QcavðΘÞ
@vq

����
Q¼Qt

; vq

* +
þ
Xk�1

q¼1

bq
@QcavðΘÞ

@bq

����
Θ¼Θt

¼ λ

2

Xk�1

q¼1

vTq Kvq þ
1
n

Xn
i¼1

jrij
πai

SðsignðriÞ � h f ðxiÞ;WaiiÞ

� 1
n

Xn
i¼1

jrij
πai

T0ðsignðriÞ � h f ðtÞðxiÞ;WaiiÞsignðriÞ � h f ðxiÞ;Waii
� �

;

(11)
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where f ðtÞq ðxÞ ¼
Pn

i¼1 v
ðtÞ
i;qKðxi; xÞ þ bðtÞq for q ¼ 1; . . . ; k� 1. One can also employ L-BFGS algorithm

to solve problem (11).

5. Numerical results

In this section, we conduct several simulation examples for both linear and nonlinear ITR bound-
aries to assess the performance of the proposed ROWL method. The examples with binary and
multiple treatments, and with linear and nonlinear boundaries are carried out. We also apply ROWL
method to an AIDS medical dataset to study its performance in practice. For comparisons, we
implement several typical methods, the regression-based ITR learning (,1-PLS) in Qian and Murphy
(2011), the standard SVM-type OWL (OWL0) in Zhao et al. (2012) with extensions of one-versus-
rest (OVR_OWL0) and one-versus-one (OVO_OWL0) for ITR problems with multiple treatments,
the binary residual weighted learning (RWL) in Zhou et al. (2017) and its extensions for multi-
category treatment settings (OVR_RWL and OVR_RWL), the LUM loss based ITR learning
(LUM_MOML) proposed by Zhang et al. (2019), and the proposed ROWL method and its residual-
based extension. We denote the original and residual-based ROWL methods by ROWL_0 and
ROWL_1, respectively. For illustrations, we list the properties of these methods in terms of various
perspectives in Table 1.

For simulated examples, we generate three independent datasets, the training, tuning and testing
sets, and set the size of training and tuning sets be the same, and the size of testing set be 10 times as
big as the training set. The training set is used to fit the model, the tuning set is used to find the best
tuning parameters, and the test set is used to evaluate the fitted model performance. Let the scale
parameter ρ of the robust loss Vð�Þ vary in f0; 10�3; 10�2; . . . ; 104g, the regularization parameter λ
vary in f10�3; 10�2; . . . ; 103g for tuning, and we choose the best parameter through a grid search.

The evaluation value function is defined as P�
n½11ðA ¼ DðXÞÞR=PrðAÞ�=P�

n½1ðA ¼ DðXÞÞ=PrðAÞ�,
where P�

n denotes the empirical average of the testing dataset and PrðAÞ is the probability of being
assigned to the treatment A (Zhao et al. (2012)). The value function is regarded as a more
comprehensive measure the difference between the estimated ITR and the true optimal ITR. We
also record the misclassification errors to show the performances of all methods in terms of
treatment assignments. We report the averages and standard deviations of these two measurements
over 100 repetitions for all conducted settings.

5.1. Linear boundary examples

Example 1. We generate a simulated dataset in the following manner. First, we generate a 10-
dimensional covariate vector X ¼ ðX1; X2; . . . ; X10Þ, consisting of independent U½�1; 1�
variables. Second, the treatment A is drawn from f�1;þ1g independently of X with equal
probabilities. The outcome R is drawn from a normal distribution with mean μ ¼ Q0ðXÞ þ δ0ðXÞ �
A and standard deviation 1, where Q0 is the main effect between outcomes and clinical
covariates, and δ0ðXÞ � A is the interaction effect between the treatment and clinical covariates.
In fact, the treatment assignment rule is signðδ0ð�ÞÞ. To obtain linear decision boundaries, we

Table 1. Summary of the compared methods in numerical experiments.

methods loss binary multicategory angle-based robustness

,1-PLS least square ✓ ✓ 
 

OWL_0 hinge loss ✓ OVO/OVR extensions 
 

RWL smoothed ramp ✓ OVO/OVR extensions 
 ✓
LUM_MOML LUM loss ✓ ✓ ✓ 

Proposed ROWL robust loss ✓ ✓ ✓ 
; If ρ ! 0p

; If ρ�0

�
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consider the linear scenario with Q0ðxÞ ¼ 1þ x1 þ x2 þ 2x3 þ 0:5x4 and δ0ðxÞ ¼ 1:8
ð0:3� x1 � x2Þ, and μi ¼ Q0ðxiÞ þ δ0ðxiÞ � ai for instance ðxi; aiÞ.

To show the performance against possible outliers of all methods, we contaminate the outcomes
in the training and tuning sets with a certain proportion, and denote the contamination percentage
as perc. We contaminate the dataset by randomly selecting perc instances as outliers, and change the
distributions of their rewards. For the outlier instance ðx; a; rÞ, we change the mean of outcome
distribution as ~μ ¼ Q0ðxÞ � δ0ðxÞ � a, and draw a new ~r from Nð~μ; 1Þ, then the outcome contami-
nated point ðx; a;~rÞ is obtained. Denote the size of training set as n.

This simulated example is a typical ITR problem with binary treatments. Consider different
scenarios with n 2 f100; 300; 1000g and perc 2 f0%ðno contaminationÞ; 5%; 10%g. We report the
results of sample means and standard deviations of the estimated value functions and the misclassi-
fication errors over 100 replications in Table 2. The standard deviations of these two measurements
are presented in parenthesis, and the best performance for each scenario is in bold.

Example 2. We define three points ðc1; c2; c3Þ of equal distances in R
10 to represent the cluster

centroids of the underlying true optimal treatments, where c1 ¼ 5 � ð
ffiffi
2

p

2 ;
ffiffi
2

p

2 ; 08ÞT; c2 ¼ 5 �
ð
ffiffi
3

p
�1

2
ffiffi
2

p ;�
ffiffi
3

p
þ1

2
ffiffi
2

p ; 08ÞT and c3 ¼ 5 � ð�
ffiffi
3

p
þ1

2
ffiffi
2

p ;
ffiffi
3

p
�1

2
ffiffi
2

p ; 08ÞT. For each centroid cj; j ¼ 1; 2; 3, we generate

its corresponding covariate vector xi from a multivariate normal distribution Nðcj; I10Þ, where I10
represents a 10-dimensional identity matrix. The actually assigned treatment ai follows a discrete
uniform distribution Uf1; 2; 3g. Based on the value of instance xi and ai, the outcome ri is generated
from a normal distribution Nðμðxi; ai; diÞ; 1Þ, where the mean function is
μðxi; ai; tiÞ ¼ 1þ 1

10 ð
P5

j¼1 x
2
i; j �

P10
j¼6 x

2
i; jÞ þ 3 � 1ðai ¼ diÞ, and di represents the true underlying

optimal treatment for xi, which is determined by the cluster centroid. We also select perc instances
as outliers, by changing the reward mean as ~μi ¼ 1þ 1

10 ð
P5

j¼1 x
2
i; j �

P10
j¼6 x

2
i; jÞ � 3 � 1ðai ¼ diÞ for

the chosen contaminated instance ðxi; ai; riÞ, and sampling a new ~ri,Nð~μi; 1Þ instead of ri as an
outlier. The training set is of size n.

Table 2. Means and standard deviations (in parenthesis) of empirical value functions and misclassification errors evaluated on
independent test set for the linear binary Example 1.

Methods L1-PLS OWL0 RWL LUM_MOML ROWL_0 ROWL_1

n perc Value Misc Value Misc Value Misc Value Misc Value Misc Value Misc

100 0% 2.987 0.017 2.875 0.076 2.877 0.086 2.865 0.087 2.874 0.085 2.957 0.047
(0.011) (0.001) (0.030) (0.010) (0.027) (0.009) (0.028) (0.010) (0.032) (0.009) (0.013) (0.005)

5% 2.399 0.021 2.221 0.095 2.273 0.093 2.247 0.092 2.232 0.102 2.366 0.056
(0.010) (0.002) (0.043) (0.013) (0.030) (0.010) (0.036) (0.011) (0.044) (0.012) (0.013) (0.005)

10% 3.157 0.033 2.966 0.110 3.030 0.099 2.929 0.121 3.000 0.106 3.062 0.080
(0.015) (0.004) (0.050) (0.014) (0.035) (0.011) (0.052) (0.015) (0.054) (0.013) (0.032) (0.010)

300 0% 2.916 0.008 2.900 0.035 2.888 0.051 2.892 0.042 2.892 0.044 2.911 0.019
(0.006) (0.001) (0.007) (0.003) (0.007) (0.004) (0.007) (0.004) (0.008) (0.004) (0.006) (0.002)

5% 2.514 0.009 2.484 0.040 2.475 0.058 2.479 0.047 2.473 0.055 2.504 0.027
(0.006) (0.001) (0.015) (0.005) (0.009) (0.005) (0.015) (0.005) (0.009) (0.006) (0.007) (0.003)

10% 2.741 0.013 2.694 0.051 2.691 0.068 2.677 0.064 2.665 0.072 2.713 0.043
(0.006) (0.001) (0.019) (0.007) (0.009) (0.005) (0.019) (0.007) (0.020) (0.007) (0.010) (0.005)

1000 0% 2.664 0.004 2.659 0.024 2.647 0.046 2.658 0.026 2.656 0.031 2.661 0.014
(0.003) (0.000) (0.003) (0.001) (0.003) (0.002) (0.003) (0.002) (0.003) (0.002) (0.003) (0.002)

5% 2.573 0.005 2.566 0.027 2.552 0.050 2.565 0.028 2.561 0.034 2.570 0.016
(0.004) (0.000) (0.004) (0.002) (0.004) (0.002) (0.004) (0.002) (0.004) (0.002) (0.004) (0.002)

10% 3.115 0.007 3.104 0.029 3.091 0.051 3.104 0.031 3.102 0.033 3.111 0.017
(0.003) (0.001) (0.004) (0.003) (0.004) (0.003) (0.004) (0.002) (0.004) (0.003) (0.003) (0.002)
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To handle such an ITR example with 3 treatments, we implement two binary sequential schemes,
i.e. one-versus-rest and one-versus-one, for the standard SVM-type OWL and binary RWL. We
conduct several different scenarios with n 2 f300; 1000g and perc 2 f0%; 5%; 10%g. The other
settings are the same as Example 1. We record the estimated value functions and misclassification
errors, and summarize the sample means and standard deviations over 100 replications in Table 3.

From Table 2, we find that because of correct model specification, the ,1-PLS method performs
competitively compared with other methods. The ROWL methods give reasonable performance.
When the sample size is large (n ¼ 300; 1000), the residual-based ROWL performs very similarly to
,1-PLS in terms of value functions. From Table 3, we can conclude that when n is smaller (n ¼ 300),
the residual-based method ROWL_1 outperforms other methods in terms of higher value functions
and smaller misclassification errors among all settings. However, when the sample size increases, the
RWL extensions perform better than our ROWL methods. From Tables 2 and 3, one can see that as
the sample size increases, misclassification errors become smaller as expected in most settings.

5.2. Nonlinear boundary examples

Example 3. All the settings are the same as Example 1 except the specific setting of mean
functions of outcomes. Here, we consider the nonlinear dependence with the explicit form
μðx; aÞ ¼ Q0ðxÞ þ δ0ðxÞ � a, where Q0ðxÞ ¼ 1þ x21 þ x22 þ x23 þ 0:5x24 and δ0ðxÞ ¼ 3:8ð0:8� x21 �
x22Þ for x 2 R

10. The contaminated mean function is ~μðx; aÞ ¼ Q0ðxÞ � δ0ðxÞ � a. This is a circle
decision boundary example, where the patients inside the ring are assigned to one treat-
ment, and another if outside the ring.

To achieve nonlinear learning, we adopt the Gaussian kernel Kðu1; u2Þ ¼ exp �ku1�u2k22
2σ2


 �
. For

simplicity, we use the median of the between-class pairwise Euclidean distances of training inputs as
estimated σ̂ to avoid an extensive grid search of the tuning parameter σ (Brown et al. 2000; Liu and
Yuan 2011; Wu and Liu 2007). The training dataset is of size n. We implement kernel learning for all
compared methods in Example 1, and conduct several different scenarios with n 2 f100; 300g and
perc 2 f0%; 5%; 10%g. The corresponding results are summarized in Table 4.

Table 3. Means and standard deviations (in parenthesis) of empirical value functions and misclassification errors evaluated on an
independent test for the linear Example 2 with k ¼ 3.

Methods n ¼ 300 n ¼ 1000

perc = 0% perc = 5% perc = 10% perc = 0% perc = 5% perc = 10%

Value Misc Value Misc Value Misc Value Misc Value Misc Value Misc

L1-PLS 6.049 0.149 6.179 0.107 5.822 0.230 6.133 0.123 6.289 0.072 6.137 0.121
(0.081) (0.027) (0.071) (0.023) (0.090) (0.030) (0.074) (0.025) (0.060) (0.020) (0.076) (0.025)

OVR_OWL0 5.734 0.255 5.791 0.237 5.613 0.296 6.275 0.059 6.244 0.057 6.167 0.115
(0.045) (0.015) (0.046) (0.015) (0.044) (0.014) (0.023) (0.008) (0.021) (0.007) (0.057) (0.019)

OVO_OWL0 6.009 0.162 5.866 0.262 5.716 0.262 6.290 0.036 6.281 0.057 6.262 0.081
(0.045) (0.015) (0.053) (0.018) (0.054) (0.018) (0.021) (0.007) (0.026) (0.008) (0.031) (0.010)

OVR_RWL 6.290 0.069 6.281 0.072 6.178 0.108 6.303 0.067 6.293 0.071 6.409 0.030
(0.042) (0.014) (0.041) (0.013) (0.055) (0.018) (0.038) (0.012) (0.037) (0.012) (0.026) (0.009)

OVO_RWL 6.185 0.105 6.189 0.102 6.168 0.111 6.384 0.040 6.320 0.062 6.289 0.071
(0.052) (0.017) (0.048) (0.015) (0.056) (0.019) (0.033) (0.011) (0.039) (0.013) (0.042) (0.014)

LUM_MOML 5.770 0.240 5.603 0.298 5.511 0.331 6.103 0.135 6.095 0.137 5.969 0.178
(0.052) (0.017) (0.067) (0.022) (0.057) (0.019) (0.051) (0.017) (0.047) (0.016) (0.054) (0.018)

ROWL0 5.767 0.243 5.613 0.297 5.640 0.288 6.175 0.109 6.203 0.101 6.117 0.128
(0.085) (0.028) (0.090) (0.030) (0.085) (0.028) (0.063) (0.021) (0.060) (0.020) (0.065) (0.021)

ROWL1 6.322 0.058 6.320 0.061 6.201 0.102 6.312 0.063 6.287 0.072 6.385 0.039
(0.043) (0.014) (0.042) (0.014) (0.056) (0.018) (0.040) (0.013) (0.047) (0.015) (0.033) (0.011)
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Example 4. This is a four class example with nonlinear decision boundaries. The covariate
vector is X ¼ ðX1; . . . ; X10Þ 2 R

10 with each component following the uniform distribution
U½�1; 1�. The optimal treatment di is determined by the sign of two underlying nonlinear
functions g1ðxÞ ¼ x21 þ x22 þ expð0:5x3Þ and g2ðxÞ ¼ x24 � x35 � x6. In particular, we set
di ¼ dðxiÞ ¼ 1þ ½signðg1ðxiÞ �m1Þ�þ þ 2½signðg2ðxiÞ �m2Þ�þ, where ½u�þ ¼ maxðu; 0Þ, and m1

and m2 are the medians of g1 and g2, respectively. The actually assigned treatment follows
a discrete uniform distribution Uf1; 2; 3; 4g. The actual outcome ri is drawn from a normal
distribution Nðμðxi; ai; diÞ; 1Þ, where μðxi; ai; diÞ ¼ ð

P5
j¼1 xi; j �

P10
j¼6 xi; j � 1Þ þ 5 � 1ðai ¼ diÞ.

However, the outcome of contaminated sample is also from a normal distribution
Nð~μð�Þ; 1Þ, where ~μðxi; ai; diÞ ¼ ð

P5
j¼1 xi; j �

P10
j¼6 xi; j � 1Þ � 5 � 1ðai ¼ diÞ.

The proportion of the contaminated samples perc ranges in f0%; 5%; 10%g, and the size of
training set varies in n 2 f300; 1000g. We employ the Gaussian kernel the same as in Example 3, and
implement kernel learning for all compared methods in Example 2. The other settings are the same
as Example 2, and we summarize the corresponding results in Table 5.

From Tables 4 and 5, similar to the linear examples, the results show that residual-based
ROWL_1 enjoys better performance than other methods, and its robustness against outliers is
very competitive. Increasing the sample size can make ROWL learning more accurate with larger
estimated value functions and smaller misclassification errors. Especially for Example 4, when the
percentage of contamination gets higher, the evaluated value functions for most methods become
smaller, and the misclassification errors get larger.

5.3. Real data application

To show the performance of ROWL and its residual weighted extensions in practice, we apply them
to a real medical data from AIDS Clinical Trials Group Protocol 175, which consists of 2139 subjects
infected with the human immunodeficiency virus. This dataset was previously studied by Fan et al.
(2017). There are four different treatments groups: zidovudine (ZDV) monotherapy, ZDV plus
didanosine (ddI), ZDV plus zalcitabine (Zal) and ddI monotherapy, denoted as A ¼ 1; 2; 3; 4,
respectively. The sizes of these 4 treatment groups are 532; 522; 524; 561, respectively. Therefore, it
is a balanced ITR learning problem with 4 treatments.

The difference between early stage CD4 + T (cells/mm3) cell amount and the baseline CD4 + T
prior to trial can be set as the clinical outcome R. We choose 12 related covariates as prognostic

Table 4. Means and standard deviations (in parenthesis) of empirical value functions and misclassification errors evaluated on an
independent test set for the binary nonlinear Example 3.

Methods n ¼ 100 n ¼ 300

perc = 0% perc = 5% perc = 10% perc = 0% perc = 5% perc = 10%

Value Misc Value Misc Value Misc Value Misc Value Misc Value Misc

L1-PLS 2.673 0.357 3.012 0.356 2.834 0.358 2.572 0.358 2.815 0.352 2.616 0.352
(0.028) (0.007) (0.030) (0.006) (0.037) (0.008) (0.018) (0.003) (0.027) (0.005) (0.022) (0.004)

OWL0 3.191 0.256 3.390 0.283 3.186 0.291 3.781 0.121 3.853 0.157 3.581 0.167
(0.057) (0.011) (0.057) (0.011) (0.066) (0.013) (0.038) (0.008) (0.043) (0.009) (0.054) (0.011)

RWL 2.640 0.353 2.991 0.353 2.779 0.358 2.660 0.343 2.866 0.343 2.700 0.336
(0.024) (0.004) (0.025) (0.004) (0.026) (0.006) (0.033) (0.006) (0.032) (0.006) (0.038) (0.008)

LUM_MOML 3.086 0.274 3.354 0.289 3.212 0.285 3.835 0.113 3.900 0.149 3.574 0.164
(0.058) (0.011) (0.057) (0.011) (0.061) (0.011) (0.030) (0.007) (0.039) (0.008) (0.054) (0.011)

ROWL_0 3.270 0.247 3.562 0.261 3.298 0.280 3.817 0.117 3.885 0.153 3.644 0.150
(0.066) (0.014) (0.961) (0.013) (0.076) (0.013) (0.031) (0.008) (0.038) (0.008) (0.049) (0.010)

ROWL_1 3.327 0.230 3.656 0.237 3.434 0.246 3.947 0.084 4.058 0.109 3.761 0.125
(0.056) (0.012) (0.087) (0.013) (0.052) (0.010) (0.017) (0.005) (0.025) (0.006) (0.036) (0.009)
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variables X, including 5 continuous variables (age (years), weight (kg), Karnofsky score (scale of
0,100), CD4 cell count at baseline and CD8 cell count (cells/mm3) at baseline), and 7 binary
variables (gender (0 = female, 1 = male), race (0 = white, 1 = non-white), homosexual activity
(0 = no, 1 = yes), history of intravenous drug use (0 = no, 1 = yes), symptomatic status (0 = asympto-
matic, 1 = symptomatic), antiretroviral history (0 = naive, 1 = experienced) and hemophilia (0 = no,
1 = yes)). For simplicity, we standardize the continuous variables with sample mean 0 and standard
deviation 1. We observe that the variation of the outcome is very large. To obtain stable perfor-
mance, we also normalize the rewards as well.

To show the robustness of the proposed methods, we contaminate the dataset with outliers in
a different way from the simulated examples. We contaminate the treatment set with a certain
percentage ðperc ¼ 0; 5%; 10%; 15% and 20%). We choose perc of all samples as outliers randomly,
for the chosen instance ðxi; ai; riÞ, and assign the corresponding treatment to one of the remaining 3
treatments f1; 2; 3; 4gnai with equal probabilities as its new treatment ~ai.

We randomly select 500 subjects as the training set, 500 as the tuning set, and the rest 1139
subjects as the testing set. For simplicity, we conduct linear learning for all the comparing methods.
The means and corresponding standard deviations of the estimated value functions over 100
replications are reported in Table 6.

Table 6 shows that the proposed residual-based ROWL_1 performs slightly better than other
methods, and it is more robust against outliers. This conclusion here is consistent with the
simulation examples. However, the impact of contamination parameter perc is not clear for all

Table 5. Means and standard deviations (in parenthesis) of empirical value functions and misclassification errors evaluated on an
independent test set for the nonlinear Example 4 with k ¼ 4.

Methods n ¼ 300 n ¼ 1000

perc = 0% perc = 5% perc = 10% perc = 0% perc = 5% perc = 10%

Value Misc Value Misc Value Misc Value Misc Value Misc Value Misc

L1-PLS 2.391 0.319 2.187 0.361 1.950 0.409 2.944 0.211 2.800 0.240 2.665 0.267
(0.019) (0.004) (0.028) (0.005) (0.029) (0.006) (0.009) (0.002) (0.012) (0.002) (0.015) (0.003)

OVR_OWL0 2.287 0.341 2.169 0.366 1.980 0.401 2.875 0.225 2.736 0.253 2.587 0.282
(0.019) (0.003) (0.023) (0.004) (0.022) (0.004) (0.010) (0.002) (0.012) (0.002) (0.013) (0.003)

OVO_OWL0 2.117 0.374 2.045 0.392 1.881 0.424 2.650 0.270 2.562 0.288 2.503 0.300
(0.024) (0.004) (0.027) (0.005) (0.023) (0.004) (0.014) (0.003) (0.016) (0.003) (0.020) (0.004)

OVR_RWL 1.398 0.484 1.337 0.470 1.198 0.441 1.644 0.471 1.636 0.473 1.489 0.502
(0.043) (0.008) (0.043) (0.008) (0.043) (0.009) (0.038) (0.007) (0.045) (0.009) (0.045) (0.009)

OVO_RWL 2.135 0.368 2.014 0.396 1.821 0.434 2.814 0.236 2.753 0.249 2.617 0.276
(0.035) (0.007) (0.033) (0.006) (0.035) (0.007) (0.018) (0.004) (0.019) (0.004) (0.028) (0.005)

LUM_MOML 2.330 0.331 2.161 0.367 1.969 0.406 2.939 0.212 2.786 0.243 2.649 0.271
(0.019) (0.003) (0.025) (0.005) (0.027) (0.005) (0.011) (0.002) (0.012) (0.002) (0.014) (0.003)

ROWL0 2.326 0.331 2.145 0.370 1.939 0.412 2.913 0.217 2.755 0.248 2.597 0.281
(0.020) (0.004) (0.027) (0.005) (0.028) (0.005) (0.011) (0.002) (0.014) (0.003) (0.016) (0.003)

ROWL1 2.394 0.318 2.221 0.356 1.978 0.403 2.980 0.204 2.812 0.237 2.667 0.267
(0.019) (0.004) (0.026) (0.005) (0.026) (0.005) (0.009) (0.002) (0.013) (0.002) (0.018) (0.004)

Table 6. Means and standard deviations (in parenthesis) of empirical value functions evaluated on an independent test set for the
real AIDS dataset with k ¼ 4.

Methods n ¼ 500

perc = 0% perc = 5% perc = 10% perc = 15% perc = 20%

L1-PLS 0.2214 (0.0069) 0.2134 (0.0063) 0.2235 (0.0060) 0.2225 (0.0064) 0.2180 (0.0066)
OVR_OWL0 0.2250 (0.0086) 0.2313 (0.0057) 0.2342 (0.0067) 0.2296 (0.0066) 0.2236 (0.0080)
OVO_OWL0 0.1904 (0.0056) 0.1845 (0.0053) 0.1528 (0.0067) 0.1377 (0.0067) 0.1833 (0.0080)
OVR_RWL 0.1821 (0.0111) 0.1952 (0.0103) 0.1895 (0.0104) 0.1921 (0.0102) 0.1764 (0.0105)
OVO_RWL 0.2624 (0.0058) 0.2498 (0.0063) 0.2452 (0.0065) 0.2420 (0.0076) 0.2476 (0.0074)
LUM_MOML 0.2687 (0.0059) 0.2543 (0.0054) 0.2498 (0.0052) 0.2488 (0.0066) 0.2479 (0.0068)
ROWL0 0.2649 (0.0057) 0.2540 (0.0055) 0.2491 (0.0052) 0.2441 (0.0066) 0.2469 (0.0072)
ROWL1 0.2701 (0.0055) 0.2556 (0.0049) 0.2516 (0.0052) 0.2499 (0.0061) 0.2491 (0.0070)
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methods. One possible reason is that the way of contamination is different from the simulated
examples. In particular, the real dataset has the contaminated treatment, while the simulated
examples have the contaminated outcomes. In fact, these two kinds of contamination may happen.

Based on the intensive numerical experiments, we can conclude that the proposed residual
weighted ROWL_1 is more stable to outliers, and we suggest the practitioners to use residual-
based ROWL_1 to estimate ITRs with multiple treatments.

6. Conclusion

In this paper, we propose a family of robust loss functions to estimate the optimal ITRs with binary
and multiple treatments. The robust loss function is upper bounded, and helps to obtain robust
classifiers. The rich robust loss family covers both soft and hard classifiers through a scale parameter
and connects several well-known classifiers. Following the angle-based framework, we can naturally
extend binary treatment learning to multiple treatment settings. Based on the outcome weighted
classification, we incorporate the angle-based structure and the new robust loss into ROWL to
estimate robust ITR, which can directly handle ITR problems with both positive and negative
outcomes. Under some mild conditions, ROWL enjoys Fisher consistency, and can provide estima-
tion for the reward ratios of all pairs of treatments. Moreover, we develop an efficient DCA to solve
the nonconvex minimization problem for ROWL. The results of simulated examples and real
medical data indicate that the residual-based ROWL performs competitively in most cases. One
possible future direction is to develop robust dynamic treatment regime techniques using the
proposed robust loss functions.
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Appendix: Technical proofs

Proof of Theorem 1. To prove the theorem, we need the following lemma, of which the proof
can be found in Zhang and Liu (2014).

Lemma 1 (Zhang and Liu 2014, Lemma 1) Suppose we have an arbitrary f 2 R
k�1. For any u; v 2 f1; . . . ; kg such that

u�v, define Tu;v ¼ Wu �Wv. For any scalar z 2 R , hðf þ zTu;vÞ;Wwi ¼ hf ;Wwi, where w 2 f1; . . . ; kg and w�u; v.
Furthermore, we have that hðf þ zTu;vÞ;Wui � hf ;Wui ¼ �hðf þ zTv;uÞ;Wvi þ hf ;Wvi.

Recall the definition of the conditional expected loss SðxÞ in (3.1), and the minimization problem with respect to
the decision function f is equivalent to minimizing

Lð f jX ¼ xÞ ¼
Xk
j¼1

½Rþ
j ,ðhf ðxÞ;W jiÞ � R�

j ,ð�hf ðxÞ;W jiÞ�;

where Rþ
j and R�

j are defined in Section 3.1. Assume the theoretical minimizer of Lð f jX ¼ xÞ is f �ðxÞ, i.e.

f �ðxÞ ¼ arg minfLð f jX ¼ xÞ. For simple notations, we drop the dependence of Lð f Þ and h f ;W ji on x when there

is no ambiguity. Then, the objective function becomes

L ð f Þ ¼
Xk
j¼1

½Rþ
j ,ðh f ;W jiÞ � R�

j ,ð�h f ;W jiÞ�: (A:1)

The property of , implies that , is strictly decreasing. Without loss of generality, let the treatment 1 be the best one.
Then we need to prove that h f �;W1i is the largest, as stated in the following fact.

Fact 1 If R1 >Rj;"j�1 and Assumption 1 holds, then h f �;W1i > h f �;W ji.

Proof. We prove it by contradiction. Assume there exists a j0�1, such that hf �;W1i< hf�;W j0i.
According to the monotone property of ,, we have that ,ðhf�;W1iÞ> ,ðhf�;W j0iÞ and
,ð�hf�;W1iÞ< ,ð�hf�;W j0iÞ. From Assumption 1, we have Rþ1 	 Rþj and R�1 	 R�j for any j�1,
and the equalities cannot hold simultaneously. Then by Lemma 1, one can find a new f��, which
satisfies

h f ��;W1i ¼ h f �;W j0i; h f ��;W j0i ¼ h f �;W1i; h f ��;W ji ¼ h f �;W ji;"j�1; j0:

Then we have Lðf ��Þ � Lðf �Þ ¼ ðRþ
1 � Rþ

j0 Þ½,ðh f
�;W j0 iÞ � ,ðh f �;W1iÞ� þ ðR�

1 � R�
j0 Þ½,ð�h f �;W1iÞ � ,

ð�h f �;W j0iÞ�< 0, and this contradicts with the definition of f �.

Suppose there exists a j0�1, such that h f �;W1i ¼ h f �;W j0 i ¼ s0. By Lemma 1, for any small ε> 0, one can
construct a new ~f with

h ~f ;W1i ¼ s0 þ ε; h ~f ;W j0i ¼ s0 � ε; h ~f ;W ji ¼ h f �;W ji;"j�1; j0:

Then Lð~f Þ � Lðf �Þ ¼ ½ðRþ
1 � Rþ

j0 Þ,
0ðs0Þ þ ðR�

1 � R�
j0 Þ,

0ð�s0Þ�εþ oðεÞ< 0, which is a contradiction. □

By the above fact, the proof of Theorem 1 is completed. ∎

Proof of Theorem 2. Consider the special loss ,ðuÞ ¼ minðe�u; 1Þ, which is the non-smooth
truncated exponential loss, the proof about fisher consistency becomes more complicated than
Theorem 1. We divide the proof of Theorem 2 into several basic facts as follows.

Fact 2. If R1 >Rj;"j�1 and Assumption 1 holds, then f ��0.

Proof. The conclusion says that 0 is not minimizer of LðfÞ in (A.1). We prove it by contradiction.

Assume f� ¼ 0, then we have Lð0Þ ¼
Pk

j¼1ðRþj � R�j Þ. By Lemma 1, for any small ε > 0, one can
find a f�� such that
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h f ��;W1i ¼ ε> 0; h f ��;W2i ¼ �ε< 0; h f ��;W ji ¼ 0;"j�1; 2:

Hence, Lðf ��Þ ¼ Rþ
1 ,ðεÞ � R�

1 þ Rþ
2 � R�

2 ,ðεÞ þ
Pk

j¼3ðRþ
j � R�

j Þ. Due to Rþ
1 >R�

1 	 R�
2 and ,ðεÞ< ,ð0Þ, then we

have Lðf ��Þ � Lð0Þ ¼ ðRþ
1 � R�

2 Þð,ðεÞ � 1Þ< 0. That is a contradiction. □
Fact 2 indicates that f ��0, then there inner product h f �;W jis may have different signs. In other words, there

exists at least one j such that h f �;W ji > 0. If the treatment 1 is the best one, we need to prove that h f �;W1i is the
largest, as shown in the following facts.

Fact 3. If R1 >Rj;"j�1 and Assumption 1 holds, then h f �;W1i > 0.

Proof. We prove it by contradiction. If there exists a j0�1, such that h f�;W1i � 0< h f�;W j0i,
then we have ,ðh f�;W1iÞ> ,ðh f�;W j0iÞ and ,ð�h f�;W1iÞ � ,ð�h f�;W j0iÞ. By Lemma 1, one
can find a new f��, which satisfies

h f ��;W1i ¼ h f �;W j0i; h f ��;W j0i ¼ h f �;W1i; h f ��;W ji ¼ h f �;W ji;"j�1; j0:

Then we have Lðf ��Þ � Lðf �Þ ¼ ðRþ
1 � Rþ

j0 Þ½,ðh f
�;W j0 iÞ � ,ðh f �;W1iÞ� þ ðR�

1 � R�
j0 Þ½,ð�h f �;W1iÞ � ,

ð�h f �;W j0iÞ�< 0, which contradicts with the optimality of f �. □
Fact 4. If R1 >Rj;"j�1 and Assumption 1 holds, then h f �;W1i > h f �;W ji.

Proof. We prove it by contradiction. If there exists a j0�1, such that 0< h f�;W1i< h f�;W j0i, then
we have ,ðh f�;W1iÞ > ,ðh f�;W j0iÞ and ,ð�h f�;W1iÞ ¼ ,ð�h f�;W j0iÞ ¼ 1. By Lemma 1, one
can find a new f��, which satisfies

h f ��;W1i ¼ h f �;W j0i; h f ��;W j0i ¼ h f �;W1i; h f ��;W ji ¼ h f �;W ji;"j�1; j0:

Then we have Lðf ��Þ � Lðf �Þ ¼ ðRþ
1 � Rþ

j0 Þ½,ðh f
�;W j0 iÞ � ,ðh f �;W1iÞ�< 0, which contradicts with the optim-

ality of f �.
Suppose there exists a j0�1, such that h f �;W1i ¼ h f �;W j0i ¼ s0 > 0. For any small ε> 0, one can construct a new

~f with

h ~f ;W1i ¼ s0 þ ε> 0; h ~f ;W j0i ¼ s0 � ε> 0; h ~f ;W ji ¼ h ~f �;W ji;"j�1; j0:

Then Lð~f Þ � Lðf �Þ ¼ ðRþ
1 � Rþ

j0 Þ,
0ðs0Þεþ oðεÞ< 0, which is a contradiction. □

Combining the above three facts, we finish the proof of Theorem 2. ∎

Proof of Theorem 3. When there is no negative rewards, then Rj 	 0 for all j ¼ 1; . . . ; k. Consider
a general smooth loss function ,ð�Þ, then the optimization problem becomes

min
f2F

Lðf Þ ¼ min
f2F

Xk
j¼1

Rj,ðh f ;W jiÞ: (A:2)

Then the first-order condition for the optimization of (A.2) is

@L
@f

¼
Xk
j¼1

Rj,
0ðh f ;W jiÞWj ¼ 0k�1: (A:3)

It is clear that the theoretical minimizer f � is the solution of (A.3). Note that
Pk

j¼1 W j ¼ 0k�1 and arbitrary k� 1
of fW i; i ¼ 1; . . . ; kg are linearly independent. Hence one can conclude that Ri,

0ðh f �;W iiÞ ¼ Rj,
0ðf �;W jiÞ for i�j.

Therefore, we can obtain the reward ratios accordingly. ∎
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