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ABSTRACT

The analysis of multiple dependent degradation processes is a challenging research problem
in the reliability field, especially for complex degradation processes with random jumps. To
integrally handle the jumps with uncertainties and the dependence among degradation
processes, we construct general multi-dimensional Lévy processes to describe multiple
dependent degradation processes in engineering systems. The evolution of each degrad-
ation process can be modeled by a one-dimensional Lévy subordinator with a marginal
Lévy measure. The dependence among all dimensions is described by Lévy copulas and the
associated multiple-dimensional Lévy measure. The multi-dimensional Lévy measure is
obtained from one-dimensional marginal Lévy measures and the Lévy copula. We develop
the Fokker-Planck equations to describe the time evolution of the probability density for
stochastic processes. The Laplace transforms of both reliability function and lifetime
moments are then derived. Numerical examples are used to demonstrate our models in life-
time analysis. The results of this research are expected to provide a precise reliability predic-
tion, help to avoid failures caused by multiple dependent degradation processes, and
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maintain the long-term operation of a system.

Introduction

In engineering applications, it is common to observe
more than one degradation process in a component
(e.g., multiple crack growth on a metal surface), or in
a multi-component system where several components
are subjected to degradation due to wear, aging,
fatigue, corrosion, etc. Typically, these degradation
processes are dependent due to the complicated
internal mechanisms (e.g., mechanical, thermal, elec-
trical, or chemical) and/or the exposure to the com-
mon external conditions (e.g., temperature, pressure,
humidity, or vibration). The analysis of multiple
dependent degradation processes is a challenging
research problem in the reliability field. They are
commonly described using multi-dimensional stochas-
tic processes that can characterize the physical degrad-
ation processes.

In reliability studies, stochastic processes have been
widely used to model the temporal variability in deg-
radation evolution, such as Wiener process, gamma
process, and inverse Gaussian process. A Wiener pro-
cess/Brownian motion with drift has been applied to

model the non-monotonic degradation process with
stationary and independent increments following a
normal distribution (Ye et al. 2013). The class of
gamma processes is another type of special stochastic
processes with independent and nonnegative incre-
ments that are random variables following a gamma
distribution. van Noortwijk (2009) provided an over-
view of applying gamma processes to model deterior-
ation in civil infrastructures for reliability analysis.
The inverse Gaussian (IG) process is another class of
stochastic processes that has independent and nonneg-
ative increments, which follow an IG distribution.
Wang and Xu (2010) developed an attractive
degradation model with monotonic paths based on
IG processes.

These stochastic processes, however, limit them-
selves to certain-distributed and independent incre-
ments that cannot fit different types of degradation
datasets in general. To relax the assumption of cer-
tain-distributed increments, researchers explored to
use Lévy processes for constructing degradation mod-
els with uncertain jumps (Ginlar 1977; Abdel-Hameed
1984; Shu, Feng, and Coit 2015, Shu et al. 2016, Shu,
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Feng, and Liu 2019). Abdel-Hammed (1984) used a
Lévy process to model the wear degradation and
studied its life distribution properties where the
threshold is assumed to be random. Shu, Feng, and
Coit (2015) gave a new closed-form reliability func-
tion for degradation described by Lévy subordinators,
a class of non-decreasing Lévy processes. Using
Fokker-Planck Equations (FPE), a tool for modeling
stochastic processes without analytical forms of prob-
ability distributions, Shu et al. (2016) derived the
explicit results for the reliability function and lifetime
characteristics of degradation processes with uncer-
tainty jumps modeled by Lévy subordinators and their
extensions. In addition, the parameters in stochastic
degradation models are estimated using linear pro-
graming estimators and empirical characteristic func-
tions (Shu, Feng, and Liu 2019).

In engineering practices, however, multiple degrad-
ation processes can occur simultaneously in a system
that affect the performance and reliability of the sys-
tem. For example, for an LED lighting system, Sari
et al. (2009) developed a bivariate constant stress deg-
radation data model to describe two degradation fail-
ures that dominate the system reliability. To study
and model multiple degradation processes, a challenge
to be addressed is how to describe and model the
dependence structures among those degradation proc-
esses. Liu et al. (2014) used a multi-dimensional
Wiener process to model the degradation, in which
the dependence among degradation was described by
a covariance matrix. While the covariance can only
describe the linear dependence, copulas can capture
the whole dependence structure including various
non-linear and linear forms of dependence among
random variables.

Copula analysis is an effective tool to extend mar-
ginal probability distributions to multi-dimensional
probability distributions. The concept of copulas was
introduced to separate the dependence structure of a
random vector from its univariate margins (Sklar
1996). By providing a complete characterization of
possible dependence structures of a random vector
with fixed margins, copulas can be used to construct
multi-dimensional distributions with specified depend-
ence and arbitrary marginal laws. Li (1999) developed
a copula function to approach the default correlation
of multiple-entities survival time. Based on a chosen
copula function, they computed the pairwise correl-
ation of survival times and obtained the default correl-
ation of two discrete events. Embrechts et al. (2002)
used the copula concept to represent the dependence
of a random vector for risk management modeling.

Recently, the copula method has been applied in the
analysis of multi-dimensional degradation processes.
Hao, Su, and Li (2015) monitored the reliability of
LED lighting systems via multi-dimensional Gamma
processes where the dependence is described by Frank
copula. For multiple dependent performance charac-
teristics, Wang et al. (2015) used a copula function in
estimating the residual life. Sun et al. (2016) applied
the copula method in Wiener processes to analyze
multiple nonlinear accelerated degradation processes
for highly reliable products. Peng et al. (2016) utilized
Wiener process, IG process and copula functions to
model a bivariate degradation process. Using stochas-
tic process models with Gaussian copula, Peng, Ye,
and Chen (2019) studied residual lifetime prediction
of multiple degradation systems with measurement
errors. More recently, Fang, Pan, and Hong (2020)
used four Archimedean copulas in a multivariate deg-
radation analysis for monitoring more than one per-
formance characteristic of a product.

With similar properties to regular copulas, Lévy
copulas are introduced to completely characterize the
dependence among components of multi-dimensional
Lévy processes by utilizing Lévy measures and separat-
ing the information around multiple components
(Cont and Tankovs 2004, Barndorff-Nielsen and
Lindner 2007). Extended from regular copulas, Lévy
copula is a defined function that maps marginal prob-
ability functions to the joint probability function for
multi-dimensional Lévy processes. It separates the
dependence structure and univariate margins of
multi-dimensional Lévy processes. As one of the
major copula families, Archimedean copulas include a
large number of member copula functions that can
represent different types of dependency structures
(Naifar 2011). The role of Lévy copulas is described in
details by Sklar’s theorem (Aas et al. 2009). For an m-
dimensional Lévy process X(t), Sklar’s theorem char-
acterizes the multi-dimensional Lévy measure v using
one-dimensional marginal Lévy measures v; (i=1, 2,

.., m) and the Lévy copula C. In addition, it also
describes one-dimensional marginal Lévy measures v;
as the projections of v on m dimensions.

In this research, we intend to construct general
multi-dimensional Lévy processes governed by Lévy
copulas to model multiple degradation processes by
integrally handling the jumps with uncertainties and the
dependence among degradation processes in engineer-
ing systems. Although multi-dimensional Lévy proc-
esses governed by Lévy copulas have been applied in
actuarial and insurance analysis (Bauerle, Blatter, and
Muller 2008), they have not been widely used in the



analysis of multiple degradation processes in engineer-
ing systems. Existing studies described multiple depend-
ent degradation processes using multi-dimensional
Wiener processes, Gamma processes, and IG processes.
However, Wiener-based models cannot handle the
jumps in degradation, while the Gamma- and Poisson-
based models are not flexible in general. To precisely
evaluate and predict reliability characteristics, it is crit-
ical to construct appropriate stochastic processes with
appropriate copulas to handle internally-induced sto-
chastic uncertainties, complex jumps, and dependence.
One of the most important advantages of using Lévy
processes to model degradation is that their jump parts
represented by Lévy measures can model a great deal of
jump mechanisms in degradation, which provides flexi-
bility in fitting various degradation data series. More
specifically, we use non-decreasing multi-dimensional
Lévy processes, or multi-dimensional Lévy subordina-
tors, to model the commonly observed degradation
behaviors in this research.

The remainder of this paper is organized as follows.
In section “Lévy copulas and Lévy measures”, we con-
struct multi-dimensional copulas for multiple depend-
ent degradation processes described by Lévy
subordinators. In section “Reliability function and life-
time moments”, the multi-dimensional Lévy measures
are derived based on the multi-dimensional Lévy cop-
ula obtained in section “Lévy copulas and Lévy meas-
ures”. The reliability function and lifetime moments
are also derived. Simulation studies are implemented
in section “Simulation and numerical examples”, while
Section “Conclusions and discussion” provides the
conclusion and future research directions.

Notations

Euclidean space: R™, m € N

Inner product: (x,y) = >, x;i

Euclidean norm: |x| = (x,x)"/? = (X, xix;)
Brownian motion under covariance matrix A at
time t: B4(t)

1/2

e m-dimensional Lévy process: X(f) = {Xi(1),
s Xm(D)}

e m-dimensional Lévy subordinators: Xs(t) = (X(1),
s XM}

o Lévy symbol: n(p)

e Marginal Lévy measure: vi(dy;), i=1,2,...., m

e m-dimensional Lévy copula: C(uy, ... ,u,,)

o m-dimensional Lévy measure under copula

C: vC(dy; ... .dy)
o Reliability function at time #: R(%)
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e Marginal reliability function at time #: R(t), i=1,
2, M

o Laplace transform of reliability function at time #:
R (u, w)
Laplace transform of lifetime moments: M(Ty" x)
Poisson random measure at time t: J(t, dy)
A volume function: U

Lévy copulas and Lévy measures

Lévy copulas for multi-dimensional Lévy processes are
defined by extending the definition of regular copulas
(Cont and Tankovs 2004). For references, some fun-
damental concepts and preliminaries of multi-
dimensional Lévy processes and regular copulas are
described in the appendix. The main difference
between regular copulas and Lévy copulas lies in the
domain and range.

Definition 1. (Cont and Tankovs 2004). A function
C defined on R™ — R is called Lévy copula if:

1. C (up uy,... ... Um) # 00 for (ug, uy, ... ... JUp)
% (00,00, ... .,00);
2. Cluy, uy, ... ... JUy) = 0 if u; = 0 for at least one i

€ {1, 2,...,m} (grounded);

3. Cis m-increasing

4. CPu) = u for i € {1, 2,..., m}, u € R (uni-
form marginal).

In this research, all multivariate Lévy processes,
Lévy measures and Lévy copulas are considered on
R'? space. When we change the domain and range
from R"” — R to R ,— R, it becomes a positive
Lévy copula.

An important feature of Lévy copulas is that they
can separate the marginal and internal dependence
structures for multi-dimensional Lévy processes, as
described in Sklar’s theorem. The theorem describes
the relationship between Lévy copula C, the volume
function (also named the tail integral) U, and the
marginal volume functions {Uj,..., U,} in multi-
dimensional Lévy processes.

Theorem 1. (Sklar’s theorem, Barndorff-Nielsen and
Lindner 2007). For an m-dimensional Lévy measure v
that satisfies v({0}) = 0 and [, min{1, ly[*}v(dy) < oo
with a volume function U and marginal volume functions

{Uy, ..., Uy}, there exists a (positive) Lévy copula C such
that:

F(X150is Xm) = C(Fl(xl),...,Fm(xm)),Vxl,....,xm [0, o<].
(1)
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Lévy copula C is uniquely determined on Ran(U,;)-
... -Ran(U,,). Conversely, if C is a positive Lévy copula
and {U,....,U,} are volume functions of one-dimen-
sional positive Lévy measures Vi, ...V, then (1)
defines a Lévy measure v € L™ with a volume func-
tion U and marginal Lévy measures vy, ... .,Vp,.

The random jumps in multi-dimensional degrad-
ation processes are measured and represented by a
multi-dimensional Lévy measure vc associated with
Lévy copula. Based on Sklar’s theorem, the margins
and internal dependence structures of v¢ are separated
by the corresponding Lévy copula C. Therefore, an
important problem to be addressed is to derive the
multi-dimensional Lévy measure vc from the corre-
sponding Lévy copula C.

Multi-dimensional Lévy measures from
Lévy copulas

The mathematical relationship between Lévy copula C
and the associated Lévy measure v¢ can be considered
as a mapping, where a bijection is defined under the

multi-dimensional space (Barndorff-Nielsen and
Lindner 2007):
Qm = [0,00]" = [0,00]", (150 X)) — (7Y Y,

such that Q,, _ Q,, '. Another measure y is also
defined such that vc is the image of y on an m-
dimensional Boral set B:

v(B) = (Q)(B) = (Q'(B)), VB C [0,00]™.

Using the fact that the Lévy copula C has a uniform
margin, we can find the measure satisfying:

1e([0.00] " 5 [0, 3] x [0.00]" ) =

C(OO, ceees Xios ,OO) = Xk»

2)

which implies that there is a Lévy copula C satistying
xc = 1. Since Q,, — Q,, ', we can get the relationship
between Lévy measure v and Lévy copula C:

Ly ([x,oo]x---..x Xm> 00)) = 1
C 1 [ ] C » (3)

X Q;ll([xl,oo], ..... s [Xm> 00]) = Clx o x, ).

Lévy measures for multiple-dimensional Lévy
subordinators

Due to the non-decreasing path of most degradation
processes in practice, we study the special class of
Lévy processes, Lévy subordinators Xs(t), which take
values in [0, co) with a non-decreasing path. Based on
Sklar’s theorem, Lévy copulas are an important way to

analyze and organize the internal multivariate struc-
tures, and build bivariate and multivariate distribu-
tions with given margins (Joe 1993). One of the
parametric copula families is the Archimedean copula
that is easy to construct and has a wide application in
several fields (Wang, Wu, and Lai 2013). The standard
expression for this family in m-dimension is

C(ur, .oy Um) :(pfl((p(ul) + .+ (p(um)), (4)

where ¢ is called a generator of the copula family,
which is a continuous, strictly decreasing function
from [0, 1] to [0, co] such that ¢(1) = 0.

A sub-family of Archimedean copula, Clayton cop-
ula family, is widely considered in modeling multi-
dimensional Lévy subordinators (Jaworski et al. 2009).
An m-dimensional Clayton copula C for an m-dimen-
sional Lévy subordinator Xs(f) = (X0, ..., XM}
is defined on R, — R,:

Clur, s Upm) = (iuﬂ) , (5)

and 0 € (0, o) is the dependence parameter, where a
larger value of 0 represents the stronger dependence.
Based on Eq. (1) and (5), we have:

F(Xl,..., Xm) = C(Fl(xl),...,Fm(xm))
2+ (6)
= i)™ e Fnloen) |

For a Boral set B = [x;, 00]- ... [x,,, oc] in [0, co]™,
we can simply plug it into Eq. (3) such that
X [Xm> 00]) = 7c X Q' ([%1500] -..er [Xim» 30])
= ([0,x;71]....[0,x,,71])
= C(xfl, ...,xmfl) = F(X15 s Xm)>

ve([x1,00] X - - -

which is a Lévy measure for the m-dimensional Lévy
subordinator Xg(f) = {Xs'(),..., X{"(t)}, since there
is no atom for v at zero. A continuous measure is
said to have no atom (Sun and Duan 2012).

An m-dimensional Lévy measure v¢ has m margins,
U,..., U,, which are volume functions of one-
dimensional positive Lévy measures. We define a one-
dimensional bijection, Q;: [0, co] — [0, oo], to map
x; — x ' (i=1, 2,..., m), and another measure ¥;
where yi([0, x]) = C(x) = x. Then we can get the
one-dimensional Lévy measure:

vi=y Qi =1, 2,.., m. (7)

Therefore, for an m-dimensional Lévy subordinator
Xs(t) = {Xs' (), ... ., Xs™(t)}, each marginal subordina-
tor Xs'(¢), i=1, 2,..., m, can be expressed by v;(dy)
based on one-dimensional Lévy-Ito decomposition.



Reliability function and lifetime moments

For an m-dimensional degradation process modeled
by a multi-dimensional Lévy subordinator X () =
(Xs'(1), ...., Xs™(1)}, the failure time of a system can
be defined as the time when any degradation process
exceeds its failure threshold x;, i=1, 2, ..., m, ie, a
series system is considered in this research. Therefore,
the failure time of a system can be defined as T, =
infit: X0(8) > xp,..., Xp(t) > x,,}. Accordingly, the
reliability function can be defined as R(¢) = P(T, > t)
= PXi(D) < xp,.00, X)) < x) = Fxyp(x). At the
initial time t=0, we have R(x, 0) = P(T, > 0) =
PXs(t) < x) =1, x = (X1, X2, ... X,n), as the system is
new without cumulating degradation at ¢=0. Since
there are no closed-form distribution functions for
Lévy subordinators, it is challenging to derive reliabil-
ity functions and lifetime moments. Fokker-Planck
equations (Sun and Duan 2012) provide us a way to
overcome the challenge in analyzing probability laws
for stochastic processes.

Fokker-Planck equations

In a stochastic dynamical system, stochastic differen-
tial equations (SDE) are a main tool to model the
dynamical status. For stochastic differential equations,
Fokker-Planck equations (FPE) provide an effective,
deterministic tool to manage the transition probability
density (Soize 1994). The FPE of stochastic differential
equations with Lévy processes were derived in Sun
and Duan (2012), which provides a new way to obtain
the probability laws for a Lévy subordinator, and
therefore, the reliability function.

The Fokker-Planck equation of general stochastic
dynamical systems is given as (Sun and Duan 2012)

apgi’ H__ % (F (2, O)p (2, £) — ba% (o(x )p(x, 1))

®)

When o(x, t) = 1, it is the Fokker-Planck equation
for a stochastic dynamical system with an additive
Lévy process (Soize 1994).

Based on the Lévy-It6 decomposition in Lemma Al
of the appendix, a multi-dimensional degradation
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process modeled by a Lévy process can be decom-
posed into four parts: (1) a drift term, bt, (2) a
Brownian motion B,(f) with a covariance matrix A,
(3) a jump partﬁylZIy](t,dy) that is a compound
Poisson process, and (4) another jump part
fwdy(](t, dy) — v(t,dy)) that is the compensated ver-

sion of Poisson process |, <<V (t,dy). The last part

can have finite or infinite activities, where (J(t, dy) -
v(t, dy)) is the compensated Poisson random measure.
Using Eq. (8), we can derive the Fokker-Planck equa-
tion for a multi-dimensional Lévy subordinator.

Lemma 1. For a multi-dimensional degradation pro-
cess with random jumps modeled by Lévy subordina-
tors, the Fokker-Planck equation is

oplxt) __, Oplut) . Oplxnt)
ot 1 8}51 ...... m 8_xm
+ j(p(xl DX — o) — Pl 1) ¥(d)

+

8 X, t a X, t
+ J(l‘yklylpa(Tl)—‘r R 1\y\<1ym%)v(dy)’

)

where x = (x1, ..., X,,) is the threshold vector and
wdy) = v(dy, ..., dy,) is the m-dimensional
Lévy measure.

Lifetime characteristics for Lévy subordinators

For a one-dimensional Lévy subordinator X(t), Shu
et al. (2016) showed that the relationship between the
Laplace transform of reliability function R (u, w) and
the Laplace transform of the probability density func-
tion pLL(u, w) is:

RLL(M, W) —-1,.LL

=Uu p

The relationship between the Laplace transform
of lifetime moments and the Laplace transform of

(u, w).

the derivative of reliability function Q(x,t) =
— 2 R(x,1) is:

MH(Ty"u) = Q" (u,0).

Accordingly, we extend the results from the one-
dimensional case to the multi-dimensional case as in
Lemma 2 and Lemma 3. For a multi-dimensional deg-
radation process modeled by a multi-dimensional
Lévy subordinator, the multi-dimensional Laplace
transform of both reliability function and lifetime
moments Rx(x, t) and M(T", x), x = (x3, ... .,X,,), can
be derived from FPE and represented by Lévy meas-
ure v¢ with copula C.
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Lemma 2. Let R"(u, w) be the Laplace transform of
an m-dimensional reliability function Rx(x, t) where

x = (x,..., X)) and u = (uy, ..., U,,), then
R™(u, w)y =u'p"(u, w). (10)
Lemma 3. Let Q(x,t) = —2R(x,t) be the derivative

of an m-dimensional reliability function, and QLL(u, w)

is the Laplace transform of Q(x,t) and QiL(u, w) =
n 0"()“(14 w)

(=) =G>

(ug, ..., U,,), then

MY (Ty", u) = QfL(u, 0).

where x = (x1,..., X,) and u =

(11)

Based on Lemma 2, we derive and present the
closed form of reliability function Rx(x, t) in terms of
m-dimensional Laplace transform, as in Theorem 2.

Theorem 2. For multiple dependent degradation
processes with random jumps described by a multi-
dimensional Lévy subordinator Xg(t) = (X', ...,
X"(t)}, the multi-dimensional Laplace transform of
reliability function Rx(x, t) is

R (u,w) = w Hw + (b%,u) — J(e W) — 1)v(dy)}

(12)
= (b% ..., b
dimensional constant vector, u = (uy, ..., Uy), v(dy) =

v(dys, ..., dy,,) is an m-dimensional Lévy measure and
m is the number of dimensions.

where b* =b— [, _, yv(dy) m) is an m-

Proof. Let p(x, t) = p(xy,..., X, t) be the probability
density function for an m-dimensional Lévy subordi-
nator Xg(t) = {Xs'(#), ..., X{"(t)}. Based on Lemma 1,
the FPE of X(f) can be presented by Eq. (9) . We can
perform a Laplace transform of p(x, t) with respect to
(w.r.t.) t on both sides of Eq. (9)

wp* (x, w) = p(x,0)
L
_ W) Opew)
ox; 0%y,

Performing an m-dimensional Laplace transform w.r.t.
x = (x1, ..., x,,,) on both sides:

wprt (u, w) — I = — (b, u)p** (u, w) + J e_<“’y>pLL(u, w)
i

M, w) + Iy (o y)p" (1

—p w)lv(dy).

Let b* = b — f|y|<1yv(dy) = (b%, ..., b,™). Therefore,
the double Laplace transform of probability density
function p(x, t) = p(xy, ..., X, t) is obtained as

P w) = {w -+ (b u) — j( )~ 1)y(dy)) !

R

Based on Lemma 2, the m-dimensional Laplace trans-
form of reliability function can be written as

R (uyw) = uHw + (b, u) — J( —y) 1)v (d)’)}

R

As we can observe in (12), the Laplace transform of
reliability function is a monotonous function with
time transform w such that it decreases monotonously
as w increases when the thresholds are fixed.

In addition, the expression of lifetime moments
MY(Ty", x) in terms of m-dimensional Laplace trans-
form can be derived and presented as Theorem 3
based on Lemma 3.

Theorem 3. For multiple dependent degradation proc-
esses with random jumps described by a multi-dimen-
sional Lévy subordinator Xs(t) = (X0, ..., X"@)},
the multi-dimensional Laplace transform of lifetime
moments ML(T%, x)is

—n

MY(T!, x) = n!u1{<b*,u> - J(ew> - l)v(dy)} ,

R
(13)
where b =b— [, yw(dy) = (bi* ..., by,*) is an
m-dimensional constant vector, u = (Ug ..., Uy),

v(dy) =v(dyy, ..., dy,) is an m-dimensional Lévy
measure and m is the number of dimensions.

Proof. Let QLL(u, w) be the Laplace transform of

Q(x, t) with respect to x and . Based on Theorem 2,
we can take a double Laplace transform on this equa-
tion and obtain:
QLL(u, w) = —wR (u, w) + u™!

= —wu {w+ (b*, u)
—J( )~ 1yu(dy)}

R



The n-order differential equation is

—anQaW(n”’W)w =0 (—uw
" {w+(b* u) me(e (wy) )v(dy)}71
ow o
o () 1)u(dy)}
—(ul)lnﬁnl{w—f—(b*,u) j* Sy ! ]
and
0" Hw+(b"u) = [ (€™ Jv(dy)} !
awn 1
(= 1) (1) (b 1) — J<e<“>y>—1>v<dy>]".
It can be re-written as
wa—W(W) = (—u ) (1) (= D)+ (b )
—j( ) 1)u(dy)} "
= (a1 = D)
- j<e<">y> ()"

RY

Finally, from Eq. (11), we can obtain

o" QLL (u,w)

L/en oL VY
MY (T = Q' (,0) = (-1

w=0

- u1n1{<b*,u> - J(e<“’y> - l)v(dy)}n.

R

Simulation and numerical examples

To demonstrate our theorems and models, we imple-
ment the algorithm by Cont and Tankovs (2004) to
simulate the two-dimensional and three-dimensional
subordinator series with dependent components. For a
simple case to illustrate, the marginal Lévy subordina-
tor is assumed to be a positive a-stable subordinator
PS,(t) that is a type of pure jump Lévy processes
based on wo-stable Lévy measure.

Two-dimensional Lévy subordinators

In a two-dimensional Lévy subordinator Xg(f) =
(Xs'(1), X*(1)}, Xs'(t) and Xs*(t) are two dependent
a-stable subordinators represented by their marginal
o-stable Lévy measures and the two-dimensional
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Clayton Lévy copula C(uy,u,0) = (u; 0 + uz_e)%'l,
where the strength of dependence is described by the
dependence parameter 0 € (0, o). The marginal Lévy
measures are o-stable Lévy measures, v(dy) =
FULK +tdy, 0 < k <1. Based on Eq. (3), the two-
dimensional Lévy measure can be described as the
second derivative of the Lévy copula

0C(z1, 7z
r) =

o —1-0 % —1-0
=(14+0) |:JV1dy1:| deyz}

X1 x2
|:Jl/1dy1_0

z1=Fy (x1), 22=F; (%) V1V2

00 7%72
+ Jvzdyzo} Viv2,

X1 x2

Vl(d)’l) =

K]

where ioy;erdy  and

Vz(dyz)

_ K 1
= S

Based on Theorem 2, we can derive the Laplace
transform of reliability function as

R (uyw) = uHw + (b, u) — J( —y) 1)v (d)’)}

2
R+

= (uluz)l{w—i— (bjuy + byuy)

_ —(my+u2y,) _ Kikz
e H(1+0

R[( )(1-+0) 55

(T(1 — )y T - x,y)p52)

(T = &)y + (01— 1) 95%) ]Z%dyldyz} )

where w is the Laplace transform of time t. We choose a
simple case that I'(}) = \/m, which means x; = x, =
0.5. When 0 = 2, the integral part of the Laplace trans-

form of reliability function can be derived as

[ (et 1)(1 4 0) S22 (0(1 = g, ) yi) 42
+ Yiy2

(D1 = #y)y5") (01 = wep)37)?

H(I(1 = 16,) 78272 2dyrdys

3

B MJRi (e 2 — 1)(yy + y5) T dyrdys

3/2 3/2
)
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Figure 1. 2-dimensional Lévy subordinators (0 = 2).
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Figure 2. 2-dimensional Lévy subordinators (0 = 5).

where u; and u, are Laplace transform of two failure
thresholds x; and x,.

The simulation results are shown in Figures 1-3.
We choose § = 2,0 = 5 and 0 = 10 to represent
the relatively weak, medium and strong dependence
relationships, respectively. These figures show that a
larger dependence parameter 0 indicates the stronger
dependence between two degradation processes than a
smaller dependence parameter does. In addition, the
rank correlation coefficients are obtained as 0.333,
0.714, and 0.833 for 0 = 2, 0 = 5 and 0 = 10,
respectively, by wusing the copulastats() function
in Matlab.

Figure 4 shows that the first moment of lifetime
increases as the thresholds increase on each dimension.
For different sets of failure threshold values, Figure 5

illustrates that the Laplace transform of reliability func-
tion for 2-D Lévy subordinators decreases monoton-
ously as w increases. When we fix the two failure
thresholds, the reliability function for 2-D Lévy subordi-
nators decreases as the time f increases in Figures 6
and 7, with different values of dependent parameters.

Three-dimensional Lévy subordinators

For a three-dimensional Lévy subordinator Xs(t) =
(Xs'(1), X&), Xs°(1)}, the Clayton Lévy copula is
extended to be Clup,upus,0) = (u 0 4+ u, 0+
u3‘0)%1. The three-dimensional Lévy measure is the
third order derivative of the Lévy copula, which can
be derived as
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Time

Lifetime

Figure 4. The first moment of lifetime for 2-D Lévy subordinators (0 = 2).

63C(Z1, 22, Z3)

V()’l;)’b}%) = W |Z1:F1(Xl))Zz:Fz(xz),23:F3(X3)V1v2V3
-1 1
62(2170 + 2270 + Z370) 91 1"517671 (—9) (_ 6
- 02,0z vivavs
2023
S 1+0
)] (.l
= Oz VivaVs
3
—1-0 —-1-0 ~ —1-0 - -3

(1 + 0)(1 + 29) Jvldyl JVZdyz JV3dy3 ‘[Vldylie + JVzd)Qia + V[V3dy370 V1V V3.
X1 x2 x3 x2 x3

Xy
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All marginal Lévy measures vl, v, and v; are o-stable
Lévy measures v(dy) = Iy ,+1 dy, 0 < k <1. The
Laplace transform of rehabﬂlty function for three-

dimensional Lévy subordinators can be derived based
on Theorem 2:

RE(u,w) = u=H{w+ (b%,u jR3 —(wy) _ 1)v (dy)}

w+ (bjuy +b uy + bius)
—f (e*(unyﬁuzyﬁusys) —1)(1+ 0)(1 + 20) &akaks

= (mupuz) " rs
(T = 1)y (D1 = 1) y52) (D(1 — ie3)ys

Then the Laplace transform of lifetime moments in
the three-dimensional case is

M(T%, x) = nl(uruaus) fRs
(b u1+b Ll2+b u3)
7J(6—

R

(wryr+uayr+usys) _
= nl(uuyusz)”

We choose a simple case of x; = k; = k3 = 0.5 indi-
cating F(%) = /7 and 0 =2. The complicated integral
parts can be obtained as

111
J (g~ (myi+uayatusys) _ 1)(1 +2)(1+2%2) 222 :
R m}’lyz}’s
(vt) (vas) (vm)’ |
[<\/_)’1) (\/_)’2 ) (\/Eyé)z] Zdyldyzdy3

15 B
— WE J (g~ (myituyrtusys) 1)[),1 + 9 +y3]77dy1dy2dy3
R;
o 1+ 1 (1 — ) + w03
3

Uy — up
(u1 - u3)(u3 - Mz)

Therefore, the Laplace transform of the reliability
function is

@ -

— Dv(dy)} "

K1K2K3
V1))

(T = 1)) + (T = 1) p52)" + (T(1 = 13)95%) T

1)(1 + 0)(1 + 20)

RE(u, w) = (uyupu3) ™"

Uup—uy
(1 — us)(us — uz)

3 El El
lé + 7u1u§+uf(uzfu3)+u§u3 -1
w4+ (bjuy + byuy + bius) —

1)y + (D1 = 15,)y5)" 4+ (T(1 = 13)y)’) > dyy dydys

The Laplace transform of lifetime moments is

—n

(D1 = re)y) (D1 = 1) 5%) (T(1 = 13)55°)

%dyl d)/z dy3

M(Tg, x) = n!(u1u2u3)_1

5 5
2 2 2 —
—u 5 4ut (U —us)+usus } n

5
uj +

(1 — us)(us — uz)

uy—uy

{(bful + b§u2 + b;l/l_?,) —

Similar to the two-dimensional case, we choose differ-
ent values of dependence parameter to simulate the
processes. The three-dimensional simulated degrad-
ation paths are illustrated in Figure 8. The Laplace
transform of reliability function for three-dimensional
Lévy subordinators when 0=2 is given in Figure 9
for different sets of failure threshold values, which
shows that the reliability decreases monotonously as w
increases. Figures 10 shows that the reliability func-
tion of a 3-D Lévy subordinator degradation process
decreases with time ¢ under three fixed thresholds.

Conclusions and discussion

In this research, we develop general multi-dimensional
Lévy processes governed by Lévy copulas to describe
multiple degradation processes by integrally capturing
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Figure 5. Laplace transform of reliability function for 2-D Lévy subordinators (6 = 2).
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Figure 7. Reliability function for 2-D Lévy subordinators (0 = 5) when u;=0.2, u,=5.

the jumps with uncertainties and the dependence
among degradation processes in engineering systems.
One of the most important advantages of using Lévy

processes is that their jump parts represented by Lévy
measures can model a great deal of jump mechanisms
in degradation, which provides flexibility in fitting
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Figure 8. 3-dimensional Lévy subordinators (0 =5).

Time

Laplace transform of 3-D Levy subordinator reliability

0.4 T T
ul=1u2=2u3=3

0.35 ul=2u2=3u3=4 —
ut=02u2=05u3=4
ul=03u2=05u3=4

03[ =}

ul=03u2=05u3=5
ul=03u2=08u3=5

Figure 9. Laplace transform of reliability function for 3-D Lévy subordinators (0 = 2).
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Figure 10. Reliability function for 3-D Lévy subordinators (0 = 2)
when u;=0.2, u; = 2.5, u3 = 2.

various degradation data series. The multi-dimen-
sional degradation processes are modeled as a multi-
dimensional Lévy subordinator and each marginal

dimension is a one-dimensional Lévy subordinator.
The lifetime characteristics including reliability func-
tion and lifetime moments are derived by multi-
dimensional Lévy measures and Lévy copulas using
Fokker-Planck-Equations. The results provide a frame-
work to model the cumulative degradation and a
guideline for enhancing the long-term operation of
engineering systems.

A challenge in applying multi-dimensional Lévy
subordinators is how to estimate parameters in deg-
radation models and lifetime characteristics.
Traditional maximum likelihood estimation and
Bayesian estimation are not convenient for such gen-
eral stochastic processes without closed-form distribu-
tions. To apply our models to real degradation
datasets, the parametric estimation for subordinators
in (Jongbloed and van der Meulen 2006) has been
explored for the one-dimensional case (Shu, Feng, and



Liu 2019), where the cumulant M-estimation (CME)
method is developed based on the characteristic
function of Lévy subordinators. In multi-dimensional
degradation processes, the dependence parameters
coming from interactions between two or more
dimensions need to be considered and estimated. The
parameter estimation of multi-dimensional Lévy sub-
ordinators is a challenging problem that can be
explored based on the one-dimensional CME method
and Lévy copulas, which is a potential research direc-
tion in this field.
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Appendix: Preliminaries of m-dimensional Lévy
processes and copulas

In this section, we introduce some fundamental concepts
and related properties of Lévy processes and Lévy copulas,
considered on R’} space.

Definition Al. (Cont and Tankovs 2004). An m
(m > 1)-dimensional Lévy process X(t) is a cadlag stochastic
process with X"(0) = 0, and satisfies the following properties:

1. Independent increments: for a time sequence ty, ..., t,,
the increment random variables X(ty), ..., X(t,)—X(t..1)
are independent.

2. Stationary increments: the law of X (t+h) - X (t) does
not depend on t.

3. Stochastic continuity:Ne > 0,
X(t)>¢ = 0.

Based on the independent and stationary properties,
we can generate a random walk S,(A) =

1o (X((k+1)t) -X(kt)). When nA = t, X() = S,(A)
can be represented as a sum of n i.i.d. parts. A Lévy subor-
dinator X(t) is a class of Lévy processes that takes values in
[0, o) with a non-decreasing path.

For a one-dimensional Lévy process X(t), Lévy-It6 decom-
position shows that it can be decomposed into four parts: (1)
a drift term, bt, (2) a Brownian motion B,(t) with a covariance
matrix A, (3) a jump partﬁy‘>1y](t, dy) that is a compound

limy, _oP(|X(t + h)—

Poisson  process, and (4) another jump  part

Jyi<wU(t,dy) — v(t,dy)) that is the compensated version of
Poisson process |, <) (t,dy). The last part can have finite
or infinite activities, where (J(, dy) - v(t, dy)) is the compen-
sated Poisson random measure. The Lévy-It6 decomposition
can be extended to multi-dimensional Lévy processes.

Lemma Al. (Multi-dimensional Levy-Ito Decomposition).
If X () is an m-dimensional Lévy process, then there are a, b €
R™, a Brownian motion B, with a covariance matrix A, and an
independent Poisson random measure ] on (0,00) xXR™. For
eacht>0,

X(t) = bt + Bu(t)+ J y(J(t,dy) — v(t, dy))

lyl<1

+ J yI(t:dy),

[y=1

where v(t,dy) is an m-dimensional Lévy measure that satis-
fies v({0}) = 0 and[,,min{1, |y’ }v(dy) < oc. When the
covariance matrix A=0 and the drift b> 0, Lévy process
X(t) has a non-decreasing path, ie., a Lévy subordina-
tor Xg(1).
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To analyze the dependence structure of a multi-dimen-
sional Lévy subordinator Xs(t) = (XD, ..., X™(1)} where
m is the number of dimensions, the concepts of copulas
and sub-copulas need to be introduced.

Definition A2. (Nelsen 2006). An m-dimensional sub-
copula is a function C” with the following properties:

1. Dom C=8; X S X ---... X S,,,, where each Sy is a sub-
set of I= [0, 1];
2. Cis grounded and m-increasing;
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3. C has one-dimensional margins C;’, k = 1, 2,..., m,
which satisfy Cy’(u) = u for all u in Sy .

Definition A3. (Nelsen 2006). An m-dimensional copula
C is an m-dimensional sub-copula whose domain is I".

For an m-dimensional copula C (m >3), every k
dimensions in C is a k-dimensional sub-copula C’ and there

k
where 2 <k <m.

are (m) k-dimensional sub-copulas for C in total,
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