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ABSTRACT
The analysis of multiple dependent degradation processes is a challenging research problem
in the reliability field, especially for complex degradation processes with random jumps. To
integrally handle the jumps with uncertainties and the dependence among degradation
processes, we construct general multi-dimensional L�evy processes to describe multiple
dependent degradation processes in engineering systems. The evolution of each degrad-
ation process can be modeled by a one-dimensional L�evy subordinator with a marginal
L�evy measure. The dependence among all dimensions is described by L�evy copulas and the
associated multiple-dimensional L�evy measure. The multi-dimensional L�evy measure is
obtained from one-dimensional marginal L�evy measures and the L�evy copula. We develop
the Fokker-Planck equations to describe the time evolution of the probability density for
stochastic processes. The Laplace transforms of both reliability function and lifetime
moments are then derived. Numerical examples are used to demonstrate our models in life-
time analysis. The results of this research are expected to provide a precise reliability predic-
tion, help to avoid failures caused by multiple dependent degradation processes, and
maintain the long-term operation of a system.
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Introduction

In engineering applications, it is common to observe
more than one degradation process in a component
(e.g., multiple crack growth on a metal surface), or in
a multi-component system where several components
are subjected to degradation due to wear, aging,
fatigue, corrosion, etc. Typically, these degradation
processes are dependent due to the complicated
internal mechanisms (e.g., mechanical, thermal, elec-
trical, or chemical) and/or the exposure to the com-
mon external conditions (e.g., temperature, pressure,
humidity, or vibration). The analysis of multiple
dependent degradation processes is a challenging
research problem in the reliability field. They are
commonly described using multi-dimensional stochas-
tic processes that can characterize the physical degrad-
ation processes.

In reliability studies, stochastic processes have been
widely used to model the temporal variability in deg-
radation evolution, such as Wiener process, gamma
process, and inverse Gaussian process. A Wiener pro-
cess/Brownian motion with drift has been applied to

model the non-monotonic degradation process with
stationary and independent increments following a
normal distribution (Ye et al. 2013). The class of
gamma processes is another type of special stochastic
processes with independent and nonnegative incre-
ments that are random variables following a gamma
distribution. van Noortwijk (2009) provided an over-
view of applying gamma processes to model deterior-
ation in civil infrastructures for reliability analysis.
The inverse Gaussian (IG) process is another class of
stochastic processes that has independent and nonneg-
ative increments, which follow an IG distribution.
Wang and Xu (2010) developed an attractive
degradation model with monotonic paths based on
IG processes.

These stochastic processes, however, limit them-
selves to certain-distributed and independent incre-
ments that cannot fit different types of degradation
datasets in general. To relax the assumption of cer-
tain-distributed increments, researchers explored to
use L�evy processes for constructing degradation mod-
els with uncertain jumps (Çinlar 1977; Abdel-Hameed
1984; Shu, Feng, and Coit 2015, Shu et al. 2016, Shu,
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Feng, and Liu 2019). Abdel-Hammed (1984) used a
L�evy process to model the wear degradation and
studied its life distribution properties where the
threshold is assumed to be random. Shu, Feng, and
Coit (2015) gave a new closed-form reliability func-
tion for degradation described by L�evy subordinators,
a class of non-decreasing L�evy processes. Using
Fokker-Planck Equations (FPE), a tool for modeling
stochastic processes without analytical forms of prob-
ability distributions, Shu et al. (2016) derived the
explicit results for the reliability function and lifetime
characteristics of degradation processes with uncer-
tainty jumps modeled by L�evy subordinators and their
extensions. In addition, the parameters in stochastic
degradation models are estimated using linear pro-
graming estimators and empirical characteristic func-
tions (Shu, Feng, and Liu 2019).

In engineering practices, however, multiple degrad-
ation processes can occur simultaneously in a system
that affect the performance and reliability of the sys-
tem. For example, for an LED lighting system, Sari
et al. (2009) developed a bivariate constant stress deg-
radation data model to describe two degradation fail-
ures that dominate the system reliability. To study
and model multiple degradation processes, a challenge
to be addressed is how to describe and model the
dependence structures among those degradation proc-
esses. Liu et al. (2014) used a multi-dimensional
Wiener process to model the degradation, in which
the dependence among degradation was described by
a covariance matrix. While the covariance can only
describe the linear dependence, copulas can capture
the whole dependence structure including various
non-linear and linear forms of dependence among
random variables.

Copula analysis is an effective tool to extend mar-
ginal probability distributions to multi-dimensional
probability distributions. The concept of copulas was
introduced to separate the dependence structure of a
random vector from its univariate margins (Sklar
1996). By providing a complete characterization of
possible dependence structures of a random vector
with fixed margins, copulas can be used to construct
multi-dimensional distributions with specified depend-
ence and arbitrary marginal laws. Li (1999) developed
a copula function to approach the default correlation
of multiple-entities survival time. Based on a chosen
copula function, they computed the pairwise correl-
ation of survival times and obtained the default correl-
ation of two discrete events. Embrechts et al. (2002)
used the copula concept to represent the dependence
of a random vector for risk management modeling.

Recently, the copula method has been applied in the
analysis of multi-dimensional degradation processes.
Hao, Su, and Li (2015) monitored the reliability of
LED lighting systems via multi-dimensional Gamma
processes where the dependence is described by Frank
copula. For multiple dependent performance charac-
teristics, Wang et al. (2015) used a copula function in
estimating the residual life. Sun et al. (2016) applied
the copula method in Wiener processes to analyze
multiple nonlinear accelerated degradation processes
for highly reliable products. Peng et al. (2016) utilized
Wiener process, IG process and copula functions to
model a bivariate degradation process. Using stochas-
tic process models with Gaussian copula, Peng, Ye,
and Chen (2019) studied residual lifetime prediction
of multiple degradation systems with measurement
errors. More recently, Fang, Pan, and Hong (2020)
used four Archimedean copulas in a multivariate deg-
radation analysis for monitoring more than one per-
formance characteristic of a product.

With similar properties to regular copulas, L�evy
copulas are introduced to completely characterize the
dependence among components of multi-dimensional
L�evy processes by utilizing L�evy measures and separat-
ing the information around multiple components
(Cont and Tankovs 2004, Barndorff-Nielsen and
Lindner 2007). Extended from regular copulas, L�evy
copula is a defined function that maps marginal prob-
ability functions to the joint probability function for
multi-dimensional L�evy processes. It separates the
dependence structure and univariate margins of
multi-dimensional L�evy processes. As one of the
major copula families, Archimedean copulas include a
large number of member copula functions that can
represent different types of dependency structures
(Naifar 2011). The role of L�evy copulas is described in
details by Sklar’s theorem (Aas et al. 2009). For an m-
dimensional L�evy process X(t), Sklar’s theorem char-
acterizes the multi-dimensional L�evy measure v using
one-dimensional marginal L�evy measures vi (i¼ 1, 2,
… , m) and the L�evy copula C. In addition, it also
describes one-dimensional marginal L�evy measures vi
as the projections of v on m dimensions.

In this research, we intend to construct general
multi-dimensional L�evy processes governed by L�evy
copulas to model multiple degradation processes by
integrally handling the jumps with uncertainties and the
dependence among degradation processes in engineer-
ing systems. Although multi-dimensional L�evy proc-
esses governed by L�evy copulas have been applied in
actuarial and insurance analysis (Bauerle, Blatter, and
Muller 2008), they have not been widely used in the
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analysis of multiple degradation processes in engineer-
ing systems. Existing studies described multiple depend-
ent degradation processes using multi-dimensional
Wiener processes, Gamma processes, and IG processes.
However, Wiener-based models cannot handle the
jumps in degradation, while the Gamma- and Poisson-
based models are not flexible in general. To precisely
evaluate and predict reliability characteristics, it is crit-
ical to construct appropriate stochastic processes with
appropriate copulas to handle internally-induced sto-
chastic uncertainties, complex jumps, and dependence.
One of the most important advantages of using L�evy
processes to model degradation is that their jump parts
represented by L�evy measures can model a great deal of
jump mechanisms in degradation, which provides flexi-
bility in fitting various degradation data series. More
specifically, we use non-decreasing multi-dimensional
L�evy processes, or multi-dimensional L�evy subordina-
tors, to model the commonly observed degradation
behaviors in this research.

The remainder of this paper is organized as follows.
In section “L�evy copulas and L�evy measures”, we con-
struct multi-dimensional copulas for multiple depend-
ent degradation processes described by L�evy
subordinators. In section “Reliability function and life-
time moments”, the multi-dimensional L�evy measures
are derived based on the multi-dimensional L�evy cop-
ula obtained in section “L�evy copulas and L�evy meas-
ures”. The reliability function and lifetime moments
are also derived. Simulation studies are implemented
in section “Simulation and numerical examples”, while
Section “Conclusions and discussion” provides the
conclusion and future research directions.

Notations

� Euclidean space: Rm, m 2 N
� Inner product: hx, yi ¼Pm

i¼1 xiyi
� Euclidean norm: jxj ¼ hx, xi1=2 ¼ Pm

i¼1 xixi
� �1 2=

� Brownian motion under covariance matrix A at
time t: BA(t)

� m-dimensional L�evy process: X(t) ¼ {X1(t),
… , Xm(t)}

� m-dimensional L�evy subordinators: XS(t) ¼ {XS
1(t),

… , XS
m(t)}

� L�evy symbol: g(l)
� Marginal L�evy measure: vi(dyi), i¼ 1, 2,… ., m
� m-dimensional L�evy copula: C(u1,… .,um)
� m-dimensional L�evy measure under copula

C: vC(dy1… .dym)
� Reliability function at time t: R(t)

� Marginal reliability function at time t: Ri(t), i¼ 1,
2,… ., m

� Laplace transform of reliability function at time t:
RLL(u, w)

� Laplace transform of lifetime moments: ML(TX
n,x)

� Poisson random measure at time t: J(t, dy)
� A volume function: U

L�evy copulas and L�evy measures

L�evy copulas for multi-dimensional L�evy processes are
defined by extending the definition of regular copulas
(Cont and Tankovs 2004). For references, some fun-
damental concepts and preliminaries of multi-
dimensional L�evy processes and regular copulas are
described in the appendix. The main difference
between regular copulas and L�evy copulas lies in the
domain and range.

Definition 1. (Cont and Tankovs 2004). A function
C defined on Rm ! R is called L�evy copula if:

1. C (u1, u2,… … ,um) 6¼ 1 for (u1, u2,… … ,um)
6¼ (1,1,… .,1);

2. C(u1, u2,… … ,um) ¼ 0 if ui ¼ 0 for at least one i
2 {1, 2,… ,m} (grounded);

3. C is m-increasing;
4. C(i)(u) ¼ u for i 2 {1, 2,… , m}, u 2 R (uni-

form marginal).

In this research, all multivariate L�evy processes,
L�evy measures and L�evy copulas are considered on
Rm
þ space. When we change the domain and range

from Rm ! R to Rm
þ! Rþ, it becomes a positive

L�evy copula.
An important feature of L�evy copulas is that they

can separate the marginal and internal dependence
structures for multi-dimensional L�evy processes, as
described in Sklar’s theorem. The theorem describes
the relationship between L�evy copula C, the volume
function (also named the tail integral) U, and the
marginal volume functions {U1,… , Um} in multi-
dimensional L�evy processes.

Theorem 1. (Sklar’s theorem, Barndorff-Nielsen and
Lindner 2007). For an m-dimensional L�evy measure v

that satisfies v({0}) ¼ 0 and
Ð
Rmminf1, jyj2gvðdyÞ < 1

with a volume function U and marginal volume functions
{U1,… ., Um}, there exists a (positive) L�evy copula C such
that:

F x1, :::, xmð Þ ¼ C F1 x1ð Þ, :::, Fm xmð Þ� �
,8x1, ::::, xm 0,1½ �:

(1)
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L�evy copula C is uniquely determined on Ran(U1)�
… �Ran(Um). Conversely, if C is a positive L�evy copula
and {U1,… .,Um} are volume functions of one-dimen-
sional positive L�evy measures v1,… .,vm, then (1)
defines a L�evy measure v 2 Lþ

m with a volume func-
tion U and marginal L�evy measures v1,… .,vm.

The random jumps in multi-dimensional degrad-
ation processes are measured and represented by a
multi-dimensional L�evy measure vC associated with
L�evy copula. Based on Sklar’s theorem, the margins
and internal dependence structures of vC are separated
by the corresponding L�evy copula C. Therefore, an
important problem to be addressed is to derive the
multi-dimensional L�evy measure vC from the corre-
sponding L�evy copula C.

Multi-dimensional L�evy measures from
L�evy copulas

The mathematical relationship between L�evy copula C
and the associated L�evy measure vC can be considered
as a mapping, where a bijection is defined under the
multi-dimensional space (Barndorff-Nielsen and
Lindner 2007):

Qm : 0,1½ �m ! 0,1½ �m, x1, :::, xmð Þ ! x1
�1, :::, xm

�1
� �

,

such that Qm ¼ Qm
�1. Another measure v is also

defined such that vC is the image of v on an m-
dimensional Boral set B:

v Bð Þ ¼ Qvð Þ Bð Þ ¼ v Q�1 Bð Þ� �
, 8B � 0,1½ �m:

Using the fact that the L�evy copula C has a uniform
margin, we can find the measure satisfying:

vCð 0,1½ �k�1 � 0, xk½ � � 0,1½ �m�kÞ ¼
Cð1, ::::, xk, ::::,1Þ ¼ xk,

(2)

which implies that there is a L�evy copula C satisfying
vC ¼ v. Since Qm ¼ Qm

�1, we can get the relationship
between L�evy measure vC and L�evy copula C:

vCð x1,1½ � � � � � ::� xm,1½ �Þ ¼ vC

� Q�1
m ð x1,1½ �, :::::, xm,1½ �Þ ¼ Cðx�1

1 , ::::, x�1
m Þ: (3)

L�evy measures for multiple-dimensional L�evy
subordinators

Due to the non-decreasing path of most degradation
processes in practice, we study the special class of
L�evy processes, L�evy subordinators XS(t), which take
values in [0, 1) with a non-decreasing path. Based on
Sklar’s theorem, L�evy copulas are an important way to

analyze and organize the internal multivariate struc-
tures, and build bivariate and multivariate distribu-
tions with given margins (Joe 1993). One of the
parametric copula families is the Archimedean copula
that is easy to construct and has a wide application in
several fields (Wang, Wu, and Lai 2013). The standard
expression for this family in m-dimension is

C u1, :::, umð Þ ¼ u�1 u u1ð Þ þ :::þ u umð Þ� �
, (4)

where u is called a generator of the copula family,
which is a continuous, strictly decreasing function
from [0, 1] to [0, 1] such that u(1) ¼ 0.

A sub-family of Archimedean copula, Clayton cop-
ula family, is widely considered in modeling multi-
dimensional L�evy subordinators (Jaworski et al. 2009).
An m-dimensional Clayton copula C for an m-dimen-
sional L�evy subordinator XS(t) ¼ {XS

1(t),… ., XS
m(t)}

is defined on Rþ
m ! Rþ:

C u1, :::, umð Þ ¼
Xm
i

u�h
i

 !�1
h

, (5)

and h 2 (0, 1) is the dependence parameter, where a
larger value of h represents the stronger dependence.

Based on Eq. (1) and (5), we have:

F x1, :::, xmð Þ ¼ C F1 x1ð Þ, :::, Fm xmð Þ� �
¼ F1ðx1Þ�h þ :::þ FmðxmÞ�h
h i�1

h

:
(6)

For a Boral set B ¼ [x1, 1]�… �[xm, 1] in [0, 1]m,
we can simply plug it into Eq. (3) such that

vCð x1,1½ � � � � � � xm,1½ �Þ ¼ vC � Q�1
m ð x1,1½ �, ::::, xm,1½ �Þ

¼ ð 0, x1
�1

� �
:::: 0, xm

�1
� �

Þ
¼ C x1

�1, :::, xm
�1

� �
¼ F x1, :::, xmð Þ,

which is a L�evy measure for the m-dimensional L�evy
subordinator XS(t) ¼ {XS

1(t),… , XS
m(t)}, since there

is no atom for vC at zero. A continuous measure is
said to have no atom (Sun and Duan 2012).

An m-dimensional L�evy measure vC has m margins,
U1,… , Um, which are volume functions of one-
dimensional positive L�evy measures. We define a one-
dimensional bijection, Q1: [0, 1] ! [0, 1], to map
xi ! xi

�1 (i¼ 1, 2,… , m), and another measure vi
where vi([0, x]) ¼ C(x) ¼ x. Then we can get the
one-dimensional L�evy measure:

vi ¼ vi Q1
�1, i ¼ 1, 2, :::, m: (7)

Therefore, for an m-dimensional L�evy subordinator
XS(t) ¼ {XS

1(t),… ., XS
m(t)}, each marginal subordina-

tor XS
i(t), i¼ 1, 2,… , m, can be expressed by vi(dy)

based on one-dimensional L�evy-Itô decomposition.
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Reliability function and lifetime moments

For an m-dimensional degradation process modeled
by a multi-dimensional L�evy subordinator XS(t) ¼
{XS

1(t),… ., XS
m(t)}, the failure time of a system can

be defined as the time when any degradation process
exceeds its failure threshold xi, i¼ 1, 2, … , m, i.e., a
series system is considered in this research. Therefore,
the failure time of a system can be defined as Tx �
inf{t: X1(t) > x1,… , Xm(t) > xm}. Accordingly, the
reliability function can be defined as R(t) ¼ P(Tx 	 t)
¼ P(X1(t) 
 x1,… , Xm(t) 
 xm) ¼ FXs(t)(x). At the
initial time t¼ 0, we have R(x, 0) ¼ P(Tx 	 0) ¼
P(XS(t) 
 x) � 1, x ¼ (x1, x2,… xm), as the system is
new without cumulating degradation at t¼ 0. Since
there are no closed-form distribution functions for
L�evy subordinators, it is challenging to derive reliabil-
ity functions and lifetime moments. Fokker-Planck
equations (Sun and Duan 2012) provide us a way to
overcome the challenge in analyzing probability laws
for stochastic processes.

Fokker-Planck equations

In a stochastic dynamical system, stochastic differen-
tial equations (SDE) are a main tool to model the
dynamical status. For stochastic differential equations,
Fokker-Planck equations (FPE) provide an effective,
deterministic tool to manage the transition probability
density (Soize 1994). The FPE of stochastic differential
equations with L�evy processes were derived in Sun
and Duan (2012), which provides a new way to obtain
the probability laws for a L�evy subordinator, and
therefore, the reliability function.

The Fokker-Planck equation of general stochastic
dynamical systems is given as (Sun and Duan 2012)

@pðx, tÞ
@t

¼ � @

@x
ðf ðx, tÞpðx, tÞ � b

@

@x
ðrðx, tÞpðx, tÞÞ

þ 1
2
A

@2

@x2
ðr2ðx, tÞpðx, tÞÞ

þ
ð

R f0g

X1
k¼1

ð�yÞk
k!

@k

@xk
ðrkðx, tÞpðx, tÞÞ

"

þIð�1, 1ÞðyÞy @

@x
ðrðx, tÞpðx, tÞÞ

�
vðdyÞ:

(8)

When r(x, t) ¼ 1, it is the Fokker-Planck equation
for a stochastic dynamical system with an additive
L�evy process (Soize 1994).

Based on the L�evy-Itô decomposition in Lemma A1
of the appendix, a multi-dimensional degradation

process modeled by a L�evy process can be decom-
posed into four parts: (1) a drift term, bt, (2) a
Brownian motion BA(t) with a covariance matrix A,
(3) a jump part

Ð
jyj	1yJðt, dyÞ that is a compound

Poisson process, and (4) another jump partÐ
jyj<1y Jðt, dyÞ � vðt, dyÞ� �

that is the compensated ver-

sion of Poisson process
Ð
0
jyj
1yJðt, dyÞ: The last part

can have finite or infinite activities, where (J(t, dy) –
v(t, dy)) is the compensated Poisson random measure.
Using Eq. (8), we can derive the Fokker-Planck equa-
tion for a multi-dimensional L�evy subordinator.

Lemma 1. For a multi-dimensional degradation pro-
cess with random jumps modeled by L�evy subordina-
tors, the Fokker-Planck equation is

@pðx, tÞ
@t

¼ �b1
@pðx, tÞ
@x1

� ::::::� bm
@pðx, tÞ
@xm

þ
ð
Rm
þ

ðpðx1 � y1, ::::, xm � ym, tÞ � pðx, tÞÞvðdyÞ

þ
ð
Rm
þ

ð1jyj<1y1
@pðx, tÞ
@x1

þ ::::þ 1jyj<1ym
@pðx, tÞ
@xm

ÞvðdyÞ,

(9)

where x ¼ (x1, … , xm) is the threshold vector and
v(dy) ¼ v(dy1, … , dym) is the m-dimensional
L�evy measure.

Lifetime characteristics for L�evy subordinators

For a one-dimensional L�evy subordinator XS(t), Shu
et al. (2016) showed that the relationship between the
Laplace transform of reliability function RLL(u, w) and
the Laplace transform of the probability density func-
tion pLL(u, w) is:

RLL u, wð Þ ¼ u�1pLL u, wð Þ:
The relationship between the Laplace transform
of lifetime moments and the Laplace transform of

the derivative of reliability function ~Qðx, tÞ ¼
� @

@t Rðx, tÞ is:

ML TX
n, uð Þ ¼ ~Q

LL

n
ðu, 0Þ:

Accordingly, we extend the results from the one-
dimensional case to the multi-dimensional case as in
Lemma 2 and Lemma 3. For a multi-dimensional deg-
radation process modeled by a multi-dimensional
L�evy subordinator, the multi-dimensional Laplace
transform of both reliability function and lifetime
moments RX(x, t) and M(TX

n, x), x ¼ (x1,… .,xm), can
be derived from FPE and represented by L�evy meas-
ure vC with copula C.
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Lemma 2. Let RLL(u, w) be the Laplace transform of
an m-dimensional reliability function RX(x, t) where
x ¼ (x1,… , xm) and u ¼ (u1,… , um), then

RLL u, wð Þ ¼ u�1pLL u, wð Þ: (10)

Lemma 3. Let ~Qðx, tÞ ¼ � @
@t Rðx, tÞ be the derivative

of an m-dimensional reliability function, and ~Q
LLðu,wÞ

is the Laplace transform of ~Qðx, tÞ and ~Q
LL
n ðu,wÞ ¼

ð�1Þn @n ~Q
LLðu,wÞ
@wn , where x ¼ (x1,… , xm) and u ¼

(u1,… , um), then

ML TX
n, uð Þ ¼ ~Q

LL

n
ðu, 0Þ: (11)

Based on Lemma 2, we derive and present the
closed form of reliability function RX(x, t) in terms of
m-dimensional Laplace transform, as in Theorem 2.

Theorem 2. For multiple dependent degradation
processes with random jumps described by a multi-
dimensional L�evy subordinator XS(t) ¼ {XS

1(t),… .,
XS

m(t)}, the multi-dimensional Laplace transform of
reliability function RX(x, t) is

RLLðu,wÞ ¼ u�1fwþ hb�, ui �
ð
Rm
þ

ðe�hu, yi � 1ÞvðdyÞg�1,

(12)

where b� ¼ b� Ð jyj<1 yvðdyÞ ¼ (b1�,… , bm�) is an m-

dimensional constant vector, u ¼ (u1,… , um), v(dy) ¼
v(dy1,… , dym) is an m-dimensional L�evy measure and
m is the number of dimensions.

Proof. Let p(x, t) ¼ p(x1,… , xm, t) be the probability
density function for an m-dimensional L�evy subordi-
nator XS(t) ¼ {XS

1(t),… , XS
m(t)}. Based on Lemma 1,

the FPE of XS(t) can be presented by Eq. (9) . We can
perform a Laplace transform of p(x, t) with respect to
(w.r.t.) t on both sides of Eq. (9)

wpLðx,wÞ � pðx, 0Þ

¼ �b1
@pLðx,wÞ

@x1
:::::::� bm

@pLðx,wÞ
@xm

þ
ð
Rm
þ

�
pLðx1 � y1, :::::, xm � ym,wÞ � pLðx1, :::::, xm,wÞ

þ Ijyj<1

�
y1
@pLðx,wÞ

@x1
þ :::::þ ym

@pLðx,wÞ
@xm

	�
vðdyÞ:

Performing an m-dimensional Laplace transform w.r.t.
x ¼ (x1,… , xm) on both sides:

wpLLðu,wÞ � I ¼ �hb, uipLLðu,wÞ þ
ð
Rm
þ

e�hu, yipLLðu,wÞ

� pLLðu,wÞ þ Ijyj<1hu, yipLLðu,wÞ�vðdyÞ:

Let b� ¼ b� Ð jyj<1 yvðdyÞ ¼ (b1�,… , bm�). Therefore,
the double Laplace transform of probability density
function p(x, t) ¼ p(x1,… , xm, t) is obtained as

pLLðu,wÞ ¼ fwþ hb�, ui �
ð
Rm
þ

ðe�hu, yi � 1ÞvðdyÞg�1:

Based on Lemma 2, the m-dimensional Laplace trans-
form of reliability function can be written as

RLLðu,wÞ ¼ u�1fwþ hb�, ui �
ð
Rm
þ

ðe�hu, yi � 1ÞvðdyÞg�1:

As we can observe in (12), the Laplace transform of
reliability function is a monotonous function with
time transform w such that it decreases monotonously
as w increases when the thresholds are fixed.

In addition, the expression of lifetime moments
ML(TX

n, x) in terms of m-dimensional Laplace trans-
form can be derived and presented as Theorem 3
based on Lemma 3.

Theorem 3. For multiple dependent degradation proc-
esses with random jumps described by a multi-dimen-
sional L�evy subordinator XS(t) ¼ {XS

1(t),… ., XS
m(t)},

the multi-dimensional Laplace transform of lifetime
moments MLðTn

X , xÞis

MLðTn
X , xÞ ¼ n!u�1



hb�, ui �

ð
Rm
þ

ðe�hu, yi � 1ÞvðdyÞ
��n

,

(13)

where b� ¼ b� Ð jyj<1 yvðdyÞ ¼ (b1�,… , bm�) is an

m-dimensional constant vector, u ¼ (u1,… , um),
v(dy) ¼v(dy1,… , dym) is an m-dimensional L�evy
measure and m is the number of dimensions.

Proof. Let ~Q
LLðu,wÞ be the Laplace transform of

~Qðx, tÞ with respect to x and t. Based on Theorem 2,
we can take a double Laplace transform on this equa-
tion and obtain:

~Q
LLðu,wÞ ¼ �wRLLðu,wÞ þ u�1

¼ �wu�1fwþ hb�, ui
�
ð
Rm
þ

ðe�hu, yi � 1ÞvðdyÞg�1 þ u�1:
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The n-order differential equation is

@n ~Q
LLðu,wÞ
@wn w¼0

¼0þð�u�1Þw"
@nfwþhb�,ui�Ð Rm

þ
ðe�hu,yi�1ÞvðdyÞg�1

@wn

#
w¼0

�ðu�1Þ
"
n@n�1fwþhb� ,ui�

Ð
Rm
þ
ðe�hu,yi�1ÞvðdyÞg�1

@wn�1

#
w¼0

,

and

@n�1fwþhb�,ui�Ð Rm
þ
ðe�hu,yi�1ÞvðdyÞg�1

@wn�1

¼ð�1Þn�1ðn�1Þ!½wþhb�,ui�
ð
Rm
þ

ðe�hu,yi�1ÞvðdyÞ��n:

It can be re-written as

@n ~Q
LLðu,wÞ
@wn w¼0

¼ ð�u�1Þð�1Þn�1ðn� 1Þ!fwþ hb�, ui

�
ð
Rm
þ

ðe�hu, yi � 1ÞvðdyÞg�n
w¼0

¼ ð�u�1Þð�1Þn�1ðn� 1Þ!fhb�, ui
�
ð
Rm
þ

ðe�hu, yi � 1ÞvðdyÞg�n:

Finally, from Eq. (11), we can obtain

MLðTn
X , uÞ ¼ ~Q

LL

n
ðu, 0Þ ¼ ð�1Þn@

n ~Q
LLðu,wÞ
@wn w¼0

¼ u�1n!



hb�, ui �

ð
Rm
þ

ðe�hu, yi � 1ÞvðdyÞ
��n

:

Simulation and numerical examples

To demonstrate our theorems and models, we imple-
ment the algorithm by Cont and Tankovs (2004) to
simulate the two-dimensional and three-dimensional
subordinator series with dependent components. For a
simple case to illustrate, the marginal L�evy subordina-
tor is assumed to be a positive a-stable subordinator
PSa(t) that is a type of pure jump L�evy processes
based on a-stable L�evy measure.

Two-dimensional L�evy subordinators

In a two-dimensional L�evy subordinator XS(t) ¼
{XS

1(t), XS
2(t)}, XS

1(t) and XS
2(t) are two dependent

a-stable subordinators represented by their marginal
a-stable L�evy measures and the two-dimensional

Clayton L�evy copula Cðu1, u2, hÞ ¼ ðu1�h þ u2�hÞ�1
h ,

where the strength of dependence is described by the
dependence parameter h 2 (0, 1). The marginal L�evy
measures are a-stable L�evy measures, v(dy) ¼

j
Cð1�jÞ

1
yjþ1 dy, 0 < j < 1. Based on Eq. (3), the two-

dimensional L�evy measure can be described as the
second derivative of the L�evy copula

vðy1, y2Þ ¼ @Cðz1, z2Þ
@z1@z2

����z1¼F1ðx1Þ, z2¼F2ðx2Þv1v2

¼ ð1þ hÞ
�ð1
x1

v1dy1

��1�h�ð1
x2

v2dy2

��1�h

�ð1
x1

v1dy1
�h þ

ð1
x2

v2dy2
�h

��1
h�2

v1v2,

where v1(dy1) ¼ j1
Cð1�j1Þ

1
y1jþ1 dy1 and v2(dy2)

¼ j2
Cð1�j2Þ

1
y2j2þ1 dy2:

Based on Theorem 2, we can derive the Laplace
transform of reliability function as

RLLðu,wÞ ¼ u�1fwþ hb�, ui �
ð
R2
þ

ðe�hu, yi � 1ÞvðdyÞg�1

¼ ðu1u2Þ�1

(
wþ ðb�1u1 þ b�2u2Þ

�
ð
R2
þ

ðe�ðu1y1þu2y2Þ � 1Þð1þ hÞ j1j2
y1y2

ðCð1� j1Þyj11 Þ1þhðCð1� j2Þyj22 Þ1þh

½ðCð1� j1Þyj11 Þh þ ðCð1� j2Þyj22 Þh��2�1
hdy1dy2

)�1

,

where w is the Laplace transform of time t. We choose a
simple case that C 1

2

� � ¼ ffiffiffi
p

p
, which means j1 ¼ j2 ¼

0.5. When h ¼ 2, the integral part of the Laplace trans-
form of reliability function can be derived asÐ

R2
þ
ðe�ðu1y1þu2y2Þ � 1Þð1þ hÞ j1j2

y1y2
ðCð1� j1Þyj11 Þ1þ2

ðCð1� j2Þyj22 Þ1þ2½ðCð1� j1Þyj11 Þ2

þðCð1� j2Þyj22 Þ2��2�1
2dy1dy2

¼ 3
4
ffiffiffi
p

p
ð
R2
þ

ðe�ðu1y1þu2y2Þ � 1Þðy1 þ y2Þ
�5
2 dy1dy2

¼ � u3=21 � u3=22

u1 � u2
,
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where u1 and u2 are Laplace transform of two failure
thresholds x1 and x2.

The simulation results are shown in Figures 1–3.
We choose h ¼ 2, h ¼ 5 and h ¼ 10 to represent
the relatively weak, medium and strong dependence
relationships, respectively. These figures show that a
larger dependence parameter h indicates the stronger
dependence between two degradation processes than a
smaller dependence parameter does. In addition, the
rank correlation coefficients are obtained as 0.333,
0.714, and 0.833 for h ¼ 2, h ¼ 5 and h ¼ 10,
respectively, by using the copulastats() function
in Matlab.

Figure 4 shows that the first moment of lifetime
increases as the thresholds increase on each dimension.
For different sets of failure threshold values, Figure 5

illustrates that the Laplace transform of reliability func-
tion for 2-D L�evy subordinators decreases monoton-
ously as w increases. When we fix the two failure
thresholds, the reliability function for 2-D L�evy subordi-
nators decreases as the time t increases in Figures 6
and 7, with different values of dependent parameters.

Three-dimensional L�evy subordinators

For a three-dimensional L�evy subordinator XS(t) ¼
{XS

1(t), XS
2(t), XS

3(t)}, the Clayton L�evy copula is
extended to be Cðu1, u2, u3, hÞ ¼ ðu1�h þ u2�hþ
u3�hÞ�1

h : The three-dimensional L�evy measure is the
third order derivative of the L�evy copula, which can
be derived as

Figure 2. 2-dimensional L�evy subordinators (h¼ 5).

Figure 1. 2-dimensional L�evy subordinators (h¼ 2).
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Figure 3. 2-dimensional L�evy subordinators (h¼ 10).

Figure 4. The first moment of lifetime for 2-D L�evy subordinators (h¼ 2).

vðy1, y2, y3Þ ¼ @3Cðz1, z2, z3Þ
@z1@z2@z3

jz1¼F1ðx1Þ, z2¼F2ðx2Þ, z3¼F3ðx3Þv1v2v3

¼
@2ðz1�h þ z2�h þ z3�hÞ�1

h �1z1�h�1 �hð Þ � 1
h

� 	
@z2@z3

v1v2v3

¼
@ðz1�h þ z2�h þ z3�hÞ�1

h �2z1�h�1z2�h�1 �hð Þ � 1þ h
h

� 	
@z3

v1v2v3

¼ 1þ hð Þð1þ 2hÞ
ð1
x1

v1dy1

2
64

3
75
�1�h ð1

x2

v2dy2

2
64

3
75
�1�h ð1

x3

v3dy3

2
64

3
75
�1�h ð1

x1

v1dy1
�h þ

ð1
x2

v2dy2
�h þ

ð1
x3

v3dy3
�h

2
64

3
75
�1

h�3

v1v2v3:
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All marginal L�evy measures v1, v2 and v3 are a-stable
L�evy measures v(dy) ¼ j

Cð1�jÞ
1

yjþ1 dy, 0 < j < 1. The

Laplace transform of reliability function for three-
dimensional L�evy subordinators can be derived based
on Theorem 2:

Then the Laplace transform of lifetime moments in
the three-dimensional case is

We choose a simple case of j1 ¼ j2 ¼ j3 ¼ 0:5 indi-
cating C 1

2

� � ¼ ffiffiffi
p

p
and h¼ 2. The complicated integral

parts can be obtained as

ð
R3
þ

e�ðu1y1þu2y2þu3y3Þ � 1ð Þ 1þ 2ð Þð1þ 2 � 2Þ
1
2
1
2
1
2

p
3
2y

3
2
1y

3
2
2y

3
2
3

ffiffiffi
p

p
y
1
2
1

� �3 ffiffiffi
p

p
y
1
2
2

� �3 ffiffiffi
p

p
y
1
2
3

� �3
ffiffiffi
p

p
y
1
2
1

� �2
þ ffiffiffi

p
p

y2
1
2

� �2
þ ffiffiffi

p
p

y
1
2
3

� �2� ��3�1
2

dy1dy2dy3

¼ 15
8
ffiffiffi
p

p
ð
R3
þ

e�ðu1y1þu2y2þu3y3Þ � 1ð Þ y1 þ y2 þ y3½ ��7
2 dy1dy2dy3

¼
u

5
2
3 þ

�u1u
5
2
2 þ u

5
2
1ðu2 � u3Þ þ u

5
2
2u3

u1 � u2
ðu1 � u3Þðu3 � u2Þ :

Therefore, the Laplace transform of the reliability
function is

RLLðu,wÞ ¼ ðu1u2u3Þ�1

(
wþ ðb�1u1 þ b�2u2 þ b�3u3Þ �

u
5
2
3 þ �u1u

5
2
2þu

5
2
1ðu2�u3Þþu

5
2
2u3

u1�u2

ðu1 � u3Þðu3 � u2Þ

)�1

:

The Laplace transform of lifetime moments is

MðTn
X , xÞ ¼ n! u1u2u3ð Þ�1

(
b�1u1 þ b�2u2 þ b�3u3
� �� u

5
2
3 þ �u1u

5
2
2þu

5
2
1ðu2�u3Þþu

5
2
2u3

u1�u2

ðu1 � u3Þðu3 � u2Þ

)�n

:

Similar to the two-dimensional case, we choose differ-
ent values of dependence parameter to simulate the
processes. The three-dimensional simulated degrad-
ation paths are illustrated in Figure 8. The Laplace
transform of reliability function for three-dimensional
L�evy subordinators when h¼ 2 is given in Figure 9
for different sets of failure threshold values, which
shows that the reliability decreases monotonously as w
increases. Figures 10 shows that the reliability func-
tion of a 3-D L�evy subordinator degradation process
decreases with time t under three fixed thresholds.

Conclusions and discussion

In this research, we develop general multi-dimensional
L�evy processes governed by L�evy copulas to describe
multiple degradation processes by integrally capturing

RLLðu,wÞ ¼ u�1fwþ hb�, ui � Ð R3
þ
ðe�hu, yi � 1ÞvðdyÞg�1

¼ ðu1u2u3Þ�1

wþ ðb�1u1 þ b�2u2 þ b�3u3Þ
�Ð R3

þ
ðe�ðu1y1þu2y2þu3y3Þ � 1Þð1þ hÞð1þ 2hÞ j1j2j3y1y2y3

ðCð1� j1Þyj11 ÞhðCð1� j2Þyj22 ÞhðCð1� j3Þyj33 Þh½ðCð1� j1Þyj11 Þh þ ðCð1� j2Þyj22 Þh þ ðCð1� j3Þyj33 Þh��3�1
hdy1dy2dy3

8><
>:

9>=
>;

�1

:

MðTn
X , xÞ ¼ n!ðu1u2u3Þ�1fhb�, ui � Ð R3

þ
ðe�hu, yi � 1ÞvðdyÞg�n

¼ n!ðu1u2u3Þ�1

ðb�1u1 þ b�2u2 þ b�3u3Þ
�
ð
R3
þ

ðe�ðu1y1þu2y2þu3y3Þ � 1Þð1þ hÞð1þ 2hÞ j1j2j3
y1y2y3

ðCð1� j1Þyj11 ÞhðCð1� j2Þyj22 ÞhðCð1� j3Þyj33 Þh

½ðCð1� j1Þyj11 Þh þ ðCð1� j2Þyj22 Þh þ ðCð1� j3Þyj33 Þh��3�1
hdy1dy2dy3

8>>>><
>>>>:

9>>>>=
>>>>;

�n

:
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the jumps with uncertainties and the dependence
among degradation processes in engineering systems.
One of the most important advantages of using L�evy

processes is that their jump parts represented by L�evy
measures can model a great deal of jump mechanisms
in degradation, which provides flexibility in fitting

Figure 5. Laplace transform of reliability function for 2-D L�evy subordinators (h¼ 2).

Figure 6. Reliability function for 2-D L�evy subordinators (h ¼ 2) when u1¼1, u2¼1.

Figure 7. Reliability function for 2-D L�evy subordinators (h ¼ 5) when u1¼0.2, u2¼5.
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various degradation data series. The multi-dimen-
sional degradation processes are modeled as a multi-
dimensional L�evy subordinator and each marginal

dimension is a one-dimensional L�evy subordinator.
The lifetime characteristics including reliability func-
tion and lifetime moments are derived by multi-
dimensional L�evy measures and L�evy copulas using
Fokker-Planck-Equations. The results provide a frame-
work to model the cumulative degradation and a
guideline for enhancing the long-term operation of
engineering systems.

A challenge in applying multi-dimensional L�evy
subordinators is how to estimate parameters in deg-
radation models and lifetime characteristics.
Traditional maximum likelihood estimation and
Bayesian estimation are not convenient for such gen-
eral stochastic processes without closed-form distribu-
tions. To apply our models to real degradation
datasets, the parametric estimation for subordinators
in (Jongbloed and van der Meulen 2006) has been
explored for the one-dimensional case (Shu, Feng, and

Figure 8. 3-dimensional L�evy subordinators (h¼ 5).

Figure 9. Laplace transform of reliability function for 3-D L�evy subordinators (h¼ 2).

Figure 10. Reliability function for 3-D L�evy subordinators (h ¼ 2)
when u1¼0.2, u2¼ 2.5, u3¼ 2.

12 Y. SHI ET AL.



Liu 2019), where the cumulant M-estimation (CME)
method is developed based on the characteristic
function of L�evy subordinators. In multi-dimensional
degradation processes, the dependence parameters
coming from interactions between two or more
dimensions need to be considered and estimated. The
parameter estimation of multi-dimensional L�evy sub-
ordinators is a challenging problem that can be
explored based on the one-dimensional CME method
and L�evy copulas, which is a potential research direc-
tion in this field.
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Appendix: Preliminaries of m-dimensional L�evy
processes and copulas

In this section, we introduce some fundamental concepts
and related properties of L�evy processes and L�evy copulas,
considered on Rm

þ space.

Definition A1. (Cont and Tankovs 2004). An m
(m	 1)-dimensional L�evy process X(t) is a cadlag stochastic
process with Xm(0) ¼ 0, and satisfies the following properties:

1. Independent increments: for a time sequence t0,… , tn,
the increment random variables X(t0),… , X(tn)�X(tn-1)
are independent.

2. Stationary increments: the law of X (tþ h) – X (t) does
not depend on t.

3. Stochastic continuity:8E > 0, limh!0P Xðt þ hÞ�jð
XðtÞj 	 eÞ ¼ 0:

Based on the independent and stationary properties,
we can generate a random walk Sn(D) ¼Pn�1

k¼0 X kþ 1ð Þtð Þ –X ktð Þ� �
: When nD ¼ t, X(t) ¼ Sn(D)

can be represented as a sum of n i.i.d. parts. A L�evy subor-
dinator XS(t) is a class of L�evy processes that takes values in
[0, 1) with a non-decreasing path.

For a one-dimensional L�evy process X(t), L�evy-Itô decom-
position shows that it can be decomposed into four parts: (1)
a drift term, bt, (2) a Brownian motion BA(t) with a covariance
matrix A, (3) a jump part

Ð
jyj	1yJðt, dyÞ that is a compound

Poisson process, and (4) another jump partÐ
jyj<1y Jðt, dyÞ � vðt, dyÞ� �

that is the compensated version of

Poisson process
Ð
0
jyj
1yJðt, dyÞ: The last part can have finite

or infinite activities, where (J(t, dy) – v(t, dy)) is the compen-
sated Poisson random measure. The L�evy-Itô decomposition
can be extended to multi-dimensional L�evy processes.

Lemma A1. (Multi-dimensional L�evy-Itô Decomposition).
If X (t) is an m-dimensional L�evy process, then there are a, b 2
Rm, a Brownian motion BA with a covariance matrix A, and an
independent Poisson random measure J on (0,1) �Rm. For
each t	 0,

X tð Þ ¼ bt þ BA tð Þ þ
ð

jyj<1

y Jðt, dyÞ � vðt, dyÞ� �

þ
ð

jyj	1

yJðt, dyÞ,

where v(t,dy) is an m-dimensional L�evy measure that satis-
fies v({0}) ¼ 0 and

Ð
Rmminf1, jyj2gvðdyÞ < 1: When the

covariance matrix A¼ 0 and the drift b	 0, L�evy process
X(t) has a non-decreasing path, i.e., a L�evy subordina-
tor XS(t).

14 Y. SHI ET AL.

https://doi.org/10.1016/j.cam.2010.10.047
https://doi.org/10.1016/j.ress.2016.04.005
https://doi.org/10.1016/j.ress.2016.04.005
https://doi.org/10.1109/TII.2018.2869429
https://doi.org/10.1002/qre.1022
https://doi.org/10.1002/nav.21642
https://doi.org/10.1016/j.ress.2019.106515
https://doi.org/10.1080/0740817X.2016.1172743
https://doi.org/10.3390/s16081242
https://doi.org/10.1063/1.4732102
https://doi.org/10.1016/j.ress.2007.03.019
https://doi.org/10.1198/TECH.2009.08197
https://doi.org/10.1016/j.jbankfin.2013.01.001


To analyze the dependence structure of a multi-dimen-
sional L�evy subordinator XS(t) ¼ {XS

1(t), … , XS
m(t)} where

m is the number of dimensions, the concepts of copulas
and sub-copulas need to be introduced.

Definition A2. (Nelsen 2006). An m-dimensional sub-
copula is a function C’ with the following properties:

1. Dom C’¼S1 � S2 � � � � :::� Sm, where each Sk is a sub-
set of I¼ [0, 1];

2. C’ is grounded and m-increasing;

3. C’ has one-dimensional margins Ck’, k ¼ 1, 2,… , m,
which satisfy Ck’(u) ¼ u for all u in Sk .

Definition A3. (Nelsen 2006). An m-dimensional copula
C is an m-dimensional sub-copula whose domain is Im.

For an m-dimensional copula C ðm 	 3Þ, every k
dimensions in C is a k-dimensional sub-copula C’ and there

are
m
k

� 	
k-dimensional sub-copulas for C in total,

where 2
 k
m.
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