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A B S T R A C T

Prognostic methods for remaining useful life and reliability prediction have been extensively studied in the past
decade. However, the use of prognostic information and methods in maintenance decision-making for complex
systems is still an underexplored area. In this paper, using a rolling-horizon approach, we develop a condition-
based maintenance decision-framework for a multi-component system subject to a system reliability require-
ment. The system is inspected periodically and new degradation information on components is obtained upon
inspection. The new degradation observations are used to update the posterior distributions of the failure model
parameters via Bayesian updating, providing more accurate and customized predictive reliabilities. If the pre-
dictive system reliability is below the reliability requirement, a novel dynamic-priority-based heuristic algorithm
is used to identify a group of components for preventive maintenance. Numerical results show that significant
cost savings and improved system reliabilities can be obtained by using more accurate predictive information in
maintenance decision-making. We further illustrate the modeling flexibility of the proposed framework by
considering dynamic environmental information in decision-making and investigate the potential benefits of
incorporating dynamic contexts.

1. Introduction

Continuous monitoring of system's health conditions has been
playing an increasingly important role in preventing or delaying system
failures. The advances in sensor technologies have greatly accelerated
the use of real-time monitoring and condition assessment for complex
systems. Prognostic methods based on sensor information for remaining
useful life (RUL) prediction have been extensively studied in the past
decade [1–3]. It has been shown that incorporating prognostic in-
formation in maintenance planning can help make more informed
maintenance decisions for single-component systems [4, 5]. On the
other hand, the complexity of modern systems keeps increasing and
their operational environments are often dynamic. Many complex sys-
tems consist of a large number of interconnected technological ele-
ments such as subsystems, components, etc. There often exist one or
more types of interactions between components, such as economic,
structural, and stochastic dependence. Due to the presence of these
dependences, maintenance optimization models for single-component
systems are no longer applicable. However, the use of prognostic/pre-
dictive information in maintenance decisions for complex multi-

component system is an underexplored area [6, 7].
Maintenance optimization for multi-component systems is a chal-

lenging problem, since it combines the stochastic failure processes of
components with the combinatorial optimization problem regarding
the grouping of maintenance activities [8]. Due to the mathematical
difficulties in modeling and analysis of multi-component maintenance
problems, many existing multi-component models are developed based
on time-based maintenance (TBM) policies [8–12]. A major drawback
of TBM is that unnecessary maintenance actions may be performed.
Aiming to perform preventive maintenance (PM) just in time, condi-
tion-based maintenance (CBM) has gained much popularity in the past
decades. However, the majority of the CBM literature focuses on single-
component systems [13–17], and CBM for multi-component systems
has received much less attention. Tian and Liao [18] present a CBM
policy for multi-component systems based on proportional hazards
model. Xu et al. [19] develop a CBM optimization model for a two-
component repairable system and consider a policy that replaces the
two components if the system-level hazard rate reaches a replacement
threshold. Zhu and Xiang [20] develop an analytical CBM model for
multi-component systems with economic dependence using a stochastic
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programming approach. Keizer et al. [21] consider a joint optimization
of CBM and spare part inventory for multi-component systems and
formulate the problem as a Markov decision process. More papers on
CBM for multi-component systems can be found in a recent survey by
Keizer et al. [22].

Most aforementioned CBM-based multi-component maintenance
models make simple use of current state/degradation information.
Huynh et al. [7] propose three predictive maintenance policies for
single-component systems, and their models make inspection and re-
placement decisions using the predictive reliability and the mean RUL.
Nguyen et al. [23] develop a joint optimization model of predictive
maintenance and spare part inventory for systems consisting of multiple
non-identical components. Predictive maintenance and spare part or-
dering for each component are triggered if its predictive reliability is
below their respective thresholds. Incorporating component's predictive
reliability/mean residual life in maintenance decision-making for
multi-component systems can also be found in Cheng et al. [24] and Vu
et al. [25]. However, these studies assume that failure distributions are
known (e.g., estimated from historical observations, obtained from
experts’ knowledge) and remain fixed during the maintenance decision
process; they do not leverage online condition monitoring data (e.g.,
degradation level and health state) to update components’ prior failure
information, which may lead to inferior predictive results and result in
significantly degraded system performances.

To obtain more accurate and customized RUL/reliability prediction
for more effective maintenance decisions, several studies [26–30] use
Bayesian updating methods to update posterior distributions of un-
known failure parameters based on online data. Si et al. [27] consider a
condition-based replacement model for a single-component system.
Although observed degradation information is used to update posterior
distributions of unknown degradation parameters and estimate the
RUL, the maintenance policy considered in [27] is still time-based (i.e.,
age-based maintenance). Omshi et al. [28] propose a dynamic auto-
adaptive inspection and predictive maintenance policy for single-com-
ponent systems. Their model re-schedules the next inspection interval
based on the updated system's RUL so that the probability of failure
before the next inspection remains lower than a pre-specified require-
ment. Walter and Flapper [30] propose a dynamic maintenance policy
for multi-component systems, which determines the possible age-based
PM time using the sequentially updated RUL. Our review shows that
limited works make use of online condition monitoring data and dy-
namic environmental information for more accurate predictive results
and more informed CBM decisions. Moreover, the few studies that in-
corporate dynamic information in maintenance decision-making mainly
focus on single-unit systems. There is a lack of CBM models for multi-
component systems that leverage multi-source dynamic information for
effective inspection and maintenance planning.

To fill this gap, we develop a condition-based maintenance decision-
framework for a general multi-component system which has serially
connected k-out-of-n subsystems subject to a reliability requirement.
The objective is to minimize the total maintenance cost over a finite
planning horizon and ensure that the system reliability meets the pre-
specified requirement. The system is inspected periodically. Since true
degradation model parameters are usually unknown due to limited
historical data, at each inspection, when desired, a Bayesian updating
procedure is used to leverage short-term information, e.g., component
deterioration level, environmental condition, to obtain more accurate
predictive reliabilities for better informed maintenance decision-
making. If PM is needed, a dynamic-priority-based heuristic algorithm
is used to select a group of components for PM. Sensitivity analysis is
conducted to assess the potential benefits of using predictive informa-
tion and methods in maintenance decision-making for multi-component

systems. The main contributions of this paper are twofold.

(1) The proposed CBM decision framework for multi-component sys-
tems leverages multi-source dynamic information (e.g., online de-
terioration data, environmental conditions) to update posterior
distributions of unknown degradation parameters using a Bayesian
updating approach. Thus, more accurate and customized reliability
prediction pertaining to in-service components can be obtained and
used for better informed maintenance decisions.

(2) An effective dynamic-priority-based heuristic algorithm is designed
to seek the optimal maintenance grouping. The heuristic employs a
composite index that jointly considers the importance measure and
the maintenance cost of each component. In particular, the im-
portance measure used in the priority index is dynamic and iden-
tifies the importance of a component based on its evolving condi-
tions, instead of static importance measures commonly used in the
literature.

This study has a wide range of real-world applications, such as high-
speed trains [31], oil and gas pipeline systems [32], and power systems
[33]. For example, offshore pipeline systems laid on the seabed are
usually exposed to seabed mobility and unsteady ocean waves, and
various techniques such as ultrasonic tools have been used to inspect
conditions of pipeline systems routinely [34]. Power systems are often
operating in season-dependent weather conditions, and a large number
of sensors and instruments are installed in power systems for condition
monitoring. The proposed method can help accurately predict the fu-
ture performance of these complex systems and recommend effective
inspection schedules and maintenance decisions. With the advances in
sensor technologies for condition monitoring and the decreases in the
cost of sensors, the proposed model is of greater relevance to improve
the reliability of complex engineering systems at reduced costs.

The remainder of the paper is organized as follows. Section 2 de-
scribes system degradation with uncertainties and the maintenance
problem. The details of the proposed maintenance decision framework
are provided in Section 3. Sensitivity analysis is presented in Section 4.
Conclusions and future research work are summarized in Section 5.

2. Problem formulation

Notation

N Number of subsystems
ni Number of components in subsystem i
T Finite-time horizon
θ Vector of unknown degradation parameters
ϕ(θ) Prior distribution of unknown degradation parameters θ
Xi(t) Cumulative degradation level of a component in subsystem i

in time [0, t]
fi(x; x0, t, θ) Probability density function (pdf) of Xi(t) given the initial

degradation level x0 and the unknown degradation para-
meters θ

Fi(x; x0, t, θ) Cumulative distribution function (cdf) of Xi(t) given the
initial degradation level x0 and the unknown degradation
parameters θ

cs Setup cost
ci,insp Inspection cost per component of subsystem i
ci,pm PM cost per component of subsystem i
ci,cm Corrective maintenance (CM) cost per component of sub-

system i
Ninsp Number of inspections performed in time [0, T]
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Nmx Number of inspections with maintenance performed in time
[0, T]

Ni,j,pm Number of PM actions performed on component j of sub-
system i in time [0, T]

Ni,j,cm Number of CM actions performed on component j of sub-
system i in time [0, T]

R0 System reliability requirement
Rs System reliability
γs Total expected cost over a finite planning horizon T
zs Maintenance decisions over the entire planning horizon
δs System inspection interval
δi Inspection interval of subsystem i
ξi PM threshold for subsystem i when ni =1 (1-out-of-1 sub-

system)
ωi Minimal number of failed components needed to trigger PM

for subsystem i when ni ≥ 2 (k-out-of-n subsystem)
Df,i Failure threshold of components in subsystem i
tν Time at the νth inspection
γi Expected cost of subsystem i
ηi Expected cycle length of subsystem i
m Number of the Bayesian updating procedures performed
qs,s' Transition rate from environmental state s to state s'
κ Environment stress
ζ Coefficient of Arrhenius reaction rate model
ψ Exponential coefficient of Arrhenius reaction rate model

2.1. System description

Consider a system consisting of N subsystems, which are serially
connected. Each subsystem is a k-out-of-n system (1 ≤ k < n) with ni
identical components and at least ki functioning components to ensure
the functionality of each subsystem, i ∈ {1,…, N}. Note that a single-
component subsystem, i.e., 1-out-of-1 subsystem, is a special case when
ni = 1. Fig. 1 illustrates the system structure of such a system. We
assume that component failure is hidden and can only be detected
through inspection. It is also assumed that maintenance of any com-
ponent requires the shutdown of the system. For example, in many
process industries, the entire production line needs to be shut down for
maintenance. Another example is drilling systems that operate in oil
and gas industries. Drilling equipment failures require taking the
equipment out of the hole for replacement, resulting in nonproductive
rig time. Preventive and corrective maintenance have a component-
dependent cost and a system-dependent cost. Component-dependent
cost is much lower for PM than for CM, i.e., ci,pm < ci,cm. The system-
dependent cost is often referred to as the setup cost and is the same for
all activities regardless of the number of components maintained and
the type of maintenance actions. The shared setup cost is common due
to crew travelling, scaffolding, shutdown, etc., and it may also consist of
the downtime cost due to production loss if the system cannot be used

during maintenance. If λ1(λ2) components in subsystem i are pre-
ventively (correctively) maintained, this setup cost incurs once and the
maintenance cost is + +c c cs i i1 ,pm 2 ,cm. This implies that executing
λ1 + λ2 maintenance activities jointly can save a cost of (λ1 + λ2 – 1)cs.

For notational convenience, the subscript i for the index of the
subsystem is omitted in the analysis of the degradation model. We as-
sume that components are subject to stochastic degradation, and the
cumulative deterioration level is characterized by X(t). The cumulative
damage model using a damage accumulation function is given by [35]

= ++C X C X D h X( ) ( ) ( ),1 (1)

where Xν denotes the cumulative damage after ν increments, Dν denotes
the cumulative damage occurred at the (ν + 1)th increment, and h(∙) is
the damage model function, and C(•) is the damage accumulation
function. The cumulative damage model in a continuous version is
given by [35]

= =
h X u

dC X u dD u D t D1
( ( ))

( ( )) ( ) ( ) (0),
t t

0 0 (2)

where D(t) denotes the cumulative damage at time t. Several models for
degradation can be obtained by selecting various forms of the functions
C(•) and h(•) with an appropriate stochastic process D(•), e.g., Gamma
process and geometric Brownian process. Note that we consider un-
known parameters θ in the stochastic degradation model with prior
knowledge of the distribution ϕ(θ) due to limited historical data.

2.2. Maintenance cost model

The objective of the maintenance planning is to minimize the total
expected cost subject to a system reliability requirement over a finite
planning horizon. The reliability requirement at the system level con-
sidered in this paper is required for the entire time horizon. A pre-
specified reliability requirement is often determined by customers in
agreement with system manufacturers. For example, the minimal re-
liability requirement of an aircraft is set by the airline company in
agreement with the aircraft manufacturer [36]. Let γs denote the total
expected cost, T denote the finite planning horizon, and R0 denote the
pre-specified reliability requirement. We denote the total number of
inspections performed in the finite planning horizon by Ninsp and the
number of inspections with maintenance performed by Nmx. The total
setup cost is the product of the Nmx and cs. Let Ni,j,pm and Ni,j,cm re-
present the numbers of PM and CM actions performed on component j
in subsystem i, respectively, i ∈ {1,…, N} and j ∈ {1,…, ni}. Our
decisions concern the system inspection interval (δs) and the main-
tenance decision (zs) made in the entire planning horizon. The main-
tenance optimization model is formulated as follows.

Model 1

= × × + × + ×

+ ×

c n E N c E N c E N

c E N

R R

min

( ) ( ( ) ( )

) ( )

s. t.

z s

i i i j i i j i i j

s

s

,

,insp insp ,pm , ,pm ,cm , ,cm

mx

0

s s

Due to the combined stochastic failure processes and combinatorial
optimization, it is difficult to derive explicitly analytic expressions for
the optimal total cost and the maintenance grouping decision. The use
of the predictive method in the decision process further complicates the
model. We therefore propose a four-phase maintenance decision fra-
mework to find high-quality solutions. Details of this decision frame-
work are presented in the next section.Fig. 1. System configuration.
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3. Condition-based maintenance decision framework

In this section, we develop a condition-based maintenance decision
framework to combine static long-term inspection planning and dy-
namic short-term maintenance grouping. Specifically, the proposed
approach starts with maintenance decisions at the system level re-
garding when to inspect and whether maintenance is needed. At each
inspection, if needed, a Bayesian updating procedure is performed to
update the posterior distributions of the failure model parameters with
new degradation observations. The predictive system reliability is then
computed and triggers PM when it is below the requirement. If the need
for maintenance is identified at the system level, the next step is to
dynamically select a group of components for PM actions based on
information that becomes available on the short term. The joint long-
term inspection planning and the short-term maintenance grouping are
illustrated in Fig. 2.

This maintenance decision process consists of four phases. In Phase
1, we seek the optimal system inspection interval using a decomposition
method. Phase 2 uses a Bayesian updating procedure leveraging short-
term information. The optimal group of components for PM is identified
in Phase 3. Finally, Phase 4 addresses the rolling horizon.

3.1. Phase 1: long-term inspection planning

In Phase 1, we use a decomposition method to seek the optimal
system inspection interval. Specifically, we first find the optimal peri-
odic inspection/replacement policy for each subsystem without con-
sidering their structural/economic dependences. The minimum of the
optimal inspection intervals of all subsystems is used as the optimal
system inspection interval [37]. Note that we only use the subsystems’
inspection intervals in Phase 1 to determine the system inspection
schedule, and maintenance decisions are determined using the dy-
namic-priority-based heuristic algorithm in Phase 3. For notational
convenience, we omit the subscript i that represents the index of a

subsystem in the inspection optimization model for each subsystem.

3.1.1. Optimal inspection schedule of a 1-out-of-1 subsystem
We first optimize the inspection policy for a 1-out-of-1 subsystem

(i.e., a single-component subsystem). At each inspection, if the cumu-
lative deterioration is between the PM threshold (ξ) and failure
threshold (Df), PM is performed; CM is performed if the cumulative
deterioration is above the failure threshold; otherwise, do nothing. Let f
(x; x0, t, θ) and F(x; x0, t, θ) denote the pdf and cdf of X(t), respectively.
Let γ denote the expected maintenance cost, η denote the expected
length of a cycle. The optimal inspection interval δ* and PM threshold
ξ* are obtained by minimizing the cost rate:

=( *, *) arg min ( , )
( , )

.
, (3)

We show the detailed derivations of the expected cost γ (δ, ξ) and
the expected operational time η(δ, ξ) in Eq. (3) in Appendix A1.

3.1.2. Optimal inspection schedule for a k-out-of-n subsystem
We now optimize the inspection schedule for a k-out-of-n subsystem

(n ≥ 2). There are different maintenance policies for a k-out-of-n
system. The one considered in this paper is similar to the policies in
[38–40]. At each inspection, we perform CM on all components (failed
or not failed) if the subsystem is found in a failure state (the number of
failed components is above n – k), or perform PM on all components if
the number of failed components reaches a pre-specified threshold (ω, 1
≤ ω ≤ n – k). The pre-specified threshold is the minimal number of
failed components needed to trigger PM. Thus, the decision variables in
the inspection optimization for a k-out-of-n system are (δ, ω). The op-
timal inspection schedules (δ*, ω*) are determined by:

=( *, *) arg min ( , )
( , )

,
, (4)

The derivations of the expected cost γ (δ, ω) and the expected length

Fig. 2. A Unified Maintenance Decision-making Framework.
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of a cycle η(δ, ω) in Eq. (4) are shown in Appendix A2.
The derivatives of the two objective functions in Eqs. (3) and (4) are

usually difficult to obtain, and therefore a numerical search algorithm
without using derivative is employed to seek the optimal decision.
Pattern search is used in this paper since it provides a useful exploratory
tool and has good global behaviors, which is often useful when the
objective function is not smooth and the derivatives of the objective
function are either not available or not reliable [41]. To improve the
solution quality, we adopt a multi-start-points search approach.

After obtaining the optimal inspection interval for each subsystem,
we determine the optimal system inspection interval δs* as the minimal
inspection interval of the N subsystems, that is,

= =i N* min{ *; 1, ..., }s i .

3.2. Phase 2: Bayesian updating

At each inspection, we obtain the latest deterioration information of
each component, and use the Bayesian approach to improve the esti-
mation of the unknown parameters (θ) when needed. The subscript for
subsystems is also omitted in the following discussion. Let Δx1,…, Δxn
represent the degradation increments of all components during an in-
spection interval. We update the posterior distribution of the parameter
vector θ as follows:

=x x L x x
x x

( , ..., ) ( | , ..., ) ( )
( , ..., )

,n
n

n
1

1

1 (5)

where =x x L x x d( , ..., ) ( | , ..., ) ( )n n1 1 and L(θ|Δx1, ..., Δxn)is
the likelihood function. The integral, φ(Δx1,…, Δxn), is tractable for
conjugate families. A widely used distribution family that provides
conjugate priors is the exponential family. For a conjugate prior, the
family of the prior distribution is chosen such that prior-to-posterior
updating yields a posterior that is also in the family. However, to ap-
propriately describe a failure process, one may need to use non-con-
jugate priors which leads to intractable Bayesian computing of the
posterior distribution. When the Bayesian computing of the posterior
distribution is intractable, we can resort to numerical methods such as
Markov Chain Monte-Carlo (MCMC) sampling methods.

We assume different components work independently, and their
updating procedures can be done independently for each subsystem.
Based on the posterior distribution of θ for each subsystem, the pre-
dictive reliability of component j, Rj (t | Δx1,…, Δxn), can be computed
as follows:

… = …R t x x F D x t x x d( , , ) ( ; , , ) ( , , ) ,j n f j n1 1 (6)

where xj is the degradation level of component j at the current in-
spection time.

3.3. Phase 3: grouping maintenance activities

3.3.1. Preventive maintenance grouping problem
At the system level, components in any failed subsystem are all

replaced upon inspection and the system reliability is computed. If the
system reliability is above the reliability requirement, no PM is needed.
Otherwise, PM actions are desired and the next step is to find the op-
timal group of components to be preventively maintained. Note that the
reliability requirement for the entire time horizon is aimed to be met by
imposing such a requirement for each inspection interval.

Based on the updated predictive reliability of each component as
described in Phase 2, we can compute the predictive reliability of each
subsystem and obtain the system predictive reliability. We now com-
pute the predictive reliability for a k-out-of-n subsystem. Since com-
ponents may have different predictive reliabilities in each subsystem,
we use the symmetric switching function approach provided by Rushdi
[42] to compute the subsystem's reliability recursively as follows:

= +R i j R R i j R R i j i k j n( , ) ( 1, 1) (1 ) ( , 1), 1 , 1 ,s j s j s

(7)

with boundary conditions Rs(0, j) = 1 and Rs(j + 1, j) = 0, where Rj
denotes the reliability of component j, and Rs(i, j) represents the system
reliability for an i-out-of-j system.

If a PM decision is triggered at the system level (Rs< R0), a group of
components that are not performed with CM needs to be selected for
PM. The objective here is to select a group of components for PM to best
ensure the reliability requirement of the system at minimal costs. Let zij
be a binary decision variable, indicating whether component j in sub-
system i is selected for PM. The maintenance grouping problem at an
inspection is formulated as follows:

Model 2

= z c R R zmin s.t. , {0, 1},
i j V

ij i s ijpm
( , )

,pm 0

where γpm is the total PM cost at the current decision time and V

Fig. 3. System configuration in sensitivity analysis.

Table 1
The degradation and cost parameters for all subsystems.

Subsystem αi βi ai Df,i ci,pm

1 2.74 4.20 5.30 48.72 61.70
2 1.10 3.30 5.27 30.52 92.03
3 3.20 2.05 5.62 70.99 20.01
4 2.74 6.19 5.53 18.71 50.23

Fig. 4. Impacts of the number of Bayesian updatings on the posterior mean of β.
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represents the set of components that are not performed with CM.
Model 2 is a combinatorial optimization. Suppose the cardinality of the
set V is m (|V | = m), the number of possible combinations for main-
tenance grouping is 2m – 1. It is not feasible to enumerate all possible
groups to obtain the optimal group decision. Therefore, we design an
efficient heuristic algorithm based on the priority measure for compo-
nent selection.

3.3.2. Dynamic-priority-based heuristic algorithm for component selection
In the dynamic-priority-based heuristic algorithm, we first develop

an importance measure that ranks components’ priorities dynamically.
Importance measures are generally used to quantify the contribution of
individual elements of a system to the overall system performance [43,
44]. Traditional reliability importance measures include Birnbaum re-
liability importance measure [45], Criticality Importance [43], Relia-
bility Reduction Worth [46], and Reliability Achievement Worth [46].
However, the majority of the existing criticality measures have been
developed for components with specified finite mission times, and are
static without considering components’ changing conditions. In order to
account for the component's current deterioration information, a
modified Reliability Achievement Worth (RAW) measure, denoted by σ,
is proposed in this paper. The standard RAW of component i in sub-
system j (σijo) is the ratio of the actual system reliability obtained when
the component is always in perfect functioning (Rij(t) = 1) to the actual
value of the system reliability (Rs(t)). This measure quantifies the
maximum possible percentage increase in system reliability generated
by a component, and is defined as follows:

=
=R t R t

R t
( ; ( ) 1)

( )
.ij

s ij

s

o
(8)

To include a component's current reliability (deterioration), the
modified RAW of component j in subsystem i at the νth inspection,
denoted by σij, is defined as:

=
= =

=
+ +

+

R t X t R t X t x
R t X t x

( ; ( ) 0) ( ; ( ) )
( ; ( ) )

.ij
s ij s ij ij

s ij ij

1 1

1 (9)

Fig. 5. Comparison of the total costs with and without Bayesian updating under
different λ values.

Fig. 6. Comparison of the total costs with and without Bayesian updating.
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In the modified RAW, the component's current deterioration is taken
into consideration, where a less reliable component is given more at-
tention. Meeting the system requirement at reduced costs requires ac-
counting for a component's σij and cost, and therefore, we use the ratio
of σij to its PM cost, denoted by πij, to set the priority of a component,
i.e., πij= σij /ci,pm. Note that the priority measure used in the proposed
dynamic-priority-based heuristic algorithm is a composite index that
considers components’ dynamic importance in system reliability and
maintenance costs. Common reliability importance measures men-
tioned previously only consider components’ importance in terms of
reliability. Selecting components for maintenance entirely based on a
reliability importance measure may lead to a reliability improvement at
much higher costs. On the other hand, selecting components for
maintenance based only on costs may not effectively improve system's
reliability.

In the heuristic algorithm, we rank the components in descending
order with respect to the ratio and select the component for PM se-
quentially until the system reliability requirement is met. Note that
every time a component is selected for PM, we re-calculate the modified
RAW's for the remaining components. This is because the contribution
of each component to the improvement of system reliability may
change after a component being selected for PM. For example, for a
subsystem consisting of three components in parallel, if one of the three
components is selected for PM, we can expect the importance of the
other two components to decrease. Algorithm 1 presents the component
selection procedure in detail.

3.4. Phase 4: rolling-horizon step

A rolling-horizon approach is considered in this paper that main-
tenance decisions are repeatedly optimized at each inspection when
new information on component degradation becomes available [47].
This means that at each inspection, if the Bayesian updating is desired,
the procedure starts from Phase 2 again. The posterior distributions are
updated, and the reliability of the system at the next inspection is
predicted with the updated posterior distributions and the (expected)
future environmental condition and the planned usage. If the de-
gradation model parameters are accurate enough and no more updating
is needed, the procedure starts from Phase 3. The maintenance
grouping is sequentially determined based on the updated predictive
reliability.

4. Sensitivity analysis

In this section, we assess the benefits of the Bayesian updating by
comparing the total costs and the system reliabilities with and without
performing the updating procedure in the maintenance decision fra-
mework. We also investigate whether the Bayesian updating affects the
maintenance decision at the system level (i.e., system inspection in-
terval). Furthermore, we demonstrate the flexibility of the proposed
framework by incorporating dynamic environmental information in
decision making and examine the effects of the Bayesian updating in a
dynamic environment.

Consider a system that consists of four subsystems in series. The

Fig. 7. Comparison of the system reliabilities with and without Bayesian updating.

Y. Shi, et al. Reliability Engineering and System Safety 202 (2020) 107042

7



subsystems are a 2-out-of-4 system, a 2-out-of-3 system, a 1-out-of-2
system, and a 1-out-of-1 system (illustrated in Fig. 3). We assume that
the degradation process of the component in subsystem i is described by
a Gamma process, Gamma (αit, βi), i=1, 2, 3, and 4, and omit the script
i in the following discussion. The pdf of degradation increment during
the system inspection interval X(t + δs*) – X(t) is

=Ga x x e( *, )
( *)

.s
s

x
*

* 1s
s

(10)

Assume that the shape parameter α is known, the rate parameter β is
unknown. We use the conjugate prior since it provides an analytically
tractable posterior of the rate parameter. The conjugate prior ϕ(.), is a
Gamma distribution of β with a shape parameter a and a rate parameter
b [48], i.e., β ~ Gamma (a, b). By Eq. (5), we obtain the posterior
distribution of β given degradation increments Δx1,…, Δxn, which is a
Gamma distribution with the shape parameter a' = a + αδs*n and the
rate parameter b' = b + ∑ Δxi. The analytical form of the posterior
predictive reliability of component j in a k-out-of-n subsystem before
the next inspection time is given as follows:

= +
+

+
+ +

R x x

x e b x
a n

e

dxd

( *| , ..., )
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( )

( * )
.

j s n

x

D

s

x i
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s

a n b x

1

0

*
* 1

*
* 1 ( )

j

s
s

s
s if

(11)

Since the conjugate prior is used in the Bayesian updating, resulting in
the analytical form of the posterior distribution, it does not require

much computational effort. We therefore perform the updating proce-
dure continuously at each inspection to obtain more accurate parameter
estimation when new information becomes available.

In the sensitivity analysis, suppose that the inspection cost per
component ci,insp is 10 for all subsystems, the set-up cost cs is 50, and the
system reliability threshold R0 is 0.8. The value of the shape parameter
αi is drawn from U(1, 5), and βi from U(0, 10). The initial estimation of
the shape parameter ai, drawn from U(5, 6), is fixed for all components.
The failure threshold Df,i of components in subsystem i is drawn from U
(10, 80). The PM cost ci,pm is drawn from U(20, 120), and the CM cost
ci,cm is determined as ci,cm = ρci,pm, ρ= 5, 10, 20, and 40. The details of
the parameter values are provided in Table 1.

4.1. Effects of Bayesian updating in stationary environment

We first conduct the sensitivity analysis for the system operating in
a stationary environment. The parameters of interest include the initial
estimation of the unknown rate parameter and the cost ratio of CM to
PM.

4.1.1. Effects of Bayesian updating on system performance
To examine the effects of the Bayesian updating, we parameterize

the distribution of the rate parameter β with different initial estimations
of b and keep the value of a constant. We model the initial value of b as
λb0 such that the prior mean is the true β value when λ = 1. Six dif-
ferent λ values are considered, λ = 0.2, 0.4, 0.8, 1.6, 3.2, and 6.4.
When λ < 1, the prior mean is larger than the true β value, and vice
versa.

Fig. 8. Comparison of the total costs with and without system inspection schedule re-optimized.
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We first examine how the posterior mean changes as the number of
the Bayesian updating procedure performed increases. We arbitrarily
use component D (shown in Fig. 3) to illustrate this impact. From Fig. 4,
we can see that the posterior means have significant improvements
when the Bayesian updating is performed, and converge to the true
value after performing several updating procedures.

We further investigate the impacts of the Bayesian updating on the
total cost. Suppose the ratio of CM cost to PM cost is 5 for all compo-
nents (ρ = 5), and the time horizon is 5000 (T = 5000). We compare
the total costs with and without the Bayesian updating. The same set of
λ values is considered and the value of λ is kept the same for all
components. From Fig. 5, we can see that the total costs with updating
performed are lower for all the experiments considered except for
λ = 0.2 and λ = 0.4 when the prior mean of the rate parameter (β) is
largely overestimated. This is because a significant underestimation of

component degradation due to the overestimation of the rate parameter
leads to an inappropriately long inspection, resulting in a large number
of unexpected system failures. We also observe that the more the prior
mean is underestimated, the larger the improvement becomes.

In the previous analysis, we only consider the experiments where λ
is the same for all components, meaning the prior means are either all
larger or smaller than the true β values. In practice, it is likely that the
prior mean is larger than the true model parameter for components in
some subsystems and smaller for components in other subsystems. To
better assess the benefits from the Bayesian updating on system per-
formances in terms of the total cost and the system reliability, we
consider two levels of λ, low (λ = 0.4) and high (λ = 3.2) for each
subsystem. We also consider four different cost ratios of CM to PM,
ρ= 5, 10, 20, and 40. There are four subsystems in the system, and we
thus have 16 experiments for each ρ value. Before analyzing the ex-
perimental results, we define the system reliability as the ratio of the
number of inspections with at least one CM action performed (Ncm) to
the total number of inspections (Ninsp) in the finite time horizon con-
sidered.

Fig. 6 compares the total costs with and without the Bayesian up-
dating. We can see that the experiments with the Bayesian updating
outperform those without for the majority of the 64 experiments in-
vestigated. Fig. 7 illustrates the impacts of the Bayesian updating on the
system reliabilities. It is clear that all the experiments with updating
performed have higher or equal system reliabilities than those without
updating.

Fig. 9. Comparison of the system reliabilities with and without system inspection schedule re-optimized.

Fig. 10. State transition diagram of the dynamic environment.
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4.1.2. Effects of Bayesian updating on system inspection interval
As we keep updating the distribution of the unknown parameters, a

better estimation of the degradation distribution is obtained. This
naturally leads to an important question: Do we need to re-optimize the
system inspection interval which is obtained based on the prior means
of the unknown parameters? We investigate this necessity by com-
paring the total costs and the system reliabilities under a fixed system
inspection schedule with those under a dynamic inspection schedule
that is sequentially optimized. We re-optimize the system inspection
schedule with the latest posterior mean of the distribution of β at the
first ten inspections. The comparison results are demonstrated in Figs. 8
and 9. From Figs. 8 and 9, we can see that all experiments with re-
optimizing the system inspection interval have lower total costs than
those without, and the difference between the system reliability is small
except for the case when initial parameters of all subsystems are un-
derestimated. This is because extremely long inspection interval due to

initially inaccurate parameter estimation leads to a large number of
system failures and a low system reliability when the system inspection
interval is not re-optimized with the updated degradation information.
Our analysis shows that it is worthy to re-optimize the system inspec-
tion interval with the short-term degradation information.

4.2. Effects of Bayesian updating in dynamic environment

In this section, we consider systems operating in a dynamic en-
vironment. Consider an operating environment whose transition is
governed by a continuous-time Markov chain (CTMC). We assume that
the environment has three states (illustrated in Fig. 10): 0, 1, and 2
representing less severe, normal, and more severe environments, re-
spectively. Let qs,s' denote the transition rate from state s to state s', s, s'
∈ {0, 1, 2}. Suppose q0,2 = q2,0 = 0, q1,0 = q1,2 = 1/500, q0,1 = 1/
200, and q2,1 = 1/300. We choose these transition rates so that the
expected sojourn time in one state is longer than the inspection interval
(illustrated in Fig. 11).

The degradation rates are different at different environmental
states. We use the Arrhenius reaction rate model to describe the re-
lationship between the environmental condition and the degradation
rate [49]. Let κ represent the environment stress. We assume that the
shape parameter α of the degradation process is a function of the en-
vironment stress κ, denoted as α(κ) = ζeψ/κ. Suppose that the environ-
ment stress has three levels, which are 20, 40, and 80 corresponding to
states 0, 1, and 2, respectively. The value of coefficient ψ is assumed to
be the same for all components, i.e., ψ = – 25, and the value of ζ varies
among components, which follows U(3, 6). The values of α under dif-
ferent environments for all components are presented in Table 2.

In order to explore the benefits of incorporating dynamic environ-
mental information, we compare the total costs and the system reli-
abilities with and without considering the environmental impacts.
Assume that the environmental state can only be revealed through in-
spection. At the end of an inspection, say the νth inspection, we update
the prior distribution of β with the observed degradation increments
during the νth inspection interval and the environmental state at the
beginning of the νth inspection. We re-optimize the system inspection
interval for better system performances at each inspection when new
information (i.e., degradation levels and environmental condition) be-
comes available. We use the environmental state observed at the be-
ginning of the (ν+1)th inspection to re-optimize the system inspection
interval and compute the predictive reliability. Notice that the change
of the environment during an inspection interval is ignored. We expect
this neglect to have little impact, since the expected duration time in
any state is longer than the inspection interval length.

Fig. 12 compares the total costs with and without considering en-
vironmental information. We can see that the total costs with con-
sideration of short-term environmental information are better than
those without in most cases, and about 93.75% of the experiments have
lower costs when the environmental information is incorporated.
Fig. 13 shows that all experiments with environmental information
incorporated satisfy the reliability requirement while those ignoring
environmental information fail to meet this requirement. Our analysis
shows that taking account of this information can lead to better system
performances.

5. Conclusion

In this paper, we develop a condition-based maintenance framework
for a multi-component system. The proposed framework joins the long-
term system inspection schedule based on the historical data and the
short-term dynamic grouping based on the newly observed information
available. More importantly, this framework allows the Bayesian

Fig. 11. Illustration of the degradation path in a dynamic environment.

Table 2
Shape parameters under different environmental states.

State Subsystems
1 2 3 4

0 1.23 0.88 1.33 1.23
1 2.31 1.65 2.49 2.30
2 3.15 2.25 3.40 3.15

Algorithm 1
Dynamic-priority-based heuristic.

Input: Current system reliability Rs, reliability requirement R0, component set for PM
V, and PM cost for each subsystem ci,pm, i ∈ {1, 2, …, N};

Output: Optimal PM decision Vpm;
1: Initialize Vpm ← ∅, γpm ← 0;
2: while Rs ≤ R0 or V ≠ ∅ do
3: Compute πij based on Eq. (9), ∀ (i, j) ∈ V;
4: Select component j* in subsystem i* for PM from =i j( *, *) arg max { }

i j V
ij

( , )
;

5: V ← V\ {(i*, j*)};
6: Vpm ← Vpm{(i*, j*)};
7: + *c ;pm pm i pm,

8: Update Rs;
9: end while
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updating on the underlying failure process, which makes the reliability
prediction more accurate and customized for the in-service units. An
efficient dynamic-priority-based heuristic algorithm is developed to
quickly identify the components for group maintenance to meet the
reliability requirement at the minimum cost at each inspection. Our
research findings show that it is necessary to perform the Bayesian
updating especially when the prior mean largely excesses the true
model parameter value. We also find that there is a need to re-optimize
the system inspection interval sequentially because the inaccurately
initial estimation leads to unexpected inspection schedules. Lastly, our
analysis shows that the proposed framework is flexible and can in-
corporate dynamic information (e.g., environmental condition), and
such an incorporation is essential to lower the total cost and satisfy the
system reliability requirement.

Future extensions of this work will focus on extending the current
model to a more complex system such as systems with a more complex
configuration (e.g., network systems) or systems with a combination of
different dependences such as structural and stochastic dependences. In
addition, it is worth considering a dynamic or adaptive system in-
spection schedule rather than the static one considered in this paper.
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Appendix

A1. Derivations of γ (δ, ξ) and η(δ, ξ) in Eq. (3)

We first derive the expected cost incurred during a cycle γ (δ, ξ) in Eq. (3):
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= +

+ +
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Similarly, we derive the expected operation duration time η(δ, ξ) in Eq. (3):
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(13)

A2. Derivations of γ (δ, ω) and η(δ, ω) in Eq. (4)

The expected cost and the expected operation time in Eq. (4) are given as follows

Fig. 13. Comparison of the system reliabilities with and without dynamic environmental information incorporated.
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In order to obtain the probabilities that CM and PM occur at the νth inspection, we first derive the probability that a component fails before the νth

inspection, denoted by Hν, as follows:

=H F D x1 ( ; , , ), 1.f 0 (16)

We then compute the probability that a component fails between the (ν – 1)th and νth inspections, represented by Gν, as:
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Based on Hν and Gν, we have the probability that PM occurs at the νth inspection:
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We also obtain the probability that CM occurs at the νth inspection as follows:

=
== +

= + =

G G

H H G H G

Pr{CM at the inspection}
( )( ) (1 ) , 1

( )( ) (1 ) ( )( ) (1 ) , 2.
i n k
n

i
n i n i

i n k
n

j j
n j n j

i j
n j i j n i

th

1 1 1

1 0
1

1 1 1 (19)

References

[1] Gebraeel Nagi Z, Lawley Mark A, Li Rong, Ryan Jennifer K. Residual-life distribu-
tions from component degradation signals: A Bayesian approach. IiE Transactions
2005;37(6):543–57.

[2] Chen Nan, Tsui Kwok Leung. Condition monitoring and remaining useful life pre-
diction using degradation signals: Revisited. IiE Transactions 2013;45(9):939–52.

[3] Ye Zhisheng, Chen Nan, Tsui Kwok‐Leung. A Bayesian approach to condition
monitoring with imperfect inspections. Quality and Reliability Engineering
International 2015;31(3):513–22.

[4] You Ming-Yi, Liu Fang, Wang Wen, Meng Guang. Statistically planned and in-
dividually improved predictive maintenance management for continuously mon-
itored degrading systems. IEEE Transactions on Reliability 2010;59(4):744–53.

[5] Zhou Xiaojun, Xi Lifeng, Lee Jay. Reliability-centered predictive maintenance
scheduling for a continuously monitored system subject to degradation. Reliability
Engineering & System Safety 2007;92(4):530–4.

[6] Van Horenbeek Adriaan, Pintelon Liliane. A dynamic predictive maintenance policy
for complex multi-component systems. Reliability Engineering & System Safety
2013;120:39–50.

[7] Huynh Khac Tuan, Grall Antoine, Bérenguer Christophe. A parametric predictive
maintenance decision-making framework considering improved system health
prognosis precision. IEEE Transactions on Reliability 2018;68(1):375–96.

[8] Do Van Phuc, Barros Anne, Bérenguer Christophe, Bouvard Keomany, Brissaud
Florent. Dynamic grouping maintenance with time limited opportunities. Reliability
Engineering & System Safety 2013;120:51–9.

[9] Wildeman Ralph Edwin, Dekker Rommert, Smit ACJM. A dynamic policy for
grouping maintenance activities. European Journal of Operational Research
1997;99(3):530–51.

[10] Vu Hai Canh, Do Phuc, Barros Anne, Bérenguer Christophe. Maintenance grouping
strategy for multi-component systems with dynamic contexts. Reliability
Engineering & System Safety 2014;132:233–49.

[11] Martinod Ronald M, Bistorin Olivier, Castañeda Leonel F, Rezg Nidhal.
Maintenance policy optimization for multi-component systems considering de-
gradation of components and imperfect maintenance actions. Computers &
Industrial Engineering 2018;124:100–12.

[12] Vu Hai Canh, Do Phuc, Fouladirad Mitra, Grall Antoine. Dynamic opportunistic
maintenance planning for multi-component redundant systems with various types
of opportunities. Reliability Engineering & System Safety 2020;198:106. 854.

[13] Jardine Andrew KS, Lin Daming, Banjevic Dragan. A review on machinery diag-
nostics and prognostics implementing condition-based maintenance. Mechanical
systems and signal processing 2006;20(7):1483–510.

[14] Liao Haitao, Elsayed Elsayed A, Chan Ling-Yau. Maintenance of continuously
monitored degrading systems. European Journal of Operational Research

2006;175(2):821–35.
[15] Chen Nan, Ye Zhi-Sheng, Xiang Yisha, Zhang Linmiao. Condition-based main-

tenance using the inverse Gaussian degradation model. European Journal of
Operational Research 2015;243(1):190–9.

[16] Alaswad Suzan, Xiang Yisha. A review on condition-based maintenance optimiza-
tion models for stochastically deteriorating system. Reliability Engineering &
System Safety 2017;157:54–63.

[17] Shi Yue, Xiang Yisha, Li Mingyang. Optimal maintenance policies for multi-level
preventive maintenance with complex effects. IISE Transactions
2019;51(9):999–1011.

[18] Tian Zhigang, Liao Haitao. Condition based maintenance optimization for multi-
component systems using proportional hazards model. Reliability Engineering &
System Safety 2011;96(5):581–9.

[19] Xu Mengkai, Jin Xiaoning, Kamarthi Sagar, Noor-E-Alam Md. A failure-dependency
modeling and state discretization approach for condition-based maintenance opti-
mization of multi-component systems. Journal of manufacturing systems
2018;47:141–52.

[20] Zhu Zhicheng, Xiang Yisha. Condition-based Maintenance for Multi-component
Systems: Modeling, Structural Properties, and Algorithms. IISE Transactions
2020:1–27. (just-accepted).

[21] Keizer Minou CA Olde, Teunter Ruud H, Veldman Jasper. Joint condition-based
maintenance and inventory optimization for systems with multiple components.
European Journal of Operational Research 2017;257(1):209–22.

[22] Keizer Minou CA Olde, Flapper Simme Douwe P, Teunter Ruud H. Condition-based
maintenance policies for systems with multiple dependent components: A review.
European Journal of Operational Research 2017;261(2):405–20.

[23] Nguyen Kim-Anh, Do Phuc, Grall Antoine. Joint predictive maintenance and in-
ventory strategy for multi-component systems using Birnbaum's structural im-
portance. Reliability Engineering & System Safety 2017;168:249–61.

[24] Cheng Guo Qing, Zhou Bing Hai, Li Ling. Joint optimization of lot sizing and
condition-based maintenance for multi-component production systems. Computers
& Industrial Engineering 2017;110:538–49.

[25] Vu Hai Canh, Do Phuc, Barros Anne. A stationary grouping maintenance strategy
using mean residual life and the birnbaum importance measure for complex
structures. IEEE Transactions on reliability 2016;65(1):217–34.

[26] Kim Michael Jong, Jiang Rui, Makis Viliam, Lee Chi-Guhn. Optimal Bayesian fault
prediction scheme for a partially observable system subject to random failure.
European Journal of Operational Research 2011;214(2):331–9.

[27] Si Xiao-Sheng, Wang Wenbin, Chen Mao-Yin, Hu Chang-Hua, Zhou Dong-Hua. A
degradation path-dependent approach for remaining useful life estimation with an
exact and closed-form solution. European Journal of Operational Research
2013;226(1):53–66.

[28] Omshi E Mosayebi, Grall Antoine, Shemehsavar S. A dynamic auto-adaptive pre-
dictive maintenance policy for degradation with unknown parameters. European

Y. Shi, et al. Reliability Engineering and System Safety 202 (2020) 107042

13

http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0001
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0001
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0001
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0002
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0002
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0003
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0003
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0003
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0004
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0004
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0004
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0005
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0005
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0005
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0006
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0006
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0006
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0007
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0007
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0007
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0008
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0008
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0008
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0009
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0009
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0009
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0010
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0010
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0010
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0011
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0011
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0011
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0011
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0012
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0012
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0012
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0013
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0013
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0013
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0014
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0014
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0014
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0015
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0015
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0015
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0016
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0016
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0016
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0017
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0017
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0017
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0018
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0018
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0018
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0019
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0019
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0019
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0019
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0020
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0020
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0020
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0021
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0021
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0021
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0022
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0022
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0022
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0023
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0023
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0023
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0024
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0024
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0024
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0025
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0025
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0025
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0026
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0026
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0026
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0027
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0027
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0027
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0027
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0028
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0028


Journal of Operational Research 2020;282(1):81–92.
[29] Omshi E Mosayebi, Grall A, Shemehsavar S. Bayesian update and aperiodic main-

tenance policy for deteriorating systems with unknown parameters, in Safety and
Reliability–Safe Societies in a Changing World. CRC Press; 2018. p. 687–92.

[30] Walter Gero, Flapper Simme Douwe. Condition-based maintenance for complex
systems based on current component status and Bayesian updating of component
reliability. Reliability Engineering & System Safety 2017;168:227–39.

[31] Byun Ji-Eun, Noh Hee-Min, Song Junho. Reliability growth analysis of k-out-of-N
systems using matrix-based system reliability method. Reliability Engineering &
System Safety 2017;165:410–21.

[32] Li Yan-Fu, Peng Rui. Availability modeling and optimization of dynamic multi-state
series–parallel systems with random reconfiguration. Reliability Engineering &
System Safety 2014;127:47–57.

[33] Ben-Dov Yosi. Optimal testing procedures for special structures of coherent systems.
Management Science 1981;27(12):1410–20.

[34] Dey Prasanta Kumar, Ogunlana Stephen O, Naksuksakul Sittichai. Risk‐based
maintenance model for offshore oil and gas pipelines: a case study. Journal of
Quality in Maintenance Engineering 2004.

[35] Park Chanseok, Padgett William J. New cumulative damage models for failure using
stochastic processes as initial damage. IEEE Transactions on Reliability
2005;54(3):530–40.

[36] Tiassou Kossi, Kanoun Karama, Kaâniche Mohamed, Seguin Christel, Papadopoulos
Chris. Aircraft operational reliability—A model-based approach and a case study.
Reliability Engineering & System Safety 2013;120:163–76.

[37] Castanier Bruno, Grall Antoine, Bérenguer Christophe. A condition-based main-
tenance policy with non-periodic inspections for a two-unit series system.
Reliability Engineering & System Safety 2005;87(1):109–20.

[38] Pham Hoang, Wang Hongzhou. Optimal (τ, T) opportunistic maintenance of
ak‐out‐of‐n: G system with imperfect PM and partial failure. Naval Research
Logistics (NRL) 2000;47(3):223–39.

[39] de Smidt-Destombes Karin S, van der Heijden Matthieu C, van Harten Aart. On the

availability of a k-out-of-N system given limited spares and repair capacity under a
condition based maintenance strategy. Reliability engineering & System safety
2004;83(3):287–300.

[40] de Smidt-Destombes Karin S, van der Heijden Matthieu C, Van Harten Aart. On the
interaction between maintenance, spare part inventories and repair capacity for a k-
out-of-N system with wear-out. European Journal of Operational Research
2006;174(1):182–200.

[41] Torczon Virginia, Trosset Michael W. From evolutionary operation to parallel direct
search: Pattern search algorithms for numerical optimization. Computing Science
and Statistics 1998:396–401.

[42] Rushdi Ali M. Utilization of symmetric switching functions in the computation of k-
out-of-n system reliability. Microelectronics Reliability 1986;26(5):973–87.

[43] Espiritu Jose F, Coit David W, Prakash Upyukt. Component criticality importance
measures for the power industry. Electric Power Systems Research
2007;77(5–6):407–20.

[44] Ramirez-Marquez Jose E, Rocco Claudio M, Gebre Bethel A, Coit David W,
Tortorella Michael. New insights on multi-state component criticality and im-
portance. Reliability Engineering & System Safety 2006;91(8):894–904.

[45] Birnbaum Zygmund William. On the importance of different components in a
multicomponent system. Washington Univ Seattle Lab of Statistical Research; 1968.

[46] Levitin Gregory, Podofillini Luca, Zio Enrico. Generalised importance measures for
multi-state elements based on performance level restrictions. Reliability
Engineering & System Safety 2003;82(3):287–98.

[47] Bouvard Keomany, Artus Samuel, Bérenguer Christophe, Cocquempot Vincent.
Condition-based dynamic maintenance operations planning & grouping.
Application to commercial heavy vehicles. Reliability Engineering & System Safety
2011;96(6):601–10.

[48] Bernardo José M, Smith Adrian FM. Bayesian theory 405. John Wiley & Sons.; 2009.
[49] Park Chanseok, Padgett William J. Stochastic degradation models with several ac-

celerating variables. IEEE Transactions on Reliability 2006;55(2):379–90.

Y. Shi, et al. Reliability Engineering and System Safety 202 (2020) 107042

14

http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0028
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0029
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0029
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0029
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0030
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0030
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0030
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0031
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0031
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0031
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0032
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0032
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0032
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0033
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0033
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0034
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0034
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0034
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0035
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0035
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0035
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0036
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0036
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0036
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0037
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0037
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0037
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0038
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0038
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0038
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0039
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0039
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0039
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0039
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0040
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0040
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0040
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0040
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0041
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0041
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0041
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0042
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0042
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0043
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0043
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0043
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0044
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0044
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0044
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0045
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0045
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0046
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0046
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0046
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0047
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0047
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0047
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0047
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0048
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0049
http://refhub.elsevier.com/S0951-8320(20)30543-3/sbref0049

	Condition-based maintenance optimization for multi-component systems subject to a system reliability requirement
	Introduction
	Problem formulation
	System description
	Maintenance cost model

	Condition-based maintenance decision framework
	Phase 1: long-term inspection planning
	Optimal inspection schedule of a 1-out-of-1 subsystem
	Optimal inspection schedule for a k-out-of-n subsystem

	Phase 2: Bayesian updating
	Phase 3: grouping maintenance activities
	Preventive maintenance grouping problem
	Dynamic-priority-based heuristic algorithm for component selection

	Phase 4: rolling-horizon step

	Sensitivity analysis
	Effects of Bayesian updating in stationary environment
	Effects of Bayesian updating on system performance
	Effects of Bayesian updating on system inspection interval

	Effects of Bayesian updating in dynamic environment

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	Appendix
	A1. Derivations of &#x003B3; (&#x003B4;, &#x003BE;) and &#x003B7;(&#x003B4;, &#x003BE;) in Eq. (3)
	A2. Derivations of &#x003B3; (&#x003B4;, &#x003C9;) and &#x003B7;(&#x003B4;, &#x003C9;) in Eq. (4)

	References




