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Abstract
Many service systems use technology to notify customers about their expected waiting
times or queue lengths via delay announcements. However, in many cases, either the
information might be delayed or customers might require time to travel to the queue
of their choice, thus causing a lag in information. In this paper, we construct a neutral
delay differential equation model for the queue length process and explore the use
of velocity information in our delay announcement. Our results illustrate that using
velocity information can have either a beneficial or detrimental impact on the system.
Thus, it is important to understand how much velocity information a manager should
use. In some parameter settings, we show that velocity information can eliminate
oscillations created by delays in information. We derive a fixed point equation for
determining the optimal amount of velocity information that should be used and find
closed-form upper and lower bounds on its value. When the oscillations cannot be
eliminated altogether, we identify the amount of velocity information that minimizes
the amplitude of the oscillations. However, we also find that using too much velocity
information can create oscillations in the queue lengths that would otherwise be stable.

Keywords Neutral delay-differential equation · Hopf bifurcation · Perturbations
method · Operations research · Queueing theory · Fluid limits · Delay
announcement · Velocity
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1 Introduction

Many corporations and services eagerly adopt new technologies that allow service
managers to interact with their customers. One highly important aspect of the com-
munication is the delay announcement, which informs the customers of their estimated
waiting time or queue length. Delay announcements are used in variety of service sys-

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11134-020-09657-9&domain=pdf
http://orcid.org/0000-0002-5418-6918


282 Queueing Systems (2020) 95:281–330

tems. For example, some hospital emergency rooms display their expected waiting
times online. Telephone call centers warn the customers that are placed on hold about
extensive waiting times. Amusement parks update the waiting times for different rides,
and some transportation networks warn about heavy traffic or delays via road signs.

The popularity of delay announcements among service managers extends beyond
customer satisfaction. Informing customers about their waiting times allowsmanagers
to influence customer decisions, and the overall systemdynamics,which are crucial to a
company’s productivity and underlying revenue. As a result, many important questions
arise when a service decides to implement a delay announcement for its customers:
What type of information, if any, should the service provider give to customers? Are
there circumstances when the delay announcement hurts the service provider? How
long does it take for the service provider to calculate the delay announcement and
disseminate it to customers?

The existing literature explores differentways to give a delay announcement, aswell
as different response behaviors of the customers. For example, Ibrahim et al. [21] study
a service systemwith applications to telephone call centers. Upon calling and receiving
the delay announcement, customers have the option to join the queue, balk (leave
immediately), or abandon the queue after spending some time waiting. The authors
develop methods for determining the accuracy of the last-to-enter-service (LES) delay
announcement, which estimates the waiting time for an incoming customer as the
waiting time of the most recent customer who entered service. Under the same options
for customer behavior, Jouini et al. [23] consider providing different percentiles of the
waiting time distribution as information to their customers. They determine the amount
of information that maximizes the number of customers who end up receiving service.
Armony and Maglaras [3] model a queue where, upon arrival, the customers are told
the steady-state expected waiting time and in addition are given an option to request
a call back. The authors propose a staffing rule that picks the minimum number of
service agents that satisfies a set of operational constraints on the performance of the
system. Guo and Zipkin [15,16] allow customers to either join the queue or balk,
when the customers are presented either with no information, partial information, or
full information about the queues. The authors discuss for what situations the extra
information is beneficial, and when the addition information can hurt the customers
or the service provider.

This paper also explores the impact of the delay announcement on the dynamics of
the queueing process. However, the current literature focuses only on services that give
the delay announcements to their customers in real-time, while we consider scenarios
when the information itself is delayed. Lags in information are common in services
that inform their customers about the waiting times prior to customers’ arrival to the
service. Such services are prominent in the context of hospital emergency rooms,
highway transportation, amusement park rides, and internet buffer sizing [1,9,28,33].
One specific example is the Citibike bike-sharing network in New York City [14,37].
Riders can search the availability of bikes on a smartphone app, as shown in Fig. 1.
However, in the time that it takes for the riders to leave their home and get to a station,
all of the bikes could have been taken from that station. Thus, the information they
used is delayed and is somewhat unreliable by the time they arrive at the station.

123



Queueing Systems (2020) 95:281–330 283

Fig. 1 Bike sharing network app

In this paper, we present a deterministic fluid-like model of queues. This may seem
a counter-intuitive choice given that queues are usually comprised of discrete units
such as the number of people, jobs, or automobiles. However, a queueing system with
a heavy traffic flow can be well approximated by a fluid model. These approximations
are common in queueing literature [4,21], where the queues are modeled as stochas-
tic processes and then shown to converge in some limiting regime to deterministic
equations. Fluid models are especially useful in settings like manufacturing systems,
traffic networks, cloud-computing jobs, busy call centers, and crowds at Disneyland
parks where the demand for service is large [2,4,20,28,32].

1.1 Contributions of paper

We present a fluid model of N queues where customers choose which queue to join,
giving preference to the shorter queue based on delayed information. Similar models
were previously considered by the authors in [29–31]. The size of delay in information
determines whether the queues approach a stable equilibrium or Hopf bifurcations
occur and the queues oscillate indefinitely. The threshold at which the queues become
unstable can be affected by the type of information that is revealed to customers.
This paper analyzes what kind of information the service managers should provide to
customers in order to distribute the workload evenly among the queues. This benefits
both the customers who will avoid excessive waits at the longer queues and the servers
who will avoid being overworked or underworked. In many settings, the operator
knows not only the current queue lengths, but also the rate at which the queues are
changing, namely the queue velocity.
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• We develop a new queueing model, where customers are told a weighted sum of
the queue length and the queue velocity.

• We show that the queueing system can undergo a Hopf bifurcation if the delay
due to the customer travel time is large. We derive the exact point where the Hopf
bifurcation occurs.

• We specify how the weight coefficient of velocity information should be chosen
so that queues can maintain their stability under greater lags in time. Specifically,
we prove that there exists an optimal weight that maximizes the delay where the
bifurcation occurs.

• We derive a fixed point equation for the optimal weight, as well as closed-form
expressions for upper and lower bounds on that weight. We also provide upper and
lower bounds on the maximum delay where the bifurcation occurs.

• When the oscillations in queues cannot be prevented, we use the second-order
approximation of amplitude via Lindstedt’s method to determine the weight of
velocity information that minimizes the amplitude of oscillations.

• When theweights are chosen inadequately, the velocity information can be harmful
to the system.We specify the threshold for theweight coefficient where the adverse
effects take place.

1.2 Organization of paper

The remainder of the paper is organized as follows: Section 3 presents a mathematical
model for N queues and describes the qualitative behavior of the queueing system.
In particular, we prove the existence and uniqueness of the equilibrium and give
conditions under which the equilibrium is locally stable. We show that for certain
values of the parameters, infinitely many Hopf bifurcations may occur.

For some parameters, the queues converge to an equilibrium for sufficiently small
delay in information, but as the delay exceeds a certain threshold �cr, the equilibrium
becomes unstable. Section 4 discusses how the velocity information affects �cr, and
since the queues are stable only when the delay is less than �cr, it becomes our
objective to maximize the threshold delay to provide.

Section 5 considers a queueing system with two queues, which is a special case of
our N -queue model. We prove that all Hopf bifurcations are supercritical. We use a
perturbations technique to develop a highly accurate approximation of the amplitude
near the bifurcation point and show that the amplitude of oscillations in queues can
be decreased with the right choice of the velocity information weight parameter.

2 Literature review

In this section, we provide a review of the literature that is relevant to this work as the
delayed information space is relatively new in the context of this work.

The first paper [30] analyzed a similar model to the one presented in this paper.
This particular paper considered a fluid model of two queues and derived an explicit
formula for the Hopf bifurcation under the setting of two queues. Our current work
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differs in many ways from this first paper. First, our paper considers an N -dimensional
system, which is non-trivial. One reason is that the two-dimensional system of delay
differential equations reduces to a one dimensional delay differential equation, which
follows from the fact that the sum of all of the queues is an infinite server system that
is always stable. Thus, a reduction of N to N − 1 queues is always possible with this
symmetry. However, when N > 2, it is unclear how to make this reduction to a one
dimensional delay differential equation. The second reason that our work differs from
previous work is that this work considers using the velocity of the queue length as
information, which was not previous considered in any previous work.

The second paper, Pender et al. [31], also analyzed a similar model to the first paper;
however, the second paper added the complexity of non-stationary arrival rates. This is
a significant difference since non-stationary arrival rates are much more complicated
than their stationary counterparts. Moreover, the essential insight from that paper
was that non-stationary arrival will affect the dynamics of the queue, but does not
impact the location of the Hopf bifurcation unless the frequency of the arrival rate
function is twice that of the oscillations generated by the Hopf bifurcation itself. The
paper Pender et al. [31] also proves how the Hopf bifurcation is shifted when the
frequencies align properly. This paper does not consider non-stationary arrival rates
and also incorporates velocity, which is quite different.

The third paper, Novitzky et al. [29], is also different from our current work in that
the paper does not incorporate velocity into the announcement feature of the model.
Moreover, the essential insight in that work is that we can develop a statistical method
to compute the amplitude of the oscillations. We call this method the “Slope Func-
tion Method.” The idea is that one can numerically integrate a few delay differential
equations and compute the amplitude for those equations. Then we learn, exploiting
nonlinear regression techniques, how the amplitude changes as a function of themodel
parameters. We show in the paper how the Slope Function Method accurately predicts
the amplitude from the initial data.

There are a few papers that have recently explored the possibility of adding delays
to fluid models in queueing systems. One paper that arises is the work of Lipshutz
and Williams [26]. In this paper, the authors derive sufficient conditions for when
oscillations will occur in reflected delay differential equations when they are present
in the non-reflected system. One difference is that we do not consider reflected delay
differential equations. Another difference is that our queueing model is inherently
multi-dimensional, while themodel in Lipshutz andWilliams [26] is one-dimensional.
Finally, we are interested in computing exactly where the Hopf bifurcation occurs,
while Lipshutz and Williams [26] does not compute exactly when this bifurcation
will occur in the reflected model. The second paper is by Raina and Wischik [33].
This particular paper combines concepts from queueing theory with delay differential
equations and applies them to sizing router buffers in Internet infrastructure services.
This paper analyzes the amplitude of oscillations that are a function of the delay and
the model parameters. However, they do not compute closed-form expressions for
the amplitude and only provide numerical examples in this regard. Our paper here
provides explicit formulas for the amplitude in terms of the model parameters and
also uses Lindstedt’s method to second order, where Raina and Wischik [33] only
does first order approximations.
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The similar models that were previously considered by the authors in [29–31] have
some important common themes. All of these papers are interested in the question of
whenHopf bifurcationswill occur as a function ofmodel parameters. This is important
to understand as it givesmanagers the ability to understandwhen oscillationswill occur
in their systems. In addition, the papers are also interested in knowing what the size
and frequency of oscillations will be when they occur. This is important because it is
helpful to know not only that oscillations will occur, but also how large they might be
or how frequent they might be.

3 The queueingmodel

Customers arrive at a rate λ > 0 to a system of N queues, where they are given
information about the waiting times at each queue based on the current queue length
and the rate at which the queue is changing. Each customer chooses one of N queues
to join, giving probabilistic preference to the shorter queue. In this work, we assume
that the information that a customer receives is lagged by a quantity �. One way to
view this delay in information is that the mechanism that provides the information to
customer is delayed because it may take time to compute the information. Another
perspective is that customers might experience a delay because they have to travel to
a queue after committing to one. In this second setting, customers travel for � > 0
time units to reach the queue of their choice. Our model assumes that the queueing
dynamics for the departure process are identical to that of an infinite-server queue with
service rate μ > 0.

Infinite-server queues are quite common in the operations research literature [11–
13,22,24,34] as they provide lower bounds on performance on multi-server queueing
systems. A reasonable question a reader might ask is why we do not consider multi-
server queues in this particular paper since customers in infinite-server queues do
not have to wait for service. This is a fair question to ask; however, we have three
valid reasons to limit this first analysis to the infinite-server assumption. The first
reason that we ignore the multi-server case is that this work is the first work to the
authors’ knowledge to consider the velocity of queueing systems to construct delay
announcements and, as one can see later, this case is already quite complicated.

The second reason stems from the fact that the Erlang-C fluid model basically
behaves identically to that of an infinite-server queueing model when the staffing level
is operated in the quality regime. More importantly, from a fluid model perspective,
infinite-server queues and multi-server queues are identical when λ < μC , which
is the same condition needed for stability of the queueing system in steady state.
Finally, We want to emphasize that our infinite-server model, which we study in this
paper, is vital to develop a better understanding of more complex models like the the
Erlang-A with delayed information. The main reason is that, in equilibrium, for an
Erlang-A model with C servers and an abandonment rate of β, the fluid limit either
behaves like an infinite-server queue with service rate μ when λ < μc or it behaves
like an infinite-server queue with service rate β when λ > μc. Thus, the analysis
of the infinite-server case is vital and suffices to conduct further analysis for more
complicated models. Moreover, since the departure rate and abandonment rate are
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non-differentiable functions, the critical delay analysis that we do later cannot be
done for the Erlang-A model when the arrival rate is equal to the service rate times the
number of servers, i.e., λ/N = μC . A deeper generalized stability analysis for non-
smooth functions would have to be developed in the dynamical systems community,
and we leave these more complex models for future study. Thus, our initial goal was to
get an understanding of a simpler model first to get some intuition about other models.
For a deeper understanding of why these relationships hold with the Erlang-A model,
see, for example, recent work by Daw and Pender [8].

Another reason why we expect the same conclusions to hold in finite-server queue-
ing systems is that we are studying fluidmodels. Becausewe are studying fluidmodels,
we can expect that similar results to those derived in this paper would continue to hold
in multi-server queues. More specifically, for an Erlang-A fluid model, we have the
following nonlinear differential equation:

•
qi (t) = λ − μ(qi (t) ∧ C) − β(qi (t) − C)+. (3.1)

First note that there is only one point that does not have a derivative in Eq. (3.1); and,
that point is qi = C . Outside of this point, Eq. (3.1) is differentiable and, by Daw and
Pender [8], it can be shown that the point qi = C is achieved in steady state if and only
if λ = μC . Otherwise, the steady-state queue length is strictly larger or smaller than
the number of servers. Since our analysis in the sequel depends on the differentiability
of the queue length equations, the same analysis should work as long as we are not at
the point qi = C .

Our infinite-server assumption implies that the departure rate for a queue is the
service rate μ multiplied by the total number of customers in that queue, and it also
implies that the departure rate is a linear function of the queue length process. Figure 2
shows the queueing system for N queues. The queue length for the i th queue is given
by

•
qi (t) = λpi (q1, . . . , qN ,

•
q1, . . . ,

•
qN ,�) − μqi (t), ∀i ∈ {1, . . . , N }, (3.2)

where the function pi represents the probability that a customer chooses the i th queue.
In most other work, most customers might receive information about the real-time

queue length q(t); however, we know real systems can experience transmission delays
and customers might have to travel to join a queue. Thus, in the delayed context a cus-
tomer may receive a delayed queue length q(t − �). From previous work, Novitzky
et al. [29] and Pender et al. [31], we know that the delay in information may cause
Hopf bifurcations and oscillations in the queue length processes. Since these Hopf
bifurcations occur, it raises the question of whether we might add additional informa-
tion to the delayed queue length to either make the oscillations smaller or make them
disappear altogether. Thus, in this work, we propose that the manager of a service
system gives customers a weighted sum of the delayed queue length and the delayed
queue length velocity, i.e.,

Information about the ith queue = qi (t − �) + δ
•
qi (t − �). (3.3)
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Fig. 2 Customers going through a N-queue service system

This type of delay announcement is really motivated by a Taylor expansion idea. We
know from general Taylor expansions that if q(t) is differentiable enough that we can
write the queue length process at time t as

q(t) = q(t − �) +
∞∑

j=1

+� j q( j)(t − �), (3.4)

where we define q( j)(t − �) as the j th time derivative of the queue length process
at the time t − �. In this work, we only take the first-order expansion term and we
provide this to the customer. The first-order term incorporates the velocity of the queue
length over time, and as we will show this information can be helpful when trying
to reduce the amplitude of oscillations, or in some cases can help us remove them
altogether. Thus, the hope is that by giving the customer information from Eq. (3.1),
we can reduce the delay in information by the quantity δ, since at first order we have
that

q(t − (� − δ)) ≈ q(t − �) + δ · •
q(t − �). (3.5)

Fromapractical perspective, it is important to understand howamanagerwould col-
lect this velocity information. Even though our fluid model is continuous, in practical
situations the queue length and its derivative are generally not continuous functions
of time. Thus, our analysis is really intended for systems that are large scale and
where fluid models are applicable. Moreover, in practice a manager might choose a
time window, say of size ε. Then, in this time window a manager would calculate the
number of arrivals at the i th queue as Ai (t) − Ai (t − ε) and the number of departures
Di (t) − Di (t − ε). Using these quantities, one can approximate the time derivative at
time t as
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•
qi (t) ≈ Ai (t) − Ai (t − ε)

ε
− Di (t) − Di (t − ε)

ε
. (3.6)

It would be up to the manager to decide what value of ε makes the most sense for their
calculations.When the number of arrivals is large and ε is small, then our approximate
time derivative should be expected to be close to the one given by our neutral delay
differential equation.

The information provided to the customer should help customers decide which
queue to join and, as we will show later in the paper, our new delay announcement can
do exactly that when implemented correctly and carefully. In our work, we assume
that the probability of a customer choosing the i th queue is given by the Multinomial
Logit Model (MNL), which takes in as an input our delay announcement information.
The MNL model is commonly used to model customer choice behavior in a variety
of fields such as operations research, economics, and applied psychology; see, for
example, [19,27,36,38]. Using the MNL model, we have the following expression for
the probability that a customer will choose the i th queue to join:

pi (q1, . . . , qN ,
•
q1, . . . ,

•
qN ,�) =

exp
(

− θ
(
qi (t − �) + δ

•
qi (t − �)

))

∑N
j=1 exp

(
− θ

(
q j (t − �) + δ

•
q j (t − �)

)) ,

(3.7)

where θ > 0 is a standard coefficient of theMNL, δ ≥ 0 is theweight of the information
about queue’s velocity, and � > 0 is the delay in time due to customers traveling to
service. Obviously, when δ = 0 we revert back to the old model without velocity
information and�, and the remaining model parameters will fully determine the local
stability of the service system.

The parameter θ determines how strong the customer preference is for the shortest
queue. For intuition, we will illustrate the MNL model on the simplest model where
there are two queues, and the parameters δ,� are set to 0. Figure 3 shows the prob-
ability of a customer joining the 1st queue, as a function of θ and the difference in
queue lengths q2 − q1,

p1(q1, q2) = exp(−θq1)

exp(−θq1) + exp(−θq2)
= 1

1 + exp(−θ
(
q2 − q1)

) . (3.8)

When θ → 0, customers choose queues arbitrarily, giving no preference based on
the queue length. Figure 3 indicates θ = 0 by the yellow line, and p1 = p2 = 0.5
for any difference in queue lengths. When θ → ∞, customers always choose the
shortest queue, even when the difference in lengths is marginal. This is marked by
the black line in Fig. 3. However, for simplicity one can set θ = 1, which is denoted
by the red curve. In this case, when the queues are roughly of equal length, they will
be joined with roughly the same probabilities, but once the difference in the queue
lengths increases, the shorter queue will become more preferable.
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Fig. 3 MNL for two queues

Complete model The incorporation of the probabilities pi into the queueing system
provides a systemof neutral delay differential equations (NDDE) for the queue lengths:

•
qi (t) = λ ·

exp
(

− θ
(
qi (t − �) + δ

•
qi (t − �)

))

∑N
j=1 exp

(
− θ

(
q j (t − �) + δ

•
qi (t − �)

)) − μqi (t), ∀i ∈ {1, . . . , N },

(3.9)

with the initial conditions specified by nonnegative continuous functions fi :

qi (t) = fi (t),
•
qi (t) = •

f i (t), t ∈ [−�, 0]. (3.10)

3.1 Conditions for stability and Hopf bifurcations

In this section, we describe the behavior of the queues from Eq. (3.9). We begin by
establishing the existence and uniqueness of the solution to the initial value problem
(3.9) - (3.10). We note that there exists an extensive analysis of functional differential
equations; see, for example, [6,17,26]. The existence and uniqueness of the solution
for our specific model directly follows from Driver [10], as stated in the result below.

Theorem 3.1 Let fi (t) from Eq. (3.10) be absolutely continuous on t ∈ [−�, 0], and
•
f i (t) be bounded for almost all t ∈ [−�, 0] for every 1 ≤ i ≤ N. Then there exists a
solution qi , . . . , qN for all t > 0 that satisfies Eqs. (3.9)–(3.10). Further, the solution
is unique.

Proof The existence of the solution is given by Theorem 1 of Driver [10]. The unique-
ness of the solution follows from Theorem 2 of Driver [10], but we first need to ensure
that the conditions of Theorem 2 are fulfilled. The theorem requires that the function
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λ ·
exp

(
− θ

(
qi (t − �) + δ

•
qi (t − �)

))

∑N
j=1 exp

(
− θ

(
q j (t − �) + δ

•
qi (t − �)

)) − μqi (t), ∀i ∈ {1, . . . , N },

(3.11)

satisfies the local Lipschitz conditionwith respect to (q1(t), . . . , qN (t))with Lipschitz

constant L , where L is a continuous function of (
•
q1(t − �), . . . ,

•
qN (t − �)). Here

qi (t) and qi (t − �) are treated as different variables, so the local Lipschitz condition
with respect to (q1(t), . . . , qN (t)) is satisfied trivially with L = 2μ. Therefore, the
solution to the system (3.9)–(3.10) is guaranteed to be unique. 
�
Theorem 3.2 The unique equilibrium of qi (t) from Eq. (3.9) is given by

lim
t→∞ qi (t) = q∗

i = λ

Nμ
, 1 ≤ i ≤ N . (3.12)

Proof See the Appendix for the proof. 
�
The stability of the equilibrium can be determined by the stability of the linearized

systemof equations [17,35]. Hence,we proceed by linearizing qi about the equilibrium
and finding the characteristic equation.

Proposition 3.3 The characteristic equation of (3.9) is given by

�(R,�) = −R − λθ

N

(
e−R� + δRe−R�

)
− μ = 0. (3.13)

Proof We introduce the functions ui (t) that represent the deviation of qi (t) from the
equilibrium:

ui (t) = qi (t) − q∗
i = qi (t) − λ

Nμ
. (3.14)

Once the NDDE are linearized (first order Taylor expansion),
•
ui (t) can be approxi-

mated as

•
ui (t) ≈ −λθ

N

(
ui (t − �) + δu′

i (t − �)
)

+ λθ

N 2

N∑

j=1

(
u j (t − �) + δu′

j (t − �)
)

− μui (t). (3.15)

In vector form, we have

•
u(t) = −λθ

N
· (
u(t − �) + δu′(t − �)

) + λθ

N 2 A
(
u(t − �) + δu′(t − �)

) − μu(t),

(3.16)
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where A ∈ R
N×N , and Ai j = 1 for 1 ≤ i, j ≤ N . The matrix A can be diagonalized:

A = V DM, where V , D, M ∈ R
N×N , (3.17)

V M = MV = I , Di j = 0 if i �= j . (3.18)

Since all rows of A are identical, A has only one eigenvalue. This implies that the
diagonal matrix D has only one nonzero element, D11 = N . This property can be
exploited with the introduction of a vector w(t):

u(t) = Vw(t). (3.19)

That is an acceptable form of definition because V is invertible. Equation (3.16)
becomes

V
•
w(t) = − λθ

N
V

(
w(t − �) + δw′(t − �)

)
(3.20)

+ λθ

N 2 V DMV
(
w(t − �) + δw′(t − �)

) − μVw(t). (3.21)

Pre-multiplying this equation by M yields the following simplification:

•
w(t) = − λθ

N

(
w(t − �) + δw′(t − �)

)
(3.22)

+ λθ

N 2 D
(
w(t − �) + δw′(t − �)

) − μw(t). (3.23)

Writing out D explicitly reduces the systemof N equations down to just two equations:

•
w1(t) = − μw1(t), (3.24)

•
wi (t) = − λθ

N

(
wi (t − �) + δ

•
wi (t − �)

) − μwi (t), i �= 1. (3.25)

Equation (3.24) has a solution of the form w1(t) = ae−μt , so w1 → 0 over time. By
assuming a solution of the form wi (t) = eRt , the characteristic equation then follows
from (3.25). 
�

The equilibrium is stable when all eigenvalues R of the characteristic equation
have negative real parts. It is evident that any real root R must be negative. However,
there are also infinitely many complex roots, and they depend on the delay �. When
δ > N

λθ
, the equilibrium cannot be stable for any � > 0 because there are infinitely

many eigenvalues with positive real parts. We demonstrate this in the result below.

Proposition 3.4 Suppose δ > N
λθ
. Then, for any � > 0, there are infinitely many

eigenvalues of the characteristic equation that have positive real parts.
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Proof Suppose δ > N
λθ
. We assume R = a + ib with a, b ∈ R. We can assume b ≥ 0

without loss of generality. Plugging in R and separating the real and imaginary parts:

− (a + μ)N = e−a�λθ
(
(1 + aδ) cos(b�) + bδ sin(b�)

)
, (3.26)

bN = e−a�λθ
(

− bδ cos(b�) + (1 + aδ) sin(b�)
)
. (3.27)

We find the expressions for sine and cosine:

cos(b�) = −
ea�

(
(a + μ)(1 + aδ)N + b2δN

)

λθ
(
(aδ + 1)2 + (bδ)2

) , (3.28)

sin(b�) = − ea�Nb(δμ − 1)

λθ
(
(1 + aδ)2 + (bδ)2

) . (3.29)

The identity sin2(b�) + cos2(b�) = 1 gives an expression for b:

b =
√

λ2θ2(aδ + 1)2 − e2a�N 2(a + μ)2

e2a�N 2 − δ2λ2θ2
. (3.30)

Wewill now show that there are infinitelymany eigenvalues R, where Re[R] = a > 0,
by separately considering the cases when δμ > 1, δμ < 1, and δμ = 1.

Case 1 δμ > 1. We will construct an interval (a1, a2) with 0 < a1 < a2, which
contains infinitely many values Re[R] = a that together with b from Eq. (3.30) satisfy
the characteristic equation. We will choose a to be such that both the numerator and
the denominator of b are negative, therefore guaranteeing b to be real. This yields two
inequalities:

δθλ

N
> ea� >

θλ(1 + aδ)

N (a + μ)
. (3.31)

Since δθλ
N > 1 by the assumption that δ > N

θλ
, then the inequality δθλ

N > ea� holds
for a ∈ [0, a2), where a2 = 1

�
ln( δθλ

N ) > 0. Further, as a increases, the exponent

ea� must inevitably outgrow θλ(1+aδ)
N (a+μ)

, so there exists a1 ≥ 0 such the second part
of the inequality from Eq. (3.31) holds for all a ≥ a1. Lastly, note that the condition
δθλ
N >

θλ(1+aδ)
N (a+μ)

holds for all a ≥ 0 because δμ > 1, so we can choose a1 to be
less than a2, i.e., a1 ∈ (0, a2). This shows that there exists an interval (a1, a2) with
0 < a1 < a2 where the inequalities from Eq. (3.31) hold, so by Eq. (3.30) we have
0 �= b ∈ R for all a ∈ (a1, a2).

If b ∈ R satisfies Eq. (3.29) for some value of a, then R is an eigenvalue of
the characteristic equation. To show that there are infinitely many eigenvalues with
real parts in (a1, a2), we consider the limit a → a−

2 , when the denominator of b
approaches zero and b → ∞. In this limit, the right-hand side of Eq. (3.29) will
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oscillate between −1 and 1 an infinite number of times, while the left-hand side of
Eq. (3.29) will converge to 0. Hence, there are infinitely many solutions to Eq. (3.29)
with a ∈ (a1, a2), and so there are infinitely many eigenvalues with positive real parts.

Case 2 δμ < 1. The argument here is analogous to Case 1, except to guarantee that b
from Eq. (3.30) is real-valued, we will determine an interval in the range of a where
the numerator and the denominator of b are positive. We get the condition

δθλ

N
< ea� <

θλ(1 + aδ)

N (a + μ)
. (3.32)

At a = 0, θλ(1+aδ)
N (a+μ)

= θλδ
Nμδ

> δθλ
N > 1, so there is an interval [0, a2) for a where

ea� <
θλ(1+aδ)
N (a+μ)

holds. Further, δθλ
N <

θλ(1+aδ)
N (a+μ)

holds for all a ≥ 0 because δμ < 1,

therefore a1 = 1
�
ln( δθλ

N ) > 0 must be smaller than a2. Therefore for all a ∈ (a1, a2),
with 0 < a1 < a2, b ∈ R.

Just as in Case 1, when a → a+
1 , b → ∞ so the right-hand side of Eq. (3.29) will

oscillate between 1 and -1 infinitely many times, while the left-hand side will converge
to 0. Thus, there will be infinitely many eigenvalues that satisfy the characteristic
equation (3.13).

Case 3 δμ = 1. In this case, the expressions for sine and cosine simplify to

cos(b�) = −ea�N

λθδ
, sin(b�) = 0, (3.33)

so b = (2k − 1)π/� for k = 1, 2, . . . , and a = 1
�
ln( λθδ

N ). Since δ > N
θλ
, then a > 0,

and the characteristic equation (3.13) has infinitely many eigenvalues with positive
real parts. 
�

However, when the weight coefficient δ is sufficiently small, i.e., δ < N
λθ
, given a

sufficiently small delay, the queues converge to a stable equilibrium. As the next result
shows, the stability is due to all complex eigenvalues having negative real parts. This
result is because when the delay � is equal to zero, the queues will converge to the
equilibrium and do not oscillate since customers receive information in real-time.

Proposition 3.5 Suppose δ < N
λθ
. When � is sufficiently small, all eigenvalues of the

characteristic equation have negative real parts.

Proof To reach contradiction, let us assume that for any �0 > 0 there exists some
� ∈ (0,�0) and an eigenvalue R = a + ib with a ≥ 0 that satisfy the characteristic
equation (3.13). We can assume b ≥ 0 without loss of generality. Plugging in R and
separating the real and imaginary parts:

− (a + μ)N = e−a�λθ
(
(1 + aδ) cos(b�) + bδ sin(b�)

)
, (3.34)

bN = e−a�λθ
(

− bδ cos(b�) + (1 + aδ) sin(b�)
)
. (3.35)
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Solving for sine and cosine, we find

cos(b�) = −
ea�

(
(a + μ)(1 + aδ)N + b2δN

)

λθ
(
(aδ + 1)2 + (bδ)2

) , (3.36)

sin(b�) = − ea�Nb(δμ − 1)

λθ
(
(1 + aδ)2 + (bδ)2

) . (3.37)

The identity sin2(b�) + cos2(b�) = 1 gives an expression for b:

b =
√

λ2θ2(aδ + 1)2 − e2a�N 2(a + μ)2

e2a�N 2 − δ2λ2θ2
. (3.38)

Since e2a� ≥ 1 and N > δλθ by assumption, the denominator of b is positive, so the
numerator of b must be nonnegative. Therefore we get inequalities

1 ≤ ea� ≤ λθ(aδ + 1)

N (a + μ)
, ea� >

δλθ

N
. (3.39)

From the first inequality, we obtain an upper bound on a, a ≤ λθ−Nμ
N−λθδ

. If λθ < Nμ,
then a < 0 so we reached a contradiction. If λθ ≥ Nμ, then we use (3.38) and (3.39)
to find an upper bound on b:

b ≤ B =
√
2Nλ2θ2(1 − δμ)2

N 2 − δ2λ2θ2
, B > 0. (3.40)

However, we note from the cosine equation (3.36) that cos(b�) < 0. Since b is
nonnegative then b� > π

2 so b > π
2� for any �. Choose �0 = π

4B . Then for any
� < �0 we get a contradiction with (3.40):

b >
π

2�
>

π

2�0
> 2B. (3.41)

Hence, when �0 is sufficiently small, then for any � < �0 the real part of any
eigenvalue is negative. 
�

An interesting edge case, however, is when δ = N
λθ
. If the equality holds, three

different behaviors may be observed. The equilibrium will be stable, regardless of the
size of the delay, if δμ > 1. However, the equilibrium will be unstable if δμ < 1.
Further, if δμ = 1, then the behavior of the queues cannot be determined from the
characteristic equation (3.13), as all eigenvalues will be purely imaginary. We justify
these findings in the result below. However, before justifying these results, we should
mention that a necessary condition for oscillations is that λθ ≥ Nμ. This condition
was derived in Novitzky et al. [29]. Thus, the results here about the velocity parameter
also correspond to the conditions needed for oscillations in the case where δ = 0.
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Proposition 3.6 Suppose δ = N
λθ
. If δμ < 1, then for any � there exists at least one

eigenvalue with positive real part. If δμ > 1, then all eigenvalues have negative real
parts. Further, if δμ = 1 then all eigenvalues are purely imaginary.

Proof As in Propositions 3.4–3.5, we express the eigenvalue as R = a + ib and then
separate the real and imaginary parts of the characteristic equation. The assumption
δ = N

λθ
simplifies the expressions to be

sin(b�) = − bNea�(μN − θλ)

N 2b2 + (aN + θλ)2
, (3.42)

cos(b�) = −Nea�
(
a2N + aθλ + aμN + b2N + θλμ

)

N 2b2 + (aN + θλ)2
. (3.43)

We will address the three cases separately.

Case 1 δμ > 1. To reach contradiction, suppose there exists an eigenvalue with a
nonnegative real part, a ≥ 0. The expression for b is given by

b =
√

(aN + θλ)2 − N 2e2a�(a + μ)2√
N 2

(
e2a� − 1

) , (3.44)

where the denominator is positive, so the numerator must be nonnegative for b to be
real. Therefore aN + θλ − Nea�(a + μ) > 0. However, the assumption δμ > 1 is
equivalent to λθ < Nμ, so we can show that

aN + θλ − Nea�(a + μ) ≤ aN + θλ − N (a + μ) = θλ − Nμ < 0, (3.45)

and we reached a contradiction. Thus, if δμ > 1 then any eigenvalue must have a
negative real part.

Case 2 δμ < 1. This condition is equivalent to λθ < Nμ. Again, b satisfies Eq. (3.44).
As a → 0+, b → ∞ so sin(b�) oscillates between 1 and −1 infinitely quickly. Fur-
ther, as a → 0+ the right-hand side of Eq. (3.42) goes to zero. Therefore, Eq. (3.42)
will have infinitely many roots, while Eq. (3.43) will be satisfied at each root automat-
ically since b is given by Eq. (3.44). Therefore δμ < 1 implies that the characteristic
equation will have infinitely many eigenvalues with positive real parts.

Case 3 δμ = 1. This case is equivalent to the condition λθ = Nμ, which simplifies
Eqs. (3.42)–(3.43) to be

sin(b�) = 0, cos(b�) = −ea�. (3.46)

Hence, b = (2k + 1)π/�, where k = 0, 1, 2, . . . , and 1 = ea� so a = 0. Therefore
the roots of the characteristic equation (3.13) are purely imaginary. 
�

Hence, the equilibrium is stable when δ = N
λθ

and δμ > 1, or when δ < N
λθ

and
the delay � is sufficiently small. Further, the only way for the equilibrium to become
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unstable given that δ < N
λθ

is if a pair of complex eigenvalues crosses from the
negative real side of the complex plane into the positive real side. We will determine
the threshold value of delay where the stability of the equilibrium may change by
finding where the eigenvalues (if any) on the complex plane reach the imaginary axis.

Proposition 3.7 The characteristic equation (3.13) has a pair of purely imaginary
solutions R = ±iωcr with ωcr being real and positive, at each root �cr, given that

ωcr =
√

λ2θ2 − N 2μ2

N 2 − δ2λ2θ2
(3.47)

and �cr satisfies the transcendental equation

cos

(
�cr

√
λ2θ2 − N 2μ2

N 2 − δ2λ2θ2

)
= −δλ2θ2 + N 2μ

Nλθ(1 + δμ)
. (3.48)

Proof Assume that R from the characteristic equation (3.13) is purely imaginary,
R = ±iωcr. Plugging in R, the real and imaginary parts produce two equations:

μ = −λθ

N
cos(ωcr�cr) − λθ

N
δωcr sin(ωcr�cr), (3.49)

ωcr = λθ

N
sin(ωcr�cr) − λθ

N
δωcr cos(ωcr�cr). (3.50)

We can solve for the values of the sine and cosine functions, i.e.,

cos(ωcr�cr) = − N (μ + δω2
cr)

λθ(1 + δ2ω2
cr)

, sin(ωcr�cr) = Nωcr(1 − δμ)

λθ(1 + δ2ω2
cr)

, (3.51)

and by the trigonometric identity sin2(ωcr�cr)+ cos2(ωcr�cr) = 1, ωcr is found. The
cosine equation from (3.51) then gives the equation for �cr. 
�

Proposition 3.7 provides the infinitely many critical delays�cr as well as the neces-
sary conditions on the other parameters (ωcr ∈ R,ωcr �= 0) for whenHopf bifurcations
may occur. This information allows us to prove that a Hopf bifurcation occurs at every
�cr.

Theorem 3.8 Supposeωcr fromEq. (3.47) is real and nonzero. Then aHopf bifurcation
occurs at � = �cr, where �cr is any positive root of

�cr(λ, μ, θ, N , δ) = arccos

(
− δλ2θ2 + N 2μ

Nλθ(1 + δμ)

)
·
√

N 2 − δ2λ2θ2

λ2θ2 − N 2μ2 . (3.52)

Proof By Proposition 3.7, at each �cr there is a pair of purely imaginary eigenvalues
R = iωcr, R̄ = −iωcr. A Hopf bifurcation can only occur if d

d�
Re[R(�cr)] �= 0.
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To verify this, we assume that R(�) = α(�) + iω(�). The characteristic equation
(3.13) is differentiated with respect to delay, and we find that at �cr, where α = 0 and
ω = ωcr, d

d�
Re[R] is given by

dα

d�
= (N 2 − δ2λ2θ2)(1 + δ2ω2)ω2

λ2θ2(1 + δ2ω2)
(
(δ − �)2 + δ2�2ω2

) + N 2
(
1 − 2δμ + 2�μ + δ2ω2(2�μ − 1)

) .

(3.53)

The assumptionωcr > 0 guarantees the numerator of dα
d�

(�cr) to be nonzero. To show
that the denominator D is nonzero as well, note that it is a quadratic function of �,
with an absolute minimum at �∗ such that

dD

d�
(�∗) = 0 �⇒ �∗ = δλ2θ2 − N 2μ

λ2θ2(1 + δ2ω2
cr)

. (3.54)

Once�∗ andω = ωcr from Eqs. (3.54) and (3.47) are substituted into the denominator
D(�) from Eq. (3.53), we find that the minimum of D with respect to � is positive:

D(�) ≥ D(�∗) = (N 2 − δ2λ2θ2)(λ2θ2 − N 2μ2)

λ2θ2
= (N 2 − δ2λ2θ2)2ωcr

λ2θ2
> 0.

(3.55)

Hence the denominator of dα
d�

(�cr) is positive for any delay �, so

dα

d�
(�cr) �= 0. (3.56)

In fact, if δ < N
λθ

then dα
d�

(�cr) > 0 so the eigenvalues always cross from left to
right on the complex plane. If δ > N

λθ
then dα

d�
(�cr) < 0 so the eigenvalues always

cross from right to left. At each root of �cr, there is one purely imaginary pair of
eigenvalues, but all other eigenvalues necessarily have a nonzero real part. Hence all
roots � j �= R, R̄ satisfy � j �= mR,mR̄ for any integer m. Therefore all conditions
of the infinite-dimensional version of the Hopf Theorem from Hale and Lunel [17]
are satisfied, so a Hopf bifurcation occurs at every root �cr. 
�

Theorem3.8 provides an explicit expression for the critical delay�cr , which implies
that if the delay � > �cr, then a Hopf bifurcation occurs and the queues begin to
oscillate. Otherwise, the queueswill not oscillate andwill converge to the unique stable
equilibrium. Since we have an explicit expression, we can observe many insights
from the expression. The first insight is that the critical delay increases (becomes
more stable) as the parameters μ, N , δ are increased, or λ or θ are decreased. This
is insightful as this tells us that oscillations are more prevalent when the arrival rate
is large and the sensitivity of the queue length is large. Increasing the number of
queues has the same effect as decreasing the arrival rate, and this also is true of the
service rate. Thus, for large scale systems, it is expected that the oscillations will be
more prevalent in these systems than smaller systems. This is certainly in contrast
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with much of the queueing literature, where having a large-scale system results in
positive gains. Although this seems counter-intuitive at first, we can explain why
this occurs. When the number of arrivals is large, more customers are following the
wrong information, which generates a wild swing in one direction. However, when the
number of customers is small, this wild oscillation does not occur since not as many
people are following the wrong information.

In the proof of Theorem 3.8, for δ < N
λθ

it is shown that any pair of complex
eigenvalueswhich crosses the imaginary axis on the complexplane, necessarily crosses
from left to right. The implication here is that once the real part of an eigenvalue
becomes positive, it remains positive as the delay increases. This allows us to state
conditions for local stability of the equilibrium.

Theorem 3.9 When λθ > Nμ and δ < N
λθ
, the equilibrium is locally stable for

sufficiently small delay �. When either λθ ≤ Nμ and δ < N
λθ
, or λθ < Nμ and

δ = N
λθ
, the equilibrium is locally stable for all �.

Proof If δ = N
λθ

and λθ < Nμ then, by Proposition 3.6, for any delay all eigenvalues
of the characteristic equation have negative real parts; therefore, the equilibrium is
locally stable.

If δ < N
λθ
, then by Proposition 3.5 there exists a sufficiently small � such that all

eigenvalues of the characteristic equation have negative real parts. The only way for
the equilibrium to become unstable is for an eigenvalue to reach the imaginary axis

for some �. For that to happen, ωcr =
√

λ2θ2−N2μ2

N2−δ2λ2θ2
∈ R, ωcr �= 0 must hold. In the

case when λθ ≤ Nμ and δ < N
λθ
, then either ωcr /∈ R or ωcr = 0 so the eigenvalues

have negative real parts for all �. Therefore, again the eigenvalues have negative real
parts for all (finite) �. Finally, assume δ = N

λθ
and λθ < Nμ. Then δμ = Nμ

λθ
> 1, so

by Proposition 3.6 it follows that all eigenvalues have negative real parts. Therefore,
the equilibrium is locally stable for any � > 0. 
�

To summarize, the behavior of the queues from Eq. (3.9) can be categorized into
two cases, when λθ < Nμ and λθ > Nμ. In each case, two different types of behavior
can be observed, depending on the size of the parameter δ. Hence, there can be four
qualitatively different scenarios, as shown in Fig. 4. In the following discussion of the
two cases, we will refer to this diagram and will explain it in detail.

Before explaining Fig. 4 in technical terms, we provide a bit of intuition about the
diagram. In Part A of the figure, we have a region where the queues are never stable
despite having the condition λθ < Nμ. This occurs because δ is too large and is
outside of its stable region. Recall that a first-order Taylor expansion might work well
in a small neighborhood of the point around which one is performing the expansion;
however, it is not expected to work well significantly far from that point. The same is
true here and in fact we lose stability when the velocity term is too large. In Part B, the
queues are always stable. Not only is it the same that λθ < Nμ, it is also the case that δ
is small enough, i.e., close to the point of expansion. In Part C, not only is the condition
λθ > Nμ true, but we also have that the velocity parameter δ is too large. This will
definitely cause oscillations. Finally, in Part D, since the velocity parameter δ is small
enough, we behave similarly to the no velocity case and we have oscillations if � is
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Fig. 4 The four stability cases

large enough as usual. From this partitions, we observe that the velocity parameter
has a lot of power in determining the stability of the system. If it is too large in any
setting, it can create unwanted oscillations. Thus, it requires a lot of care in choosing
this velocity parameter so that the queues behave in the intended way.

Case 1: λθ < Nμ. This case is represented by the regions A and B that are to the
left of the vertical line λθ = Nμ from Fig. 4. When δ ≤ N

λθ
, or region B, the queues

approach a stable equilibrium for any delay�. Here all eigenvalues stay on the negative
(real) side of the complex plane. As � increases, the complex eigenvalues approach
the imaginary axis, but never reach it, as shown in Fig. 5. However, when δ > N

λθ
,

which is region A of Fig. 4, the queues will never be stable, and will undergo infinitely
many Hopf bifurcations as the delay increases. For sufficiently small delay �, the
complex eigenvalues will be on the positive (real) side of the complex plane, and as �

increases, the complex pairs will cross the imaginary axis from right to left, causing
Hopf bifurcations to occur as shown in Fig. 6. Note, however, that queues will never
gain stability because for any delay� there will be eigenvalues with positive real parts.

Case 2: λθ > Nμ. This case is represented by the regions C and D in Fig. 4. When
δ < N

λθ
, or region D, the queues will approach a stable equilibrium for a sufficiently

small delay �. All the eigenvalues will be on the negative (real) side of the complex
plane.As the delay� increases, the complex pairs of eigenvalueswillmove towards the
imaginary axis, crossing the axis eventually one by one from left to right as indicated
in Fig. 7. During the crossing of each pair, a Hopf bifurcation occurs. When δ ≥ N

λθ
,

which is region C of the Fig. 4, the complex eigenvalues cannot reach the imaginary
axis, and they all stay to the right side of the imaginary axis on the complex plane as
show in Fig. 8, so there will never be a stable equilibrium.

Another aspect to point out is the dependence on the MNL parameter θ . When
customers join the queues at random, or θ → 0, the parameters inevitably end up in
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Fig. 5 Eigenvalues remain on the left side of the imaginary axis for all �

Fig. 6 Eigenvalues cross the imaginary axis from right to left as � increases

region B of Fig. 4, so the queues will stable for any delay. Alternatively, if customers
always join the shortest queue, or θ → ∞, then for any δ > 0 we inevitably end up
in region C of Fig. 4, so the queues will always be unstable.

4 Achievingmaximum stability

In physical settings, it is often important to preserve the stability of the queues. Stability
evens out the individual waiting times of the customers, minimizing the negative
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Fig. 7 Eigenvalues cross the imaginary axis from left to right as � increases

Fig. 8 Eigenvalues stay on the right side of imaginary axis for all �

experience. It is therefore useful to know when providing extra information helps
to postpone the point of the bifurcation, and when the extra information makes the
bifurcation happen sooner. For example, consider the numerical examples fromFigs. 9,
10, 11 and 12, with two queues and fixed parameters λ, θ, μ, and �. In Figs. 9 and
11,� < �cr so the queues converge to an equilibrium over time. However, in Figs. 10
and 12 we have � > �cr, so the queues oscillate indefinitely. Although the delay
� is the same, the change in behavior results from tweaking the parameter δ, which
consequently regulates the bifurcation threshold �cr.
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Fig. 9 Queues before Hopf bifurcation; δ = 0.08, λ = 10, μ = 1, θ = 1

Fig. 10 Queues after Hopf bifurcation; δ = 0, λ = 10, μ = 1, θ = 1

In this section, we will consider the scenario λθ > Nμ, where the equilibrium
of the queues can become unstable. We will study how the bifurcation threshold �cr
changes depending on the weight of the velocity information δ. Our next result shows
that the threshold �cr is a concave function of δ.

Proposition 4.1 Suppose λθ > Nμ. Then the function �cr(δ) is concave for all δ ∈
[0, N

λθ
).
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Fig. 11 Queues before Hopf bifurcation; δ = 0.08, λ = 10, μ = 1, θ = 1

Fig. 12 Queues after Hopf bifurcation; δ = 0, λ = 10, μ = 1, θ = 1

Proof The critical delay�cr is given by Eq. (3.52). It is clear that the second derivative
d2�cr
dδ2

is negative for all δ ∈ [0, N
λθ

):

d2�cr

dδ2
= − 1

C3
·
(
C1 + C2 arccos

(
− δλ2θ2 + N 2μ

Nλθ(1 + Nδμ)

))
, where (4.1)

C1 = (N 2 − δ2λ2θ2)(λ2θ2 − N 2μ2)(δλ2θ2 + N 2μ) > 0, (4.2)

C2 = N 2λ2θ2(1 + δμ)2
√

(N 2 − δ2λ2θ2)(λ2θ2 − N 2μ2) > 0, (4.3)

C3 = Nλθ(N 2 − δ2λ2θ2)
3
2
√

λ2θ2 − N 2μ2(1 + δμ)3

√

1 − (δλ2θ2 + N 2μ)2

(Nλθ + Nδλθμ)2
> 0,

(4.4)
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arccos

(
− δλ2θ2 + N 2μ

Nλθ(1 + δμ)

)
= �cr ·

√
λ2θ2 − N 2μ2

N 2 − δ2λ2θ2
> 0. (4.5)


�
Proposition 4.1 allows us to show that there exists a specific size of the weight δ

that makes the queueing system optimally stable. We call this size of the weight δmax,
and it is such that δ = δmax maximizes the threshold �cr. In Proposition 4.2, we give
an equation that determines δmax and provide closed-form expressions for an upper
and a lower bound of δmax.

Proposition 4.2 Suppose λθ > Nμ. There exists a unique δmax ≥ 0 that maximizes a
given root �cr for fixed parameters λ,μ, N , θ . It is given by the solution of

√
N 2 − δ2maxλ

2θ2

1 + δmaxμ
= δmaxλ

2θ2√
λ2θ2 − N 2μ2

· arccos
(

− δmaxλ
2θ2 + N 2μ

Nλθ(1 + δmaxμ)

)
. (4.6)

Furthermore, δmax is bounded by δ1 < δmax < δ2, where

δ1 = −(
�0 + N

λθ

)
λθ +

√
λ2θ2

(
�0 + N

λθ

)2 + 4N 2
(
�0 + N

λθ

)
μ + 4N 2

2λθ
(
1 + (

�0 + N
λθ

)
μ

) , (4.7)

δ2 =
−�0λθ +

√
λ2θ2�2

0 + 4N 2�0μ + 4N 2

2λθ(1 + �0μ)
, (4.8)

�0 = arccos

(
− Nμ

λθ

)
·
√

N 2

λ2θ2 − N 2μ2 . (4.9)

Proof We can treat �cr as a function of δ. Implicit differentiation of (3.48) gives the
rate with which �cr changes:

d

dδ
�cr(δ) =

N 2 − δλ2θ2
(
δ + �cr(δ) + δμ�cr(δ)

)

(N 2 − δ2λ2θ2)(1 + δμ)
= 1

1 + δμ
− δλ2θ2�cr(δ)

N 2 − δ2λ2θ2

(4.10)

= 1

1 + δμ
− δλ2θ2

N 2 − δ2λ2θ2
· arccos

(
− δλ2θ2 + N 2μ

Nλθ(1 + δμ)

)
·
√

N 2 − δ2λ2θ2

λ2θ2 − N 2μ2 .

(4.11)

By Proposition 4.1, �cr(δ) is concave on the interval [0, N
λθ

). Further, it can be
shown that d

dδ
�cr(0) = 1 > 0 and lim

δ→ N
λθ

d
dδ

�cr(δ) = −∞ < 0, so there is a

point δmax where d
dδ

�cr(δmax) = 0. Therefore �cr(δ) reaches its absolute maximum
at δmax ∈ (0, N

λθ
). For intuition, we plot d

dδ
�cr(δ) in Fig. 13.

The value δmax can be found numerically by solving d
dδ

�cr(δmax) = 0 from
Eq. (4.11), alternatively written as (4.6). It remains to find closed-form expressions
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Fig. 13 δmax and its bounds δ1 < δmax < δ2

for the bounds on δmax. By Eq. (4.10), we can express δmax as

d

dδ
�cr(δmax) = 1

1 + δmaxμ
− δmaxλ

2θ2�cr(δmax)

N 2 − δ2maxλ
2θ2

= 0, (4.12)

1

1 + δmaxμ
− δmaxλ

2θ2�0

N 2 − δ2maxλ
2θ2

> 0, (4.13)

where �0 = �cr(0) < �cr(δmax). When solved for δmax, the inequality (4.13) pro-
duces an upper bound condition δmax < δ2 given by Eq. (4.8).

To find the lower bound, we note that d
dδ

�cr(δ) is monotonically decreasing. Thus,
d
dδ

�cr(δ) < d
dδ

�cr(0) = 1 for all δ ∈ (0, N
λθ

), and �cr(δ) ≤ δ + �cr(0) < N
λθ

+ �0.
Therefore, by Eq. (4.12), we get

1

1 + δmaxμ
− δmaxλ

2θ2
(
�0 + N

λθ

)

N 2 − δ2maxλ
2θ2

< 0, (4.14)

which produces the bound δmax > δ1 from Eq. (4.7) when solved for δmax. 
�
Figures 14 and 15 show �cr as a function of λ and δ. For each arrival rate λ, the
maximum �cr is attained for some δ between the two curves δ1 and δ2. Similarly,
Figs. 16 and 17 show �cr as a function of μ and δ with the two curves δ1 and δ2. As
seen in Figs. 14, 15, 16 and 17, the bounds on δmax are tight.

Besides knowing atwhich value δ themaximal bifurcation threshold�cr may occur,
it is also important to know how large that threshold actually is. In the next result,
we develop bounds for the maximum �cr that can be attained for fixed parameters
λ, N , μ, and θ .
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Fig. 14 For each λ, the maximum �cr is achieved when δ ∈ (δ1, δ2); μ = 1, θ = 1

Fig. 15 For each λ, the maximum �cr is achieved when δ ∈ (δ1, δ2); μ = 1, θ = 1

Proposition 4.3 The maximum value of a root �cr for fixed parameters λ,μ, and N
is attained at δmax and is bounded by �1 < �cr(δmax) < �2, where

�1 = max[�cr(δ1),�cr(δ2)], �2 = min[�2a,�2b], (4.15)

�2a = �cr(δ1) + (δ2 − δ1) · d

dδ
�cr(δ1), �2b = �cr(δ2) − (δ2 − δ1) · d

dδ
�cr(δ2).

(4.16)

Proof By Proposition 4.2, �cr(δ) attains its maximum at δ = δmax. Hence the lower
bound �1 < �cr(δmax) trivially follows, since δmax �= δ1, δ2. To find an upper bound,

123



308 Queueing Systems (2020) 95:281–330

Fig. 16 For each μ, the maximum �cr is achieved when δ ∈ (δ1, δ2); λ = 10, θ = 1

Fig. 17 For each μ, the maximum �cr is achieved when δ ∈ (δ1, δ2); λ = 10, θ = 1

note that d
dδ

�cr(δ) is a monotonically decreasing function, so d
dδ

�cr(δ1) > d
dδ

�cr(δ)

for all δ > δ1, and also that d
dδ

�cr(δ1) > 0 since �cr(δ) increases while δ < δmax.
Hence

�cr(δmax) = �cr(δ1) +
∫ δmax

δ1

d

dδ
�cr(δ)dδ < �cr(δ1) +

∫ δmax

δ1

d

dδ
�cr(δ1)dδ (4.17)

= �cr(δ1) + (δmax − δ1)
d

dδ
�cr(δ1) < �cr(δ1) + (δ2 − δ1)

d

dδ
�cr(δ1) = �2a .

(4.18)
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Fig. 18 δmax maximizes �cr

In addition, it is known that d
dδ

�cr(δ) < 0 when δ > δmax, so

�cr(δmax) = �cr(δ2) −
∫ δ2

δmax

d

dδ
�cr(δ)dδ < �cr(δ2) −

∫ δ2

δmax

d

dδ
�cr(δ2)dδ (4.19)

= �cr(δ2) − (δ2 − δmax)
d

dδ
�cr(δ2) < �cr(δ2) − (δ2 − δ1)

d

dδ
�cr(δ2) = �2b.

(4.20)

Therefore �cr(δmax) < min[�2a,�2b] = �2, as desired. 
�
Figure 18 illustrates�cr(δ)−�cr(0) as a function of δ, with the maximum attained

at δmax and the bounds on the maximum given by �1 and �2. Further, it is evident
from Fig. 18 that there is a threshold value, which we call δcap, that places a cap on
the potential utility of the velocity information. When δ is less than δcap, the queueing
system becomes more stable from the velocity information because �cr(δ) > �cr(0).
However, when δ exceeds δcap, the queues become more unstable in the sense that
�cr(δ) < �cr(0). The result below provides an equation for δcap.

Proposition 4.4 Suppose λθ > Nμ. There exists a unique δcap > 0 such that�cr(δ) >

�cr(0) for all δ < δcap, and�cr(δ) < �cr(0) for all δ > δcap. It is given by the solution
to

arccos

(
− Nμ

λθ

)√
N 2

λ2θ2 − N 2μ2 = arccos

(
− δcapλ

2θ2 + N 2μ

Nλθ(1 + δcapμ)

)√
N 2 − δ2capλ

2θ2

λ2θ2 − N 2μ2 .

(4.21)

Proof As previously shown, �cr(δ) is monotonically increasing on δ ∈ [0, δmax) and
monotonically decreasing on δ ∈ (δmax,

N
λθ

). Further, lim
δ→ N

λθ
�cr(δ) = 0 < �cr(0)

since �cr(0) > 0 by assumption, so there exists exactly one point δcap on the interval
(δmax,

N
λθ

) where �cr(δcap) = �cr(0), and it also follows that �cr(δcap) > �cr(0) for
all δ < δcap and �cr(δcap) < �cr(0) for all δ > δcap. By substituting the expression
for �cr from (3.52) into �cr(0) − �cr(δcap) = 0 we get Eq. (4.21). 
�

123



310 Queueing Systems (2020) 95:281–330

To summarize, when λθ > Nμ, the queues are stable when the delay is less
than �cr. We can therefore provide the most stability for the queues by choosing δ

that maximizes �cr, i.e., δmax. Proposition 4.2 proves the existence of δmax, gives an
equation describing δmax and provides closed-form expressions for bounds δ1 and δ2
such that δ1 < δmax < δ2. Proposition 4.3 also provides bounds �1 and �2 for the
maximum value that�cr can take as a function of δ, so�1 < �cr(δmax) < �2. Lastly,
we show that even if δ �= δmax, it is still beneficial to include the velocity information
as long as δ < δcap. When δ exceeds δcap, however, �cr(δ) becomes less than �cr(0),
so the queues are less likely to be stable than if the velocity information was omitted
altogether. Proposition 4.4 proves the existence of δcap and provides an equation for
it.

5 Impact of velocity information on the amplitude

Now that we have a good understanding of how the velocity information impacts the
critical delay, we address a more practical question: What is the impact of the velocity
on the amplitude of the oscillations? This question is important because it reveals
how much the queues will oscillate when they are not in equilibrium. Moreover, it
can provide an estimate of how much throughput is lost because of the oscillations
(amusement park capacity) or even provide valuable estimates of how much fuel or
energy is lost in transportation settings.

Although our previous analysis holds for an arbitrary number of queues, in the
sequel we will demonstrate how δ affects the amplitude dynamics of the queues in
the case of a two-queue network. One reason for this restriction is that we must move
beyond linearization techniques. In fact, we must use third-order Taylor expansions
to obtain information about the amplitude; see, for example, [29]. Thus, many of the
matrix techniques we exploited for linearizing the NDDE in Section 2 cannot be used
in the context of tensors for the third-order Taylor expansion. Thus, for the case of
two dimensions, we have the following system of equations:

•
q1(t) = λ ·

exp
(

− θ
(
q1(t − �) + δ

•
q1(t − �)

))

∑2
j=1 exp

(
− θ

(
q j (t − �) + δ

•
q j (t − �)

)) − μq1(t), (5.1)

•
q2(t) = λ ·

exp
(

− θ
(
q2(t − �) + δ

•
q2(t − �)

))

∑2
j=1 exp

(
− θ

(
q j (t − �) + δ

•
q j (t − �)

)) − μq2(t), (5.2)

where as usual �,λ,μ, θ > 0 and δ ≥ 0. Similarly to Sect. 4, we will consider the
scenario with λθ > 2μ, where even for a small δ the equilibrium of queues loses
stability for sufficiently large delay. Our first result shows that the Hopf bifurcations
that occur at each root �cr are supercritical.

Theorem 5.1 Supposeωcr ∈ R andωcr �= 0. The NDDE system (5.1)–(5.2) undergoes
a supercritical Hopf bifurcation at each root �cr. If δμ < 1 then the limit cycle is
born when � ≤ �cr. If δμ > 1 then the limit cycle is born when � ≥ �cr.
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Proof We will use the method of slow flow, or the Method of Multiple Scales, to
determine the stability of the Hopf bifurcations given by Theorem 3.8. This method
is often applied to systems of delay differential equations (DDEs) [5,7,25]. We note,
however, that the stability of the limit cycles can also be determined by showing that
the floquet exponent has negative real part, as outlined in Hassard et al. [18].

The first step in the method of slow flow is to consider the perturbation of q1 and q2
from the equilibriumpoint q∗

1 = q∗
2 = λ

2μ , and to approximate the resulting derivatives
by third-order Taylor expansion. The two resulting DDEs can be uncoupled when their
sum and their difference are taken:

w1(t) = q1(t) + q2(t), w2(t) = q1(t) − q2(t), (5.3)
•
w1(t) = −μw1(t), (5.4)

•
w2(t) = −μw2(t) − λθ

2
(w2(t − �) + δ

•
w2(t − �)), (5.5)

+ λθ3

24
(w2(t − �) + δ

•
w2(t − �))3 + O(w4

2). (5.6)

The function w1(t) = Ce−μt decays to 0, while the function w2(t) has a Hopf bifur-
cation at �cr where the periodic solutions are born.

We set w2(t) = √
εx(t) in order to prepare the NDDE for perturbation treatment:

•
x(t) = −μx(t) − λθ

2
(x(t − �) + δ

•
x(t − �)) +

√
ελθ3

24
(x(t − �) + δ

•
x(t − �))3.

(5.7)

We replace the independent variable t by two new time variables ξ = ωt (stretched
time) and η = εt (slow time). Then we expand� andω about the critical Hopf values:

� = �cr + εα, ω = ωcr + εβ. (5.8)

The time derivative
•
x becomes

•
x = dx

dt
= ∂x

∂ξ

dξ

dt
+ ∂x

∂η

dη

dt
= ∂x

∂ξ
· (ωcr + εβ) + ∂x

∂η
· ε. (5.9)

The expression for x(t − �) may be simplified by Taylor expansion for small ε:

x(t − �) = x(ξ − ω�, η − ε�) (5.10)

= x(ξ − (ωcr + εβ)(�cr + εα), η − ε(�cr + εα)) + O(ε2) (5.11)

= x̃ − ε(ωcrα + �crβ) · ∂ x̃

∂ξ
− ε�cr

∂ x̃

∂η
+ O(ε2), (5.12)
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where x(ξ − ωcr�cr, η) = x̃ . The function x is represented as x = x0 + εx1 + . . . ,
and we get

dx

dt
= ωcr

∂x0
∂ξ

+ εβ
∂x0
∂ξ

+ ε
∂x0
∂η

+ εωcr
∂x1
∂ξ

. (5.13)

After these substitutions are made into (5.7), the resulting equation can be separated
by the powers of ε into two equations. For the ε0 terms, we get an equation for x0
without any terms involving x1, namely L(x0) = 0, where

L(x0) = μx0 + λ

2
x̃0 + ωcr

∂x0
∂ξ

+ δλωcr

2

∂ x̃0
∂ξ

= 0, (5.14)

which is satisfied with a solution of the form

x0(t) = A(η) cos(ξ) + B(η) sin(ξ). (5.15)

The equation resulting from ε1 terms is L(x1) + M(x0) = 0. Since L(x1) = 0 is
satisfied by a solution of the form (5.15), then the terms from M(x0) involving cos(ξ)

and sin(ξ) are resonant. To eliminate the resonant terms, their coefficients must be 0,
which gives two equations for A(η) and B(η). Switching into polar coordinates, we
define R = √

A2 + B2, and find

dR

dη
= − R

(
c1R2 − c2

)

c3
, where (5.16)

c1 = (μ2 + ω2
cr)(μ

2 + ω2
cr + δ2ω2

crμ
2 + δ2ω4

cr)�cr

+(μ2 + ω2
cr)(μ − δμ2 + δ2ω2

crμ − δω2
cr), (5.17)

c2 = 4αλ2ω2
cr(1 − δ2μ2), (5.18)

c3 = �2
cr · 4λ2(μ2 + ω2

cr + δ2μ2ω2 + δ2ω2
cr)

+�cr · 8λ2(μ − δμ2 − δω2
cr + δ2μω2

cr) + 4λ2(1 − δμ)2. (5.19)

In order to find the equilibrium points of R and to discuss their stability, we need
to show that the coefficients c1, c2, and c3 are positive. Notice that c3 is a quadratic
function of �cr with the minimum located at �∗

cr such that d
d�cr

c3(�∗
cr) = 0, hence

�∗
cr = δ

1 + δ2ω2
cr

− μ

μ2 + ω2
cr

, (5.20)

c3 = c3(�cr) ≥ c3(�
∗
cr) = 4λ2ω2

cr(1 − δ2μ2)2

(μ2 + ω2
cr)(1 + δ2ω2

cr)
> 0, (5.21)

therefore the denominator of dR
dη

, c3, is always positive. Also, we can show c1 to be
positive.We first note that at theHopf, Eq. (3.51)must be satisfied so cos(ωcr�cr) < 0,
which implies that ωcr�cr > π

2 and
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�cr >
π

2ωcr
. (5.22)

Next, we note that c1 is an increasing linear function of �cr, so c1 must be positive
for any �cr > �∗

cr, where c1(�
∗
cr) = 0. This �∗

cr is found to be

�∗
cr = δ

1 + δ2ω2
cr

− μ

μ2 + ω2
cr

. (5.23)

Using the inequality in (5.22), we can show by contradiction that�cr is always greater
than �∗

cr. Suppose that, for some parameters, we have �∗
cr > π

2ωcr
. From the equation

(3.47), this implies that

π

2ωcr
< �∗

cr = δ

1 + δ2ω2
cr

− μ

μ2 + ω2
cr

<
δ

1 + δ2ω2
cr

, (5.24)

π

2
(1 + δ2ω2

cr) < δωcr, (5.25)

2π(1 − δ2μ2)

4 − δ2λ2θ2
< δ

√
λ2θ2 − 4μ2

4 − δ2λ2θ2
, (5.26)

4π2 · (1 − δ2μ2)2

(4 − δ2λ2θ2)2
< δ2 · λ2θ2 − 4μ2

4 − δ2λ2θ2
, (5.27)

4π2(1 − δ2μ2)2 < δ2(λ2θ2 − 4μ2)(4 − δ2λ2θ2). (5.28)

Set δ̄ = δ2. The inequality can be written as

f (δ̄) =
(
λ4θ4 − 4λ2θ2μ2 + 4π2μ4

)
δ̄2 − 4

(
λ2θ2 + 2π2μ2 − 4μ2

)
δ̄ + 4π2 < 0.

(5.29)

Notice that the coefficient of δ̄2 is always positive. It can be shown by finding μ2 that
minimizes the coefficient, μ2 = λ2θ2

2π2 , and then finding the minimum value of that

coefficient, which is λ4θ4
(
1− 1

π2

)
so it is clearly positive. This means that f (δ̄) is a

convex function, with a minimum at δ̄∗:

δ̄∗ = 2(λ2θ2 + 2π2μ2 − 4μ2)

λ4θ4 − 4λ2θ2μ2 + 4π2μ4 , (5.30)

f (δ̄) ≥ f (δ̄∗) = 4(π2 − 1)(λ2θ2 − 4μ2)2

λ4θ4 − 4λ2θ2μ2 + 4π2μ4 > 0, (5.31)

where the denominator is the same as the coefficient of δ̄2 from Eq. (5.29), so it must
be positive. The inequalities (5.29) and (5.31) contradict each other, and so�∗

cr ≤ π
2ωcr

for all parameters. Hence by Eq. (5.22), �cr > �∗
cr, which implies that c1 must be

positive.

123



314 Queueing Systems (2020) 95:281–330

Since c1 is positive, the only way for R from (5.16) to have a nonzero equilibrium
point is for c2 to be also positive. This produces the conditions on the direction of the
Hopf

δμ < 1 �⇒ α > 0 (5.32)

δμ > 1 �⇒ α < 0. (5.33)

Recall that α represents the perturbation from �cr. So when δμ < 1, the limit cycle
is born when � exceeds �cr. If δμ > 1, then the limit cycle is born when � becomes
less than �cr. In either case, the equilibrium points of R(η) are given by

R0 = 0, R1 =
√
c2
c1

> 0. (5.34)

Since c1, c2, c3 > 0, R0 is unstable and R1 is stable. In its explicit form,

R1 =
√

4α(λ2θ2 − 4μ2)(4 − δ2λ2θ2)2

θ2(1 − δ2μ2)(16μ + λ2θ2(4�cr − 4δ + δ3λ2θ2 − 4δ2μ − 4δ2�crμ2))
,

(5.35)

which represents the amplitude of the limit cycle near the Hopf. Since R1 is stable,
then the Hopf bifurcation is supercritical. 
�

Theorem 5.1 establishes that as � increases, the equilibrium becomes unstable and a
stable limit cycle is born. We also observe from Eq. (5.35) that the amplitude of the
oscillations depends heavily on the model parameters. From taking simple derivatives,
one can observe that the amplitude is increasing as a function of λ and θ and is
decreasing as a function δ, μ, and N .

5.1 Throughput lost by oscillations

Now that we have an expression for the amplitude of the oscillations, one can estimate
howmuch throughput is lost in this context. There are two reasons why the throughput
analysis is quite simple in this setting. First, the oscillations are given by sine functions,
which have a lot of symmetry. Second, we only have our amplitude calculations for
the two queue case, which has the property that if a customer doesn’t go to the first
queue, the customer must go to the second one. Thus, there is a nice symmetry for the
two queue case around the equilibrium. We define lost throughput by capacity below
the equilibrium that is not being used and the other queue is above the equilibrium.
Thus, in the two queue case this is equal to

Throughput Lost =
R1
2

∫ π/ωcr
0 sin(ωcrt)dt

λ
Nμ

· π
ωcr

(5.36)
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=
R1
2 · 2

ωcr
λ
Nμ

· π
ωcr

(5.37)

= R1
λ
Nμ

· π
(5.38)

=
(
2

π

)

︸ ︷︷ ︸
sine to rectangle ratio

·
(
R1/2

λ
Nμ

)

︸ ︷︷ ︸
amplitude to equilibrium ratio

. (5.39)

This can be interpreted as the ratio of the sine function to a rectangle on one full period
multiplied by the ratio of the amplitude of the oscillation divided by the equilibrium
level. In an extreme case where the amplitude was the entire size of the equilibrium
value, then clearly the loss is 2/π .

5.2 First-order approximation of amplitude

Wewould like to choose the weight coefficient δ in a way that minimizes the amplitude
of the oscillation in queues. To do this, we first need to know what the amplitude of
the oscillations is as a function of the system parameters. In the following result, we
use a perturbation method to approximate the amplitude of oscillations around the
bifurcation point.

Proposition 5.2 The amplitude of the oscillations of the queues near the first Hopf can
be approximated by R1

2 , where R1 is given by Eq. (5.35).

Proof The radius of the limit cycle from (5.35) approximates the amplitude of the
oscillations of w2(t) from (5.5). By the change in variables given in Eq. (5.3), as
t → ∞, the behavior of the queues up to a phase shift is

q1 = 1

2
(w1 + w2) → 1

2
R1 sin(ω�t), (5.40)

q2 = 1

2
(w1 − w2) → −1

2
R1 sin(ω�t). (5.41)

Thus, the amplitude of oscillations of queues is R1
2 . 
�

Therefore, when� exceeds�cr, the amplitude of oscillations can be approximated
to first order by

amplitude ≈
√

(� − �cr)(λ2θ2 − 4μ2)(4 − δ2λ2θ2)2

θ2(1 − δ2μ2)(16μ + λ2θ2(4�cr − 4δ + δ3λ2θ2 − 4δ2μ − 4δ2�crμ2))

(5.42)

when � − �cr is small.
The approximation is accurate when δ is substantially smaller than the ratio 2

λθ
. For

example, in Fig. 19 the queues oscillate throughout time, and the two horizontal lines
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Fig. 19 Amplitude approximation; N
λθ

= 0.2, � = �cr + 0.2, δ = 0

provide a good approximation of the amplitude of oscillations based on Eq. (5.42).
However, the approximation becomes inaccurate when δ approaches 2

λθ
. As demon-

strated in Fig. 20, when δ = 0.195 and 2
λθ

= 0.2, the approximated amplitude is only
about a half of what the actual amplitude is. The discrepancy is observed in Figs. 21,
22, 23 and 24 as well. The surface plot in Fig. 21 shows the true amplitude based
on numerical integration as a function of the delay � and the coefficient δ, while the
surface plot in Fig. 22 shows the amplitude’s first-order approximation. Furthermore,
the surface plot in Fig. 23 shows the error of first-order approximation, where the
error increases with δ. Finally, Fig. 24 provides intuition for why the approximation
fails as δ approaches 2

λθ
. Figure 24 presents a plot comparing the amplitude and its

approximation as functions of delay while δ = 0.19 is close to the threshold 2
λθ

= 0.2.
The approximation is proportional to

√
� − �cr, while the true amplitude appears to

be a linear function of (� − �cr) (even though it is not exactly linear).
Since we are interested in using the analytical expression of the amplitude approx-

imation to determine the coefficient δ that minimizes the amplitude for a given delay,
it is important for the approximation to be accurate. As seen from Fig. 22, for a fixed
delay, say � = 0.5, the point of the approximated minimum amplitude (at δ ≈ 0.2)
does not agree with the true minimum amplitude (at δ ≈ 0.11). Hence, the first-order
approximation of amplitude is insufficient for our purposes, and we must derive the
second order approximation.

5.3 Second-order approximation of amplitude

The first-order approximation, as seen from Eq. (5.42), is of the form

Amplitude ≈ c0(� − �cr)
0.5, (5.43)
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Fig. 20 Amplitude approximation, N
λθ

= 0.2, � = �cr + 0.2, δ = 0.195

Fig. 21 Amplitude of oscillations; θ = 1, λ = 10, μ = 1

where c0 is a factor determined by the system parameters and is independent of delay.
The second-order approximation takes the form

Amplitude ≈ c0(� − �cr)
0.5 + c1(� − �cr)

1.5, (5.44)

where c1 is also independent of the delay. The full expression for c1 is long and messy,
so we omit it from this section. However, the reader can refer to Appendix 7.2 for
the expressions as well as a discussion on how the second-order approximation is
obtained. As shown in Figs. 25 and 26, the second-order approximation performs just
as well as the first-order approximation when δ is significantly smaller than 2

λθ
, but
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Fig. 22 First-order approximation; θ = 1, λ = 10, μ = 1

Fig. 23 Error of approximation; θ = 1, λ = 10, μ = 1

is much more accurate when δ approaches 2
λθ
. Figures 27 and 28 confirm that this

trend holds throughout the parameter space in δ and delay �. Figure 29 compares the
true amplitude with the two approximations when δ = 0.1. The next plot in Fig. 30
draws the same comparison but when δ = 0.19 is closer to its upper limit 2

λθ
= 0.2.

It is evident from the two plots that the second-order approximation is significantly
more accurate than the first-order approximation, especially as δ → 2

λθ
. Figures 31

and 32 illustrate the same point more systematically, by comparing the errors of first-
and second-order approximations. These surface plots reveal that the higher-order
approximation decreases the maximum error by a factor of 10.
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Fig. 24 First-order approximation when δ = 0.19, θ = 1, λ = 10, μ = 1

Fig. 25 Amplitude approximation; N
λθ

= 0.2, � = �cr + 0.2, δ = 0

5.4 Minimizing the amplitude of oscillations

Since the second-order approximation is sufficiently accurate, we proceed by using
the analytical formula of the second-order approximation to determine the coeffi-
cient δ that minimizes the amplitude of oscillations. Figure 33 shows the numerically
computed amplitude, together with its minimum for each delay according to the
second-order approximation. The minimum of the amplitude as a function of δ is
found numerically in MATLAB. It is evident that the approximated minimum closely
corresponds to where the true minimum is.
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Fig. 26 Amplitude approximation; N
λθ

= 0.2, � = �cr + 0.2, δ = 0.195

Fig. 27 Amplitude of oscillations; θ = 1, λ = 10, μ = 1

Figure 33 shows that the velocity information indeed affects the amplitude of oscil-
lations, and the amplitude can be reduced with a proper choice of the coefficient
δ. Figure 33 also reveals an important finding: The value δmax for the coefficient δ

that maximizes �cr is not the same as δamp that minimizes the amplitude of oscil-
lations. Specifically, δmax is independent of the delay �, while δamp is a function of
the delay. The one point where the two values are guaranteed to be equal each other,
δmax = δamp, is when δamp is computed for the delay equal to the maximum possible
�cr, i.e., � = �cr(δmax). Therefore, one should use δmax as the weight coefficient as
long as the delay is less than the bifurcation threshold �cr evaluated at δmax, but when
the delay exceeds �cr one should use δamp for the weight coefficient instead. Thus,
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Fig. 28 First-order approximation; θ = 1, λ = 10, μ = 1

Fig. 29 Comparison when δ = 0.10; θ = 1, λ = 10, μ = 1

a service manager can choose the value of δ either to increase the general stability
of the whole system, δ = δmax, or they can choose to minimize the amplitude of the
oscillations at their current level of service, δ = δamp.

6 Conclusion

This paper answers important questions with regards to businesses incorporating the
queue length velocity into the information that is provided to customers via delay
announcements. We consider the information passed to the customers about each of
N queues to be a linear combination of the current queue length and the rate at which
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Fig. 30 Comparison when δ = 0.19; θ = 1, λ = 10, μ = 1

Fig. 31 First-order error; θ = 1, λ = 10, μ = 1

that queue is moving, or the queue velocity:

Delay announcement about i th queue = qi (t − �) + δ
•
qi (t − �), (6.1)

with the delay � being the time of customers traveling to the selected queue.
The most evident finding is that the coefficient δ that weighs the queue velocity

information should always be less than the ratio N
λθ
. Maintaining this limit guarantees

that, at best, the queues will be locally stable for any delay in information. At worst,
the queues will be stable when the delay� is sufficiently small, eventually undergoing
a Hopf bifurcation at � = �cr and becoming unstable. Alternatively, if δ > N

λθ
, then

123



Queueing Systems (2020) 95:281–330 323

Fig. 32 Second-order error; θ = 1, λ = 10, μ = 1

Fig. 33 For any delay, the amplitude can be minimized as a function of δ

the queues will never be stable, even when the delay in information is infinitesimally
small. The reader can refer to Fig. 4 for more details.

Even when the condition δ < N
λθ

is met, significant improvements can still be made
by choosing δ optimally. In the case when queues become unstable as the delay in
information increases (so when λθ > Nμ), the weight δ can shift the delay threshold
�cr at which the queues become unstable. In fact, there is exists a “cap” on the weight,
δcap, such that it is safe and beneficial to include the queue velocity whenever δ ≤ δcap,
meaning that the queues will remain stable under greater delay than if the velocity
informationwas omitted. Further, if the threshold δcap is exceeded, then queue velocity
information will be harmful to the system. In this case, the queues will lose their
stability for a smaller delay � than if the queue velocity was omitted altogether. An
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edge case that exemplifies the usefulness of this discovery is as follows: If we take δ →
N
λθ
, atwhich point it is clear that δ > δcap, then the queues bifurcate almost immediately

because �cr → 0 even though the same queues would have remained stable under a
much larger delay if δ was set to 0. Hence, it is important to keep δ smaller than δcap.

We also showed that there exists an optimal value for δ, called δmax, that gives the
most stability to the queues. For δ = δmax, queues will be stable for greater delay than
is possible given any other choice of δ. We provide an equation from which δmax can
be found numerically, as well as closed-form expressions for upper and lower bounds
on δmax. Choosing δ within those bounds is a safe choice for service managers.

This leads to a natural assessment of the limitations of providing the queue velocity
information. The threshold�cr where the queues lose stability can be arbitrarily close
to 0 when δ is chosen poorly, but even the best choice of δ can only help so much. We
provide a formula from which the maximum attainable �cr can be computed. Further,
we give expressions on the bounds for that optimal �cr because they don’t rely on
δmax and hence they may be easier to evaluate. This means that while including δ can
always improve the queue dynamics to some degree, there is a limit on how much
impact δ may have.

The presence of the queue velocity information can also affect the amplitude with
which the queues oscillate after losing stability. From numerical integration of the
queues such as in Fig. 21, it is clear that incorporating the queue velocity information
can decrease the amplitude of the oscillations, which is beneficial from the managerial
perspective. Using a perturbation technique, we derive an analytic expression that
approximates the amplitude of oscillations very accurately. Based on the analytic
expression, for any delay we can determine the coefficient δ that will minimize the
amplitude of the oscillations. We note this coefficient as a function of delay and is not
necessarily equal to the coefficient δmax that maximizes the delay threshold.

In the future, it would be interesting to extend this model to include terms with
higher-order derivatives. Under the assumption that service managers can measure the
information about the queues (q(2)

i , q(3)
i , . . . ), it would be natural to incorporate these

data into the information that is provided to the customers:

Delay announcement about i th queue = qi (t − �) +
K∑

n=1

δnq
(n)
i (t − �), K ∈ N.

(6.2)

The equations describing such a queueing system will no longer be neutral and may
be more complicated. However, such a queueing system may answer new questions.
One question of significance is to determine theminimum sufficient number of higher-
order derivatives (K ) that should be included in order to guarantee that the queues will
be stable for a given delay.

Acknowledgements Fundingwas provided byDivision ofCivil,Mechanical andManufacturing Innovation
(Grant No. 1751975).
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7 Appendix

7.1 Uniqueness and existence of the equilibrium

Proof of Theorem 3.2: To check that qi (t) = λ
Nμ

is an equilibrium, plug into Eq. (3.9)
to get

•
qi (t) = λ · exp(− λθ

Nμ
− 0)

∑N
j=1 exp(− λθ

Nμ
− 0)

− μ · λ

Nμ
= λ

N
− λ

N
= 0. (7.1)

To show uniqueness, we will argue by contradiction. Suppose there is another
equilibrium given by q̄i , 1 ≤ i ≤ N , and for some i we have q∗

i �= q̄i . The following
condition must hold:

0 =
N∑

i=1

•
qi (t) = λ ·

∑N
i=1 exp

( − θ q̄i (t − �)
)

∑N
j=1 exp(−θ q̄ j (t − �))

− μ

N∑

i=1

q̄i (t),
N∑

i=1

q̄i (t) = λ

μ
.

(7.2)

Hence, the mean of q̄i is λ
Nμ

and, since q̄i cannot all be equal to each other, there must
exist some q̄s that is smaller than the mean, and some q̄g that is greater than the mean:

q̄s = λ

μN
− γ, q̄b = λ

Nμ
+ ε, γ, ε > 0. (7.3)

This leads to a contradiction:

•
qs(t) = λ

exp
( − θ q̄s

)
∑N

i=1 exp
( − θ q̄i

) − μq̄s = 0 (7.4)

�⇒
N∑

i=1

exp
( − θ q̄i

) = λ

μ
· exp

( − θλ
Nμ

+ θγ
)

( λ
Nμ

− γ )
, (7.5)

•
qg(t) = λ

exp
( − θ q̄g

)
∑N

i=1 exp
( − θ q̄i

) − μq̄g(t) (7.6)

= λ
exp

( − θλ
Nμ

− θε
)

λ
μ

· exp(− θλ
Nμ

+θγ )

( λ
Nμ

−γ )

− μ
( λ

Nμ
+ ε

)
(7.7)

= − λ

N

(
1 − e−θ(ε+γ )

) − μ
(
ε + γ e−θ(ε+γ )

)
< 0. (7.8)

Since
•
qg(t) �= 0, then q̄i (t) is not an equilibrium, and the equilibrium (3.12) is unique.

123



326 Queueing Systems (2020) 95:281–330

7.2 Approximation to amplitude of oscillations in queues

To see how the velocity information affects the behavior of the queues after a Hopf
bifurcation occurs, we need to develop approximations for the amplitude of oscilla-
tions. In Sect. 5, we find a first-order approximation to the amplitude but observe that
it is not sufficiently accurate. Hence, we require a second-order approximation. The
steps to determine the second-order approximation are outlined below.

This process is very closely related to the steps taken in Theorem 5.1. We begin
with Eq. (5.7), and expand the time τ = ωt . Then expand our functions of interest in
ε to the second order:

x(τ ) = x0(τ ) + εx1(τ ) + +ε2x2(τ ),

� = �0 + ε�1 + ε2�2, ω = ω0 + εω1 + ε2ω2,

where �0 and ω0 are the delay and frequency at bifurcation, so �0 = �cr and ωcr.
By collecting all the terms with the like powers of ε into separate equations, we get
equations from which we can solve for x0 and x1. From the equation for ε0, we find
that x0(τ ) = A cos(τ ) is a solution. Next, we use the equation for ε1 terms to solve
for A, which has the expression given by Eq. (5.35). We can now find x1 that has a
solution of the form x1(τ ) = a1 sin(τ ) + a2 cos(τ ) + a3 sin(3τ) + a4 cos(3τ). The
coefficients a3 and a4 are determined from the equation for ε1 terms. We impose
the initial condition x ′(0) = 0 to ensure that the maximum amplitude is at 0, which
implies a1 = −3a3. Lastly, we determine a2 by eliminating the secular terms from the
equation for ε2 terms. Therefore, the second-order approximation of the amplitude of
oscillations can be deduced from

x(τ ) ≈ x0(τ ) + εx1(τ ) (7.9)

= A cos(τ ) + ε
(
a1 sin(τ ) + a2 cos(τ ) + a3 sin(3τ) + a4 cos(3τ)

)
, (7.10)

where the coefficients are given below:

A =
√

4�1(λ2θ2 − 4μ2)(4 − δ2λ2θ2)2

θ2(1 − δ2μ2)(16μ + λ2θ2(4�0 − 4δ + δ3λ2θ2 − 4δ2μ − 4δ2�0μ2))
,

ω1 = 4�1θ
2λ2

(
δ2μ2 − 1

) √
θ2λ2 − 4μ2

√
4 − δ2θ2λ2

(
θ2λ2

(
δ
(
δ2θ2λ2 − 4δμ(�0μ + 1) − 4

) + 4�0
) + 16μ

) ,

a1 = −3a3 = −
(
2A3θ2ω3

0

(
θ2λ2μ

(
δ2ω2

0 + 1
)3 − 4δ3

(
μ2 + ω2

0

)3) )

/
(
θ4λ4

(
δ2ω2

0 + 1
)3 (

μ2 + 9ω2
0

)
+ 16

(
9δ2ω2

0 + 1
) (

μ2 + ω2
0

)3

+8θ2λ2
( − 9δ4ω8

0 − 6μ2ω2
0

(
δ2μ2 + 1

)
+ 2δ2ω6

0(δμ(9δμ − 32) + 9)

+3ω4
0

(
δ4μ4 − 12δ2μ2 + 1

)
− μ4)),
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a4 = − 1

12

(
A3θ2

(
θ2λ2

(
δ2ω2

0 + 1
)3 (

μ4 + 6μ2ω2
0 − 3ω4

0

)

+4
(
3δ4ω4

0 − 6δ2ω2
0 − 1

) (
μ2 + ω2

0

)3))

/
(
θ4λ4

(
δ2ω2

0 + 1
)3 (

μ2 + 9ω2
0

)
+ 16

(
9δ2ω2

0 + 1
) (

μ2 + ω2
0

)3

+8θ2λ2
( − 9δ4ω8

0 − 6μ2ω2
0

(
δ2μ2 + 1

)
+ 2δ2ω6

0(δμ(9δμ − 32) + 9)

+3ω4
0

(
δ4μ4 − 12δ2μ2 + 1

)
− μ4)),

a2 = 1

12

(
A5θ4

(
δ2ω2

0 + 1
)2 (

δ2μω2
0 + μ2

(
δ
(
δ�0ω

2
0,−1

)
+ �0

)

+ω2
0

(
δ
(
δ�0ω

2
0 − 1

)
+ �0

)
+ μ

)

−12A3θ2ω0
(
ω1

(
δ
(
3δ3�0ω

4
0 + δω2

0(δ(δμ(2�0μ + 3) − 3)

+4�0) + δμ(−2δμ + 2�0μ + 3) − 1) + �0)

−�1ω0

(
δ2μ2 − 1

) (
δ2ω2

0 + 1
) ) + 12A2θ2

(
a1ω0

(
δ2μ2 − 1

) (
δ2ω2

0 + 1
)

+a3ω0

(
δ2

(
ω2
0(δμ(−3δμ + 8�0μ + 8) − 5) + 8δ�0ω

4
0 + μ2

)
− 1

)

+a4(3δ
4�0ω

6
0 + 3δ2ω4

0(δ(δμ(�0μ + 1) − 1) − 2�0)

+ω2
0(δ(δμ(5δμ − 6�0μ − 6) + 1) − �0)

+μ(δμ − �0μ − 1))
) − 96A

(
2�1ω0ω1(μ

(
μ

(
2δ2

−2δ�0 + �2
0

)
− δ + �0

)
+ δ2�2

0ω
4
0

+�0ω
2
0(δ(δμ(�0μ + 1) − 2) + �0) − 1) + �0ω

2
1(δ

2�2
0ω

4
0

+�0ω
2
0(δ(δμ(�0μ + 1) − 3) + �0)

+μ(2δ − �0)(δμ − �0μ − 1)) + �2
1ω

2
0(δ

2�0ω
4
0

+ω2
0(δ(δμ(�0μ + 1) − 1) + �0)

+μ(−δμ + �0μ + 1))
) − 192a1

(
ω1(δ

2�2
0ω

4
0

+�0ω
2
0(δ(δμ(�0μ + 2) − 2) + �0)

+(−δμ + �0μ + 1)2) + �1ω0

(
δ2�0ω

4
0 + ω2

0(δ(δμ(�0μ + 1)

−1) + �0) + μ(−δμ + �0μ + 1))
))

/
(
3A2θ2

(
δ2ω2

0 + 1
) (

δ2�0ω
4
0 + ω2

0(δ(δμ(�0μ + 1)

−1) + �0) + μ(−δμ + �0μ + 1))

+16�1ω
2
0

(
δ2μ2 − 1

) )
.
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To reproduce our numerical results from Sects. 5.3–5.4, set ε = 1 and �1 =
1
ε
(� − �0), with �0 given by Eq. (3.52). Note that in the equations above there is no

presence of �2, because we have set �2 = 0. There is no equation that determines
�2 and �1 uniquely, and the only restriction is that � = �0 + ε�1 + ε2�2. Prior to
choosing �2 to be 0, we experimented numerically with different combinations of �1
and �2 and determined that the pair �1 = 1

ε
(� − �0) and �2 = 0 results in nearly

the most accurate approximation.
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