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As more people move back into densely populated cities, bike sharing is emerging as an
important mode of urban mobility. In a typical bike-sharing system (BSS), riders arrive at
a station and take a bike if it is available. After retrieving a bike, they ride it for a while,
then return it to a station near their final destinations. Since space is limited in cities,
each station has a finite capacity of docks, which cannot hold more bikes than its capacity.
In this paper, we study BSSs with stations having a finite capacity. By an appropriate
scaling of our stochastic model, we prove a mean-field limit and a central limit theorem for
an empirical process of the number of stations with k£ bikes. The mean-field limit and the
central limit theorem provide insight on the mean, variance, and sample path dynamics of
large-scale BSSs. We also leverage our results to estimate confidence intervals for various
performance measures such as the proportion of empty stations, the proportion of full
stations, and the number of bikes in circulation. These performance measures have the
potential to inform the operations and design of future BSSs.

Keywords: applied probability, operations research, probabilistic networks, queueing theory,
stochastic modeling

1. INTRODUCTION

Bike sharing is an emerging mode of eco-friendly transportation that has launched in over
400 cities around the world [19]. In the United States, we are witnessing a transition where
more people are deciding to live in large and densely populated cities. As more people
transition from the sprawling suburbs into densely populated cities, bike-sharing programs
will continue to grow in popularity since they provide easy transportation for citizens of
these large cities. As more people use these bike-sharing systems (BSSs), less people will
drive motor vehicles on the road. This reduction of vehicles on the road due to BSS has
the potential to also reduce the growing traffic congestion in these growing cities. BSS
also promote healthy living as biking is a great form of exercise. They are environmentally
friendly and they have the potential to reduce carbon emissions if operated correctly and
efficiently; see, for example, Hampshire and Marla [13], Nair and Miller-Hooks [19], Nair
et al. [21], Nair and Miller-Hooks [20], O’'Mahony and Shmoys [25], O’Mahony [24], Jian et
al. [14], Freund et al. [9], and their references within for more information on BSS.
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FIiGure 1. Citi Bike average number of trips during each 5 min (January 1-December 31,
2015). The red line represents the average number of trips that started during each 5 min.
The blue line represents the average number of trips that ended during each 5 min.

For a typical system, riders simply arrive at a station and select a bike if there is one
available for them to take. If there is no bike available for the rider, the rider will leave
the system. Otherwise, the rider will take a bike and ride it for a while before returning
it to another station near their final destination, if there is available space. If no space is
available, the rider must find a nearby station to return the bike. If there were an infinite
supply of docks to store the bikes, then our model would be reduced to a network of infinite
server queues, which is more tractable to analyze. However, since the number of bike docks
have finite capacity, the model become less tractable especially for systems with a large
number of stations.

Much of the complexity inherent in BSS lies in the scarcity of resources to move all
riders around each city at all times of the day. Riders can encounter the scarcity of resources
in two fundamental ways. First, a rider can encounter insufficient resources by finding an
empty station with no bikes when a rider needs one. Secondly, a rider can find a station
full with bikes when attempting to return a bike. Thus, from a managerial point of view,
having stations with no bikes or too many bikes are both problematic for riders. There
are several reasons why bike stations either have no or too many bikes. One main reason
why stations might have too many bikes or too few bikes is that the system is highly
inhomogeneous. Not only is the arrival rate a non-constant function of the time of day (see
Figure 1) but also riders do not evenly distribute themselves amongst the available stations.
For example, many stations that are located in residential areas have fewer bikes available
for riding, as many riders take bikes to more commercial areas. Another example that
illustrates the inhomogeneous dynamics is that riders tend to take bikes from up-hill stations
to go to down-hill stations; however, very few riders take bikes from down-hill stations
to go up-hill. Thus, as more bikes flow from residential to commercial areas during rush
hours, or up-hill to down-hill stations, this causes the system to be more imbalanced over
time.

Since BSS are quite complex, researchers have been inspired to study these systems in
great depth. The subsequent analysis of BSS has generated many insights on these systems,
especially for rebalancing the fleet of bikes. Although there is a large community that studies
these systems, few analytical models have been proposed, especially stochastic analytical
models. This is primarily because the stochastic models for BSS are often very complex
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and are rather intractable to analyze without making strong assumptions. Nevertheless, the
analysis of such stochastic and mathematical models could provide insights on the behavior
of these BSS and how to manage them effectively. In fact, a deeper analysis of stochastic
models for such systems could help researchers understand the impact of different incentive
algorithms for taking or returning bikes, which can lead to significant improvements in the
overall system performance.

Most BSS can be viewed as closed queueing networks. One of the first papers to model
the BSS as a closed queueing network is by George and Xia [11]. However, in the bike-
sharing context, the customers are replaced by bikes. The number of bikes, also known as
the fleet size, is fixed and remains constant. In this model, the bikes can go to two types
of stations. The first type of station is a single-server queue where the service times are
the user inter-arrival times to this station. The second type of station is an infinite-server
queue where the service times are the trip times on a route from station ¢ to station j. The
main drawback of the model by George and Xia [11] is that it is based on infinite capacity
queues. This means that the model does not take into account the finite capacity of the
stations and the related strategies of the users to return their bikes. To overcome this major
drawback, the model proposed in this paper allow the finite capacity at stations. Thus, we
are able to model the real system where customers are blocked from returning bikes to the
stations that is nearest to their destination.

In our model, we model the BSS as state-dependent M/M/1/K; queueing networks.
When joining a saturated single-server queue, the user reattempts in another queue, after
a time with the same distribution as the trip time, until he returns his bike. Although this
model seems to model the behavior of the network, it is not practical since it scales with the
number of stations. Thus, we follow an approach developed by Fricker et al. [10] to study
the bike-sharing network’s empirical process instead. The empirical process still allows us
to derive important performance measures of the original system; however, it scales with
the maximum station capacity and not the number of stations, which is more practical for
large networks like Citi Bike.

1.1. Main Contributions of Paper

The contributions of this work can be summarized as follows:

e We construct a stochastic bike-sharing queueing model that incorporates the finite
capacity of stations. Since our model is difficult to analyze for a large number of
stations, we propose to analyze an empirical process that describes the proportion
of stations that have a certain number of bikes.

e We prove a mean-field limit and a central limit theorem for our stochastic bike-
sharing empirical process, showing that the mean-field limit and the variance of
the empirical process can be described by a system of 1(K + 4)(K + 1) differential
equations, where K is the maximum station capacity.

e Using the mean-field limit of the empirical process, we are able to approximate
the mean proportion of empty and full stations. Furthermore, with the central limit
theorem of the empirical process, we are able to construct confidence intervals around
the mean-field limit for the same performance measures.

e We compare the mean-field limit and the central limit theorem to a simulation
and show that the differential equations approximate the mean and variance of the
empirical process extremely well.
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1.2. Organization of Paper

The remainder of this paper is organized as follows. Section 2 provides a brief history of
bike-sharing programs and a literature review on the research streams concerning BSS.
Section 3 introduces our bike-sharing model and notation of the paper. In Section 4, we
derive and prove the mean-field limit of the empirical measure process of the distribution
of stations with different bikes and utilization rate. In Section 5, we derive the diffusion
limit and prove a functional CLT for our model. We show that the diffusion process is a
centered Gaussian OU process and we also obtain a closed-form expression of the diffusion
limit process. In Section 6, we extend our analysis in Section 3 to a broader case with non-
uniform routing probabilities and capacities and derive the mean-field limit and diffusion
limit in this extended case. In Section 7, we discuss the simulation results of our model, with
both stationary and non-stationary arrival processes. We also give a comparison between
real Citi Bike empirical measure and simulated ones using our model to show how well our
model is in capturing reality. Finally, in Section 9, we give concluding remarks and provide
some future directions of research that we intend to pursue later.

2. HISTORY AND LITERATURE REVIEW

The literature that focuses on the analysis and operations of BSS is increasing rapidly. Early
research that studied the history of BSS includes Shaheen et al. [35], Hampshire and Marla
[13], Nair et al. [21], Schuijbroek et al. [34], and DeMaio [6]. These papers provide a history
of bike sharing and how it has evolved over time. The beginning of bike sharing can be traced
back to the first generation of white bikes (or free bikes) in Amsterdam, The Netherlands,
as early in 1965. However, this first generation of BSS failed due to a large amount of bike
theft. The launch of Bycyklen in Copenhagen in 1995 marked the second generation of
BSS. Bycyklen was the first BSS to implement docking stations and coin-deposit systems
to unlock bikes. These coin-deposit systems helped with the bike theft problem and, thus,
made the BSS more reliable. However, even with these improvements, the Bycyklen could
not eliminate bike thefts mainly due to the fact that customer still remained anonymous
and there were no time limits on how long a customer could use a bike.

The failures of the second generation of BSS inspired the present-day or the third
generation of BSS by combining docks with information technology. These new systems
incorporate information technology for bicycle reservations, pickups, and drop-offs. This
new technology has enabled many BSS to keep better track of bicycles and the users that use
them, thus eliminating virtually all bike theft. One example of a third-generation BSS is the
Paris’ bike-sharing program Velib. Velib was launched in Paris in July 2007 and has emerged
as the most prominent example of a successful bike-sharing program in the modern world. As
a result of the success of Velib, many cities like New York City (Citi Bike), Chicago (Divvy),
and even Ithaca (Big Red Bikes) have implemented large-scale BSS and bike sharing has
become a widely used form of transportation in these cities. For the interested reader,
Laporte et al. [17] provide a comprehensive survey of the vehicle/bike-sharing literature.

Rebalancing is currently the biggest stream of research concerning BSS. In rebalancing
operations, there are two methods of rebalancing: (1) deploying a truck fleet or (2) providing
user incentives, where deploying a truck fleet is often referred to as bike repositioning. Both
methods involve static and dynamic cases. Static repositioning usually is moving bikes
during the night when traffic flow is low, while dynamic repositioning is moving bikes during
the day based on the current state of the system. Most research on this area focuses on the
static case, partly because it is easier to model and also because the impact of repositioning
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is more important during the night [14]. Raviv et al. [33] is one of the first papers to
study static repositioning of BSS, using mixed integer linear programming by maximizing
customer demand satisfaction. Benchimol et al. [2] consider a similar problem, where a
single truck repositions bikes to bring the inventory of each station to a predetermined
value. However, their objective is to minimize the routing cost as opposed to maximizing
customer satisfaction. In the case of dynamic repositioning, Chemla et al. [3] and Pfrommer
et al. [32] consider the case when the trucks respond in real time to the current state of the
system. However, Contardo et al. [4] and Ghosh et al. [12] consider the situation where the
time-dependent demand is known a priori and the rebalancing operations are computed in
an off-line fashion. Yet, none of these papers really explore stochastic dynamics and they
for the most part mainly exploit optimization techniques to tackle the problem.

Unlike the rebalancing literature, our paper falls into the performance analysis literature
with an emphasis in supply analysis. We focus on analyzing the most salient performance
measures such as the mean, variance, covariance, and sample path dynamics of the bike dis-
tributions in a large-scale BSS. There is not much literature that explores the fluctuations of
BSS around the mean-field limit. In this paper, we prove a mean-field limit and a functional
central limit theorem under some smoothness conditions and show that the diffusion limit
is characterized by a multi-dimensional Ornstein—Uhlenbeck (OU) process. The functional
central limit theorem not only gives us information about the sample path fluctuations of
the queue length process, but it also allows us to construct approximate confidence intervals
for various performance measures such as the proportion of empty stations, the proportion
of full stations, and the mean number of bikes in circulation. Unlike the previous literature,
our paper also considers non-stationary arrivals to stations, which is much more realistic
given the user patterns we observe in the historical data from CitiBike. In Figure 1, we
plot the empirical mean of the number of trips (5 min intervals) during the week for the
time period January 1-December 31, 2015. We observe from Figure 1 that the arrival rate
is non-stationary and clearly reflects the morning rush and evening rush during the peak
times. Thus, analyzing the non-stationary dynamics is crucial for understanding the impact
of system inhomogeneity since it can provide useful guidelines for rebalancing operations.

3. BIKE-SHARING QUEUEING MODEL

In this section, we construct a Markovian bike-sharing queueing model where customers can
pickup and drop-off bikes at each station if there is available capacity. Figure 2 provides
an illustration of a typical Citi Bike station in New York City (NYC). As one can see in
Figure 2, the bikes are attached to docks and the number of docks is finite with roughly 40
docks. Figure 3 shows a map of Citi Bike stations, the nation’s largest bike-sharing program,
with over 10,000 bikes and 600 stations across Manhattan, Brooklyn, Queens, and Jersey
City. Citi Bike was designed for quick, affordable, and convenient trips and has become an
essential part of the transportation infrastructure in NYC.

Motivated by the Citi Bike BSS, we consider a BSS with IV stations and a fleet of M
bikes in total. We assume that the arrival of customers to the stations are independent
Poisson processes with rate A\; for station i. When a customer arrives at a station, if there
is no bikes available, they will then leave the system and are immediately blocked and lost.
Otherwise, the customer will take a bike and ride to station j with probability P;. We
assume that the travel time of the rider is exponentially distributed with mean 1/, for
every transition from one station to another. Since we are concerned with finite capacity
stations, we assume that station ¢ has a bike capacity of K, which is assumed to be finite
for all stations. Thus, when a customer arrives at station j, if there are less than K; bikes
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in this station, he returns his bike and leaves the system. If there are exactly K; bikes (i.e.,
the station is full), the customer randomly chooses another station k with probability Py
and goes to that station to drop the bike off. As before, it takes a time that is exponentially
distributed with mean 1/p. Finally, the customer rides like this again until he can return
his bike to a station that is not full.

Below, we provide Table 1 for the reader’s convenience so that they understand the
notation that we will use throughout the paper.

To avoid cumbersome notation, throughout Sections 3-5, we assume without loss of
generality that the service rate u is equal to 1 and that the routing probability from each
station is uniform, that is, P, = 1/N. We also assume that capacities across all stations
are equal, that is, K; = K, for + =1,..., N. With our notation in hand, we are ready to
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TABLE 1. Notation

N Number of stations

M Total number of bikes

K; Capacity at station ¢

i Arrival rate at station ¢

1/p Mean travel time

P; Routing probability to station @

X;(t) Number of bikes at station ¢ at time ¢
R; = pP;/\; Utilization at station 4

r; = R;/ max; R; Relative utilization at station ¢

y Average number of bikes at each station

develop our stochastic model for our bike-sharing network. At first glance, these assump-
tions seem restrictive; however, we explain in Section 6.1 how our model can be extended
seamlessly to more complex settings with non-uniform routing probabilities and capacities.
We should mention, however, the extension to inter-station transition probabilities, that
is, probabilities that depends on the departing station as well as the returning station are
non-Markovian models. In Section 6.2, we discuss more in detail how one can extend the
state space, by tracking the number of in-transit bikes coming from each station, to make
the queueing model Markovian; however, this extended model makes the problem even more
high-dimensional and adds difficulty to the analysis.

We define X(t) = (X1(t),..., Xn(t)), where X;(¢) is the number of bikes at station ¢
at time t. Then, X;(¢) is a continuous-time Markov chain (CTMC), in particular a state-
dependent M/M/1/K; queue. In this model, the rate of dropping off bikes at station i is
equal to puP;(M — Zszl X5 (1)1{X;(t) > K}, and the rate of retrieving bikes at station
i is equal to A\;1{X;(¢t) < 0}. Using these rates, we can construct the functional forward
equations for our stochastic bike-sharing model. This construction is given below in the
following proposition:

PROPOSITION 3.1: For any integrable function f:Z% — R, the CTMC X(t) satisfy the
following functional forward equation:

=1
N N
+> E l(f(X(t) + 1) — f(X(1) pP; <M - Zh(ﬂ) 1{x,i(t)>m}] - (3.1)
i=1 k=1
PRrROOF: The proof is found in the Appendix. |

COROLLARY 3.2: The time derivatives of the mean, variance, and covariance of X(t) are
given by

E[X;(t)] =E

N
uPi (M - ZXk(t)> 1{X;(t) > Ki}] — \MP[X(t) < 0], (3.2)

k=1
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Var[X;(1)] = E[X7(8)] — 2E[X;()]E[X;(1)]
— 2Cov lXi(t), 1P, <M - i Xk(t)> 1{X(t) > Ki}]
— 2Cov[X; (1), A 1{X(t) k<: 10}]

+E FAPX(8) <0, (3.3)

N
P (M - ZXk(t)> 1{X(t) > K3}

k=1

Cov[Xi(t), X;(1)] = Cov

N
uP; (M - ZXk(t)> Lix;(0>K,) — Ajl{xj(t)<o},Xi(t)1
k=1

+ Cov

N
WP <M - ZXk(t)> lix, >k} — )\il{Xi,(t)<0}>Xj(t)‘| ;
k=1

(3.4)
fori,j=1,...,N and i # j.

3.1. Intractability of Individual Stations Model

Although the functional forward equations given in Corollary 3.2 describe the exact dynam-
ics of the mean, variance, and covariance of the BSS, the system of differential equations
are not closed. This non-closure property of the functional forward equations in this model
arises from the fact that the BSS has finite capacity. More importantly, it also implies that
we need to know a priori the full distribution of the whole stochastic process X(t) in order
to calculate the mean or variance or any moment for that matter. Work by Massey and
Pender [18], Pender [26], Pender [27], Engblom and Pender [7], and Pender [28] could yield
useful and accurate closure approximations for making the system closed. Moreover, with
the exception of Engblom and Pender [7], there are no error bounds on the accuracy of
various closure approximations. Thus, it is not clear how well the closure approximations
would perform over a variety of parameter settings. Finally, if we even wanted to solve
these equations and knew the entire distribution of X(t) a priori, there are still O(N?)
differential equations (around 180,900 equations in the Citi Bike case) that would need to
be numerically integrated. This is very computationally expensive, and thus, we must take
a different approach to analyze our BSS.

Moreover, if we want to analyze the limiting behavior of {X;}¥ ;, as CTMCs, as we let N
2o to oo, the mean-field limit would become infinite dimensional, which is quite complicated.
However, if we instead analyze an empirical measure process for X(t¢), we can use the finite
capacity nature of the BSS to our advantage and have a finite dimensional CTMC for the
empirical measure process.

3.2. An Empirical Measure Model

Following the model of Fricker et al. [10], we construct an empirical measure process that
counts the proportions of stations with n bikes and utilization r. This empirical measure
process is given by the following equation:

YN (ry ) = % S = XN (@) = n} (3.5)
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We further define that Y,V (n) = Y, Y,V (r,n). By observing the empirical measure pro-
cess, we notice that Y,V = (YN 0),...,VN(K)) € [0,1]5+L. Thus, for our empirical measure
process, we only need to solve O(K?) differential equations for understanding the mean and
variance dynamics of the BSS, where K < N. More importantly, the empirical measure
will also allow us to obtain salient performance measures such as Y,V (0) (the propor-
tion of stations with no bikes), Y,V (K) (the proportion of stations that are full of bikes),
M — Zf:o 7 - YN (j)N (the number of bikes in circulation), and among others.

Conditioning on Y,V (r,n) = y(r,n) and given our assumptions that g =1 and P, =
1/N, the transition rates of y are specified as follows:

When a customer arrives to a station with n bikes and relative utilization r to retrieve a
bike, the proportion of stations having n bikes goes down by 1/N, the proportion of stations
having n — 1 bikes goes up by 1/N, and the transition rate Q% is

1
QN (Zh Y+ N(l(r,nfl) - 1(r,n))> = y(r, n))\7'N1n<O
pb;
= —N1,
y(r’ ’I'L) R 1 <0

=y(r,n) <%

_y(r,n)
rRN.

max

N1
NR n<0

1n<0~ (3.6)

When a customer returns a bike to a station with n bikes and relative utilization r, the
proportion of stations having n bikes goes down by 1/N, the proportion of stations having
n + 1 bikes goes up by 1/N, and the transition rate Q% is

QN <yay + %(l(r,n-ﬁ-l) - 1(r,n))> - y(’/‘ Tl ( Z Zn y 7! 7’L ) 1>k
M / /! !
=y(r,n)N (N —ZZny(r ,n)) 1ok (3.7)

n/
Similarly, we have the functional forward equations for Y,V (r,n).

PROPOSITION 3.3: For any integrable function f:[0,1]5Tt =R, YN (r) = (YN (r,0),...,
Y N(r, K)) satisfies the following functional forward equation:

E(F (IS (r) = po(r)]
- ina (7 (3204 3~ 1) = 1070 ) 20,

rRmax

K
1
=SB (5 0+ W~ 1)) 100D
n=0
x YN (r,n)N M SO YNE ) | sk (3.8)
t ) N - - t ) n>
PrOOF: The proof is similar to the proof of Proposition 3.1. |
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COROLLARY 3.4: The time derivative of the mean of YN (r,n) is given by

1
NRN

max

BV (r.n)] = E [ (V¥ (ryn+ Do — Y (1 n>1n<0)}

(1\]\4[ B ZZ”IYtN(r/’n/)> (YtN(r,n —1)l,<0 — YtN(r7 n)1n>K)] . (3.9)

n’

forn=0,...,K. Denote Zf\’] (r,t) = Cov[Y, N (r,4), YN (r,j)]. When i = j, the time deriva-
tive of the variance term Var[Y,™ (r,1)] is given by

Var[Y," (r,0)] = E[Y," (r,0)%] = 2B[Y," (r, B[V, (r, )
2
rNRﬁax
2M
N (Eivz 1
—2 Z Z Tﬂ(COV[Y}N (’I“, i)v Y;‘,N (T/’ n/)Y;N (T‘, i — 1)}1i<0
- COVD/tN (T’ i)v }/tN (Tlv n,)YVtN (Tv i)]1i>K)
1
rN2RN,.
M
N2

—m— (N () Lis k. — B (r, 1) Lico)

(rt)Lico — 20 (r, ) 1> )

+ (B[N (ryi + 1)]Lis x + E[YY (r,4)]1i<0)
—5 BN (ri — 1) Lico + E[Y;Y (r,9)] 15 k)

ZZn E[YN (', n )Y (ri — 1)]1<0

+

—I-E[Y;N(T y T )YtN(Tvi)]li>K)‘ (3-10)

When |i — j| < 1, the time derivative of the covariance term Cov[Y,N (r,i), YN (r, )] is
given by
Cov[Y,¥ (r,0), Y, (r, )]
= B (r,0)Y, (r, )] = BV (r, )JENGY (r, )] = BN (r DIEWGY (r,9)]

1
TNRN [Ef\-[s-l ](7" ik + %5 ]+1(7” 1>k — Eij(Ty t)(Lj<o + Li<o)]
M N N N
+ N (Eil1,(r ) lico + 37, 1 (rt)Lico — ;5 (r 1) (Lisk + 1j5k)]
= (Cov[Y N (r,5), YN (!, n ) YN (ryi = 1)]1ico

- COV[Y;N(Ta ])a )/;N(r/a n/)iftN (Ta i)]1i>K)
- Z Z ’n/(COV[Y;N(T, i)? YtN<r,7 nl)thN(r7j - 1)]1.7<0

n’ r

- COV[}/tN(Tai)’YtN(T/’n/)YtN(ij)]lj>K) (3'11)

Downloaded from https://www.cambridge.org/core. Cornell University Library, on 13 Aug 2020 at 17:46:22, subject to the Cambridge Core terms of use, available
at https://www.cambridge.org/core/terms. https://doi.org/10.1017/50269964820000297


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964820000297
https://www.cambridge.org/core

A STOCHASTIC ANALYSIS OF BIKE-SHARING SYSTEMS 11

and when j =i+ 1, the time derivative of the covariance term Cov[V,N (r,i), ;N (r,i+ 1)]
s given by

C&)V[Y}N(r, i), YtN(r,i +1)]
=BV (r, ) YN (ryi 4+ 1)] = BN (r, )RV (ryd + 1)) = BN (r,d + D]E[YN (r, 1)
1
TNRgaX
M
N

SN W (Cov YN (i + 1), YN () YN (i~ 1)]Licg

n’! r!

— Cov[Y, N (r,i+ 1)7 YN(T’7 n YN (r,i)])

—ZZn (Cov[VN (r,4), YN (', 0/ )Y (r,4)]

n’! r!

— Cov[YN (r, i), YN (' 0 ) YN (i + D)]Lis 1)

N(r,i
B ]ED;tN(z—én;lﬂ ~ PEN i) + ;gjn'EmN(rﬁn’)nN(mﬂ- (3.12)

[zf\fu i (1 t) + E?fwz(ra lisk—1— Ef\fiﬂ(r, £)(1 + 1i<o)]

—=Y Lit1 (1)1 i<0+2£\fi( t) — E“H(T (14 liskx-1)]

PrROOF: The time derivatives of E[Y,™ (r,i)] and Var[V;" (r,i)] come directly from applying
Proposition 3.3 with f(Y;(r)) = Y(r,4), Y;2(r,4), respectively. For the covariance term, we
let f(YN(r)) = f(YN(r,i),Y, N (r,j)) to prove the result. [ |

Although we have equations for the moments of the empirical process and individual
stations, it is still difficult to analyze them and gain insights from them directly. One reason
is that even though we have reduced the dimensionality of the analysis significantly, we
have not removed the non-closure property of the differential equations. Thus, we need to
develop a new approach that will allow us to get around this complication. The method that
we choose to use is asymptotic analysis and will be described in more details in the sequel.
However, before we get to the asymptotic analysis, we state some technicalities about weak
convergence.

3.3. Preliminaries of Weak Convergence

Following Ko and Pender [15], we assume that all random variables in this paper are
defined on a common probability space (2, F,P). Moreover, for all positive integers k, we let
D([0, 00), R¥) be the space of right-continuous functions with left limits (RCLL) in R¥ that
have a time domain in [0, 00). As is usual, we endow the space D([0, 00), R¥) with the usual
Skorokhod .J; topology, and let M* be defined as the Borel o-algebra associated with the
Ji topology. We also assume that all stochastic processes are measurable functions from our
common probability space (2, F,P) into (D([0, o), R¥), M*). Thus, if {¢}22; is a sequence
of stochastic processes, then the notation (™ — ( implies that the probability measures that
are induced by the ("’s on the space (D([0, 00), RF), M*) converge weakly to the probability
measure on the space (D([0,00), R¥), M*) induced by ¢. For any = € (D([0,00), R¥), M*)
and any T < 0, we define

|z|p = sup  max |x;(t)] (3.13)
0<t<T =12,k
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12 S. Tao and J. Pender

and note that (™ converges almost surely to a continuous limit process ¢ in the J; topology
if and only if

" = ¢l — 0 a.s. (3.14)

for every T' < 0.

4. MEAN-FIELD LIMIT

In this section, we prove the mean-field limit for our bike-sharing model. A mean-field limit
describes the large station dynamics of the bike-sharing network over time. Deriving the
mean-field limit allows us to obtain new insights on average system dynamics, when the
demand for bikes and the number of stations are very large. Thus, we avoid the need to study
an N-dimensional CTMC and compute its steady-state distribution in this high-dimensional
setting.

First, we state the important assumptions that will be used throughout the paper, to
ensure the existence of a mean-field limit of our model.

ASSUMPTION 4.1: There exists a probability measure I(r, k) on ]0,1] x N with finite support
and A < 0 such that, as N tends to infinity, we have

(i) (LN) Xy L oy = L(r,k),
(ii) NRN, — A1,

max

(iii) M/N — .

Now, we state the main theorem in this section that proves the convergence of the
empirical process to its mean-field limit.

THEOREM 4.2 : (Functional Law of Large Numbers): Let | - | denotes the Fuclidean norm

in RE+L. Under Assumption 4.1, suppose that YV LN Yo, then we have for any € < 0 and
tg <0,

lim P (sup VN — il < 6) =0.
N—oo t<to

Here, y: = (y£(0), ..., y:(K)), where y: (k) = fol dy:(r,k) fork=0,...,K. And y: is the
unique solution to the following differential equation starting at yq :

Y = b(yt)7 (4-1)

where b : [0, 1]+ — RE+L s g vector field satisfies

A
b(yt) = // |:(1(r,n1) - 1(r,n)>1n<0
10,1]x[0,....K] LT

1
+ <’Y - Z/O ndyt(r, n)) (1(r,n+1) — 1(r7n))1n>K dyt(’l”, n), (4.2)
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A STOCHASTIC ANALYSIS OF BIKE-SHARING SYSTEMS 13

or componentwise

b(yt)(o) = _/O (7 - Z/O ndy (r, n)) dy:(r, 0) + A %dyt(r’ 1) )

retrieve a bike from a 1—bike station

return a bike to a no—bike station

b(y:) (k) = /0 %dyt(nk—i— 1) _/0 (1: +7- Z/o ndyy(r, n)) dy(r, k)

retrieve a bike from a k+1—bike station

retrieve and return a bike to a k—bike station

+/01 <7_;/Olndyt(r7n)> dyy(r, k1),

return a bike to a k—1—bike station

fork=1,....K—1, and

b)) = = [ Sauem) o+ f @—Z / ndyt(hﬂ)) dun(r K~ 1).
0 0 —Jo

retrieve a bike from a K —bike station

return a bike to a K —1—bike station

PROOF: A similar theorem is given in the paper of Fricker et al. [10]; however, a proof is
not given in their work. Thus, to make our paper self-contained, we provide a full proof of
the mean-field limit for the convenience of the reader as it is essential for our future results.
Our proof exploits Doob’s inequality for martingales and Gronwall’s lemma. Moreover, we
use Proposition 4.2, Proposition 4.3, and Proposition 4.4 in the proof, and they are stated
after the proof of Theorem 6.11.

Since Y,V is a semi-martingale, we have the following decomposition of Y;":

t
R N A A (4.3)
~—~ ~— 0 S———
initial condition = martingale drift term

where YY" is the initial condition and M} is a family of martingales. Moreover, fot B(YN)ds
is the integral of the drift term, where the drift term is given by 3 : [0, 1]5¥+1 — RE+1 or

Bly) = Z(a: —y)Q(y, x)
1

M
+ <N - Zzln/y(rlan/)> (1(T,n+1) - l(r,n))1n>K y(r7 n)

n’

We want to compare the empirical measure Y,V with the mean-field limit y; defined by

Yt = Yo +/0 b(ys)ds. (4.4)

The remaining of the proof of this theorem can be found in the Appendix. |
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14 S. Tao and J. Pender

PROPOSITION 4.3 (Bounding martingales): For any stopping time T such that B(T) > oo,
we have

T
E (sungVF) < 4IE/ a(YV)dt. (4.5)
t<T 0

PrOOF: The proof is found in the Appendix. |

PROPOSITION 4.4 (Asymptotic Drift is Lipschitz): The drift function b(y) given in Eq.
(6.23) is a Lipschitz function with respect to the Buclidean norm in RE+L,

PrROOF: The proof is found in the Appendix. |

ProrosITION 4.5 (Drift is Asymptotically Close to a Lipschitz Drift): Under Assumption
4.1, we have for any ¢ < 0 and s > 0,

Jim B(AY) (YY) < ) = 0.
PROOF: The proof is found in the Appendix. |

We have proved the mean-field limit for our bike-sharing model. Our analysis yields
that as the number of stations goes toward infinity, we can solve a set of ordinary differ-
ential equations to obtain important performance measure information. The performance
measures that we can approximate are the mean proportion of empty or saturated stations,
and the average number of bikes in circulation. Moreover, we can analyze how factors such
as fleet size and capacity change the value of the performance measures.

However, just knowing the mean-field limit is not enough. One reason is that we would
like to know more about the stochastic variability of the system, that is, the fluctuations
around the mean-field limit. The mean-field limit cannot explain the stochastic fluctuations
of the BSS, and therefore, we need to analyze the BSS in a different way. Thus, in the
subsequent section, we develop a functional central limit theorem for our bike-sharing model
and explain why it is important for understanding stochastic fluctuations of bike-sharing
networks.

5. DIFFUSION LIMIT

In this section, we derive the diffusion limit of our stochastic empirical process bike-sharing
model. Diffusion limits are critical for obtaining a deep understanding of the sample path
behavior of stochastic processes. One reason is that diffusion limits describe the fluctuations
around the mean-field limit and can help understand the variance or the asymptotic distri-
bution of the stochastic process being analyzed. We define our diffusion scaled bike-sharing
model by subtracting the mean-field limit from the empirical measure process and rescaling
it by v/N. Thus, we obtain the following expression for the diffusion scaled bike-sharing
empirical process:

DY = VNN —y). (5.1)

Unlike many other ride-sharing systems such as Lyft or Uber, bike-sharing programs
cannot use pricing as a mechanism for redistributing bikes to satisfy demand in real time.
For this reason, it is essential to understand the dynamics and behavior of DY. D} can be
useful for describing the probability that the proportion of stations with ¢ bikes exceeds a
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A STOCHASTIC ANALYSIS OF BIKE-SHARING SYSTEMS 15

threshold, that is, P(Y," < ) for some x € [0,1]5+1. It also describes this probability in a
situation where there is no control or rebalancing of bikes in the system. This knowledge
of the uncontrolled system is especially important for newly started BSSs who are still in
the process of gathering information about the system demand. The diffusion limit helps
managers of BSS to understand the system dynamics and stability, which in turn helps them
make short-term and long-term managerial decisions. It is also helpful in the case when the
operators of the BSS have no money for rebalancing the system to meet real-time demand.

Using the semi-martingale decomposition of Y,V given in Eq. (4.3), we can write a
similar decomposition for D} as follows:

DY = VRO o) + VR + [ CUNIBY) - by)ds
0
= DY VM [ NI s+ [ VB — oty )las. (5:2)
0 0
Define
Dt = D() + /t b/(yS)DSdS + ]\4757 (5.3)
0

where b'(y) = (9b(y)(i)/0y(j))i; € REFVXEFD and M, = (M(0),..., M (K)) € REFL is
a real-continuous centered Gaussian martingale, with Doob—Meyer brackets given by

M0, = [ b))+ b ) ()i,
(M(K), M(k + 1)), = —/O UO Ryt k4 1)
+ /0 (’y - XH:/O ndys(r, n)) dys(r, k)] ds for k> K,
(M(k),M(5)), =0 for |k—j| <1, (5.4)

where by (y) = max(b(y),0) and b_(y) = — min(b(y), 0) denote the positive and the negative
parts of function b(y), respectively.

Now, we state the functional central limit theorem for the empirical measure process
as follows.

THEOREM 5.1 (Functional Central Limit Theorem): Consider DY in D(R ., RE+1) with the
Skorokhod Jy topology, and suppose that

1. limsupy_ . VN(min; AN — A) > oo,
2. limsupy_, . VN(M/N —7) > oco.

Then, if DY converges in distribution to Dy, then DY converges to the unique OU
process solving Dy = Dq + fg b (ys)Dsds + My in distribution.
To prove Theorem 5.1, we take the following four steps:
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16 S. Tao and J. Pender

1. \/]VMtN is a family of martingales independent of DY with Doob~Meyer brackets
given by

(VMY () = / (B (Y)Y (k) + B (YN )(k))ds,

0

<\/]VMN()\FMNk+ /Z{TNRMX Nirk+1)

+ (AA{ - Z, ZH’KN(T’,TL’O YN (r, k)] ds
x for k > K,
(VMY (1), \/]VMN(j)>t —0 for [k—j|<1. (5.5)

2. Forany T >0,

limsup E(|D{'|?) > oo = limsup E < sup |DN|2) > 00.
N—oo N—o00 0<t<T

3. If (DY)S_, is tight, then (DN)S$_, is tight and its limit points are continuous.
4. If DY converges to Dg in distribution, then DY converges to the unique OU process
solving Dy = Dg + fot b (ys)Dsds + My in distribution.

LEMMA 5.2: \/NMtN is a family of martingales independent of DY with Doob—Meyer
brackets given by

(VMY G)) = [0 + 50 s,
<x/JVMN()\FMN/c+1 /Z[TNR N(rk+1)
+ (% _ Z:Z:n’YsN(r’,n’)> YsN(r,k)] ds for k> K,
(VNMN (1), \/NMN(j)>t =0 for [k—j|<1. (5.6)

PROOF: The proof is found in the Appendix. |

PROPOSITION 5.3: For any s > 0,

limsup VN [B(Y) = b(Y)| > oo. (5.7)
N—o0
PrOOF: The proof is found in the Appendix. |

LEMMA 5.4 (Finite Horizon Bound): For any T > 0, if
limsup E(|D{'|?) > oo,
N—o0

then we have

limsup]E( sup |D£V|2) > 00.
N—oo 0<t<T
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A STOCHASTIC ANALYSIS OF BIKE-SHARING SYSTEMS 17
PROOF: The proof is found in the Appendix. |
LEMMA 5.5: If (D))_, is tight, then (D™)S_, is tight and its limit points are continuous.
PROOF: The proof is found in the Appendix. |

PROPOSITION 5.6: b(y) is continuously differentiable with the derivatives Ob(y(r,4))/0y(r, j)

as follows:
b(y(r,0 . A o /
a(yy((nj))) =7- y(r7 O) + ?1{321} - <’Y - nz:;)n (; y(?" 7n))> 1{j:0}’
(y(r,k)) . A
M =3 () = (k= 1) + = (Lo — Lmy)
K
' (v X <Zy(r/’n)>> (Lg=k-1y = Lg=y) for 0>k > K,
n=0 T/
Ob(y(r, K))

A K
oyt L YE D= Tlierg + (7 - T;)n (; y(r’,n)>> k1. (5.8)

PRrOOF: The above equations can be obtained by directly taking derivatives to Eq. (6.23).
We can see that the derivatives of b(y) are linear in y. Thus, we can conclude that b(y) is
continuously differentiable with respect to y. |

PRrROOF: By Theorem 4.1 in Chapter 7 of Ethier and Kurtz [8], it suffices to prove that the
following condition holds

sup
t<T

/0 (VNBYN) — bys)] — b (9s)DN Yds| 2 0.

By Proposition 5.6, we know that b(y;) is continuously differentiable with respect to y;.
By the mean value theorem, for every 0 < s <t there exists a vector Z in between YN
and y, such that

b(YY) = blys) = V'(Z) (VY — ys).

Therefore,

/0 (VNBYN) = b(ys)] — b (4) DN Yds = / V(Z) — b (y)] DN ds.
We know that

lim sup |b'(ZY) =¥ (ys)| =0 inprobability
N —oc0 t<T

by the mean-field limit convergence and the uniform continuity of b’. By applying Chebyshev
inequality, we have that DY is bounded in probability, then by Lemma 5.6 in Ko and Pender
[15]:

sup
t<T

| FBOT) = b)) ~ ¥ () D as| 0.
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18 S. Tao and J. Pender

THEOREM 5.7 (Solution of the OU Process): The SDE (5.3) has a unique solution

¢
D, = eld Vs p / oIV wadugyy (5.9)
0
Define A(t) =b"(y:), B(t) = ((d/dt) (M (i), M(j)),)ij, then the expectation E(Dy) is
E[D] = eJo AOE[Dy], (5.10)
and the covariance matriz 3(t) = Cov[Dy, Dy] is

t
S(t) = elo AGMs R (0)elo AT ()ds / els Atdup(g)el AT (Wdu g, (5.11)
0

Moreover, differentiation with respect to t yields

TP _ swymipy, (5.12)
dt
%(f) = S(0AWD T +AGS() + B(). (5.13)
PROOF: The proof is found in the Appendix. |

6. EXTENSIONS

In Section 3, we assumed WLOG that the routing probabilities and capacities are uniform
throughout all stations. If one views our statement as assumptions, then it seems like our
model is limiting; however, we emphasize that these are not assumptions and that our
analysis extends to the broader case of non-uniform routing probabilities and capacities.
Thus, in the non-uniform setting, we are still able to prove the same fluid and diffusion
limits and more importantly reduce the dimensionality of the bike-sharing network.

6.1. Extensions to Non-uniform Routing Probabilities and Capacities

The first possible extension of our current model is to incorporate non-uniform routing
probabilities, and take into account the origin-destination pairs. That is, after a customer
picks up a bike from station ¢, the probability that he will drop off at station j is equal
to P;j. However, to preserve the Markovian property of the queueing process, we also need
to track the number of bikes in use which originated from station i, denoted as U} (i),
in addition to the empirical measure process Y;". As the scale of the system N goes to
infinity, the dimensionality of the new queueing process (Y}, U}) will also go to infinity;
therefore, we are back to the same infinite-dimensionality problem with X (¢), which is
illustrated more in details in Section 3.1, and lose the benefit of finite-dimensionality we get
by studying the empirical measure Y,/V.

However, we can still extend our model to non-uniform routing probabilities and
capacities without considering the origin-destination pairs. In particular, we assume the
probability that a bike being dropped off at station ¢ is equal to P;, and the capacity at
station 7 is equal to K.
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A STOCHASTIC ANALYSIS OF BIKE-SHARING SYSTEMS 19

We define a relative routing probability at station i as

P;

_— 6.1
max; P; (6.1)

pi =

We consider the empirical measure process Y™ (r,n,p, k) that counts the proportion of
stations that have n bikes, relative utilization r, routing probability p, and capacity k,

N
1
Y;EN(Ta n,p, k) = N Z 1{X1N(t) = anzN = 7'7piv =D, K’L]V = k} (6‘2)

Conditioning on YN (r,n,p, k) = y(r,n,p, k), the transition rates of y are specified as
follows:

When a customer arrives to a station with n bikes, relative utilization r, relative routing
probability p, and capacity k, to retrieve a bike, the proportion of stations having n bikes
goes down by 1/N, the proportion of stations having n — 1 bikes goes up by 1/N, and the
transition rate QV is

1
QN (% Yy + N(l(r,nfl,p,k) - 1(r,n,p,k:))> = y("", n,p, k)/\TNl’rL<O

P
= y(r7 n,p, k)%N1n<0
PPax
rRN

max

=y(r,n,p, k) N1,. (6.3)

When a customer returns a bike to a station with n bikes, relative utilization r, relative
routing probability p, and capacity k, to retrieve a bike, the proportion of stations having
n bikes goes down by 1/N, the proportion of stations having n + 1 bikes goes up by 1/N,
and the transition rate Q¥ is

1
QY (y,y + 5 Aentipr — 1(7-,n,p,k>)>

- y(’l", n,p, k)N TR P M- Z Z n/y(rla n/ap/7 k/)N 1n>k

n’ T'/,[)/,]C/

M
= y("’, n,p, k)N2an]Yax W - Z Z n/y(rl7 nl7pl7 kl) 1n>k~ (6'4)
n/

’ ’ !
r'.p’k

We have the following functional forward equations for YN (r,n, p, k).
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PROPOSITION 6.1: For any integrable function f:[0,1¥*t =R, and YN (r,p, k)=
(YN (r,0,p, k), ..., Y, N(r,k,p,k)) satisfies the following functional forward equation.:

E(f (Y (r,p, k)Y (0, k) = yo(r,p, k)]

i B | (7 (37 0 )+ i = L)) = 10N ) )

N Pllznvax
X}/;N(’nn?pv k) RN 1n<0:|

max

e ) R )

2 Y;N(T‘,’n,p, k)N2p max | ar Z Z /YN 7’ TL 7p k) 17l>k . (6‘5)

n’ r'p'k’

6.1.1. Mean-Field Limit We first state the following assumptions that we use through-
out this section.

ASSUMPTION 6.2: There exists a probability measure I(r,p,k) on [0,1] x [0,1] x N and A >
0 such that, as N tends to infinity, we have

(i) 1/N)SN, 1w v Ny = 1(r,p, k),
(ZZ) de/Rde - A NPN - P M/N - ’Y’

max

(iii) The set K = Un_{KN,i=1,...,N} is finite.

Now, we state the main theorem in this section that proves the convergence of the
empirical process to its mean-field limit.

THEOREM 6.3: Let |- | denotes the Euclidean norm in REma<t1 Under Assumption 6.1,
suppose that Y§¥ 2, yo, then we have for any e < 0 and ty < 0,

lim ]P’<sup YN — <e) =0.

N—oo < t(]

Here, Yt = (yt(o)" .. ,yt(Kmax)); where yt( ) Zkelc fo fo dyt T ] D, k) fO?“ j:
0,...,Knax. And y; is the unique solution to the following differential equation starting

at yo :
Ut = b(ye), (6.6)

where b : [0, 1]E+1 — REwaxt1 s q vector field satisfies

-3 ff

kel n=0 ,1]1x[0,1] l:

+ pP Y- Z Z // ndyt r,n,p, k) (l(r,n—&-l,p,k) - 1(7‘,n,p,k))1n>k
0

n k>n ,1]1x[0,1]

l(rn 1,p,k) — 1(7’npk)) n<0

X dyt(’f’,’ﬂ,p7 k)? (6‘7)
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or componentwise

;;c//l]xou ( ZZ// ><[01ndytrnp7k)>dyt(r’o’p’k)

n kek

return a bike to a no—bike station

. // PR (1. ), (6.8)

rerc” J101]x[o,1] T

retrieve a bike from a 1—bike station

Z// P (.5 + 1,p,k)

kerc” /10,1101 T

retrieve a bike from a j+1—bike station

B Z // p Z Z // ndyt r,mn p,k) dyt(raj7p7k)
10,1)x[0,1] \ T 1]x[0,1]

keKx n kek

retrieve and return a bike to a j—bike station

_|_Z//O ZZ//01 Ol]ndyfrnp,k) dyi(r,j — 1,p,k),

ke A]x[0 1] n kek

return a bike to a j—1—bike station

(6.9)
forj=1,... Knax — 1, and

) o) == 3 [ PR Ko, )

werc? J1011x0,1] T

retrieve a bike from a K, 4x —bike station

+ Z // Z // ndyt r,n,p, k) dyt(ry Kmax - 1,p, k) .
01] 0,1]%[0,1]

ke n kek

return a bike to a Ky,ax —1—bike station

(6.10)

PROOF: The only things we need to prove in this extension case are that b(y) is Lipschitz
and that S(Y,N) 2 b(Y,Y) for any t > 0. The rest of the proof stays the same as in Section 4.
|

PROPOSITION 6.4 (Asymptotic Drift is Lipschitz): The drift function b(y) given in Eq. (6.7)
is a Lipschitz function with respect to the Euclidean norm, in RS maxt1,

PRrROOF: The proof is found in the Appendix. |

PROPOSITION 6.5 (Drift is Asymptotically Close to a Lipschitz Drift): Under Assumption
6.1, we have for any € < 0 and s > 0,

Jim B(AYVY) ~ (YY) < ) =0.

PrROOF: The proof is found in the Appendix. |
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6.1.2. Diffusion Limit Now, we state the functional central limit theorem for the
empirical measure process in the extension case as follows.

THEOREM 6.6: Consider DY in D(R,,REmaxt1) with the Skorokhod Jy topology, and
suppose that

L. liInSHpN—)oo \/7( max/Rmax - A) > 00,

2. limsup_, o VN(M/N — ) > oo,

3. limsupy_, .. VN(NPN  —P) > .

max

Then, if D} converges in distribution to Dgy, then DY converges to the
unique OU process solving Dy = Dy + fg b (ys)Dsds + My in distribution. Here, b'(y) =
(Ob(y)(i)/0y(4))ij € RUSmaxtOX(Kmaxt1) gng My = (My(0), ..., My(Kmax)) € REmaxtl s
real-continuous centered Gaussian martingale, with Doob—Meyer brackets given by

(M(k)), = / (b (9) (k) + b () (k) ds,
// 7dy3(7' k+ 1 y Dy )
Kek 0,1]x[0,1] T

+Z//OI]XOI] ( ZZ//Ol Ollndysrnp,K)>

KeK n Kek

(M(k), M(E + 1)), = / [

dys(r k,p, K)|ds fork > Kpax,
(M(k), M(j)), =0 for|k—j| <1, (6.11)

where by (y) = max(b(y),0) and b_(y) = —min(b(y),0) denote the positive and the negative
parts of function b(y), respectively.

PrOOF: The only things we need to prove in this extension case are listed as propositions
below. The rest of the proof stays the same as in Section 5. |

LEMMA 6.7: \/NMtN is a family of martingales independent of DY with Doob-Meyer
brackets given by

(M), = / (b (4a) (k) + b_ () (k))ds,
// —dys(r k+1,p K)
Kek 0,1]x[0,1] T

+Z//]01]X01] ( Z //01 Ol]ndysrnp,K)>

KeKk n KeK

o109 2G5+ ), = - [ [

dys(r, k,p, K)]ds fork > Kpax,
(M(k),M(j)), =0 for|k—j|<1. (6.12)
PROPOSITION 6.8: For any s > 0,
limsup VN|B(YY —b(YN)| > . (6.13)

N—oo
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PROOF: The proof is found in the Appendix. |

PROPOSITION 6.9: For k > Kyax,

Jim P <§3¥ ’<\/NMN(k), VNMY (k + 1)>t — (M), M(k + 1)>t‘ < e> —0. (6.14)

PRrROOF: The proof is found in the Appendix. |

PROPOSITION 6.10: b(y) is continuously differentiable with the derivatives Ob(y(r,i,p, K))/
Ay(r,3,p, K) as follows:

ob(y(r,0,p, K ) A
96ly(r,0,p, X)) =pPj-y(r,0,p,K) + p71{j:1}

dy(r,j,p, K)
Kmax
_pp Y- Z n Z y(rlvnaplaK/) 1{j=0},
n=0 r’p' K’

ob(y(r, k,p, K _ pA
M :pP.] : (Z/(Ta k7pa K) - y(Ta k- 1apaK)) + 7 (1{j:k+1} - 1{j:k:})

oy(r, j,p, K)
Kmax
P v= Do n | Do wt g K ) | (Lyor-1y — 1y=iy)
n=0 rp K’

for 0 > k > Ky,

ob(y(r, K,p,K)) pA

= —pPj y(Kmax — 1) — 71{j:Kmax}

dy(r, j,p, K)
Kmax
+pP | ~v- Z n Z y(r',n, o, K') | | 1j=kpae—13-  (6.15)
n=0 r',p K’

PRrROOF: The above equations can be obtained by directly taking derivatives to Eq. (6.7).
We can see that the derivatives of b(y) are linear in y. Thus, we can conclude that b(y) is
continuously differentiable with respect to y. |

6.2. Extensions to Adding Bike Repositioning

We can also extend our model to incorporate repositioning of bikes, which is adopted by
most bike-sharing companies to rebalance the network over time. To avoid cumbersome
notations, we restrict ourselves to the uniform routing probabilities and capacities scenario
for the model discussed in this section.

We may assume that “rebalancers” will arrive to the system according to a independent
Poisson process with rate AgY,N (K)N, where Ag < 0 is a constant and Y,V(K) is the
proportion of full stations at time ¢t. They pick a full station uniformly at random among
all full stations and remove a certain number C' of the bikes from that station.

In terms of repositioning these bikes, we assume that C' number of bikes are being put
back to stations with bikes ranging from 0 to K — C. The probability of repositioning to a
station with j bikes is equal to YN (j)g;/S> 5 ¢ YN (i)gs, where {g;}; are positive constants
and g > g1 > g2 > grx—c < 0. This is a smoothed version of choosing the station with
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minimum number of bikes when repositioning, and it preserves the Lipschitz property of
the drift function, which is essential for deriving the fluid limit and the diffusion limit.
We assume additionally that M > N(K — C) to avoid the case where the denominator
ZZK:BC YN (i)g; can be 0. This can be easily shown through a proof by contradiction. For
simplicity of the model, we assume that repositioning time are exponentially distributed
with rate ug. Finally, we use RY to denote the number of bikes currently in repositioning
by the rebalancers at time t.

Conditioning on (YN (r,n), RY) = (y(r,n), R), we have the following transition rate for
the four types of events:

When a customer arrives to a station with n bikes, relative utilization r, to retrieve
a bikes, the proportion of stations having n bikes goes down by 1/N, the proportion of
stations having n — 1 bikes goes up by 1/N, and the transition rate Q% is

@ (), (54 0 10 B) ) = 510 (616)

max

When a customer returns a bike to a station with n bikes and relative utilization r, the
proportion of stations having n bikes goes down by 1/N, the proportion of stations having
n + 1 bikes goes up by 1/N, and the transition rate Q% is

QY <( R), (’y+ Jb(l(r,n-i-l) - 1(T,n))7R)>

=y(r,n) - < ZZnyr n' )N — R) n>K- (6.17)

When a rebalancer arrives to a station with K bikes, relative utilization r, to retrieve
C' bikes, the proportion of stations having K bikes goes down by 1/N, the proportion of
stations having K — C bikes goes up by 1/N, and the transition rate Q% is

@ (). (y+ ko)~ Lei) R4C) ) =yr KDaN. (618)

When a rebalancer arrives to a station with j bikes and relative utilization r, where
0<j< K -—C, to put back C bikes, the proportion of stations having j bikes goes down
by 1/N, the proportion of stations having j + C' bikes goes up by 1/N, and the transition
rate QY is

1 (1,9)9; R
N ,R,(+1r‘ _1T.7R_C>): y—J-—. 6.19
¢ (‘y Pty esre ~les) Sy 0O

We have the following functional forward equations for (Y (r,n), R).

Downloaded from https://www.cambridge.org/core. Cornell University Library, on 13 Aug 2020 at 17:46:22, subject to the Cambridge Core terms of use, available
at https://www.cambridge.org/core/terms. https://doi.org/10.1017/50269964820000297


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964820000297
https://www.cambridge.org/core

A STOCHASTIC ANALYSIS OF BIKE-SHARING SYSTEMS 25

PROPOSITION 6.11: For any integrable function f:[0,1]5!1 x[0,00) = R, Y,V (r)=
(YN(r,0),...,Y,N(r, K)) satisfies the following functional forward equation:

E(f (VN (r), R)YgY (r) = yo(r), RY = Ry

_ i (1 (70 + s 10 2Y) - g0 0,2 ) Y

max

1n<0:|

; i B | (1 (Y00 + s = L) RY ) = SO0 BY ) Y )y

M INSN (0 Ré\/
x (N_Z;”Yt (Tan)_W Lisk

n’

8| (1 (Y50 + ke = 10 B 4+ C) = SO0 RY) ) Y KA
+ KZ_:CE !
n=0

(7 (3 0+ s = 1o B =€) = 1611, RY))

YN(r,n)g.  RY

6.20
SE YN ig  C (6-20)

X KR

6.2.1. Mean-Field Limit Now, we show the mean-field limit result for the empirical
process with rebalancing.

THEOREM 6.12: Let |-| denotes the Euclidean norm in RE+2. Under Assumption 4.1,

suppose that (Yo, RY /N) 2 (yo,70), then we have for any € < 0 and to <0,

i P (sup V2% B /N) — (7] <€) =0.

N—oo t<to

H,ere yy = (y:(0), ..., 4:(K)), where y.(k) = fol dye(r, k) for k=0,..., K. And (y;,7¢)
is the unique solution to the following differential equation starting at (yo, 7o) :

Y = b1(Ye, Te)s (6.21)
e = ba(ye, Te), (6.22)
where by : [0, 1]5+1 — REFL and by : [0,00) — R are vector fields satisfy
A
T

.....

+/] ])\Rl(r,K—C — 1)) dys(r, K)
0,1

In 7:t
] e T 1oy = Lm)du(rym), (6.23)
10,1]%0,...,K —C] ZiK:OC ye(r,1)g; C
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or componentwise

1 1 1
b1 (ye, 7)(0) = —/0 v — Z/o ndy(r,n) — 7 | dy(r,0) + /0 %dyt(n 1)

~—————

retrieve a bike from a 1—bike station

return a bike to a no—bike station

/ Zz—o yt(r i)gi %dyt(r,0)7 (6.24)

rebalancer put back C'bikes to a 0—bike station

1 1 1
_ A A _
by (e, 71) (k) = / S+ = [ (A= [ ndurn) -7 ) dur k)
o T o \T" o Jo
| S —
retrieve a bike from a k+1bike station retrieve and return a bike to a k—bike station

1 1
+/ 7*2/ ndys(r,n) — ¢ | dye(r,k — 1)
0 - Jo

return a bike to a k—1—bike station

1 _
9k Tt

- IR 7dyt(7‘7k) )
/o SELC c

im0 yt(ri)g;

rebalancer put back C'bikes to a k—bike station

Fork=1,.... K—-C—1, and

1
by (e, 72) (k) = /0 A dr k1)

r

retrieve a bike from a k-+1—bike station

1 1
A
[ (S X [ ndutr) - ) dustr)
0 n 0

retrieve and return a bike to a k—bike station

1 1
+/ 772/ ndy(r,n) — 7 | dy(r,k —1)
0 —Jo

return a bike to a k—1—bike station

1 _
gk—C Tt

+ ———————f—dek—C)
Zz*O yt T, Z)gz ¢

rebalancer put back C' bikes to a k—C —bike station

1
+ / CArdy:(r, K)lp=x —c ;
0

rebalancers retrieve C bikes from a K —bike station
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fork=K-C,...,K—1, and

1
her)) = = [ S k)

retrieve a bike from a K —bike station

_|_/01 (wy_ En:/ol ndy(r,n) —ﬂ) dys(r, K — 1)

return a bike to a K —1—bike station

1
- / CArdy:(r, K) 1=k —c ) (6.25)
0

rebalancers retrieve C bikes from a K —bike station

and

1
ba(ys, 7) = / Chrdy, (r, )
0

rebalancers retrieve C bikes from a K —bike station

dn _
— ———— 7 dy(r,n) . 6.26
,;O /0 uRziK:_oc yt(ra i)gz‘ ' t( ) ( )

rebalancers put back C bikes to a n—bike station

PRrROOF: This result can be shown by similar techniques used in Section 4. |

7. NUMERICAL EXAMPLES AND SIMULATION

In this section, we confirm our theoretical results of our bike-sharing model with a stochastic
simulation. We perform simulations with both stationary and non-stationary arrival rates,
which are discussed substantially in the following subsections.

Figures 1 and 4 provide the user patterns of BSS from the historical data of Citi Bike.
In Figure 1, we can see that the arrival rate of users to Citi Bike stations varies not only
on the time of the day but also on the day of the week. So in the subsequent numerical
examples, we consider both stationary and non-stationary arrival rates to provide insights
for the behavior of such systems under different demand and usage conditions. However,
unlike the arrival rate, in Figure 4, we observe that the mean travel duration of Citi Bike
users does not vary significantly as a function of the time of day or the day of the week.
Therefore, in the subsequent numerical examples, we assume a constant mean travel time

1/p.

7.1. Simulation Experiments with a Non-stationary Arrival Rate

In this section, we provide the results of the simulation studies of our stochastic bike-sharing
model with a non-stationary arrival process. We perform our simulation with the following
parameters: N = 100, A(t) =1+ 0.5sin(¢/2), and p = 1. The number of sample paths we
use in our simulation is 50. Other parameters are specified in the illustration of each figure
below. For the time-varying arrival rate, we use a periodic function A(t) = 1+ 0.5sin(t/2)
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CitiBike 2015 average trip duration in each 5 minutes

2500 3500
1 |
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1

trip duration(seconds)
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I
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day in week

FIGURE 4. Citi Bike average trip duration in each 5 min (January 1-December 31, 2015).

Proportion of stations with k bikes over time(non-stationary arrival)
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FIGURE 5. Proportion of stations with k£ bikes over time when K = 10. The solid lines
represent the simulation results Y. The dashed lines of the same color represent the
corresponding mean-field limit y;.

to mimic the patterns of morning rush and the afternoon—evening rush that we observe
from the Citi Bike data (see Figure 1).

In Figure 5, we simulate the different components of ¥} and their subsequent meanfi-
field limits y; when K = 10. Each station has five bikes at the beginning of the simulation.
The solid lines represent the simulation results of different components of YV, and the
dashed lines of the same color represent the corresponding mean-field limit ;. We also add
the purple dashed line to represent the time-varying arrival rate. We observe that the mean-
field limit provides an accurate approximation to the empirical measure on each component.
We also notice that the empirical measure is indeed affected by the non-stationary arrival
rate and is also non-stationary.

Figures 6-9 show the simulation results of Y,V with a 95% confidence interval vs. the
mean-field limit y(¢) with two standard deviations of the unscaled diffusion limit, when
K = 3. The initial distribution of bikes is given as Y§¥ = (0,0.5,0.5,0). In Figure 6, the
black curve shows Y,V (0), the simulated proportion of stations with no bikes over time.
To produce the simulation, we take an average of 50 independent sample paths. The red
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Proportion of stations with no bikes over time(non-stationary arrival)
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FIGURE 6. Simulation results of Y,V (0) vs. ,(0) when K = 3.

dashed line shows y;(0), the mean-field limit of the proportion of stations with no bikes
over time, which is obtained from solving the system of ODEs in Theorem 6.11. The green
curves show 20(Y,YV(0)) or two standard deviations of Y, (0), from the 50 sample paths in
simulation. Lastly, the blue dashed lines show 20(D;)/N or two standard deviations of the
unscaled diffusion limit, which is obtained from solving the system of ODEs from Theorem
5.7 [Eq. (5.13)]. We also add a purple dashed line to represent the time-varying arrival rate,
with black dashed vertical lines to indicate the peaks and valleys of the arrival rate and
the corresponding mean-field limit. Again, we observe that the mean-field limit and the
diffusion limit provide an accurate approximation to the simulation results. This accuracy
serves to validate the correctness of the mean field and diffusion limits we proved earlier.
Moreover, with a small time lag, the simulation results of Y,V (0) are positively associated
with movements of the arrival rate. Figures 7-9 show the dynamics of the proportion of
stations with 1, 2, and 3 bikes, respectively. Unlike the case of zero bikes, we observe that
the dynamics are negatively associated with movements of the arrival rate. To observe these
dynamics in one graph, Figure 10 combines Figures 6-9 in one graph, but only keeps the
mean-field limit curves. This allows the reader to visualize the dynamics of the mean-field
empirical measure under a time-varying arrival rate.

Figure 11 shows the simulation results of the variance of D vs. the numerical solution
for the system of ODEs regarding the covariance matrix of D; [see Eq. (5.13)] when K = 3.
The approximation of the variance of diffusion limit to the variance of the actual diffusion
process is quite accurate. We also observe that as arrival rate increases, the variance of the
proportion of stations with no bikes increases, while the proportion of stations with 1, 2, or
3 bikes decreases, and vice versa.

Figure 12 shows the average number of bikes in circulation over time, which is denoted
as

K
CNEM-> " j- VNN (7.1)
j=0
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Proportion of stations with 1 bike over time(| ionary arrival)
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FIGURE 7. Simulation results of Y,V (1) vs. y;(1) when K = 3.

Proportion of stations with 2 bikes over time( i y arrival)
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FIGURE 8. Simulation results of Y,V(2) vs. y,(2) when K = 3.

We use N (v — Z]K:o J - y:(j§)) to approximate E[C}V], the expectation of the number of bikes
in circulation. We use

K
= Var | Y - VNN
=0

=N 1D 57 Var[VV G+ Y > 25 Cov YN (), VN ()]
j=0 i=0 j=i+1
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FIGURE 10. Mean-field limits of the proportion of stations with k bikes over time when
K =3.
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to approximate Var[CV], the variance of the number of bikes in circulation. The black curve
shows the simulated result of the average number of bikes in circulation. The red dashed
line is the mean-field limit of the number of bikes in circulation over time, from solving the
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FiGURE 12. Simulation results vs. mean-field limit of the average number of bikes in
circulation with K = 3 and M = 150.

system of ODEs obtained by Theorem 6.11. The green curves are 20(C}¥), or two standard
deviations from the mean of the number of bikes in circulation we obtain by simulating
50 independent sample paths of the stochastic bike-sharing model. Lastly, the blue dashed
lines show our approximation of 2¢(C}") using the diffusion limit [see Eq. (7.2)], which
can be computed from solving the system of ODEs from Theorem 5.7 [Eq. (5.13)]. We
also add a purple dashed line to represent the time-varying arrival rate, with black dashed
vertical lines to indicate the peaks and valleys of the arrival rate and the corresponding
mean-field limit. Again, we can see that the mean-field limit and the diffusion limit provide
a high-quality approximation for the actual dynamics of the average number of bikes in
circulation. Moreover, we observe two important things. First, the average number of bikes
in circulation is also time varying and fluctuates between 40 bikes and 80 bikes. Second,
the average number of bikes in circulation lags slightly behind the arrival rate, which is a
common phenomenon in non-stationary queues.
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The relationship between time lag and the service rate p
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FIGURE 13. The relationship between time lag and the service rate u. The (solid, dashed)
lines represent the time lag when the arrival rate reaches (maximum, minimum).

7.1.1. Additional Commentary on the Lag Effect 1In the case where the arrival process
is non-stationary, we observe a lag effect on the change of empirical measure in response to
the change of the arrival rate. Here, we explain what the dynamics of the lag effect are in
this non-stationary case. We observe in Figures 6 and 9 that after time 5, when the effect
of the transient behavior is reduced, the proportion of stations with no bikes increases as
arrival rate increases. However, the proportion of stations with three bikes goes down as
arrival rate increases. The intuition is that when more people starting picking up bikes at
stations, we end up with more empty stations and less full stations. Similarly, as the arrival
rate decreases, the proportion of stations with no bikes decreases while the proportion of
stations with three bikes increases. The intuition is that when less people starting picking
up bikes at stations, we end up with less empty stations and more full stations.

We also observe a lag between the peak(valley) of arrival and the peak(valley) of the
proportion of stations with no bikes (Figure 6). There is also a lag between the peak(valley)
of arrival and the valley(peak) of the proportion of stations with three bikes (Figure 9). This
is because it takes time for the empirical process to respond to the change in the arrival
rate. In Figure 13, we plot the size of the lag for different values of the service rate u. We
see that the lag effect has the most impact on the proportion of stations with one bike. It
also has an effect on the proportion of stations with no bikes, two bikes and three bikes;
however, the time lag is much smaller than that of one bike. We also find that the lag effect
does not affect maximums and minimums the same way. We observe in all of the plots,
except for proportion of stations with one bike, that the lag effect is more pronounced for
minimums than maximums. This is especially true in the case of the proportion of stations
having two bikes.

7.2. Simulation Experiments with Heterogeneous Arrival Rates and Capacities

In this section, we provide the results of the simulation studies of our stochastic bike-sharing
model with heterogeneous arrival rates and capacities. We also extend the scale of the system
in our example to make it closer to reality. Some of the common model parameters that we
use in all of our simulation experiments are given as follows: NV = 800, u = 1, and for each
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Distribution of station capacities of Citi Bike (Dec 2017)
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FIGURE 14. Histogram of capacities at Citi Bike.
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FIGURE 15. Average empirical measure in a week at Citi Bike.

station, K = 20, 30, 40, or 50 with equal probabilities. The number of sample paths we use
is 30. Other parameters are specified in the illustration of each figure.

Figure 14 shows the distribution of station capacities of Citi Bike (December 2017).
We observe that most station capacities range from 20 to 50. Thus, we set the parameter
K = 20, 30,40, or 50 with equal probabilities.

Figure 15 shows the average empirical distribution of Citi Bike in a day (September
25, 2017), with one standard deviation. This is exactly the empirical measure y we try to
analyze in our bike-sharing model. Studying the empirical measure and its fluctuation over
time is of great importance to understanding the system dynamics, providing prediction
and guidance for rebalancing and strategic design.

In Figure 16, we simulate the real Citi Bike network (New York City area) and show
the empirical measure results from the simulation. The network setup is exactly the same
as Citi Bike over the month of September 2017, where we have N = 695 number of stations
with capacities being the same as Citi Bike. We use Fourier regression to provide a fit-for-
arrival functions for each station,and use them as heterogeneous time-varying arrival rates
in our bike-sharing model. We used a constant travel time rate p = 3.75, which comes from
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Average empirical measure from simulating the CitiBike network
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FIGURE 16. Average empirical measure from simulating the Citi Bike network.

taking average of the trip duration data. We run the simulation for a 24-h period and plot
the average empirical measure from the simulation.

Figure 17 shows the difference in average empirical measure between simulation and real
Citi Bike data. We can see that the simulated empirical measure have at most 0.02 difference
from the real Citi Bike data. We can also observe that stations with 10-28 bikes have a
positive difference, while stations with less than 10 bikes have a negative difference. This is
because rebalancing happens in the real Citi Bike network, where bikes will be moved from
stations with more bikes to stations with less bikes during peak hours to make the system
more balanced, something we are not able to capture in our model. This causes the result
from our model to have a larger number of stations with more bikes, and a smaller number of
stations with less stations, compared to reality. Besides, we also did not consider the effect of
information on Citi Bike customers in our model, such as smartphone app that tells people
the number of bikes and docks at stations in real time. In reality, a lot of people rely on the
app to find stations for picking up and dropping off, which drives people to stations that
have more bikes or docks. This would cause the same effect in making simulation results
slightly different from reality. Overall, we can conclude from the simulation results that the
bike-sharing model proposed in our paper is doing well in capturing the real-life situation at
Citi Bike, which shows that our mean-field limit and diffusion limit results will be of great
value to the understanding the BSSs in real life.

Figure 18 shows the empirical measure from simulation and its mean-field limit in the
heterogeneous arrivals and capacities case where arrivals are stationary. The arrival rates
are setup to be A =0.25,0.5,0.75, or 1 with equal probabilities. In this figure, we showed
the empirical measure and its corresponding mean-field limit with 95% confidence interval
at a given time point. The blue bars show the empirical measure from simulation, which is
an average of 30 sample paths. The red bars show the corresponding mean-field limit we get
from solving the ODEs in (6.6). The error bars show the 95% confidence interval from the
simulation results. We can see that the mean-field limit is fitting well with empirical measure,
which shows that our model is able to capture heterogeneous arrivals and capacities very
well, and it can be easily adapted to more complex models, such as those with non-uniform
routing probabilities, as shown in Section 6.

This figure shows the evolution of different components of the empirical measure over
time in the heterogeneous arrivals and capacities setting with the same parameters setup,
as shown in Figure 19. The solid lines represents the proportion of stations with k bikes
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FiGURE 18. Empirical measure from simulation vs. mean-field limit.

where k = 5,10, 15, 20, and 25. The dashed lines represents their corresponding mean-field
limits. Again the mean-field limits are fitting well with the empirical measure.

Figure 20 shows the empirical measure from simulation and its mean-field limit in the
heterogeneous arrivals and capacities case where arrivals are non-stationary. The arrival
rates are setup to be A(t) = 4A\o(1 + sin(2t)), where \g = 0.25,0.5,0.75, and 1 with equal
probabilities. In this figure, we showed the empirical measure and its corresponding mean-
field limit with 95% confidence interval at a given time point. The blue bars show the
empirical measure from simulation, which is an average of 30 sample paths. The red bars
show the corresponding mean-field limit we get from solving the ODEs in (6.6). The error
bars show the 95% confidence interval from the simulation results. We can see that the
mean-field limit is fitting well with empirical measure, which shows that our model is able
to capture heterogeneous arrivals that are also non-stationary very well, and it can be easily
adapted to more complex models, such as those with non-uniform routing probabilities, as
shown in Section 6.

This figure shows the evolution of different components of the empirical measure over
time in the heterogeneous arrivals and capacities setting with the same parameters setup
as shown in Figure 21. The solid lines represents the proportion of stations with k bikes
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FIGURE 19. Empirical measure from simulation vs. mean-field limit.
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FIGURE 20. Empirical measure from simulation vs. mean-field limit (non-stationary).

where k£ = 0,10, 20, 30,40, and 50. The dashed lines represents their corresponding mean-
field limits. We see that the empirical measure is also non-stationary and that the mean-field
limits are fitting well with the empirical measure.

Computational cost: Another major benefit of our model compared to just using simu-
lation to study the BSS is that our model is extremely computationally inexpensive, given
that it only involves numerically solving ODEs. The computational time for running the
simulation example in Figure 20, with 10 sample paths for 8 unit times is 13.5h, while
getting the mean-field limit for the same example only takes less than 30s.

8. APPLIED AND PRACTICAL VALUE OF OUR WORK

The results presented in this paper have a great value to the operations of BSSs. First of
all, not only is the empirical measure itself an important performance measure to the BSSs,
but it also allows us to obtain salient performance measures such as y;(0) (the proportion of
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FIGURE 21. Empirical measure from simulation vs. mean-field limit (non-stationary).

stations with no bikes), y;(K') (the proportion of stations that are full), M — E;io j-y(5)N
(the number of bikes in circulation), and among others. The empirical measure approach is
a significant reduction in computational complexity when compared to the full stochastic
model.

Moreover, it is the first time that a diffusion limit of the empirical measure of a inho-
mogeneous BSSs is derived, which gives great insights to the fluctuation of the systems
performance over time from a queueing and risk management perspective. It is a much
more computationally efficient way to study the system behaviors in strategic planning
stage, where given the design of the system and parameters such as arrival rate, travel time
distribution, and fleet size, you can easily get the proportion of problematic stations (empty
and full stations) over time, which is a key measure that we want to minimize in a BSS.
More importantly, the diffusion limit of the empirical measure provides a refinement to the
mean-field limit, which gives us a better understanding to system fluctuations over time.
By using the diffusion limit, we are able to build confidence intervals for the proportion
of problematic stations. This helps us design a BSS with low blocking experiences, not
just in expectation, but with high probability. This is especially important for managers of
BSSs who want to control the dynamics of bike stations and reduce the volatility of station
fluctuations.

Another benefit of our work is that deriving the mean-field limit and diffusion limit
provides a way to formulate optimization problems associated with BSS. For example, the
mean field and diffusion limit for the proportion of problematic stations can be used as
objective functions that we try to minimize given system parameters. The expectation and
variance of the number of bikes in circulation can computed through the mean-field limit
and diffusion limit of the empirical process and, therefore, can be used to determine optimal
fleet size. The current literature only uses mean-field limits and our diffusion limits can be
used to determine optimal fleet size under a more complex stochastic setting instead of a
deterministic setting.

Our analysis also benefits the rebalancing of BSSs. It can be used to provide short-term
prediction of the empirical measure of the system, which helps the operators of BSS identify
when key measures such as the proportion of problematic stations, or the number of bikes
in circulation, will go beyond a threshold and act beforehand. Different from traditional
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data analysis methods that predict patterns of BSS solely using history data, our method
analyzes the system behaviors from a more fundamental way, one that does not heavily rely
on data. Most importantly, as peak hours only last a few hours, decisions for rebalancing
need to be made fast. In this case, our method is much more computationally efficient
and effective, than just doing simulations, which tends to be very slow and intractable for
large-scale systems like Citi Bike.

Another major benefit of using the empirical measure approach is that if Citi Bike
chooses to add a station, then in the empirical measure approach the dimensionality will only
increase if the number of docks at the new station is larger than all of the rest. However, in
the individual station model, it will automatically increase by one. Even though systems like
Citi Bike are large, they continue to add stations and increase the complexity of simulating
the system. The empirical measure approach that we advocate in this work does not get
worse when the management chooses to add stations.

From a broader perspective, the framework of mean field and diffusion limits we estab-
lished in this paper provide an effective and efficient way to analyze different problems
associated with BSS, such as designing reasonable architecture of a BSS, finding a better
path scheduling, improving inventory management, redistributing the bikes among stations
or clusters, price optimization, and application of intelligent information technologies. Our
work serves as the initial step to exploring these important problems facing BSS.

9. CONCLUSION

In this paper, we construct a bike-sharing queueing model that incorporates the finite capac-
ity of stations. Since our model is intractable to analyze directly, especially for a large
number of stations, we propose to analyze the limiting dynamics of an empirical process
that describes the proportion of stations that have a certain number of bikes. We prove
a mean-field limit and a functional central limit theorem for our stochastic bike-sharing
empirical process, showing that the mean-field limit and the variance of the empirical pro-
cess can be described by a system of 1(K +4)(K + 1) differential equations, where K is
the maximum station capacity. We compare the mean-field limit and the functional central
limit theorem with simulation and show that the differential equations approximate the
mean and variance of the empirical process extremely well.

There are many directions for future work. The first direction would be to generalize the
arrival and service distribution to follow general distributions. As Figure 22 shows, the trip
durations are not exponential and are closer to a log-normal distribution. An extension to
general distributions would aid in showing how the non-exponential distributions affect the
dynamics of the empirical process. Recent work by Ko and Pender [15], Ko and Pender [16],
and Pender and Ko [29] provides a Poisson process representation of phase-type distributions
and Markovian arrival processes. This work might be useful in deriving new limit theorems
for the queueing process with non-renewal arrival and service processes.

In the non-stationary context, it is not only important to understand the dynamics
of the mean field limit, but it is also important to know various properties of the mean
-field limit. For example, it would be informative to know the size of the amplitude and the
frequency of the mean-field limit when the arrival rate is periodic. One way to analyze the
amplitude and the frequency is to exploit methods from non-linear dynamics like Lindstedt’s
method and the two-variable expansion method in Pender et al. [30, 31], Nirenberg et al.
[22], and Novitzky et al. [23].

Lastly, it is also interesting to consider a spatial model of arrivals to the bike-sharing
network. In this case, we would consider customers arriving to the system via a spatial
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CitiBike trip duration distribution (2015 Jan 1st-Dec 31st)
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FIGURE 22. Histogram of Citi Bike trip duration (January 1-December 31, 2015). Mean
= 713s/11.9min, Median = 5765s/9.6 min, and SD = 4925/8.2 min.

Poisson process and customers would choose among the nearest stations to retrieve a bike.
This spatial process can model the real choices that riders make and would model the real
spatial dynamics of bike-sharing networks. We intend to pursue these extensions in future
work.
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APPENDIX

PROOF: The time derivative of the expectation E[f(X(¢))] can be derived by the following dis-
cretization method. Taking the expectation on f(X(t+ A)) conditioned on X(0) = x for some
small A < 0, we have

E[f(X(t + A)[1X(0) = x]

N
Z f X(t |:1 — N\ AI{X (t)<0} — < Z ) A1{X t)>K; }:|

=1

N N

Z = 1)NiAL v, (1)<oy + F(X(E) + L)l <M -> Xk(t)) Al{Xi(t)>K,;}:|
+o(A). (A.1)

Then,

E[f(X(t + A)[X(0) = x] = f(X(?))

=D [FX() = 1) — FXB] MAl{x,(1)<0}

=1
N N
+ ) [FX(®) + 1) = f(X(1)] Py (M -3 Xk(t)> Alix,(t)>K;}
; k=1
+o(A). (A.2)

By dividing by A and taking the expectation on both sides of Eq. (A.2), we get

E[f(X(t + A))] - E[f(X(?))]
A

N N
+ Z]E (f(X() +1;) — fF(X(@)uP; (M -> Xk(t)> 1{Xi(t)>Ki}:|

k=1
+o(A)/A. (A.3)

Taking A — 0 yields

N

2 EF(X@®)] = DOEIFX(H) - 1) = XDl ix, (1) <0)]

i=1

N N
+D B | (FX(8) + 1) — F(X()nP; (M -y Xk(t)> 1{Xi(t)>Ki}:| - (A4)

=1 k=1
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Let f(X(t)) = X;(¢) for i =1,..., N, we have the following functional forward equations to
each component of X(¢):

BLf(Xi(1)1X:(0) = 2] = —E[f(X;(t))| Xi(0) = z;]

N
=E [(f(Xi(t) +1) = f(Xi(2))) - (MPz' <M - Xk(t)> 1{X;(t) > Ki}>:|

=1
+E[(f(X5(t) — 1) = f(Xi(t))) - (M1{X;(t) < 0})]. (A.5)
||

PROOF: Let |- | denotes the Euclidean norm in R+ then

t t
Y gl = Y& + M+ / BOVN)ds —yo / blys)ds
0 0

(A.6)

= (B0r™) = b(vi)) ds + / G0%) by

t
YoN—yo-&-Mév—k/ ;

0

Now define the random function f (t) = SUpg<y YN — ys|, we have

t t
£ <16 = ol + sup 2|+ /0 18O — (v )ds + /O YY) — b(ys)ds.
s<

By Proposition 4.3, b(y) is Lipschitz with respect to the Euclidean norm. Let L be the Lipschitz
constant of b(y), then

t t
£ <Y = ol +sup M| + /0 B (v )ds + /0 YY) — b(ys)|ds
s>
N N ¢ N N ¢ N
< Y&~ yol + sup | M \+/ B — b(Y: )\ds+L/ Y yalds
s<t 0 0
N N ¢ N N ¢ N
< 1¥8" — yol +sup MY + / B by )jds + L / 1N (s)ds. (A7)
s<t 0 0
By Gronwall’s lemma (see [1]),
t
N < <|Y0N—yo+sgt>|M§ |+ /O B(YSN)—b(YSN)ds> e, (A.8)
ERS

Now to bound f¥(t) term by term, we define the function « : [0, 1]5+1 — REF! ag

a(y) = |z —y[*Qy, )
T#Y

1 1
- N Z Z I:mcl(r,n—l) + 1(T,n))1n<0

M
+ (N - Z Z n/y(r/,n/)> (1(r7n+1) + 1(r,n))1n>K : y("‘v n) (Ag)
n’ r’
and consider the following four sets

Qo = {|¥g" — wol <4}, (A.10)
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-t
Q) = {/O BYN) — b(vN)|ds < 5} , (A.11)
to
0 = { [ atiar < A(N)to} , (A.12)
Q3 = {sup M| < 5} , (A.13)
t<to

where § = ee~ Lo /3. Here, the set Q1 is to bound the initial condition, the set Q2 is to bound the
drift term (3 and the limit of drift term b, and the sets 22, Q3 are to bound the martingale MtN
Therefore, on the event Qg N Q1 N N3,

N (o) < 38l =, (A.14)
Since limy oo M/N =~ and limy_, oo NRmax = 1/A, we can choose N large enough such
that
M 1
WSQ’Y’ NRmaxZﬁ.

And by the proof of Proposition 4.3, there exists C' < 0 such that limpy_, TZN > A/C. See the
proof of Proposition 4.3 in the Appendix for details. Thus,

a(y)S%ZZ(%QﬂLMQ)~y(hn)

% (376 +9) S vt

IA

i (C+n). (A.15)

Consider the stopping time

t
T = to A inf {t >0: / a(YN)ds < A(N)to} .
0

By Proposition 4.2,

T
E | sup | MY ? ] < 4IE/ a(YN)dt < 4A(N)to.
t<T 0

On Qg, we have T' = tg, so Q2 N Q5 C {sup;<r |MtN| < ¢}. By Chebyshev’s inequality,

. N E (Supth |MtN\2) )
P(QNQS) <P | sup MY| <5 < - < 4A(N)to /52 (A.16)
t<T

Thus, by Eq. (A.14), we have the following result:
P (sup Y -yl < 6> <P(Q6UQTUN3)
t<to
<P(Q2N Q%) + P(Q5UQTUQS)
< 4A(N)to /62 + P(Q§ U QS UQS)
= 36A(N)toe’Lt /2 + P(Q§ U QS UQS). (A.17)
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Let A(N) =4(C +~)/N, then Q5 = 0. And since Y3 % yo, limy o0 P(Q§) = 0. Therefore,
we have

lim P | sup |YtN—yt\ <e| = lim P(Qf).
N —o0 t<to N—o0

By Proposition 4.4, limy_, o, P(£2{) = 0. Thus, we proved the final result:

lim P sup [V{¥ -yl <e] =0.
N—oo t<to

PROPOSITION 1 (Bounding Martingale): For any stopping time T such that E(T) > oo, we have

t<

T
E <sup MtN|2> < 41E/ (Y )dt. (A.18)
T 0

PROOF: Let ji be the jump measure of Y}N, and v be its compensator, defined on (0, c0) X [0, 1] by

p= Y sy, wvdt,B)=QYY,B)dt VB e B(0,1)). (A.19)

Let );}],Xt be the jump chain of Y}N, Jm be the jump time, then we have for any ¢ € [0, 00),
Jn <t > Jp4q for some n > 0. The martingale MtN can be written as follows:

N N N t N
M =Y - Yy 7/ﬁ(Ys )ds
0
n—1 . L

_ N oNy N N
_mZZIO(Yerl Yin) /0 /0 (y — Ye)Q(Ys), dy)ds

t fl N L i
_ /0 /O (y — YV )ji(ds, dy) — /O /0 (v — YN uds, dy)

t 1
= [ [ =y vyas.ap). (A.20)

Note the following identity

t 1 t 1
(MY =2 /0 /0 My (y — Y ) (i - v)(ds, dy) + /0 /0 (v— YN )%i(ds,dy).  (A.21)

This can be established by verifying that the jumps of the left- and right-hand sides agree and
that their derivatives agree between jump times. Then, we can write

t

(M2 = NN + / a(YN)ds, (A.22)
0
where
t 1
N _ s o —v)(ds .
N; —/0 /O H(s,y)( — v)(ds, dy) (A.23)
and
H(s,y) =2Ms_ (y — YY)+ (y = Y)2 (A.24)

Consider the previsible process
Hs(t,y) = H(t,y)1i<TAT,}s (A.25)
where Ty, = inf{t > 0: 3(YN) < n} An.
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Then,
o 1
Ngar, = /O /0 Hy(t,y) (i — v)(dt, dy) (A.26)

and

TAT, N2
/ /|sty (ds.dy) = E [ /\2Mg_y YY)+ (- Y 2w (ds, dy)

TATn N N N
E /O @MY BN + oY ))dt

"TNT, T
< E/ 2(2 4+ n?)ndt + E/ (YN )dt
0 0
< 2n* +4n® + WIE(T) > oo. (A.27)

NTAT,

By Theorem 8.4 in Darling et al. [5], we have that * is a martingale. Replace t by T' A T,

in Eq. (A.22) and take expectation to obtain

TATy,
B(Mrag, ) = ENrar,) +B [ a(r)ar (A.28)
Since NT"T» ig a martingale,
E(Nrat,) = E(No) = 0. (A.29)
Apply Doob’s L2—inequality to the martingale MTNn 6 obtain

E( sup |Mt|2> < AE(|Mrar,|?)
t<TAT,

TNy,
= 4E/ a(YN)dt. (A.30)
0
[ |

PROPOSITION 2 (Asymptotic Drift is Lipschitz): The drift function b(y) given in Eq. (6.23) is a
Lipschitz function with respect to the Fuclidean norm in RE+T

PROOF: Assume that max;(A\Y) < C > oo for all N, then

1
N RN NN min; AV
T = = N .
Rmax  max; ( e ) A
By Assumption 4.1,
1 1
NR =—F— — <0
BT ing AN A
Therefore,
N A
lim r; > lim —— > A/C.
N—o0 N—o0 max; A
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Thus, the integral that defines function b should start from A/C instead of 0, that is

A
b :// {—17,n_ — 1, )1
v [A/C,1]%(0,...,K] r( (ryn—1) (r,n))In<o

+ (’Y - Z/ndy(r7 n)) (1(r,n+1) - 1(r,n))1n>K dy(r, n)

Now consider y,§ € [0,1]5+1,

A
b(y) —b(@)| <2 5 — gl =2(C -gl = Lly—3
lb(y) = b(9)] < (A/C +7) ly =9l =2(C+)ly -9l = Lly =91,
where | - | denotes the Euclidean norm. |

PROPOSITION 3 (Asymptotic Drift is Lipschitz): The drift function b(y) given in Eq. (6.7) is a
Lipschitz function with respect to the Fuclidean norm in R max+1,

PROOF: Assume that max;(A\Y) < C' > oo for all N, then

pgv o PiN/Pr]I\lrax )\N Rgax

- - ™" ’
TZN Riv / Rgax P rJrYaX

By Assumption 6.1,

1
RN /PN — 5 <0

Therefore,

pN
limsup ~% < C/A.
N—ooo T;

Thus, the function to be integrated in b is bounded,

pA

b = // |:7 1 rn— -1 rn 1,
(y) 1%(: oo L7 (X n—1,p,k) = L(rnp,k)) Ln<o

w(-sn

ndy(r,n,p, k) (1(7",n+1,p,k:) - 1(r,n,p,k))1n>k dy(r,n,p, k).
n kek” /10:1]x[0,1]

Now consider y, § € [0, 1]Kmax+1,
. C _ N -
b(y) = bl < 2{ 5 -A+Pv)ly =9 =2(C+P)ly =4l = Lly — g,
where | - | denotes the Euclidean norm. |

PROPOSITION 4 (Drift is Asymptotically Close to a Lipschitz Drift): Under Assumption 4.1, we
have for any € < 0 and s > 0,

Jim PO —0(vi) <o) =0.
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PROOF:

2

2 _ o2 1 LA
8) =) <2 30| Y V() = [ Tavi(rm)

2

+222
n

+27)
n

M 1
; WYS(T', n) 7/0 ~dYs(r,n)
(Z Z n'Ys (r/, n/)> Ys(r,m)

n’ r
1 1 2
,/ 2/ W dYs(r' n') | dYs(r,n) (A.31)
0 n/ O
It suffices to show each term goes to zero as N — oo.
Since YSN is a discrete random variable, we have for each n,
1
| 1@ivtim) = 3 50am)
0 T
holds for any function f.
Then,
1 LA
—— Y- — —dY;
’2 TNRmax S(T’ n) /0 T S(T7 n)
<Y (e ) atrm| + [ Ayatrm) - /—dYsrn
| \rNBRmax ’
1 1
= —A -Y:
NRmax zr:r s(’l",n)
1 C
< — Al = Y.
= | NRmax | A Z o(rm)
1 C
<|=————-A|=—0. A.32
= NRmax | AT (A-32)
Similarly,
M 1
Z *)/8(7‘7 n) - / ’deS (T7 n)
N 0
I
M 1
< ;(N—S)YSTTL (r,n) /0 vdYs(r,n)
< ‘% - 7‘ — 0. (A.33)
The last term is zero since YSN is discrete and
1
| 1@avtim) = 3 50)vsm)
0 T
for any function f. |
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PrOPOSITION 5 (Drift is Asymptotically Close to a Lipschitz Drift): Under Assumption 6.1, we
have for any e < 0 and s > 0,

Jim B(80Y) — (v < 9 =o0.

PROOF:

1B(Yz) — b(Ys)|?

2
PN pA
<22 b N Ys(r,n,p, k // —dYs(r,n,p, k)
Z %:kTRmax ° I;C 0,1]x[0,1] T °
2
+2°)° ZPNPmaX s(r,n,p,k Z// pPydYs(r,n,p, k)
ol e Joayx0,1]
—I—QQZ Z Z Z nYSr ', p, k) Ys(r,n,p, k)
no|rpk \ n' r'p' kK
2
— Z// ZZ// n/dYs(r/,n/,p/,k:/) dYs(r,n,p, k)| . (A.34)
0.11x[0.1] \ 7 e/ /10.11x[0.1]

ke

It suffices to show each term goes to zero as N — oo.
Since YSN is a discrete random variable, we have for each n,

> // f(rp, k)dYs(r,n,p, k) = // f(r 0, k)Ys(r,n, p, k)
cK [0,1]x[0,1] [0,1]x[0,1]

k keKx

holds for any function f.
Then,

Z pPHI\ll,dx Ys 7" n,p, k') Z // éd)/s(n n,p, k)
TRmax ke [0,1]x[0,1] "

P, A
S Z <p r]r\lfax pr )YS(T7 7p7k)

rpk 7 Rinax
+ Z—AYsrnp, Z// dYs(rnp,k)
r,p,k kek [0,1)x[0,1] "
Piilax P
= - A =Y. (T7 n,p, k)
Rgax r;k " ’
PN
<oy —A *Zlérnp,
Rmax p
N
< P%ax _Al€ 0 (A.35)
Rmax A
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Similarly,

M
Z pNPHJYaX T n pa Z // pP’YdYS(T, n,p, k)

rpk kel [0,1]x[0,1]

M
< Z (NPrJrYax P’Y) pYs(r,n,p, k)
rp,k

H Y vt - Y PPAAYs(r,n,p, )

r,p,k kel (0,1]x[0,1]

M
<|NPN = _
< wris.

777‘ —0. (A.36)

The last term is zero since YSN is discrete and

> $rp Yl = S [[ (1, p, K)Ya(r,m,p, )
i/ /10,1]x[0,1] rer” J10,1]x [0, 1]

ke

for any function f. [ ]

Proor: By Dynkin’s formula,

(VMY (1)) /N S e WPQEYY, z)ds

xAY N

n (1‘]\{ - Z Z n’YSN(r’,n’)) (YN (r k)L i + Y3 (ry k — 1)1k<0)] ds
= /O (B VR + B (v ) (k). (A.37)
To compute (vVNMYN (k),VNMN (k+1)); for k > K, since
<MN(k) + MN(k+ 1)>

t

/ > |ete) +ate+1) - YSN(k:)—nN<k+1)\2Q<YsN,w>ds
#YN

_ 1 b oN N
- N/(; z’r: |:TNRII13.X <}/S (T’k+2)1k>K71 +Y9 (T7k)1k<0>

M
+ (N - Z Zn/YSN(r/,n/)) (YSN(r,k + Dlpog_1 + YN (r k- 1)1,€<0)} ds. (A.38)
n T
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We have that

(VNMYN (), VNMN (k + 1)),

= S UMY (k) + MY (4 1) — (MY R — (MY (1))

1 [t 1 N N
5 —F— (Y. 2)1 Y. 1
* %*ZZ”/YN(T/ n) | (VN b+ Dls o1+ Y (k= Do) | ds
N ~ S ) s ’ >K— s ) <0
n T

t
= /0 (B (V) (k) + B (V) (k4 1) + B (V) (k) + B (V) (k4 1)) ds

_/Otzrz

When |k — j| <1, MY (k) and M™ (j) are independent, thus

1 /
m Y (’I“ k’-l—l (—ZZTLYNT TL )Y;N(r7k):| ds. (A.39)

n’ r!

(VNMN k), VNMY (§)); = 0. (A.40)
[ |
PROPOSITION 6: For any s > 0,
lim sup VNIBYEY) = b(VdY)| > oo. (A.41)
Coo

PROOF:

1 LA
0%~ b < 23 'Z T = [ v
1
+QZ Z —Ys(r,n) — /0 vdYs(r,m)
+2 Z (Z Z n'Ys (r’, n/)> Ys(r,n)

T
1 1
,/ Z/ W dYs(r',n') | dYs(rn)] . (A.42)
o \57Jo
By Egs. (A.32) and (A.33),
1 c |M
- < A S 4= o)) .
160) = o)1 < 205+ 1) | g = A § + 5 =) (A.43)
By the assumptions in Theorem 5.1, we have
hmsup\ﬁ(mmAN A) > oo, hmsup\ﬁ( ) > 00.
N —oo N—o0
Thus,
limsup VN|B(YY) = b(Y2Y)| < limsup 2(K + 1)V N ( LI A‘ CA L. VD
N—oco N —o0o NRmax A N
> 00. (A.44)
|
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PROOF: By Proposition 5.3, VN|B(YN) — b(Y)| = O(1), then
D] < 1DY'| + VNIMY |+ O(1)t + /0 VRO — blge)lds
< DY [+ VNIMY |+ 0(1)t + /0 CUNLYN — yalds
= DY+ VN|IMY |+ 0(1)t + /Ot L|DY |ds. (A.45)

By Gronwall’s Lemma,
N N
sup |Dt | < et (|Do |+O0(1)T+ sup |VNM; |> .
0<t< 0<t<T

Then,

2
limsupE | sup |Df|? ) < e [limsupE(|DJ'|) + O()T + limsupE | sup VN|M;" | .
N—oo 0<t<T —00 N —o0 0<t<T

By Jensen’s inequality and Proposition 4.2, we have that

2
< NE < sup |MtN|2> < ANA(N)T
0<t<T

]E( sup \/NMtN|>

0<t<T

and that A(N) = O(1/N). Therefore,

limsupIE< sup \/N|MtN> > 00

N—o0 0<t<T

Together with our assumption limsup ., E(|D}'|?) > oo, we have

limsup E sup DY | > oo.
N—oo 0<t<

ProoF: To prove the tightness of (DN )¥—1 and the continuity of the limit points, we only need
to show that the following two tightness conditions hold for each T' < 0 and € < 0,

(i)
lim limsupP( sup DY | < K> 0, (A.46)
— N—oo 0<t<
(ii)
lim lim sup P(w (DN7(57 T)>e¢€) =0, (A.47)

§—0 N—oo
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where for x € ]D)d,

w(z,d,T) = sup sup  Jz(u) —z()]:0<t<t4+06<T,. (A.48)
w,vE[t,t+4]

By Lemma 5.4, there exists Cy < 0 such that

lim limsup P DN <K ) < lim I E (suposir DI I°)
1m l1imsu su < 1m l1imsu
K—o0 Nﬂoop Ogtng ! T K—o Nﬂoop K2
lim @
— K—oo K2
=0, (A.49)
which proves condition (i).
For condition (ii), we have that
u
DY - DY = VN - (8 - M)+ [ VRO — vz
v
first term
second term
u
+ / VNG = by.))dz (A.50)
v

third term

forany 0 >t <u>v <t+ 4§ <T.Now, it suffices to show that each of the three terms of ny — D{,V
satisfies condition (ii). In what follows, we will show that each of the three terms satisfies condition
(ii) to complete the proof of tightness.

For the first term /N - (Mév — Miv), we would like to show that the limiting sample path of
VN MtN is a continuous Brownian motion, by using the martingale central limit theorem.

Similar to the proof of Proposition 4.4, we can show that

sup |84+ (YY) — b (YA) 20, sup [B- (V™) — b (¥ L 0. (A.51)
t<T t<T

And by the proof of Proposition 4.3, b+ (y), b—(y) are also Lipschitz with constant L, then by
the fact that the composition of Lipschitz functions are also Lipschitz,

max{sup b4 (V) = by (ye)], sup [b— (V) — b(ym} < Lsup [Vi" — wil. (A.52)
t<T t<T t<T

By Theorem 6.11,

sup |YtN —yl B o. (A.53)
t<T
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Thus combining Eqgs. (A.51)-(A.53), we have

hm P (sup VNMYN (k) — (M (k)| < e)

N—oo t<T

t
~ lim P(sup /O (B (V) (k) + B (Y ) (k) — b (ys) (k) — b (ys) (k) ds

N—oo t<T

<§

< Jim P(supﬂmwxmb+<YtN><k>| <e/4>
t<T

N—oo

N—oco t<T

+ Jim ED(supTwm ><k>b+<yt><k>|<e/4>
+ Jim P (supTlﬂ(YtN)(k) —b_(Y{M)(k)| < e/4>
—00 t<T

+ Jim P<supT|me><k>b<yt>(k>| <e/4>

N—oo  \4<T

N—o0

< Jim P (f3¥T|ﬂ+(YtN)(k) — b (YY) (k)] < 6/4>
+2 lim P sup LTV — | < ¢/4
N —oco t<T

+ lim P <supT (ﬂ,(YtN)(k) - b,(YtN)(k)‘ < e/4>
N—oo  \4<T

=0, (A.54)
Jor any € < 0 and 0 < k < K. This result implies that

sup [(VNMY (k) — (M (k))¢| 2 0. (A.55)
t<T

For the adjacent terms, we have

N—oo t<T

JJim P(sw(fM (k), VNMY (k + 1)) — (M(k), M(k + 1))| <e>
1 N M INnoN/ 1o N
Z(TNRIMXYS (T,k—!—l)—!—(N—ZZnYS (r,n))YS (T,k))

oy
S AZCERRE A CED oy ) P | P
<)

< lim P{supT
N—oc0 t<T

= lim IP’(sup

ds

1
Y}N(r,kJrl)f/ édYt(r,kJrn
0 T

; N Rmax

M
+ hm P supT N ZnIYtN(T/»n/) Y}/N(Tak)

N—oo  \t<r oryet
:
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1 1
—/0 <’y—;/0 ndYt(r,n)> dYi(r, k) <e/3>

+ lim P <sup LTV — | < 6/3)
N —oc0

t<T
< dim P(supT| S ZYrk+1)<e/3
~ N—oo tgg)“ AN Rmax A/C s

M
+ hm P <supT’N —fy’zT:Ys(r,k) < 6/3)

N—oo \¢<T

M
< lim P| su — A <¢€/3 +hmIP’ supT |— —v| <¢€/3
~ N—oo <t<lj)" A NRmax ‘ / ) N —oo (tfg ‘ N ’Y‘ / )
=0, (A.56)
which implies

sup |(VNMYN (k), VNMN (k + 1)) — (M(k), M(k + 1))¢| 2 0. (A.57)

t<T
Since for all |i — j| < 1,

(VNMYN (i), VN MY (4)) = (M(5), M(5)) = 0.
We can conclude that

sup [(VNMYN (i), VNMN (j))e — (M (i), M(5))¢| 2 0. (A.58)

t<T

forall 0 <i,j < K.
We also know that the jump size of YtN is 1/N, therefore

lim E | sup \\/NMth\/NMtA_”

N—o0 0>t<T

= hm IE[ sup [VNYY - VNYY|| =0, (A.59)

N—oo  |o>t<T

By Theorem 1.4 in Chapter 7 of Ethier and Kurtz [8], v NM} converges to the continuous
Brownian motion M; in distribution in D(Ry, RET1). By Prohorov’s theorem, (v NMM)P_, is
tight. This automatically implies the tightness condition (ii).

For the second term [ VN (BN = b(YN))dz, we have by Proposition 5.3 that the quantity

VN(@BYN) = b(YN)) is bounded for any value of z € [0, T]. Therefore, there exists some constant
C'1 that does not depend on N such that

sup VN|B(YY) —b(YN) < Cy. (A.60)
z€[0,T]

Then,

lim lim P ( sup /“ VNIBYY) = b(vV)|dz < (—:>

6—0 N—oo w,ve[0,T],|lu—v|<§Jv

< hm lim P ((5 sup VN|B(YD) —b(¥ )| < e>

§—0N—oco 2€[0,T]
< lim P(6C1 <
= mPec <
=0. (A.61)
Thus, we have proved the oscillation bound for the second term.
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Finally, for the third term, we have that
u u
[ VR ~biglds < [CVRLYY ooz
v v

u
=/ L-|DY|dz
Ju

< Lé sup |Div| (A.62)
te[0,T]

By Lemma 5.4,

u
lim lim P ( sup / \/N\b(YZN) —b(yz)|dz < e)
v

§—0 N—oo w,ve[0,T],|lu—v|<8

<lim lim P|LS sup |[DY|<e
6—0N—o0 te[0,7]

E(supsepo,r) DI %)

< lim lim
§

—0 N—oo (E/L5)2
2
< lim 700(115)
6—0 €
=0, (A.63)
which implies that the oscillation bound holds for the third term. |

PRrROOF: To prove the existence and uniqueness of the SDE (5.3), we show the following two
conditions hold: There exists a constant H < 0 such that

1. Lipschitz condition: for any D, De RK+1, any t € (to,T),
¥ (ye)D — ¥ () D] < H|D - D). (A.64)
2. Linear growth condition: for any D € RE+! any t € (to,T),
b4 (y2) +b—(y)| < HA+ D)), [V (y)D| < H(1+|D)). (A.65)

By Proposition 4.3, b(y) is Lipschitz, and by our assumption in Theorem 5.1, b(y) is also
continuously differentiable, thus b’(y) is bounded. Then, conditions (1) and (2) follow, which prove
that there exist a unique solution to the SDE (5.3).

Take expectation on both sides of Eq. (5.9), since E[fg eld b/(y“)dudMs] =0, we have

E[Dy] = elo ARy,

Therefore,

- oy
Dt _ E[Dt] — ejo A(S)dS(DO _ ]E[DOD +/ ejs A(u)dudMs,
0

S(t) = E[(D¢ — E[Dy])(D¢ — E[D¢]) ]

= elo AC) Bi(Dy — E[Do]) (Do ~ E[Do]) T](efo 4)T

toy t
+ </ efs .A(u)dudMS) </ 615 .A(u)dudMS)
0 0

T

(A.66)
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57
t
— oo A(s)dsz(o)efo" AT (s)ds | / oJe Alwdug gy AT (w)du (A.67)
JO
| |
PROPOSITION 7: For any s > 0
limsup VN[B(YY) — b(Y)| > oo (A.68)
N—oco
ProoF:

Piax
B0%) b0 23| 3 PR - 3 ]
n )pk"'Rmdx

dYS(T n,p, k)
rerc” J10.1]x[0,1] T
+230 |2 pN PNy

s(ryn,p k Z/
no|rp.k

pP’YdYQ (T7 n,p, k)
wexe / J10.1]x[0,1]
+2> |12
n

mp,k

n' r’p k'

Z Z nIYS(rl7n/>p/>kl) )/5(7" ’I’L7p,k)

- ];C//[Ol]xoﬂ ZZ//

n/dYS(T/vn/7p/7 kl) dYs(T7 n,p, k) .
n' kek 1])( 0 1
By Egs. (A.35) and (A.36)

1B(Ys) — b(Ya)| < 2(Kumas + 1) (] Pans

M
—A N Pmax— —
i b s )]
By the assumptions in Theorem 6.5, we have

(A.69)
PN
limsup VN | Z22X _ A | > oo,
N—o0 Rmax
hmsup\ﬁ <7 —7) > 00,
N—o0
lim sup \/>( max —P) > .
N—o0
Thus,
limsup VN[B(YY) — b(Y))
N —o00
Pmax M
< limsup 2(Kmax + 1)V N — A NPmax - Py
N—oo Rmax
> 0. (A.70)
|
PROPOSITION 8: For k > Kmax,
Jim P (sup |(WNMN (k), VNMY (k + 1))
N—oo t<T

Mk, Mk 4 1) < ) o,

(A.71)
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Proor: For the adjacent terms, we have

N—oo t<T

hm P(sup|<\/7MN( ), VNMN (k + 1)) — (M(k), M(k + 1)) <5>

t P
= lim P sup/ Z (MYSN(TJC"FLRK)
N —oco t<T |Jo K EK TRmax

N Prnax M
p max Z Z /YSN (TI, n/,p/, Kl) YsN (,r,7 k,p, K)
n’ r' p/ K’

A
Z // p—dYs(r,k—i-l,p,K)
Kex” /0,1]x[0,1] T

(S L ) ko) | o] <

KeK n Kek x[0,1]
. meax N pA
< lim P|supT E (r,k+1,P,K) E —dYs(r,k+1,p, K)| <¢€/3
N—o0 t<T |k T’Rmax KoK 1]x[0,1] T

+ hm P|supT Z PN Prax — fz Z nYNr ,n' o K') YtN(r,k,p,K)
N—eo t<T r,p,KEKX n’ v p' K’

- Z //]0,1]><[0,1] Z Z // ndys(r,n,p, K) | dys(r,k,p, K)| <¢/3

Kek n Kek’ 710,1]x[0,1]

+ Jim P <sup 2LT‘YtN fyt‘ < e/3)
N—oo t<T

< lim P|supT
N —o0 t<T

AR A/C Z YS(T7k+17p7K)<E/3
max

‘ C Pmax A
r,p, K

> pYs(rk,p, K) <¢/3

M
+ hm P SUPT‘NPmaxif,PFY
D, K

N—oo t<T N

CT | Pmax M
< lim P bup—‘ ma —A‘<e/3 + lim P supT‘NPmax——P'y‘<e/3
t<T A | Rmax N—oo t<T N

=0, (A.72)

which implies

sup {(WNMYN (k), VNMN (k+ 1)) — (M(k), M(k + 1))¢| 2 0. (A.73)
t<
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