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Neumann Networks for Linear Inverse
Problems in Imaging

Davis Gilton

Abstract—Many challenging image processing tasks can be de-
seribed by an ill-posed linear inverse problem: deblurring, decon-
volution, inpainting, compressed sensing, and superresolution all
lie in this tramework. Traditional inverse problem solvers mini-
mize a cost function consisting of a data-fit term, which measures
how well an image matches the observations, and a regularizer,
which reflects prior knowledge and promotes images with desirable
properties like smoothness. Recent advances in machine learning
and image processing have illustrated that it is often possible to
learn a regularizer from training data that can outperform more
traditional regularizers. We present an end-to-end, data-driven
method of solving inverse problems inspired by the Neumann
series, which we call a Nevmann network. Rather than unroll an
iterative optimization algorithm, we truncate a Neumann series
which directly solves the linear inverse problem with a data-driven
nonlinear regularizer. The Neumann network architecture outper-
torms traditional inverse problem solution methods, model-free
deep learning approaches, and state-of-the-art nnrolled iterative
methods on standard datasets. Finally, when the images belong to
a union of subspaces and under appropriate assumptions on the
forward model, we prove there exists a Neumann network config-
uration that well-approximates the optimal oracle estimator for
the inverse problem and demonstrate empirically that the trained
Neumann network has the form predicted by theory.

Index Terms—Image reconstruction, inverse prohlems,
convergence, iterative algorithms, deconvolution, machine
learning, estimation.

I. LEARMING TO REGULARIFE

N THIS paper we consider solving linear inverse problems
I in imaging in which a p-pixel image, 3* ¢ EF (in vectorized
form), is observed via e noisy linear projections as y = X 3% +
e, where y, e € B™ and X € R"™*", This general model is used
throughout computational imaging, from basic image restora-
tion tasks like deblurring, super-resolution, and image inpaint-
ing [1], to a wide variety of tomographic imaging applications,
including common types of magnetic resonance imaging [2],
Xeray computed tomography [3], radar imaging [4], among
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others [5]. The task of estimating 3 from ¥ is often referred
to as image reconstruction. Classical image reconstruction
methods assume some prior knowledge about 3% such as
smoothness [6], sparsity in some dictionary or basis [7]1-[9],
or other geometric properties [ 10]-[13], and attempt to estimate
a ?3 that is both a good fit to the observation iy and that also
conforms to this prior knowledge. In general, a regalarization
Junction r(3) measures the lack of conformity of 3 to this prior
knowledge and A is selected so that -rﬂf':i} is as small as possible
while still providing a good fit to the data.

However, recent work in computer vision using deep neural
networks has leveraged large collections of “training” images
to yield unprecedented image recognition performance [14]-
|16], and an emerging body of research is exploring whether
this training data can also be used to improve the gquality of
image reconstruction. In other words, can fraining data be used
tor learn how to regularize inverse problems 7 As we detail below,
existing methods include using training images to learn a low-
dimensional image manifold and constraining 3 to lie on this
manifold [17] or learning a denocising autoencoder that can be
treated as a regularization step (Le., proximal operator) within
an ilerative reconstruction scheme [18].

In this paper, we propose a novel neural network architecture
based on the Neumann series expansion [19], [20] that we
call a Neumann network, describe several of its key theoretical
properties, and empirically illustrate its superior performance
on a variety of reconstruction tasks. In particular,

* Neumann networks, which directly incorporate the forward
operator X into the network architecture, can have dra-
matically lower sample complexity than model-agnostic
networks that attempt to learn the entire image space. As a
result, they are much more amenable to applications such
as medical imaging or scientific domains where datasets
may be smaller.

* Neumann networks naturally yield a block-wise structure
with skip connections [14] emanating from each block.
These skip connections appear to yield a smoother op-
timization landscape that is easier to train than related
network architectures.

* When the images of interest lie on a union of subspaces,
and when the trainable nonlinear components of the net-
work have sufficient expressiveness/capacity, there exists
a Neumann network estimator that approximates the op-
timal oracle estimator arbitrarily well. Furthermore, after
training the Neumann network on simulated data drawn
from a union of subspaces, we show the learned nonlinear
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components in the trained Neumann network have the form
predicted by theory.

* A simple preconditioning step combined with the Neu-
mann network further improves empirical performance.

* The empirical performance of the Neumann network on
superresolution, deblurring, compressed sensing, and in-
painting problems exceeds that of competing methods.

I1. PrREVIOUS WORK

There are several general categories of methods used to learn
to solve inverse problems, which are reviewed below. Through-
out, we assume we have training samples of the form (3, 1)
fori=1,...,N,wherey; = X3; +¢;, X € E™"Fisknown
and the noise &; is treated as unknown.

A. Agnostic

An agnostic learner uses the training data to learn a mapping
from o to @ without any knowledge of X at any point in
the training or testing process [21]. The general principle is
that, given enough training data, we should be able to learn
everything we need to know about X to successfully estimate
(3. Empirically, the success of this approach appears to be highly
dependent on the forward operator X. This straightforward
approach has been demonstrated on superresolution [22], [23],
blind deconvolution [21], and motion deblurring [24], among
others. In general, this approach requires large quantities of
training data because it is required to not only learn the geometry
of the image space containing the 3’s, but also aspects of X.
A particularly successful approach to solving inverse problems
with neural networks has been through residual learning [ 14].

B. Decoupled

A decoupled approach operates in two stages. In the first stage,
acollection of training images (3; is used to leam a representation
of the image space of interest. In the second stage, this learned
representation is incorporated into a mapping from (y, X ) to A
That is, the learning takes place in a manner that is decoupled
from the inverse problem at hand. Here we present two examples
of this.

First, we might learn a generative model & for 3°s that takes
as input a low-dimensional vector z £ R for d < pand outputs
(¥ = (7(z). The basic idea is that the images of interest lie on a
low-dimensional submanifold that can be indexed by z. Given
the learned (=, we can compute 3 trom y via

. 2
~ argmin_ |y — X8
A=), zcRd

=)

(1)

This approach was described in [17] with compelling empirical
performance for compressed sensing.

Alternatively, we might learn a denoising autoencoder that
could be used as a proximal operator in an iterative reconstruc-
tion method. Specifically, imagine we had a fixed regularizer
r(-) and want to set

B = rgamin glly — Xl +7(3). @

A proximal %mdicnl algorithm [25], [26] starts with an initial
estimate 3" and step size > 0 and then iterates between
computing a gradient descent step that pushes the current es-
timate 3'*! to be a better fit to the data, followed by a proximal
aperator that finds an estimate in the proximity of the resulting
iterate that is well-regularized (as measured by (- )). This second
step is often thought of as a denoising step. One approach to
leaming to solve inverse problems is to implicitly learn r(-) by
explicitly learning a proximal operator in the form of a denoising
autoencoder [18], [27], [28].

The key feature in both of these approaches is that all training
takes place independently of X —i.e., weeither learn a generative
maodel or a proximal operator using the training data, neither of
which require knowledge of X . The advantage of this approach
is that once training has taken place, the learned generative
model or proximal operator can be used for any linear inverse
problem, so we do not need to re-train a system for each new
inverse problem. In other words, the leaming is decoupled [rom
solving the inverse problem.

However, the flexibility of the decoupled approach comes
with a high price in terms of sample complexity. To see why,
note that learning a generative model or a denoising autoencoder
fundamentally amounts to estimating a probability distribution
and its support over the space of images; let us denote this
distribution as #(/3). Thoroughly understanding the space of
images of interest is important if our learned regularizer is to
be used for linear inverse problems of which we are unaware
during training.

On the other hand, when we know X at training lime, then
we only need to learn the conditional distribution &(3| X 3) or
& (3|} [29]. Forexample, imagine an image inpainting scenario
in which we only observe a subset of pixels in the image (3.
Rather than learn the distribution over the space of all possible
images, we only need to learn the distribution over the space of
missing pixels conditioned on the observed pixels, #(3| X 3).
Of course, @3 X 3) can be caleulated from ¢(/3) and X using
Bayes' law, but the latter distribution may lie in a much lower-
dimensional space, making it easier to learn with limited data.

It is well-known that the accuracy of any estimate of @(/3)
has a minimax rate that scales as @{N'Fi_r] with NV the
number of training samples, p the dimension of &(#), and o a
smoothness term [30]-[32]. This scaling is quile restrictive, but
if the conditional density only depends on a subset of size p’ of
the original p coordinates, the rate for estimating the conditional
density function is O N mj [291.

The key point is that decoupled approaches (implicitly) re-
quire learning the full density (), whereas a method that
incorporates X into the learning process has the potential to
simply learn the conditional density (4| X 4), which often
can be performed accurately with relatively little training data.
This observation is supported by our experimental results, which
illustrate that decoupled approaches generally require far more
training samples than methods that incorporate knowledge of X

C. Unrolled Optimization

Another approach treats a learned component of a network
as the gradient of a prior over the data or a proximal operator
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Unrodled gradient descent network. The result of B ilerations of gradient descent with a fixed step size v and regularizer with gradient i, as in (3)

is equivalent to the output of the above network, with each block cormesponding to a single iteration, The network maps a linear function of the measurements,
A = g X Ty, 1o a reconstruction 3 by successive application of an operator of the form [T — g X T X () — n(.) and addition of nX " y. Here R is a trained

nenral network, and the scale parameter 1 is also trained.

for a regularizer [33]. Suppose the desired optimal point &*
satisfies the optimality condition in (2) Now we assume () is
ditferentiable and let 12{3) := V(3) denote the gradient of the
regularizer. Then solving (2) can be accomplished using iterative
optimization; for instance, gradient descent would result in the
iterates

BRI = g® — 5 [X (XY —y) + REY)] G

for a step size i = 0. Imagine computing these iterates for a
fixed number of iterations, which we will denote I (for Blocks,
as will become clear shortly).

“Unrolling™ an optimization method refers to taking an ilera-
tive optimization method and, instead of iterating until conver-
gence, thinking of a series of I iterates as a single operation to
be applied to an input. This idea as applied to gradient descent
is represented pictorially in Fig. 1. We can now represent the
gradient of the regularizer, £2{-), with a trainable neural network.
In contrast to the decoupled approach described above, unrolled
optimization methods learn the regularizer (or its gradient) in
the context of the forward model X and training observations
y; by minimizing the disparity between the true /3; and Blys).
the output of the full network (see Fig. 1). This end-to-end
training sidesteps the sample complexity challenges described
in Section 11-B.

The unrolling approach can be applied to a variety of op-
timization algorithms beyond gradient descent. The earliest
proposed unrolled inverse problem solver was [34], in which the
authors proposed unrolling the Iterative Shrinkage and Thresh-
olding Algorithm (ISTA) [35] and the coordinate descent al-
gorithm; further refinements of this approach were proposed
in [36], [37]. More recent work has illustrated the efficacy
of unrolled optimization as applied to (proximal) gradient de-
scent [33], [38], [39], alternating directions method of multipli-
ers [40], primal-dual methods [41], half-quadratic splitting [42],
[43], block coordinate descent [44]-[46], alternating minimiza-
tion [47], iterative reweighted least squares [48], [49], and ap-
proximate message passing [50]. In proximal gradient settings,
the learned neural network is interpreted as a learned proximal
operator, whereas in the gradient descent network, the learned
neural network is interpreted as the gradient of the regularizer
at the input. In other words, for different unrolled optimization
methods the learned neural network can play different roles.

While for practical reasons the number of blocks B must
be kept small in end-to-end training, empirically this does not
appear to be an obstacle to good performance. For example,
[34] notes thalt end-to-end training reduces the iterations of
the ISTA algorithm required to achieve a fixed error rate by
a factor of 20, and [38] achieve promising performance with
B = & proximal gradient descent iterations. Another strategy to
enable deeper unrollings is to perform block-by-block training
as in [45]; however, this approach is unsuitable when the neural
network weights are shared between blocks, which is the case in
our setting. It is possible to relax the shared-weights assumption,
but [47] has illustrated that in the low-sample setting, different
learned weights in each block can be suboptimal.

1. NEUMANN NETWORKS

Below, we adopt the following strategy. First, we consider the
setting in which the gradient of the regularizer is a linear operator
and derive a simple Neumann series approximation to an optimal
solution of (2). We then consider the overall Newmann network
formed if R is represented by a (potentially nonlinear) neural
network. In this section, we treat a nonlinear network operation
as a heuristic that we justify theoretically in Section 1V. This
section also describes a simple preconditioning step that can
improve the accuracy of our approach and an explicit compar-
ison between the proposed Neumann network and the unrolled
gradient descent network described in Section TI-C.

A. Praposed Network Architecture

Our proposed network architecture is motivated by the reg-
ularized least squares optimization problem (2) in the special
case where the regularizer r is quadratic. In particular, assume
r(3) = $37 R so that Vr(3) = R for some matrix R £
R#<F Then a necessary condition for 3* to be a minimizer of
(2) in this case is

(4)

Assuming the matrix on the lefi-hand side is invertible, the
solution is given by

A= (XTX +R)IXTy.

(XX +R)B* =X"y.

(5)

In order to approximate the matrix inverse in (5) we consider a
Meumann series expansion of linear operators [19], [20], which
we now recall. Let 4 beany p » pmatrix and let I denote the p =

Authonzed censed use limited to: UNN OF CHICAGD LIBRARY . Downloaded on Awgust 13,2020 at 17:58:06 UTC from IEEE Xplore. Restrictions apply.



GILTON ef ai.: NEUMANN NETWORKS FOR LINEAR INVERSE PROBLEMS IN IMAGING

331

[I-5X T X]() [7-nX" X]()

Ao

1) —n R}

Fig. 2.

. . —{0
a linear function of the measurements, 3 !

B
4= Y au)
i=b

[-nX" X]()

—n R}

Proposed Neumann network architecture. Inspired by the Neumann series expansion for computing the inverse of an operator, 1 Neumann network maps
=X "y to a reconstruction IE; by successive application of an operstor the form [T — X7 X|(-) — nR(-} while

summing the intermediate outputs of each block. Here [ is a trained neural network, and the scale parameter 1 is also trained. Unlike other networks based on
unrolling of iterative optimization algorithms, the series structure of Neumann networks lead naturally to skip connections [14] (highlighted in red) that route the

output of each dashed block to directly to the ountput laver.

p identity matrix. If the Newmann series "5 A* converges
then I — A is invertible and we have

jzii‘ik

k=il

(I - A) =T+A+A*+A%.. (6)
In particular, a sufficient condition for the convergence of the
Neumann series is ||A| < 1 where || - || is the operator norm.

We will make use of an alternative form of the same identity:

B '=n) (I-3B)*
k=0

which is obtained through a change of variables.
Applying the Neumann series expansion (7) to the matrix
inverse appearing in (5), we have'

(7)

= )

B =3"(I-9X"X —gRY (nX"u).

J=i

(8)

Truncating the series in (8) to B + 1 terms, and replacing multi-
plication by the matrix i with a general mapping i : E” — R,
motivates an estimator (3 of the form

Bly) : Zuf nX T X10) - nROY X Ty). (@)

j=0

We turn (9) into a trainable estimator by letting £ = Ha be a
trainable mapping depending on a vector of parameters # = BY
to be learned from training data. Specifically, in this work we
assume Hg is a neural network, where # is a vectorized set of
weights and biases that define the network. We also treat the step-
size choice 7 as a trainable parameter. The class of estimators
ﬂ{y] (y 8, 77) specified (9) with trainable network i = Hp
we call Neumann networks.

Observe that Neumann networks are motivated by an appli-
cation of the Neumann series identity in the case where the
gradient of the regularizer is a linear operator (or, equivalently,
the regularizer is quadratic). However, for a general regularizer r
such that i = Vr is nonlinear, the Neumann network estimator

"The series in (7) is guaranteed to converge if | T —nB| < 1. Hence, the
expansion in () is valid provided ||T — q{ X ' X + R)|| =< 1, which holds if
and only if X ' X + R is positive definite and i = || X" X + R| 1.

,['I{;u] in (9) may not be a good solution to the optimization
problem (2). This is because the Neumann series identity (7)
only holds for linear operators. Despite this fact, we show
in the next section that a Neumann network estimator is still
mathematically justified under certain model assumptions on
the data distribution for which the ideal R is piecewise linear.
For now, we simply treat the Neumann network estimator as a
heuristic motivated by case where H is linear.

To see how (9) can be formulated as a network, observe that
the terms in (9) have the following recursive form: let the input

to the network be ,f:?i”] =X 'y and define

(3} HXTX}Ej{J ”—qﬂ'(ﬁm 1
forall j = 1,..., B. Then we have B(y) = Y2, 3.

Fig. 2 shows a block diagram for uuplemeuung the Neumann
network using the recursion (10). Each block with a dashed
boundary in Fig. 2 represents an application of the operator
[T — X" X|(-) — nR(-). Due to its underlying series structure,
the Neumann network has several skip connections (hi gh]ighted
in red) that route the output of each dashed block (ie.,

m "s) o the output layer, similar (o those found in resid-
ual networks [14] and related architectures [15]. These skip
connections are a distinguishing feature of Neumann networks
compared to networks derived from unrolled oplimization ap-
proaches, such as unrolled gradient descent (see Fig. 1). We hy-
pothesize these additional skip connections result in a smoother
optimization landscape relative to other unrolling approaches,
which allows for easier training via stochastic gradient descent.
See Section V-G for empirical evidence and more discussion on
this point.

B =1 - ) (10

B. Preconditioning

Efficiently finding a solution to the linear system (4) using
an iterative method is challenging when the matrix X ' X + R
is ill-conditioned. This suggests that our Neumann network
approach, which is derived from a Neumann series expansion
of the system in (4), may benefit from preconditioning. Here
we derive a variant of Neumann networks inspired by a
preconditioning of (4).
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Proposed preconditioned Neumann network architecture. The network has the same basic architeciure as a Neumann network, but uses a different linear

component given by T, = (X T X + 1) ! where & > 0 and a different initialization ,‘:']w} =T, X"y When the matrix inverse in T, is computationally
prohibitive to apply, we replace all instances of T, with an unrolling of a fixed number of iterations of the conjugate pradient algorithm, similar to [47). Here Ris

a trained neural network, and the scale parameter A is also trained when feasible.

Starting from (4), for any A > 0 we have
(X' X +a)3* + (R—aDp* =X "y. (11)
Applying T, := (X "X + AT)~! to both sides and rearranging
terms gives
(I AT, + R)3* =T, X"y. (12)
where we have set R = T', R. Following the same steps used to

derive the Neumann network, we arrive at the modified estimator
B

Apely) = _(AT3() — RO)YT. X "y

=0

(13)

which we call a precondifioned Newmann network. Here
R = Rg is a trainable mapping depending on parameters &, We
also treat 4 = U as a trainable parameter when gradients with
respect to A are easily calculated {more on this below).

As shown in Fig. 3, a preconditioned Neumann network has
the same basic network architecture as the standard Neumann
network, except the linear component [I — nX ' X](-) is re-
placed with [AT';](-) and the learned component [—5HR](-) is
replaced with [—R|(-). The preconditioned Neumann network
also has a different initialization, fi{”} =T, X "y, which is
the solution to the Tikhonov regularized least squares prob-
lem ming | X3 — y||* + &||3||*. For many inverse problems
in imaging, such as deblurring, this is much more accurate
approximation to the ideal solution than the matrix transpose
initialization ,E'Im} = nX "y of the standard Neumann network.
Hence, we might expect that a preconditioned Neumann network
could achieve higher guality solutions with fewer blocks B.
Our experiments on deblurring of natural images (see Fig. 9(b))
support this observation.

Applying T',(-) may be computationally prohibitive for cer-
tain large-scale inverse problems in imaging, such as those
arising in CT and MRI reconstruction. To address this issue,
we adapt the approach of [47] and replace all instances of
T5(+) in the preconditioned Neumann network by an unrolling
of a fixed number of iterations of the conjugate gradient {CG)
algorithm [51]., which approximates the application of T',(-).
Unrolling CG does not require any additional trainable pa-
rameters, and backpropagation through the CG layers can be
performed via automatic differentiation. This strategy has been

shown to be effective for various large-scale MRI reconstruction
problems [48], [49]. Incorporating a trainable A parameter into
this approach is simple since the derivatives of the end-to-end
network fipc with respect to A are also easily computed by
automatic differentiation. In particular, we do not need T'; to
have an analytic expression in terms of A in order to compule
derivatives.

Finally, we note other preconditioned NMeumann networks
could be derived by replacing I with a general matrix .5 such
that X T X + A8 is positive definite, e.g., § = DT D where D
is a discrete approximation of the image gradient. For simplicity,
we restrict ourselves to the choice § = I in this work.

C. Equivalence of Unrolled Gradient Descent and Neumann
Network for a Linear Learned Component

Suppose the learned component B is linear, i.e., B{3) = B3
for some matrix R € RP*P_The Bth iteration 3'Z) of unrolled
gradient descent (3) with step size » > 0 and initialization
A = 1 X "y can be expanded to obtain

B
At = nZ{I - X' X —gRYX'y,

j=0

which is precisely the form of the Neumann network estimator
(9). Therefore, if R is linear the estimator obtained using a
unrolling of gradient descent and the Neumann network esti-
mator are the same. When B is nonlinear we no longer have this
equivalence.

V. THEORY

The Neumann network architecture proposed in the previous
section is motivated by the Neumann series expansion of a
(potentially nonlinear) operator I representing the gradient of a
regularizer. Strictly speaking, this Neumann series expansion is
valid (i.e., corresponds to the solution of the equation (2)) only if
R is linear. However, restricting I to to be linear severely limits
the class of estimators that can be learned in our framework. In
particular, if 1 is linear then the resulting learned estimator has
to be linear, which is suboptimal for many data types.

In this section we show that a Neumann serics approach
is still mathematically justified for data belonging to a union
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of subspaces (UoS) model. Our reasons for focusing on a
UoS model are two-fold: First, UoS models can be found in
a wide range of modern signal processing applications, either
as a deterministic model [52]-[54] or as a statistical model in
the form of a Gaussian mixture model with low-rank covari-
ances [55]-[57]. Second, we believe UoS models represent a
reasonable trade-off between mode] complexity/expressiveness
and analytic tractability, and allow us to provide some insight on
the expected behavior of Neumann networks beyond the setting
where K is linear.

To be precise, here we consider the class of Neumann network
estimators (3 given in (9) that are specified by a (potentially
nonlinear) mapping® R : RP — RP, step size 7, and number of
blocks B. We study two guestions:

17 Can a Neumann network estimator be used (o reconstruct
images belonging to a UoS, and if so, what is an optimal
choice of 17

2) Can this A be learmed using standard neural network
architectures and training?

Our main result, given in Theorem 1, addresses the first
question by showing there exists a Neumann network esti-
mator with a piecewise linear R that gives arbitrarily small
reconstruction error under mild assumptions on the subspaces
and their interaction with the measurement operator. We study
the second question empirically, and show that the learned i
well-approximates the predicted optimal piecewise linear R in
an idealized setting.

A, Images Belonging to a Single Subspace

Suppose the ground truth images belong to an r-dimensional
subspace & — BP. Let I7 € BP*" be a matrix whose columns
form an orthonormal basis for 5. Assume m >+ and XU &
™" is full rank. In other words, we assume there is no image
in the subspace also in the nullspace of X besides the zero
image.® Then given noise-free linear measurements of the form
y= XA of any data point 3* = Uw* £ & we can always
recover (3* by applying the linear estimator

B.y) =UU'X"XU)'UTX Ty (14)
since it is easy to check that fie[y} = (3*. In other words, there
always exists a linear estimator that gives exact recovery of
images belonging to the subspace from their noise-free linear
measurements.

Owur first result shows that there exists a linear Neumann
network estimator of the form (9) (i.e, a linear choice of 17
in (9)) such that for all points in the subspace the reconstruction

*Here we do not assume [ is 2 neural network with a particular architecture,
but study the idealized case where B can represent any mapping from BP o
EF

IThis assumption is often met in practical sattings. For example, in an inpaint-
ing setting it is equivalent to sssuming there is no image in the subspace having
support contained entirely within the inpainting region. Likewise, in compressed
sensing by subsampling DFT coefficients, it is equivalent to assuming there is
no image in the subspace handlimited to the set of unchserved DFT coefficients,
Both of these sssumptions are reasonshle for subspaces spanned by natural
images.

error can be made arbitrarily small by choosing the step size
7 and block size B appropriately. For simplicity, we restrict
ourselves to the case of noise-free measurements and where X
has orthonormal rows.

Lemma 1: Let X e ™7 be any measurement matrix with
orthonormal rows, and letS < EP be an r-dimensional subspace
with orthonormal basis U  R™P. Suppose m > rand XU €
™7 is full rank. Then for any i £ (0, 1], the B-term Neumann
network estimator f‘i with linear R(3) = RS where R ¢ R7™P
is given by

R——c,n(I-X'X)UN(U'X'XU)'U'X'X (15)

for aconstant ¢, p depending only on ryand I3, satisfies the error
bounds

IA(XB7) = a7 < (1 =m)® X (e
for all 3* = 8.

The proof of Lemma 1 is given in the Appendix. The main
idea behind the proof is that with this choice of B the Neumann

network terms fim simplify to

=(7)

B =a; X' X3 +b(1 - X'X)8" (17)

for some constants a; and by that satisfy Z‘j a; 7= 1 and

Z‘j h; = 1. Hence, wehavcﬁl{y}l = Z‘jin fim ~ XTX3 +
(I — XTX)3* — 3*.

B. Images Belonging to a Union of Subspaces

Now we suppose that the images belong to a UoS UF_ S, C
E#® where, for simplicity, we assume each subspace & has
dimension v, Forall k=1, ..., K we let U € RP*T denote a
matrix whose columns form an orthonormal basis for Se. A ain,
we assume m = and XUy € B™"7 is full rank for every
k=1,...,K.In other words, we assume there is no image in
the UnS also in the nullspace of X besides the zero image.

Lety = X 3" be the measurements of any point 3* belonging
tothe UoS. If we know 3* belongs to the kth subspace, i.e., 3* =
Upw* for some w* = RBP, then similar to the single subspace
case, we can apply the estimator

B,y k) = Up( U XTXUR)UIX Ty (18)
since it is easy to see that 3* = 3,(y; k). We call 3, (y; k) the
oracle estimator, since it assumes knowledge of the subspace
index k to which the image belongs.

We show that, under appropriate conditions on the subspaces
and the measurement operator, there is a piecewise linear choice
of Neumann network estimator (.e., an estimator of the form (9)
with Il piecewise linear) that recovers any image belonging to
the UoS from its noise-free measurements with arbitrarily small
reconstruction error. In other words, there is a Neumann network
estimator that well-approximates the oracle estimator.
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Specifically, we consider a piecewise linear function B' of
the form

ma itped

R'(8) = (19)

Ry@3 it[3eCx

where each I, is a p » p matrix, and the regions Cy, are dis-
joint and whose union is all of B*. The main idea behind our
analysis is this: If the ground truth point (3* belongs the kth
subspace, then we prove that the Neumann series summands
.I:iiu],fi{l},, ,,,f?!{m all lie in the same region C. This means
that the same I is used in computing each summand, so we

can write

B B

I =l

Bly) =3 8Y = ST —nXTX — gRY (X Ty).

J=0 3=0

Choosing Ry to have the same form as in the single subspace

case (see Lemma 1), we then will have (3* = 3,(y, &) = 3{y).
To be exact, we specify Ry and Cp as follows. Similar to

Lemma 1, we choose

Ry=—cppll - X X)W (U X XU U XX,

forall k=1,..., K, where ¢ g > 0 is a constant depending
only on 7 and B. We also define the corresponding region Cy. as

Ci = {8 € BP 1 dx k() < dx () forall £ # k}

where dx 1 (3) := |(I — XU (X T7,)") X 3| is the distance
between the vector X /3 and the subspace span( X U ). In other
words, C;, is the set of all points whose distance to the kth
subspace is smaller than the distance to all other subspaces, as
measured by the functions dx  forall £ =1,.. . K.

We now state our main theorem:

Theorem 1: Let X € R™F be any measurement matrix
with orthonormal rows, and for all k=1,.. K let U7, &
EP*" be an orthonormal basis for the kth subspace & with
dim span( X U ) = r. Suppose span{ X U'¢) N span{ X 1L7;) =
{0} for all k # £. Then the Neumann network estimator 3 with
step size 17 = (0, 1) and piecewise linear B = R* as defined in
(19) satisfies

I1B(X3%) — B*|| < (1 — ) B x 3,

for all 3* € UJ< | Sp.

The condition span( X Uy ) rspan( X L) = {0} for all £ #
k., appearing in Theorem 1 is not overly restrictive if we take
into account the statistics of natural images. For instance, this
condition holds for a generic union of r-dimensional subspaces
provided m > 2r, regardless of the number of subspaces in the
union.* Moreover, based on results in compressive sensing using

(20)

AThis is because if span(l/.), k=1,.... K, are generic r-dimensional
subspaces in R¥, then Vi =span(XU.), k=1,... K, are generic r-
dimensional subspaces in BB™, Since two peneric subspaces are linearly in-
dependent provided the sum of their dimensions does not exceed the ambient
dimension, we see that ¥y, and Ve, k # § collectively span a 2r-dimensional
subspace, which is only possible if their intersection is trivial.
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low-rank Gaussian mixture models [55], [S8]. we comjecture this
condition can be weakened under appropriate assumptions on X
and appropriate modification of £*, but we do not pursue this
reflinement here.

Theorem 1 shows there exists a Neumann network estimator
with a certain choice of [2* that well-approximates an oracle
estimator for images belonging to a union of subspaces. In
principle, since R* is piecewise linear with a finite number of
regions, it is realizable as a sufficiently deep neural network
with RelLU activations [39]. However, this does not necessarily
mean that a Neumann network estimator with B given by a
Rel U network when trained on images belonging to a union
of subspaces will recover B = R specified in Theorem 1. For
example, there may be other A that yield similar training loss as
R, or the leamed component may be under-parameterized (e.g.,
not enough layers) in such a way that it cannot well-approximate
R*. Nevertheless, one would hope that given sufficient training
data and a sufficiently expressive network architecture for the
learned component, it may be possible to learn a good approxi-
mation to B as specified in Theorem 1. Below we illustrate that
this is indeed the case for a Neumann network trained on images
belonging to synthetic union of subspaces.

Finally, using the equivalence of Neumann networks and
unrolled gradient descent networks estimators in the case where
the learned component [ is linear (see Sec. I11-C), we show that
an unrolled gradient descent network as defined in (3) with the
same piecewise linear K = R* as defined in (19) satisfies the
error bounds as in Theorem 1:

Corollary 1: Under the same assumptions as Theorem 1, the
unrolled gradient descent estimator El{y}l = 3'B) with step size
ne(0,1)and R = R* as defined in (19) satisfies

||ﬁI(X.H*J gl - IXs, @y

for all 3* € U S,

Corollary 1 shows that the equivalence between unrolled
gradient descent estimators and Neumann network estimators
ohserved in the case where B is linear carries over to the special
case where i = R* is piecewise linear and the networks are
evaluated on linear measurements of points belonging to the
union of subspaces.

C. Empirical Validation

Here we illustrate empirically that the optimal R* predicted by
Theorem 1 is well-approximated by training a Neumann network
for a 1-D inpainting task on synthetic UoS data. We generale
random training data belonging to a union of three 3-dimensional
subspaces in B'”, and train a Neumann network to inpaint five
missing coordinates (i.e.,, X € R**'" restricts a vector to coor-
dinates 1-5). We parameterize the learned component R of the
Neumann Network as a 7-layer fully connected neural network
with RelL.U activations, which is trained by minimizing the mean
squared error of the reconstruction over the training set using
stochastic gradient descent (more details on this experiment can
be found in the Supplementary Materials).
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Fig. 4. Example output of Meumann network trained on synthetic union of
subspaces data for a 1-D inpainting task. Here a vector 3= = B! is drawn
from one of the subspaces, and its measurements ¢ = X 3" (restriction (o first
five coordinates) are input into the Neumann network, which faithfully restores

the missing coordinates. The output ﬁ of the Neumann network is a sum of

terms fi'm (shown in bottom left). As predicted by Theorem 1, the terms ,[E.l{J]
are weighted linear combinations the projections of 3% onto the observed and
unohserved coordinstes. Also as predicted by Theorem 1, the outputs of the

learned component H:[f:lm] {shown in bottom right) are zero in the ohsarved
coordinates and scaled projections of 3* in the unobserved coordinates.

Fig. 4 illustrates the output of the trained Neumann network
for one specific inpul, including the outputs from the interme-

diate Neumann network terms fim and the learned component

outputs Rl{_.r_i{j}]l. As predicted by Theorem 1, the Neumann net-

work terms 3" have the forma; X " X 3* + b;(I — X X)3*

for some constants a; and b;. Also, the outputs of the learned

component R{f‘im} all lie in the null space of X, i, are vectors
supported on coordinates 6 — 10.

Fig. 5 displays the results of a quantitative experiment to
assess whether the learned component [? is piecewise linear as
predicted by Theorem 1. First, we test whether the learned R is
approximately linear when restricted to inputs belonging to each
subspace, i.e., we test whether R(3] + 33) = R(3%) + R(33).
for all @3, 3 belonging to the same subspace. As baselines
we compare o the case where 37 and 35 belong to different
subspaces, and the case where 37 and 3% are Gaussian random
vectors. In Fig. 5 we display a boxplot of the relative error
IR(3; + 33) — R(B%) — R(33)| /¥ of 1024 randomly gener-
ated 37, 34, which are normalized such that || 37| = |35/ = .
Here we set normalization to v = (.25, though similar results
were obtained for « € [0.1,0.5] (not shown). As predicted, the
relative error concentrates near zero in the case where 37, 33
belong to the same subspace, and is otherwise large, indicating

source of B, and A,

Fig. 5. Piecewise linearity test. We measure how linear the learned K is when
evaluated at twio vectors drawn from the same subspace, from two different
subspaces, or from two random Gaossian vectors. The plot illustrates that the
learned R only behaves like a linear operator when the vectors belong the same
subspace (.. the relative error is small), which indicates the learned R is
approximately piecewise linear, as predicted by Theorem 1.

the learned R is indeed approximately piecewise linear as pre-
dicted by Theorem 1.

In the Supplementary Materials we provide more empirical
evidence that the R learned in this experiment closely approx-
imates the ideal B predicted by Theorem 1. Specifically, we
demonstrate that the learned component behaves as expected
on inputs restricted to the column space and row space of the
forward model X . These experiments verify that, at least for this
1-D inpainting task on synthetic data, the ideal piecewise linear
R* predicted by Theorem 1 is well-approximated with standard
neural network architectures and training.

A more systemalic study involving different forward models
X and different network architeciures is needed to determine
whether the ideal [1* identified in Theorem 1 is learnable more
generally for large-scale imaging data and using practical archi-
tectures like convolutional neural networks. Also, our resulis do
not address the case of noisy measurements or forward models
with non-orthogonal rows, which are important considerations
for many inverse problems. We leave these as open guestions
fior tuture work.

Finally, while our focus in this section was on UoS models, our
analysis does not rule out the applicability of Neumann networks
1o other non-linear models. Indeed, in the next section we show
empirically that Neumann networks perform well on a variety of
linear inverse problems when trained on realistic image datasets
that are unlikely to be perfectly captured by a low-dimensional
UoS model.

V. EXPERIMENTS

We begin this section with a comparison of Neumann net-
works against other methods of solving several different inverse
problems with learned components. After that, we investigate
the effect of larger and smaller training sets on all methods,
demonstrating that Neumann networks are robust to small train-
ing set sizes. We follow these experiments with an illustration of
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the effects of incorporating preconditioning into the Neumann
network for deblurring, which is shown to give a gain of several
dBs of PSNR, permitting smaller networks and allowing for
faster training and implementation. We follow with an investi-
gation into an MRI reconstruction problem o demonstrate the
proposed methods in a large-scale setting. Finally, we explore
the optimization landscape of Neumann networks relative to
unrolled gradient descent, illustrating that Neumann networks
have smoother loss landscapes than unrolled Gradient Descent,
while also generally achieving lower test sel errors,

A. Datasets and Comparison Methods

In our experiments, we consider three ditferent small-scale
training sets: CIFAR10 [60], CelebA [61], and STL10 [62], and
one larger-scale undersampled MRI reconstruction task.

The CIFARI(0 dataset is a machine leaming standard, con-
sisting of real-world images of both man-made and natural
scenes [60]. The dataset has been resized to be 32 x 32 pixels.
We use a subset of the aligned Celebrity Faces With Attributes
(CelebA) dataset [61]. The CelebA dataset consists of human
faces at a variety of angles, and the subset that is used here has
been aligned so that all faces lie in the center of the image. The
STL10 dataset [62] is a curated subset of the ImageMNet dataset,
and was originally intended to be used with semisupervised
learning problems. In our experiments, we have resized all
CelebaA and STLI10 images to be 64 x 64 pixels.

We select a subset of images of size 30,000 uniformly from
each individual dataset to be used for training in the results
presented below.

We use these training sets in seven different inverse prob-
lems in imaging: Block inpainting, deblurring, deblurring with
additive noise ¢ of variance 0.01, superresolution (5R4 and
SR10) with two different upsampling levels (4x and 10x across
the entire image, respectively), and compressive sensing (C52
and CS8) with two separate levels of compression (2x and
8x, respectively). The compressed sensing design maltrices are
random Gaussian matrices.

We compare Neumann networks (NN) and preconditioned
Neumann networks (PNN) with four methods which can be
applied to solve a variety of inverse problems:

We first compare to the gradient descent network (GDN), an
unrcdled optimization algorithm that is trained end-to-end, While
theoretical properties GDN and NN are examined in Section 1V,
we hope to compare the qualitative and quantitative ditferences
between the two architectures. For a fair comparison, we use an
identical architecture for the nonlinear learned component in the
gradient descent network and the nonlinear learned component
in the Neumann network.

We also compare to MOdel-based reconstruction with Deep
Learned priors (MoDL) [47], another unrolled algorithm con-
taining a novel data-consistency step that performs conjugate
gradient iterations inside the unrolled algorithm. MoDL is also
trained end-to-end, and also shares learned parameters belween
the learned algorithm. In our main experimental section, we use
an identical architecture for the learned component of MoDL as
is used in GDN and NN,

[EEE TEANSACTIONS ON COMPUTATIONAL IMAGING. VOL. &, 2020

Trainable Nonlinear Reaction Diffusion (TNRD) [33] is an
unrolled optimization algorithm that closely resembles GDN,
but with a specific, novel architecture for the learned compo-
nent motivated by insights from diffusion methods for inverse
problems. The learned components in each block consist of a
single filter, followed by a learned nonlinearity, and then the
transpose of the single filter is applied. Weights are nof shared
across blocks in TNRD.

The residual antoencoder { ResAuto), first proposed in [63], is
an agnostic method. In Section 11, we discussed agnostic meth-
ods that learn a mapping from y to /3, but in these experiments,
we consider a variant of an agnostic learner that learns a mapping
from X "y to B but does not otherwise use X. Specifically,
we construct a |2-layer convolutional-deconvolutional residual
neural network (almost twice as many layers as the network used
in the Neumann network), with a channel-wise fully connected
layer.

Compressed Sensing using Generative Models, (CSGM) [17]
is a decoupled method which first trains a generative model for
the data. After training the generative model, arbitrary inverse
problems can be solved by finding the image in the range of the
generator which is closest to the distorted image. As in the setup
of [17], in our experiments we train three generative networks,
one for each dataset,

Our final method does not incorporate training data at all
into the solution of the inverse problem. We reconstruct using
total-variation regularized least squares {T'V). We minimize our
objective using the algorithm of [64], with hyperparameters
chosen via cross-validation over a held-out validation set for
each dataset and inverse problem.

B. Training and Implementation

Given training pairs {(3;, ¥:)};, and assuming the learned
component K inside the Neumann network depends smoothly
on a set of parameters @, i.e., the partial derivatives 9 1R(3; &)
exist, we train a Neumann network [3 by minimizing the empir-
ical risk £(6) = 31", | B(ys:8) — B:*. In the Supplemental
Materials we derive the backpropagation gradients dg C(H) in
the case where ffl is a Neumann network or a gradient descent
network.

The learned components of NN, GDN, and MoDL have identi-
cal architectures: a 7-layer convolutional-deconvolutional neural
network with a single channel-wise fully-connected layer [63],
inspired by architectural choices in [63], [66], [67].

For NN, GDN, MoDL, and TNRD we used architectures with
B = 6 blocks. The learned component is fixed per network,
i.e., the learned component in the first block has identical weights
to the learned component in all other blocks in any given method
and inverse problem, except in TNRD. While using a larger
B is possible, we found that increasing B beyond 8 led to
greatly increased sensitivity to SGID step size schedule choices.
This phenomenon can be observed in Section V-E. Anecdotally,
we find that it is more difficult to choose SGD step sizes for
GDN than for NN even for small B, and this difficulty became
problematic for B greater than 6.
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TABLE I
PEMNR CoMPARISON FOR THE CIFAR, CELEEA, AND STL 10 DATASETS
RESPECTIVELY. VALUES REPORTED ARE THE MEDIAN ACROSS A
TEST SET OF S1ZE 256

Tpaint Deolur | DeBlur« Ch2  La8  GR4 BRI

MM 28200 3655 29.43 118 25105 2448 2309

- PN 28,40 3753 ML47 1375 2343 26 21TH
= GDN 27.76 325 9l 3499 2500 2449 4T
ﬁ Mol 2818 3480 2872 3347 2372 2454 180
B THNRD 2787 384 2970 x4 2501 2384 1w
- ResAure | 29.05 304 2524 1851 929 2484 202
CAGM 17.88 15.20 14.61 1799 1933 1687 1666

™ 25 2757 .64 2541 2068 2471  X6E

NH £ 300 043 BII W3 T3 %W
FHMN 30.45 3379 30.89 T4 2641 2870 1374

E GDN 3099 30,19 2927 34093 2833 2704 1346
=  MoDL 30,75 30,80 2959 D22 2584 2542 2402
& THNRD 3Nzl 2092 2979 3389 2819 2575 21273
ResAute | 20,66 2565 2529 1241 916 2562 492
C50M 17,75 15.68 1530 1799 1821  1R11 178

TV 2407 30,96 2624 2501 23001 2683 W0

MM 2747 20,43 26,12 JL98 26465 24HE Z1ED
PRN 2800 Mee 272 340 2343 2505 1019

= GDN 2807 30.19 1561 311 2619 2488 2146
E MolL 2803 20,42 26.06 2729 2306 2467 I6EE
1 THRD 2788 2033 25,32 05 25358 455 1A
ResAuto | 27.28 2542 2513 1948 930 2412 2113
CRGM 16,500 14 064 1559 1667 1639 1658 1647

TV 26,29 20,96 2685 2482 2204 2637 X2

The ResAuto architecture imitates the architecture of [63],
an approach that highly resembles the U-Net [68], but adjusted
for good performance on inverse problems like superresolution,
deblurring, and inpainting. Superficially, the architecture resems-
bles an expanded version of the previously-described learned
component, with 12 convolution or deconvolution layers instead
of 7. Further implementation details can be found in supplemen-
tary rnaterials.

C. Small-Seale Experimenis

In this section, a variety of methods are used to solve the
previously-described inverse problems on three datasets. First,
a quantitative comparison in terms of PSNR of the previously-
outlined approaches on a variety of datasets and inverse prob-
lems is described in Table L

We observe that NN and GDN are competitive across all
inverse problems and datasets. State-of-the-art methods like
MoDL and TNRD perform quite well across all datasets, but
the differences in architecture between PNN and MoDL appear
to give an edge to PNN, which we hypothesize is an effect of our
previously-highlighted skip connections. All methods that incor-
porate the forward model into the training and reconstruction
process perform competitively in our small-scale experiments.

CSGM appears to suffer because of the lack of training data
across all experiments. CSGM must learn the manifold asso-
ciated with each dataset before being able to produce accurate
reconstructions, which in our relatively sample-limited setting
appears not to happen. See Fig. 8 or the Supplement for examples
of images produced by CSGM. While TV reconstructions are
reasonably accurate across problems, they are not as accurate
as learned approaches, especially in inpainting and compressed
sensing.

The residual autoencoder in particular has excellent perfor-
mance on certain problems like inpainting and superresolution,

Original and

X'y NN GDN ResAuto

Fig. 6. BReconstruction comparison on the CelebA dataset for the deblur
plus noise problem. While the Meumann networks (NN) and gradient descent
networks (GDM) perform well, the differences are most apparent the residual
images in the second row, especially in the background reconstruction.
Residuals are formed by displaying the norm across color channels of the ermor
al each pixel, scaled by a factor of 6.

but is not competitive for compressed sensing and deblur-
ring. Recall the motivation for the residual autoencoder: the
closer X Ty is to the ground truth 3%, the simpler the residual
#* — X "y that the network must learn. With this in mind, it
seems reasonable that the residual autoencoder should perform
well on small-scale downsampling, inpainting, and deblurring,
but would fail to generate high-guality reconstructions for com-
pressed sensing or heavy downsampling where X 'y is likely
to be a poor approximation of [#*,

The difference in performance between PNN and NN in
Table I can provide some insight regarding the usage of var-
ious architectures. First, although PNN performs well for 4x
superresolution, deblurring, and deblurring with noise, precon-
ditioning is not a universal solution: inpainting and compressed
sensing are perfectly conditioned and preconditioning appears
to worsen performance. We see similar effects with MoDL,
which performs better than NN or GDN on certain problems, but
suffers especially in compressed sensing. These results further
emphasize that consideration of the specific forward model
at hand should be an imporiant element of designing learned
inverse problem solvers.

In addition, we observe some variance in results across
datasets. CIFAR 10 in particular seems to be a an outlier: while
the best reconstructions on CelebA are uniformly more accurate
than on STLI10, the apparent "difficulty” of reconstruction in
CIFAR10 is more task-specific.

Fig. 6 and 7 demonstrate more qualitative and quantitative
detail in some examples from several different inverse problems
and all three datasets. In these figures the residuals are shown
for illustrative purposes: the residuals are formed by displaying
the scaled pixelwise norm across color channels of the difference
3 — ;3 where (3* is the true image. and ﬁ the estimate, scaled by
a factor of 6. Magnitudes are clipped to be less than or equal to 1.

D. Effect of Sample Size

In Section II-B we hypothesized that incorporating informa-
tion about the forward operator would have implications for the
sample sizes required to achieve particular error rates.
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Fig. 7. Bxcompressed sensing reconstruction comparison on STL10. ResAuto
fails to invert the compressed sensing problem adequately. The Gradient Descent
network (GDM) reconstructs accurately bat generates more artifacts than the
MNeumann network {NM).
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Fig. 8. A qualitative comparison of the reconstructions produced for the
deblurring problem on a single image at two different training set sizes, along
with the associsted residual images. Residual images are scaled by a factor of 6,
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Fig. 9. Performance comparisons. () Median PSNR of methods trained with
different sample sizes of 2000, 30,000, and 50,000, Neumann networks (NN)
and Preconditioned Neumann networks {PNN) scale very well with training set
size, with smaller marginal gains as training sizes increase, All FANE values are
for the CIFAR-10 dataset, and the inverse problem used is the previously de-
scribed deblurring problem. (b} PENR (dB) for the standard and preconditioned
NN, The inverse problem in this case is deblurring with a Gaussian kernel of
size 5 = 5 and variance o = 5.0,

(b) Preconditioning
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A coarse comparison of the presented learning-based methods
at different sample sizes is provided in Fig. %(a). We observe that
while all methods suffer a decrease in PSNR at low sample sizes,
the Neumann network has the highest-qualily reconstructions
at only 2,000 images, and also enjoys the largest increase of
performance when going from 2,000 to 30,000 training images.
Gradient descent network performs well even at very low sample
sizes, but arlifacts are present in reconstructions at low sample
sizes, visible in Fig. 8.

Methods that do not incorporate the forward model, like
ResAuto and CSGM, perform poorly in the low-sample regime,
as discussed in Section [1-B. While ResAuto performs compet-
itively at 30 k iterations, there is little change between image
qualities produced at these sample sizes, and even a very slight
decrease in performance. CSGM improves significantly with
increasing samples, but does not produce high-quality recon-
structions on this inverse problem.

E. Effect of Preconditioning

Fig. 9(b) illustrates the effect of preconditioning on the perfor-
mance of the Neumann network with different numbers of blocks
B on a deblurring task. While the original Neumann network
does not surpass 32 dB PSNR with 8 blocks, the preconditioned
Meumann network surpasses the original with only B = 2, and
continues to improve as the number of blocks increases. Example
images are included in the supplementary materials.

The forward problem in this case is Gaussian deblurring with
7= 4.0 and a blur kernel of size 5 x 5. The corresponding
X is very poorly conditioned, and a A of 0.01 is used in the
preconditioning matrix (X "X + A1)7?

Depending on the structure of X and how easily (X T X +
aI')~! can be computed, preconditioning can be computationally
costly, but it appears to permit fewer Neumann network blocks
for comparable performance. Since the primary resource bottle-
neck for training the Neumann network end-to-end is memaory,
tewer blocks permits faster training, or alternately, allows imple-
mentations to achieve higher performance than would otherwise
be possible with fixed computational resources.

F MRI Experiments

In this section we provide results of multi-coil MRI recon-
struction from undersampled measurements. Full training and
test data is the data used for the experiments in [47], consisi-
ing of 12-coil Cartesian sampled k-space data of dimension
232 % 208 x 12 with known coil sensitivity maps. The size
of the training set is 360 such acquisitions across 4 subjects,
with testing being performed on 40 images from one, separale
subject who was not used for training. The sum-of-squares
reconstruction is treated as ground truth. Further details of the
data acquisition can be found in [47].

All experiments are for 4 undersampling, although we differ
trom [47] in that we train on a fixed k-space undersampling
mask. The undersampling mask is fully sampled in the center
0.15 fraction of frequencies, with the remaining frequencies
being sampled according to a random Gaussian pattern. The
mask is visualized in Fig. 10.
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Original Mask
Test Time (sec)

FINN (3495 dB)
16.3 sec

NN (33.09 dH)

5.5 s 14.3 sec

Fig. 10.

MoDL (34.09 dB) GDNZ (33.18 dB}

GDNI (31.37 dB)
5.7 wec 30 sec

TNED (3239 dB)

410 gec

TV [(32.29 dB)
340.2 sec

A comparison of MRI reconstruction quality for a variety of trainable and non-trainable image reconstruction methods. The 12-coil data is undersampled

by a factor of 4 and Gaussian noise with & = 0.01 is added in k-space. The reconstructions are displayed in the first row, while the second row contains the
residual images scaled by a factor of 4, PSNR is displayed next to the method name, while below each method name is the mean tine required to reconstruct a
single MRI image in seconds. GDNZ denotes the Gradient Descent network using the same initialization as the preconditioned Neumann network, while GDNI

uses the same initialization as the Neumann network.

For the MRI experiments we follow the precedent set by [47]
in our choice of learned component, using only a simple five-
layer convolutional network with 64 filters per layer and Rel U
nonlinearities for all architectures other than TNRID. The TNRTD
architecture follows the architecture proposed in [33]. The Neu-
mann network results presented here are for the preconditioned
Neumann network (PNN), and the number of blocks for GDN,
PN, MoDL, and TNRD is fixed to be 5. The preconditioning
operator in PNN is implemented through 10 conjugate gradient
iterations, identically to [47]. We compare to GDN with the same
initialization as NN (GDN1) and as PNN (GDN2) to study the
effect of different initializations on GDN,

We observe that unrolled oplimization approaches are advan-
tageous in this setting compared to the more traditional TV-
regularized reconstruction. Preconditioning, both to improve
initialization as in GDN2, and incorporated into the architec-
tures, as in PNN and MoDL, improves PSNE significantly in
this setting.

A major benefit of leamed reconstruction methods is their test
time, which is displayed beneath the method name and PSNR in
Fig. 10. We note that all learned approaches reconstruct an order
of magnitude faster than the agnostic TV approach. Although
preconditioning incurs an additional cost in terms of test time,
the performance increase is substantial for MoDL and PNN.

G. Optimization Landscapes

The performance of the Neumann networks (NN) and Gra-
dient Descent networks (GDN) are very similar across a range
of problems and datasets, but NN slightly outperforms GDN
consistently. We hypothesize this is due to differences in the
connectivity of their network architectures and the effect this
has on training.

Specifically, both NN and GDN contain connections across
blocks, but differ mainly in their direction and exteni. Adjacent
blocks in both networks share residual connections as in a
ResMet [14] (the inclusion of the identity I in the linear part

[I — X7 X](-) of each block of NN and GDN is a residual con-
nection). Other architectures based on unrolled iterative methods
such as MoDL and TNED have similar residual connections.
However, the main difference is that NN contain additional
“skip” connections that connect each block with the final layer,
similar to architectures like DenseNets [15]. Recent work [69]
has highlighted the role of residual connections in the opti-
mization landscape of deep architectures, implying that residual
connections “smooth™ the optimization landscape. Specifically,
fewer local minima tend to be present, and those minima tend
to be wide, as opposed to sharp. In addition, the authors of [69]
note that skip connections from intermediate or early layers of
deep networks to final layer tend to provide stronger smoothing
effects on optimization landscapes than residual connections
alone, Hence, we might expect the additional skip connections
present in NN also lead to a smoother optimization landscape.

In Fig. 11 we illustrate the optimization landscapes using the
method of [69], which proposes a procedure for projecting the
loss landscape of very high-dimensional models into two dimen-
sions for visualization purposes. Suppose that the fully-trained
network has a set of parameters which is vectorized § € R We
draw two independent standard Gaussian vectors v, vy with di-
mension K, and normalize them in the manner described in [69)
that accounts for the scaling ambiguity of RelLU networks.
Then we compute the test and training set error for parameters
given by 0 + 7(ivy + jug) for step size 7 > 0 and integers
i, 7. The plots above are generated for i, j € {—125,.. ., 125}
and 7 = (L.01. We demonstrate plots for three different forward
maodels: deblurring, compressed sensing with 8 compression,
and 10 superresolution.

Fig. 11 illustrates several attractive properties of the NN and
GDN. Local minima appear to be rare in the neighborhood of
the trained minima for GDN and NN. While neither is convex,
it is interesting to note that the NN landscapes seem to have
much wider basins around minima and higher slope outside this
main basin. GDN’s optimization landscape appears to require

Authonzed censed use limided to: UNN OF CHICAGD LIBRARY. Downloaded on Awgust 13,2020 at 17:58:06 UTC from IEEE Xplore. Restriclions apply.



(a} Menmeann Loss () Meursamn () GDN Loss
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Fig, 11. Optimization landscapes and contour plots. (a) The optimization

landscape associsted with the training loss of the Meumann network around
the center optimal point. (b) The associated contour plot. (c) The optimization
landscape associated with the training loss of the gradient descent network.
(d) The associated contour plot. Neumann network landscapes tend to have wider
basins around the minimizer and be steeper outside the basin of the minimizer,
which are both more favorahle to practical optimization by SGD. Figures uze
the CIFAR-10 dataset and, from top to bottom, deblurring inverse problem with
= 2.5, 10 superresolution, and compressed sensing with & x compression.

a search around a low-slope landscape until finding a region of
high curvature in the deblurring and compressed sensing case,
and contains more local minima than NN,

In addition, experimental evidence and some theory indi-
cate that wider local minima have better generalization prop-
erties [70]. This does not indicate that one architecture should
perform better than another, but if both networks achieve similar
training error, wider local minima may translate to better test
performance.

V1. CoNCLUSION

This paper describes a novel network architecture that departs
trom the currently-popular unrolled optimization framework
described in Section 1I-C. Our approach is based on the Neu-
mann series expansion for inverling linear operators and has
several key features. First, Neumann networks naturally contain
“skip connections™ [14], [15] that appear to yield optimization
landscapes that facilitate more efficient training, but are absent
trom previously proposed network architectures.

Our theoretical analysis reveals that when the training data
lie in a union of subspaces, the optimal oracle estimator that
has prior knowledge of both the subspaces in the union and
the identity of the subspace to which true image belongs is

[EEE TEANSACTIONS ON COMPUTATIONAL IMAGING. VOL. &, 2020

piccewise linear. We show this piecewise linear oracle estimator
can be approximated arbitrarily well by a Neumann network
whose learned component coincides with a specific piecewise
lingar map, which in principle can always be realized by a
neural network using RellU activations. Furthermore, we ob-
serve empirically on simulated union-of-subspaces data that the
nonlinear leamed component in the trained Neumann network
well-approximates the specific piecewise linear map predicted
by theory. We are unaware of past work on using neural networks
to solve inverse problems demonstrating such properties.

Third, we describe a simple preconditioning step that, when
combined with the Neumann network architecture, provides an
additional increase in reconstruction PSNR and can reduce the
number of blocks B needed for accurate reconstruction, which in
turn decreases reconstruction computational complexity when
the preconditioning can be computed efficiently. As a result,
using a truncated series expansion with only B blocks results
in a small, bounded approximation error. Finally, we explore
the proposed Neumann network’'s empirical performance on
a variety of inverse problems relative to the performance of
representative agnostic, decoupled, and unrolled optimization
methods described in Section 11.

While this paper has focused on solving linear inverse prob-
lems in imaging using training data to train a neural network,
more generally we can think of this paper as a case study in
leveraging physical models to guide neural network archirec-
ture design. More specifically, we can think of networks such
as the Neumann network as a single large neural network in
which a subset of edge weights (i.e., those corresponding to the
operation I — X " X and other zero-valued “edges” that define
the general architecture of Fig. 2) are determined by the physical
forward model that specifies the inverse problem at hand and are
held fixed during training, while the remaining edges (i.e., those
that correspond to the operation f(-)) can be learned during
training. In other words, we use knowledge of the inverse problem
structure to define the neural network architecture.

This perspective leads to interesting potential avenues for
future work. Specifically, our proposed Neumann network is
inspired by series expansions for inverting linear operators, but
there are alternative methods for inverting nonlinear operators
that may yield new challenges and opportunities. For instance,
Adomian decompositions and polynomial expansions have been
successtully used to solve ditferential equations with both linear
and nonlinear components [71], [72], and so designing future
networks inspired by this framework could lead to new theoret-
ical insights beyond what we present above.

In addition, the reader might note that neural networks based
on the WNeumann series expansion or ilerative optimization
methods have several repeated blocks, leading to the question
of whether standard stochastic gradient descent is the most
efficient training regimen. For instance, recent work on “Neural
Ordinary Differential Equations™ [73] has considered an ODE
representation of the operation of a neural network instead of
a series of discrete layers and used this perspective to devise
training methods that leverage ODE solvers for more efficient
training. Such techniques might be leveraged to improve training
of Neumann networks.
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APPENDIX

Here we let P x and P x| denote the projectors onto the row
space of X and the null space of X, respectively. In particular,
Px=X"Xand Px, =1 — X'"X,sinceweassume X has
orthonormal rows in Lemma 1, Theorem 1, and Corollary 1.

A. Proaof aof Lemma 1

We have [y E:j ;]ﬁm where ﬂ[m =nX Ty,
y=X3" and
=17} = (-1}
A =T —nX X —nR)3 (22)
~{5—1)
= (Px, +(1-n)Px —nR)B" @3)
for all j=1,..., B, and where in the last line we used the

identity I = Px + Px .

We show that R(3)=R3 with I as specified in
Lemma 1 satisfies the desired error bounds. Define @ = Px,
UUTXTXU) U X7 so that R = —e,, g QX . With this
choice of i we have P x It = (), and an easy induction shows

- k
B Xy n S REY )
k=0
forall j = 1. Summing this over j = 0,1,..., B gives
= (k)
Zfi(l -’ Xy - nzz
J=0 =1 k=0
g -1 - ()
=Y gl -nP X y—nd (B-HRAE" (25
J=0 J=0

Next, we show we can choose the constant ¢, 5 so that the
second term above simplifies to

—“?Z

=i

] Rﬂ =Qy. (26)
Observe that RZEF k)

(24) we have R,Bm

—ﬂl’ura]lk=(}.. 4 — 1, and so from
— ) RX Ty, which gives

=]

1 H-1
. = (7} .
(B—H)R3" =53 (B-j)1 -9 'RX"y.
=0
Letting c, 5 = (7 3775 (B — j)(1 — n)¥) ! we obtain (26).
Therefore, combining (25) and (26) we have

e
Il
=

B
=0y (1-n'X"y+Qu.

§=0

(27)

Finally, since we assume y = X 3%, we see that X 'y =
Py and Quy = Px (3", and using the fact that ﬁlEfL[,
(1—n)7 =1 —(1—p)5+ from (27) we have B(y) = 3* —
(1 — ) B+ Px 3* which gives the desired error bound.

B. Proof of Theorem 1 and Corollary 1

To prove Theorem 1 we show that if #* belongs to the kth
subspace then B* acts acts as the I1ncar map Ry when applmd
to each Neumann network term ,13 That is, we show 3 }
Cy. for all § =0,..., B, where _H =nX 'yand ﬁm (r—
2 X XYY R (3" ") for j=1,..., B. The desired
error bounds then follow by direct application of Lemma 1.

First, an easy induction shows that

-1
=070 i w s LD
B =n(l—ny X y—n) R(F)
i=0
Using the fact that PxR*(3) =0 for all < RP, and
= X 3*, we have PxE!{j] =l =y Px/A* for all j=
0,...,B. Since the region Cy is a cone, in order lo prove
37 c ¢y forall j = 0,..., B it suffices to show Px 3* € Cx.

This means we need to show dx x(3*) < dx ¢(3%) for all
£ # E, or equivalently,

(28)

(I = XU(XU) ") X3
< I - XU (XU )X B

for all €&k Since XU, (XUpg)" is projection onto
span( X L7y ), and X 3"  span( X L7), we have (I — XT7,
(XU4)T)X 8" = Dandso [|(I — XU L(XU,)7)X 3% =0
Furthermore, since by assumption X 3* £ span{ X T7;) for all
4k, wehave (I — XUL(XDU )X 3 £ 0, which means
(I — XU XU,)") X 3| = 0, proving the claim.

Similarly, to prove Corollary 1 we need to show 3 & C;, for
all j=0,..., B, where 3% = nX Ty € Cy and 3 = (T —
nX " X)BU — R (3] + B0, Since PxR'(8) =10
forall @ & ¥, an easy induction shows that

L

PxpY =) (1-5)'Pxp*. (29)
i=0

Since each @) is a scalar multiple of P x3*, by the same
argument as above we have 3U) = (g for all j=0,... B,
which proves the claim.
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