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a b s t r a c t

This paper presents a new class of one-dimensional (1D) traffic models with look-ahead rules that take
into account of two effects: nonlocal slow-down effect and right-skewed non-concave asymmetry in
the fundamental diagram. The proposed 1D cellular automata (CA) models with the Arrhenius type
look-ahead interactions implement stochastic rules for cars’ movement following the configuration of
the traffic ahead of each car. In particular, we take two different look-ahead rules: one is based on
the distance from the car under consideration to the car in front of it; the other one depends on
the car density ahead. Both rules feature a novel idea of multiple moves, which plays a key role in
recovering the non-concave flux in the macroscopic dynamics. Through a semi-discrete mesoscopic
stochastic process, we derive the coarse-grained macroscopic dynamics of the CA model. We also
design a numerical scheme to simulate the proposed CA models with an efficient list-based kinetic
Monte Carlo (KMC) algorithm. Our results show that the fluxes of the KMC simulations agree with the
coarse-grained macroscopic averaged fluxes for the different look-ahead rules under various parameter
settings.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

The study on traffic flows has received considerable effort
n the past few decades. Many mathematical frameworks and
odels have been proposed and analyzed in the literature [1–11].
hese models can be categorized by different scales.
The microscopic models focus on modeling the behaviors of

ndividual cars. Two types of microscopic models are widely used
n traffic flows.

(i). The agent-based models. The location of each car is traced
n time, by an interacting ODE system. A variety of interaction
ules are proposed, followed by analysis and simulations. In the
lassical follow-the-leader model [12]

˙ i = κi(vi+1 − vi),

he driver in the ith car accelerates/decelerates according to the
elative velocity toward the (i + 1)-th car in front. In the optimal
elocity (OV) model [13]

˙ i = κi(Vi − vi),

here Vi is the optimal velocity of the ith car, which depends
n the distance toward the car in front. The OV model has
everal extensions. In [14,15], the optimal velocity is modeled by
ultiple cars in front. In [16–18], cars behind are also taken into
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consideration. Ref. [19] discussed and analyzed multiple look-
ahead models, which reproduce many real flow features. Besides
the common fundamental properties of traffic flow, free flow and
congested flow, all these models above can reproduce a third
fundamental property of traffic flow, the so-called synchronized
flow [20].

(ii) The lattice models. The road is configured as a fixed lat-
ice. Each site has values 1 (car is present) or 0 (car is absent).
xplicit rules for car movement on the lattice sites are described
o represent the traffic flow. The lattice models, also known as
ellular automata (CA) models [21,22], have been widely used to
epresent traffic flows. A vast literature exists addressing vari-
us analytical and numerical techniques for models of this type
23–31]. Compared with the agent-based models, lattice models
re simpler to implement and are more amenable to numerical
nvestigation. A major advantage of lattice models is that they
llow for a systematic derivation of the coarse-grained dynamics,
hich typically requires some simplifying assumptions about the
tatistical behavior of the microscopic model.
To understand the emergent phenomena for large crowded

raffic systems, a variety of macroscopic models have been pro-
osed. Instead of working on individual cars, these models de-
cribe the evolution of the density distribution of the traffic.
ne classical model in 1D with a single-lane dynamics is the
ighthill–Whitham–Richards (LWR) model [32,33],

tρ + ∂x(ρu) = 0, u = umax(1 − ρ). (1)

ere, ρ is the density of the traffic and u is the macroscopic
elocity, which takes maximum value u if ρ = 0, and becomes
max
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0 if the maximum density ρ = 1 is reached. It is well-known
that the Burgers-type nonlinearity leads to a finite-time wave
breakdown for any smooth initial configuration. This corresponds
to the creation of traffic jams.

The LWR model (1) has many extensions. One direction is
o consider the nonlocal slowdown effect: drivers intend to slow
own if heavy traffic is ahead. This would involve a nonlocal
nteraction with a look-ahead distance a,

tρ+ ∂x(ρu) = 0, u = umax(1−ρ) exp
[
−

∫ a

0
K (y)ρ(x + y)dy

]
,

(2)

here K is a look-ahead kernel. The model was first introduced
y Sopasakis and Katsoulakis (SK) in [34], with K ≡ 1. Another
ernel K (r) = 2(1−

r
a ) was discussed in [35] for pedestrian flows,

followed by an extensive numerical study.
The wave breakdown phenomenon for the SK model (2) and

related nonlocal models has been studied in [36–38]. Recently, it
is shown in [39] that the nonlocal slowdown effect can help avoid
traffic jams for a family of initial configurations.

Another concern on the LWR model (1) is on its fundamental
diagram. The flux

F = ρu = umaxρ(1 − ρ)

is a concave function of ρ with an even symmetry at ρ = 1/2,
hich does not agree with the experimental data [8,10]. A better

it would be a right-skewed non-concave flux, which looks like

= umaxρ(1 − ρ)J , J > 1. (3)

To take into account of the two effects, we propose a new class
f macroscopic traffic models with the form

tρ+∂x(ρu) = 0, u = umax(1−ρ)J exp
[
−

∫ a

0
K (y)ρ(x + y)dy

]
.

(4)

or J = 1, it reduces to the SK model (2). For J = 2, it has been
ecently introduced and discussed in [40]. The behavior of the
olution is different from the SK model, due to the non-concavity
f the flux. Yet, the nonlocal slowdown effect could still help
void finite-time wave breakdown for some initial configurations.
It has been a very active area to study the connections be-

ween the microscopic and macroscopic dynamics. From the mi-
roscopic models, one can let the number of cars go to infinity,
nd derive a mean-field limit. The resulting mesoscopic models
re characterized by kinetic equations. The macroscopic dynamics
an then be obtained through appropriate hydrodynamic limits.
In this paper, we focus on the lattice models. In [34], a CA

odel with Arrhenius type look-ahead interactions was proposed
see Section 2 for the description in detail). Through a semi-
iscrete mesoscopic stochastic process, the SK model (2) can be
ormally derived as a coarse-grained description of the CA model.
xtensions to multilane and multiclass traffic have also been
eveloped in [41,42]. An improved mesoscopic model has been
iscussed in [43]. Two different look-ahead rules in both one-
imensional (1D) and two-dimensional (2D) CA models were
ompared in [44].
A natural question that arises is whether there is a lattice

odel that connects our new macroscopic model (4).
We propose a CA model with two different types of look-ahead

ules. The rules feature a novel idea ofmultiple moves, which plays
key role in recovering the non-concave flux in the macroscopic
ynamics, for any J ∈ Z+. The first rule has a slowdown factor
hat is based on the distance from the car under consideration to

he car in front of it. The corresponding macroscopic dynamics is a {
ocal scalar conservation law with non-concave flux (3). The other
ule’s slowdown factor depends on the car density ahead. With
uch long-range interaction, we derive the target coarse-grained
acroscopic dynamics (4).
We also design a numerical scheme for the proposed CA

odels. To improve computational efficiency, we use the kinetic
onte Carlo (KMC) algorithm [45] due to its main feature —

‘rejection-free’’. When the dynamics of the traffic system features
finite number of distinct processes in configurational changes,
e develop an efficient list-based KMC algorithm using a fast
earch that can further improve the efficiency compared to the
eneral KMC method. On the other hand, the Metropolis Monte
arlo (MMC) method [46] is adopted in most of current CA mod-
ls for vehicular flows and pedestrian flows. But the MMCmethod
s a way of simulating an equilibrium distribution for a model,
nd trial steps are sometimes rejected because the acceptance
robability is small, in particular when a system approaches the
quilibrium, or the car density is high. Therefore, we choose the
MC, which is more suitable for simulating the time evolution of
he traffic systems with the transition rates that are associated
ith possible configurational changes in the system. With rea-
onable values of the model parameters (the characteristic time
nit and the interaction strength), the KMC simulations are used
o predict the time evolution of 1D traffic flows. Our results show
hat the rules induce nonlocal slow-down effect and right-skewed
on-concave asymmetry in the fundamental diagram. Moreover,
he fluxes of the KMC simulations agree with the coarse-grained
acroscopic averaged fluxes for the different look-ahead rules
nder various parameter settings.
The rest of the paper is organized as follows. In Section 2, we

ntroduce the CA models with two look-ahead rules. In Section 3,
e discuss the derivation of the macroscopic models starting

rom our proposed CA models. In Section 4, we describe the
ist-based KMC algorithm and its implementation. In Section 5,
e provide a series of numerical simulations in various param-
ter regimes for the 1D flows, and compare the microscopic
nd macroscopic models. Finally, we state our conclusions in
ection 6.

. Cellular automata models with look-ahead rules

We describe the construction of the cellular automata (CA)
odel for 1D traffic flow in this section. The CA model is de-

ined on a periodic lattice L with M evenly spaced cells, L =

1, 2, . . . ,M}. For simplicity, we assume that all cars move to-
ard one direction on a single-lane loop highway with no en-
rances or exits. The configuration at each cell i ∈ L is defined by
n index σi :

i =

{
1 if a car occupies cell i,
0 if the cell i is empty.

(5)

he state of the system is represented by σ = {σi}
M
i=1, which lies

n the configuration space Σ = {0, 1}M .

.1. Interaction rules

We now describe the dynamics of the CA models. The car
ovement can be represented by the transitions in the state of

he system, which obey the rules of an exclusion process [47]:
wo nearest-neighbor lattice cells exchange values in each tran-
ition and cars cannot occupy the same cell. In addition, cars
re only allowed to move one cell to the right in one transition.
herefore, the only possible configuration changes are of the
orm
σi = 1, σi+1 = 0} → {σi = 0, σi+1 = 1}. (6)
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B

Fig. 1. Schematic representation of two look-ahead rules. (a): The rule based on the distance Nv: a car in gray with different numbers (Nv) of vacant cells between
it and the first car (in blue) ahead of it in the range L (here, L = 4). (b): The rule based on the density Nc/L: a car in gray with different numbers (Nc) of cars (in
blue) ahead of it in the range L. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
T

The transition rate for (6) depends on spatial Arrhenius type
one-sided interactions and a look-ahead feature to represent
drivers’ behavior. These rules allow cars (or drivers) to per-
ceive the traffic situation up to L cells ahead in which L is the
look-ahead range parameter. The interactions between a pair of
successive cars cannot be neglected if the gap between them
is shorter than L; in such situations, the following car must
decelerate to avoid collision with the leading car. This is similar
to the spin-exchange Arrhenius dynamics in which the simulation
is driven based on the energy barrier a particle has to overcome
in changing from one state to another [34,42]. During a spin-
exchange between nearest-neighbor sites i and i + 1, the system
will allow the index σi at location i to exchange its index with the
one at i+1. This is interpreted as a car moves from i to i+1 with
the rate given by the Arrhenius relation:

ri = ω0 exp
(
−Eb(i)

)
, (7)

where the prefactor ω0 = 1/τ0 corresponds to the car moving
frequency or speed and τ0 is the characteristic time. The moving
energy barrier Eb(i) for the car located in the ith cell describes
the slow-down effect due to the traffic in front. It is assumed to
depend only on the traffic situation up to range L ahead of the car
under consideration, namely Eb(i) depends on {σj}

i+L
j=i+1.

The energy barrier can be modeled through Eb = Es+Ec, where
Es is the external potential associated with the site binding of
the car, which could vary in both space and time to account for
spatial and temporal traffic situations, such as rush hour traffic,
local weather anomalies, etc. In this study, we set Es = 0. The
term Ec enforces the look-ahead rules (Fig. 1). We consider the
two rules in [44], described as follows.

The first look-ahead rule is based on the distance from the car
under consideration to the car in front of it, in other words, the
number of vacant cells, Nv, between these two cars (as shown in
Fig. 1(a)). Therefore, the energy barrier is given by

Eb(i) =
L − Nv(i)

L
E0, (8)

where the parameter E0 is the car look-ahead interaction strength.
ased on the formulas (7) and (8), we can see that the smaller is

the value of Nv, the larger is the energy barrier Eb, thus the smaller
is the transition rate r . This reflects the fact that the closer is the
distance between cars, the stronger is the slowdown factor.

The second rule is based on the density of cars ahead of the
car under consideration [34]. This is due to the fact that in real
traffic drivers usually observe not only the leading car but also
other cars ahead of the leading car. In this rule, the energy barrier
is given by

Eb(i) =
Nc(i)E0, (9)

L

where Nc is the number of cars in the range L ahead of the car
under consideration (as shown in Fig. 1(b)). It can be defined as

Nc(i) =

i+L∑
j=i+1

σj.

his look-ahead rule with the formula (9) indicates that a slow-
down factor is stronger when the forward car density is high,
i.e., when the road is congested.

The coarse-grained macroscopic dynamics corresponding to
the two CA models above are LWR model (1) and SK model
(2), respectively. The formal derivation for the latter case can be
found, for instance, in [34,43].

2.2. A new class of models

We propose a new class of CA models, and show their relations
to the macroscopic models with a non-concave flux (3), for any
parameter J ∈ Z+.

A novel discovery is that the parameter J in the macroscopic
dynamics is related to the number of steps a car moves in a
transition of the microscopic states. A car can make multiple
J-moves, if the J cells in front are not occupied.

The new rule only allows the following configuration change

{σi = 1, σi+1 = · · · = σi+J = 0} → {σi = · · · = σi+J−1 = 0, σi+J = 1}.

(10)

It represents a car moves from i to i + J . The transition rate is
modeled similarly as (7). Since the car moves J cells, we take the
following rate

ri =
ω0

J
exp

(
−Eb(i)

)
, (11)

so that the estimated velocity is comparable among different
choices of J .

Compared with the traditional CA model with a rescaled grid
that contains JM cells, our model has a slower transition rate (11)
(as opposed to (7)). Therefore, heuristically speaking, the larger J
is, the slower the cars move. Such a phenomenon is also shared by
the macroscopic dynamics (4), which is verified in the numerical
experiments in Section 5.4.

3. Coarse-grained macroscopic models

In this section, we perform a formal derivation of the coarse-
grained macroscopic model for our CA model.
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3.1. Semi-discrete mesoscopic models

In a time step ∆τ , the probability of the configuration change

P
(
{σi = 1, σi+1 = · · · = σi+J = 0}

→ {σi = · · · = σi+J−1 = 0, σi+J = 1}
)

= (∆τ ) ri, (12)

where the rate ri is given in (11).
Followed from [34,43], we define σ (τ ) = {σi(τ )}Mi=1 be a

continuous-in-time stochastic process with a generator

(Aψ)(τ ) = lim
∆τ→0

E[ψ(σ (τ +∆τ ))] − ψ(σ (τ ))
∆τ

, (13)

for any test function ψ : Σ → R, where τ is the time variable.
ll possible configuration changes from σ (τ ) to σ (τ + ∆τ ) obey
he transition rule (12).

By the definition of the generator, we have
d
dτ

Eψ = E[Aψ]. (14)

In particular, let us take ψ(σ ) = σi. We calculate (13) explic-
itly, and obtain

Aσi(τ ) = −ri(τ )σi(τ )
J∏

j=1

(
1 − σi+j(τ )

)
+ ri−J (τ )σi−J (τ )

×

J∏
j=1

(
1 − σi−J+j(τ )

)
=: Fi−J (τ ) − Fi(τ ), (15)

where Fi is defined as

Fi(τ ) = ri(τ )σi(τ )
J∏

j=1

(
1 − σi+j(τ )

)
.

Let ρi(τ ) = E[σi(τ )] = P
(
σi(τ ) = 1

)
. Then, from (14) and (15),

the dynamics of {ρi}
M
i=1 reads

d
dτ
ρi(τ ) = E[Aσi(τ )] = E[Fi−J (τ )] − E[Fi(τ )]. (16)

Note that the right hand side of the equation is not yet a closed
form of {ρi(τ )}Mi=1. We shall approximate the term E[Fi(τ )] and
make a closure to the system.

3.2. Approximations as M → ∞

We start with a crucial assumption that helps us to obtain a
losed system. It is called the propagation of chaos, which means
hat {σi(τ )}Mi=1 are independent to each other, namely

[σi(τ )σj(τ )] = E[σi(τ )] E[σj(τ )], ∀ i ̸= j, t ≥ 0. (17)

Due to the look-ahead interaction, condition (17) is not true for
system with fixed M cells. However, as the number of cells M

ends to infinity, the system can become chaotic, and condition
17) can be valid as M → ∞.

By formally assuming the chaotic condition (17), we get

[Fi(τ )] = ρi(τ )
J∏

j=1

(
1 − ρi+j(τ )

)
E[ ri(τ ) | σi(τ ) = 1,

σi+1(τ ) = · · · = σi+J (τ ) = 0 ].

or the rest of the section, we drop the τ -dependence for sim-
licity.
To estimate the rate ri =

ω0
J exp

(
−Eb(i)

)
, we perform a formal

aylor expansion on Eb(i) around its mean E[Eb(i)].

e−Eb(i) = e−E[Eb(i)]
∞∑ (−1)n

n!

(
Eb(i) − E[Eb(i)]

)n
.

n=0
Taking the expectation, we obtain

E[ri] =
ω0

J
e−E[Eb(i)]

(
1 +

∞∑
n=2

(−1)n

n!
E
[(
Eb(i) − E[Eb(i)]

)n])
. (18)

Next, we estimate the energy barrier Eb. To proceed, we first
ntroduce the relative look-ahead distance a, defined as

=
L
M
. (19)

e assume a is a fixed positive number (0 < a ≤ 1). So when
→ ∞, the look-ahead distance L = aM would also tend to

nfinity.
The two barriers (8) and (9) will be discussed separately.
Recall the first energy barrier (8)

b(i) =
L − Nv(i)

L
E0,

where the random variable Nv(i) takes integer values between 0
and L. Conditioned with the configuration {σi = 1, σi+1 = · · · =

σi+J = 0}, Nv(i) takes values in {J, J + 1, . . . , L}.
We impose the following assumption

maxNv(i) ≪ L = aM, (20)

where the maximum is taken across all possible values of Nv and
all locations i = 1, . . . ,M . The assumption (20) describes the sce-
ario that many cars are on the road, so that no two neighboring
ars have a large distance comparable to the look-ahead distance
.
Under the assumption (20), we get

[Eb(i)] =
L − E[Nv(i)]

L
E0 =

(
1 −

E[Nv(i)]
L

)
E0

L→∞
−−−−→ E0,

nd consequently,

b(i) − E[Eb(i)] =
L − Nv(i)

L
E0 − E0 = −

Nv(i)
L

E0
L→∞

−−−−→ 0.

Therefore, plug back into (18), we end up with

E[ri]
L→∞

−−−−→
ω0

J
e−E0 .

Next, we move to the second energy barrier (9)

Eb(i) =
E0
L

i+L∑
j=i+1

σj =
E0
L

i+L∑
j=i+J+1

σj,

here the second equality is valid under the conditional config-
ration {σi(τ ) = 1, σi+1(τ ) = · · · = σi+J (τ ) = 0}. Compute

E[Eb(i)] =
E0
L

i+L∑
j=i+J+1

ρj.

Then, we have

E
[(
Eb(i) − E[Eb(i)]

)2]
=

E02

L2
E

⎡⎢⎣
⎛⎝ i+L∑

j=i+J+1

(σj − ρj)

⎞⎠2
⎤⎥⎦

=
E02

L2
E

⎡⎣ i+L∑
j=i+J+1

(σj − ρj)2

⎤⎦+
2E02

L2
E

⎡⎣ i+L∑
j=i+J+1

j−1∑
k=i+J+1

(σj − ρj)(σk − ρk)

⎤⎦ .
y condition (17), the cross terms

[(σj − ρj)(σk − ρk)] = E[σj − ρj]E[σk − ρk] = 0.

oreover, since |σj − ρj| ≤ 1, we have E[(σj − ρj)2] ≤ 1. Hence,

[(
Eb(i)−E[Eb(i)]

)2]
=

E02

L2

i+L∑
E[(σj − ρj)2] ≤

E02(L − J)
L2

L→∞
−−−−→ 0.
j=i+J+1
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Similarly, higher moments vanish when L → ∞:

E
[(
Eb(i) − E[Eb(i)]

)n] L→∞
−−−−→ 0, ∀ n ≥ 2.

Plug back into (18), we conclude with

E[ri]
L→∞

−−−−→
ω0

J
exp

⎛⎝−
E0
L

i+L∑
j=i+J+1

ρj

⎞⎠ .
To sum up, we achieve an approximation of E[Fi(τ )] in terms

of {ρi(τ )}Mi=1 as M → ∞

E[Fi(τ )]
M→∞

−−−−→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω0

J
ρi(τ )

J∏
j=1

(
1 − ρi+j(τ )

)
e−E0

First rule

ω0

J
ρi(τ )

J∏
j=1

(
1 − ρi+j(τ )

)
exp

⎛⎝−
E0
L

i+L∑
j=i+J+1

ρj(τ )

⎞⎠
Second rule

(21)

3.3. Coarse-grained PDE models

We rescale the lattice L into a fixed intervalΩ = [0, 1], where
each cell has length h = 1/M . The ith cell is rescaled to the
interval [(i − 1)h, ih].

Define the macroscopic density ρ : Ω × R+ → R, where

ρ(x, t) = ρi(τ ), with x = ih, t = τh.

A coarse-grained model can be obtained by formally letting
h → 0. Under our setup, the parameters are scaled as

1 ≤ J ≤ Nv  
O(1)

≪ L ≤ M  
O(h−1)

,

here L and M goes to infinity with a fixed ratio a = L/M .
The flux in (21) as h → 0 has the form

(x, t) := J · lim
h→0

E[Fi(τ )]

=

⎧⎨⎩ω0ρ(x, t)
(
1 − ρ(x, t)

)Je−E0 , (a)

ω0ρ(x, t)
(
1 − ρ(x, t)

)J exp(−E0

∫ x+a

x
ρ(y, t)dy

)
. (b)

(22)

or the first rule, the macroscopic flux (22a) depends locally on
he density ρ; while for the second rule, the flux (22b) is nonlocal
n ρ.

The dynamics of ρ in (16) becomes the following scalar con-
ervation law:

tρ(x, t) =
1
h

d
dτ
ρi(τ ) =

E[Fi−J (τ )] − E[Fi(τ )]
h

h→0
−−−→ lim

h→0

F (x − Jh, t) − F (x, t)
Jh

= −∂x(F (x, t)).

We end up with the following coarse-grained PDE models:
(i). For the first look-ahead rule,

∂tρ + ∂x
(
ω0ρ(1 − ρ)Je−E0

)
= 0. (23)

This is the LWR type local model with flux (3) and umax = ω0e−E0 .
(ii). For the second look-ahead rule,

∂tρ + ∂x

(
ω0ρ(1 − ρ)J exp

(
−E0

∫ x+a

x
ρ(y, t)dy

))
= 0. (24)

This is indeed our proposed macroscopic model (4) with a non-
local look-ahead interaction kernel K ≡ E .
0
If the relative look-ahead distance a = 0, Eq. (24) becomes
the LWR type local model with flux (3) and umax = ω0. On the
other hand, if we consider the periodic domain (loop highway)
and set a = 1, namely L = M , the interaction becomes global. By
conservation of mass, the averaged car density∫ x+1

x
ρ(y, t)dy = ρ̄

is a constant for any x and t . Eq. (24) again reduces to the local
dynamics (23), with a different umax = ω0e−ρ̄E0 , which also
depends on the constant ρ̄.

4. The kinetic Monte Carlo method

To investigate the evolution of the nonlocal traffic system,
we apply the kinetic Monte Carlo (KMC) method [45] to the
microscopic CA model with look-ahead interactions. The reason
to choose the KMC instead of the Metropolis Monte Carlo (MMC)
method [46] is that trial steps in the MMC are sometimes rejected
because the acceptance probability is small, in particular when a
system approaches the equilibrium, or the density of cars is high.
A main feature of the KMC algorithm is that it is ‘‘rejection-free’’.
In each step, the transition rates for all possible changes from the
current configuration are calculated and then a new configura-
tion is chosen with a probability proportional to the rate of the
corresponding transition. The other feature of the KMC method
is its capability of providing a more accurate description of the
real-time evolution of a traffic system in terms of these transition
rates since the KMC method is more suitable for simulating the
non-equilibrium system.

We emphasize that although the KMC algorithm was pre-
sented in [44], there is a major update due to the multiple jumps
J introduced in the current work. To make the presentation self-
contained, we include the details of the algorithm here again.
The KMC algorithm is built on the assumption that the model
features N independent Poisson processes (corresponding to N
moving cars on the lattice) with transition rates ri in (11) that
sum up to give the total rate R =

∑N
i=1 ri. In simulations with a

finite number of distinct processes, it is more efficient to consider
the groups of events according to their rates [48–50]. This can be
done by forming lists of the same kinds of events according to the
values of Nv in (8) of the first look-ahead rule or the values of Nc in
9) of the second look-ahead rule. Therefore, we can put the total
events into (L + 1) lists, labeled by l = 0, . . . , L. All processes

n the lth list have the same rate rl. We denote the number of
rocesses in this list by nl, which is called the multiplicity, and we
ave N =

∑L
l=0 nl. To each list, we assign a partial rate, Rl = nlrl,

nd a relative probability, Pl = Rl/R. Then the total rate is given
y R =

∑L
l=0 nlrl. A fast list-based KMC algorithm at each KMC

tep based on the grouping of events is given as follows.
List-based KMC algorithm:
Step 1: Generate a uniform random number, ξ1 ∈ (0, 1) and

ecide which process will take place by choosing the list index s
uch that
s−1

l=0

Rl

R
< ξ1 ≤

s∑
l=0

Rl

R
(25)

Step 2: Select a car for the realization of the process s. This
can be done with the help of a list of coordinates for each kind
of event, and an integer random number ξ2 in the range [1, ns];
ξ2 is generated and the corresponding car/event from the list is
selected.

Step 3: Check if there are enough vacant cells ahead of the
selected car. If ‘‘Yes’’ (i.e., Nv ≥ J), perform Steps 4–6 for total J
times so that the selected car can make J moves before continuing
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Fig. 2. Calibration of the interaction strength E0 permitting the desired car speed of 60 miles per hour (≈26.8 m/s) and an upstream front velocity of ≈ − 10 miles
er hour (≈ − 4.5 m/s), which are indicated by the dashed lines, respectively. We take the highway distance of 1 mile (≈1609 m, M = 240 cells) and set the
ook-ahead parameter of L = 4 and the multiple move parameter of J = 2 for both look-ahead rules. The initial condition corresponds to a red light traffic problem,
.e., bumper-to-bumper cars up to 0.125 miles (≈201 m = 30 cells) and no cars after that, so a total of 30 cars in each simulation. The running time is up to 240
. (a) Car traces in a simulation with the first look-ahead rule (8) and the interaction strength E0 = 4.5. (b): Car traces in a simulation with the second look-ahead
ule (9) and E0 = 6.0.
w
s
a
b
p
l
i

o the next KMC step. If ‘‘No’’ (i.e., Nv < J), perform only Step 5
or total J times so that the selected car will stay in its current cell
or J transition time periods before continuing to the next KMC
tep.
Step 4: Perform the selected event (the car moves to the next

ell) leading to a new configuration.
Step 5: Use R and another random number ξ3 ∈ (0, 1) to

ecide the time it takes for that event to occur (the transition
ime), i.e., the nonuniform time step ∆t = − log(ξ3)/R.

Step 6: Update the multiplicity nl, relative rates Rl, total rate
and any data structure that may have changed due to this
ove. □
In summary, the following parameters need to be given for the

MC simulations with either look-ahead rule: (i) the characteris-
ic time τ0; (ii) the car interaction strength E0; (iii) the look-ahead
arameter L; and (iv) the multiple move parameter J (1 ≤ J ≤ L).

. Numerical experiments

We next investigate 1D nonlocal traffic flows in various pa-
ameter regimes with the numerical method presented in the
revious section. We start by calibrating some KMC model pa-
ameters with respect to well-known quantities from real traffic
ata.

.1. Calibration and validity by the red light traffic problem

Following [34,44], we set the actual physical length of each
ell to 22 feet (≈6.7 m), which allows for the average car length
lus safe distance. Therefore, 1 mile (= 5280 feet ≈1609 m) is
quivalent to 240 cells. For a car which has average speed of 60
iles per hour (≈26.8 m/s), an estimate of time to cross a cell is
iven by

τcell =
22 feet

60 miles/h
=

1 cell × 3600 s
60 × 240 cells

=
1
4

s. (26)

We calibrate the parameters τ0 and E0 by simulating a free-flow
regime where all cars are expected to drive at their desired speed
that is set to 60 miles per hour (≈26.8 m/s). This is accomplished
by setting the characteristic time τ0 = 0.25 s, and then ω0 = 4
−1. In fact, due to the inherent stochasticity in the simulations,
ometimes cars may move faster or slower than the speed limit.
We also mention that other values of τ0 and E0 may be chosen
to adjust our model for considering different standards in other
regions or countries.

Fig. 2 shows the results of the ‘‘red light’’ traffic problem: the
traffic light located at 0.125 miles (≈201 m, i.e., i = 30 cells) is
turned from red to green at the initial time and the ‘‘bumper to
bumper’’ traffic wave is released. The initial condition is given by

σi =

{
1 1 ≤ i ≤ 30,
0 31 ≤ i ≤ M.

(27)

The highway distance is set to 1 mile (≈1609 m), i.e., M = 240
cells. Then the averaged car density ρ̄ = 30/240 = 12.5%,
hich is in the free-flow regime. We calibrate the interaction
trength E0 such that the velocity of an upstream front can be
pproximately −10 miles per hour (≈ − 4.5 m/s), as estimated
y traffic researchers in [5,20,51]. While we take the look-ahead
arameter L = 4 and the multiple move parameter J = 2 for both
ook-ahead rules, the calibrated value of the interaction strength
s E0 = 4.5 for the first look-ahead rule (8) (Fig. 2(a)) and E0 = 6.0
for the second look-ahead rule (9) (Fig. 2(b)).

5.2. Numerical comparisons for different interaction strengths

After calibrating the KMC model parameters, we perform sev-
eral sets of numerical experiments to investigate 1D nonlocal traf-
fic flows. First, we analyze the effects of the interaction strength
E0 on the traffic flow and identify the range of significance of
parameters. In the following we take a fixed look-ahead distance
of L = 4 and the multiple move parameter J = 2 and make a
series of numerical tests for different car densities with various
values of parameters E0. We show the fundamental diagrams
of the density–flow, density–velocity and flow–velocity relation-
ships and compare the results of two look-ahead rules (8) and (9).
For these results we take a random car distribution at the initial
time on a loop highway of ≈4.17 miles (≈6704 m, M = 1000
cells) and observe the behavior of traffic flows as the averaged car
density ρ̄ increases incrementally from ρ̄ = 0.01 to ρ̄ = 0.99. The
traffic flow is measured as the number of cars passing a detector
site per unit time [52]. In Fig. 3, we run each KMC simulation with
different densities until the same final time (1 h) and report long
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Fig. 3. Comparison results of the traffic flow on the one-lane highway with six different values of the interaction strength E0 . In all KMC simulations, we take the
highway distance of ≈4.17 miles (≈6704 m, M = 1000 cells), the look-ahead parameter of L = 4, the multiple move parameter of J = 2 and the final time of 1
h. (a) (b): Longtime averages of the density–flow relationship; (c) (d): Ensemble-averaged velocity of cars versus the density ρ̄; (e) (f): Long-time averages of the
low–velocity relationship. (Left panel): Results of the first look-ahead rule (8) with E0 = 0 to 6.0. (Right panel): Results of the second look-ahead rule (9) with
0 = 0 to 8.0.
ime averages of the flow ⟨F⟩ in number of cars per hour and the
nsemble-averaged velocity of all cars ⟨v⟩ in cells per second.
In Fig. 3(a) and (b), we plot the fundamental diagrams on the

veraged fluxes ⟨F⟩ against the averaged density ρ̄ of the first
ook-ahead rule (8) with E0 = 0 to 6.0 and the second look-
ahead rule (9) with E0 = 0 to 8.0, respectively. They all share
certain characteristics: a nearly linear increase of the flow at low
averaged densities (which corresponds to the free-flow regime), a
single maximum of the flow reached at a critical density ρ̄crit, and
a right-skewed asymmetry (namely ρ̄crit < 1/2). The shape agrees
with other simulation results and observational data [24,30,51].
We also observe that both the value of the critical density ρ̄crit
and the maximum value of the flow ⟨F⟩ tend to decrease with
increasing E0 because the larger is the interaction strength the
stronger is the interaction to slow down the cars.

Fig. 3(c) and (d) show the fundamental diagrams of the density
-velocity relationship for two look-ahead rules, respectively. In
the free-flow regime the ensemble-averaged velocity ⟨v⟩ de-
creases approximately linearly from the maximum speed of 4
cells per second (≈26.8 m/s or 60 miles/h) as ρ̄ increases and the
chance of interaction between cars gets higher. As E0 increases,
when ρ̄ is larger than the critical point ρ̄crit, the average velocity
drops down to zero and the density–velocity curve is nega-
tive exponential. This linear relationship follows the Greenshields
model [53] and the negative exponential relationship belongs to
the Underwood model [54].

Fig. 3(e) and (f) show the fundamental diagrams of the flow–
velocity relationship for two look-ahead rules, respectively, which
plot the ensemble-averaged velocity ⟨v⟩ versus the flow ⟨F⟩. For
the case of the interaction strength E0 = 0 (shown as green ‘‘+ ’’
signs), the flow ⟨F⟩ reaches its maximum ≈2140 cars per hour
when the ensemble-averaged velocity ⟨v⟩ is at a critical value
⟨v⟩crit ≈ 1.7 cells per second (≈11.6 m/s or 25.5 miles/h). As
E0 increases, the maximum value of the flow decreases and the
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Fig. 4. Comparison results of the traffic flow on the one-lane highway with five different values of the interaction strength E0 . In all KMC simulations, we take the
highway distance of ≈4.17 miles (≈6704 m, M = 1000 cells), the look-ahead parameter of L = 1000, the multiple move parameter of J = 2 and the final time of
1 h. (a) (b): Long-time averages of the density–flow relationship; (c) (d): Ensemble-averaged velocity of cars versus the density ρ̄; (e) (f): Long-time averages of
he flow–velocity relationship. (Left panel): Results of the first look-ahead rule (8) with E0 = 0 to 4.5. (Right panel): Results of the second look-ahead rule (9) with
0 = 0 to 6.0. Note that the fluxes of the KMC simulation in (a) and (b) agree with the macroscopic averaged fluxes (28a) and (28b) (shown as the dashed black
urves), respectively.
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ritical value ⟨v⟩crit increases and becomes higher than 2 cells per
econd. The results compare favorably with observed data in [55].
We remark that for a small look-ahead distance of L = 4,

oth rules produce similar results as shown in Fig. 3. We also
ote that in Fig. 3(a) and (b), the density–flow curves of the KMC
imulations with E0 = 4.5 for the first look-ahead rule (8) and
0 = 6.0 for the second look-ahead rule (9) (shown as black ‘‘▽’’
igns) clearly display that the region of free-flow persists up to
he density of approximately ρ̄crit = 0.2, i.e., 240 × 0.2 ≈ 50
ars per mile. These results are naturally produced by the traffic
ynamics in our simulations with the calibrated parameters τ0 =

.25 s, the look-ahead distance of L = 4 and the multiple move
arameter J = 2, which agrees with observations [51,55].
However, when the look-ahead distance L is large, the two

ook-ahead rules produce different results in all diagrams of the
ensity–flow, density–velocity and flow–velocity relationships as
hown in Fig. 4 and in the following Section 5.3.
Take the look-ahead distance L = 1000, which is equal to the
ength M of the loop highway. Recall the macroscopic flux under
he two rules

= ω0ρ(1 − ρ)Je−E0 , and F = ω0ρ(1 − ρ)Je−ρ̄E0 .

s the dynamics will reach the equilibrium state ρ(x) ≡ ρ̄, the
ongtime averaged flux should satisfy

F⟩(ρ̄) =

{
ω0ρ̄(1 − ρ̄)Je−E0 , First rule (a)
ω0ρ̄(1 − ρ̄)Je−ρ̄E0 , Second rule (b)

(28)

he critical density can then be obtained through a first derivative
est. For the first rule,

¯crit =
1

, (29)

1 + J
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which depends on J but is independent of E0. For the second
rule,

ρ̄crit =
2

(E0 + J + 1) +

√
(E0 + J + 1)2 − 4E0

, (30)

hich depends on both J and E0.
In Fig. 4, we fix multiple move parameter J = 2, and vary

he interaction strength E0. Fig. 4(a) and (b) of the density–flow
elationship show that as E0 increases, the maximum values of the
low ⟨F⟩ of both look-ahead rules tend to decrease. For the first
ule (8) with E0 = 0 to 4.5 shown in Fig. 4(a), the fluxes of the
MC simulations agree with the corresponding PDE fluxes (28a)
shown as the dashed black curves). Moreover, all the density–
low curves take their maxima at the same critical density ρ̄crit =
1
3 , which is consistent with (29). When E0 ≥ 2.0, the maximum
value of the flow ⟨F⟩ becomes very low as the PDE flux decreases
exponentially with increasing E0 indicated in (28). For the second
look-ahead rule (9) with E0 = 0 to 6.0 shown in Fig. 4(b), the
luxes of the KMC simulations also agree with the corresponding
veraged fluxes of the PDE model (28b) (shown as the dashed
lack curves). But the value of the critical density ρ̄crit tends to
ecrease with increasing E0, as indicated in (30). Moreover, the
econd rule (9) can still produce relatively larger fluxes at small
alues of average density ρ̄ than the first rule (8) does.
The fundamental diagrams of the density–velocity relationship

n Fig. 4(c) and (d) also show differences between two look-ahead
ules for the large look-ahead distance L. Fig. 4(c) for the first
ule (8) shows that as E0 increases, the value of ⟨v⟩ at ρ̄ = 0.01
ecreases drastically, ranging from the full speed ⟨v⟩ = 4.0 cells
er second (≈26.8 m/s or 60 miles/h) of the case E0 = 0 (shown
s green ‘‘+ ’’ signs) to almost ⟨v⟩ ≈ 0 of the case E0 = 4.5
shown as cyan squares). On the other hand, Fig. 4(d) for the
econd rule (9) shows that all curves of different cases of E0
ecrease from high values of ⟨v⟩ = 3.74 ∼ 4.0 cells per second
about 25.0 ∼ 26.8 m/s or 56.1 ∼ 60 miles/h) at ρ̄ = 0.01 and
ventually decay to zero with the increasing density ρ̄.
Fig. 4(e) and (f) of the flow–velocity relationship again show

ig differences between two look-ahead rules for the large look-
head distance L. Fig. 4(e) for the first rule (8) shows that both
he magnitude of the flow ⟨F⟩ and the range of ⟨v⟩ decrease with
ncreasing E0. For the second rule (9) shown in Fig. 4(f), only the
agnitude of the flow ⟨F⟩ decreases as E0 increases, but both

he range of ⟨v⟩ and the critical value ⟨v⟩crit where the flow ⟨F⟩

eaches its maximum do not change too much. The value of ⟨v⟩crit
s around 1.5 cells per second (≈10 m/s or 22.5 miles/h).

.3. Numerical comparisons for different look-ahead distances

Next, we show the effects of the look-ahead distance L on the
lows in more detail in Fig. 5. For these results, we again take
random car distribution at the initial time on a loop highway
f ≈4.17 miles (≈6704 m, M = 1000 cells) and observe the
ehavior of traffic flows as the averaged car density ρ̄ increases
ncrementally from ρ̄ = 0.01 to ρ̄ = 0.99. Here, we use E0 = 2.0
or the first look-ahead rule (8) and E0 = 6.0 for the second look-
head rule (9), respectively, and the multiple move parameter
= 2 for both rules. All curves exhibit phase transitions between
he free-flow phase and the jammed phase. Fig. 5 shows that
the two look-ahead rules produce different results in all diagrams
of the density–flow, density–velocity and flow–velocity relation-
ships when the look-ahead distance L is large (> 10). But for
small L (∼ O(1)), both rules produce similar results.

Fig. 5(a) of the density–flow relationship for the first rule (8)
shows that as L increases, the maximum value of the flow ⟨F⟩

tends to decrease, but the value of the critical density ρ̄crit first
decreases (L = 2, 4, 8 and 16) and later changes to increase (L ≥
 o
32). When L = 1000, the fluxes of the KMC simulations (shown as
cyan squares) agree with the averaged fluxes for the macroscopic
dynamics (28a) (shown as the dashed black curve). We note that
he same KMC simulation results have also been shown as the
lue circles for E0 = 2.0 in Fig. 4(a). The density–flow curve takes
ts maximum at the critical density ρ̄crit =

1
3 . Following (28a), the

maximum flux at ρ̄crit =
1
3 is about 3600 ·

16
27 e

−2.0
≈ 289 cars

per hour (recall that ω0 = 4 s−1). Moreover, for a fixed ρ̄, the
magnitude of the flow ⟨F⟩ decreases with increasing L since the
larger is the look-ahead distance the longer is the effective range
of interaction between the cars. For the second look-ahead rule
(9) shown in Fig. 5(b), as L increases, both the maximum value
of the flow ⟨F⟩ and the value of the critical density ρ̄crit tend to
decrease. When L = 1000, the fluxes of the KMC simulations
(shown as cyan squares) also match with the averaged fluxes of
the PDE model (28b) (shown as the dashed black curve). The same
case has also been shown as cyan squares for E0 = 6.0 in Fig. 4(b).
We note that even the results of L = 100 for both rules (shown as
black ‘‘▽’’ signs in Fig. 5(a) and (b)) are close to the corresponding
macroscopic fluxes.

In Fig. 5(c) and (d), the fundamental diagrams of the density–
velocity relationship also show differences between the two look-
ahead rules. Fig. 5(c) for the first rule (8) shows that as L increases,
the ensemble-averaged velocity ⟨v⟩ decreases very rapidly in the
low-density regime and eventually decays to zero with the in-
creasing density ρ̄. In particular, while the density–velocity curve
of L = 100 (shown as black ‘‘▽’’ signs) drops down from a high
value of ⟨v⟩ = 3.53 cells per second (≈23.7 m/s or 52.9 miles/h)
at ρ̄ = 0.01, the case of L = 1000 (shown as cyan squares) starts
from a low value of ⟨v⟩ = 0.66 cells per second (≈4.4 m/s or
9.9 miles/h) at ρ̄ = 0.01. We recall that the loop highway has
a length of M = 1000 cells, so ρ̄ = 0.01 means that there are
a total of only 10 cars on this highway of ≈4.17 miles (≈6704
m). Their average velocity ⟨v⟩ is so low, which indicates that the
first look-ahead rule (8) is not reasonable for large look-ahead
distances L. On the other hand, Fig. 5(d) shows that the second
look-ahead rule (9) produces more reasonable results, even for
arge look-ahead distances L. The case of L = 1000 (shown as cyan
quares) gradually decreases from a high value of ⟨v⟩ = 3.70 cells
er second (≈24.7 m/s or 55.5 miles/h) at ρ̄ = 0.01.
Fig. 5(e) and (f) show that when the look-ahead distance L =

, the flow–velocity curves for both rules (shown as green ‘‘+’’
igns) reach their maxima at the critical velocity ⟨v⟩crit ≈ 1.7 cells
er second (≈11.6 m/s or 25.5 miles/h). As L increases in Fig. 5(e)
f the first look-ahead rule (8), the maximum value of the flow
ecreases and the critical value ⟨v⟩crit increases to be higher than
cells per second (L = 4, 8 and 16). When L = 32, the result

shown as blue ‘‘x’’ signs) produces two local maxima in the flow.
s L further increases, the range of the average velocity eventually
ecomes very small (L = 1000, shown as cyan squares). On the
ther hand, Fig. 5(f) shows that for all L, the flow–velocity curve
f the second look-ahead rule (9) has the full range from a high
peed down to zero. As L increases from 2, the maximum value
f the flow decreases, but the critical value ⟨v⟩crit first increases
nd becomes higher than 2 cells per second (L = 2, 4 and 8), then
ecreases to be lower than 2 cells per second (L ≥ 16).
We note that if the multiple move parameter J = 1, we can

btain the comparison results with the look-ahead distance L = 1.
n this case, the density–flow curve is symmetric for both rules.
he results are not shown here for the brevity but can be found
n Ref. [44].

.4. Numerical comparisons for different multiple move parameters

Finally, we show the effects of the multiple move parameter J
n the flows in Fig. 6. For these results, we still take a random car
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Fig. 5. Comparison results of the traffic flow on the one-lane highway with seven different values of the look-ahead distance L. In all KMC simulations, we take
the highway distance of ≈4.17 miles (≈6704 m, M = 1000 cells), the multiple move parameter of J = 2 and the final time 1 h. (a) (b): Long-time averages of the
density–flow relationship; (c) (d): Ensemble-averaged velocity of cars versus the density ρ̄; (e) (f): Longtime averages of the flow–velocity relationship. (Left panel):
Results of the first look-ahead rule (8) with E0 = 2.0. (Right panel): Results of the second look-ahead rule (9) with E0 = 6.0. Note that for long range interactions
(L = 1000), the fluxes of the KMC simulation (shown as cyan squares in (a) and (b)) agree with the macroscopic averaged fluxes (28a) and (28b) (shown as the
dashed black curve), respectively.
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distribution at the initial time on a loop highway of ≈4.17 miles
(≈6704 m, M = 1000 cells) and observe the behavior of traffic
lows as the averaged car density ρ̄ increases incrementally from
ρ̄ = 0.01 to ρ̄ = 0.99. Here, we also use E0 = 2.0 for the first
look-ahead rule (8) and E0 = 6.0 for the second look-ahead rule
9), respectively, and take the look-ahead distance of L = 1000 for
both rules. Fig. 6 shows the differences between two look-ahead
rules with the large look-ahead distance L.

Fig. 6(a) shows the density–flow relationship for the first rule
8) with J increasing from 1 to 5. The fluxes match beautifully
ith the macroscopic averaged fluxes (28a) (shown as the dashed
lack curves). The case of J = 1 corresponds to the LWR type
odel, where the curve is symmetric and concave. For J ≥

, the curves become neither convex nor concave, and have a
ight-skewed asymmetry. This indicates that our new model is
ore realistic. Moreover, for a fixed ρ̄, the magnitude of the

low ⟨F⟩ decreases with increasing J , which verifies the heuristic
argument in Section 2. For the second look-ahead rule (9) shown
in Fig. 6(b), the microscopic fluxes agree with the macroscopic
averaged fluxes (28b) very well. The critical density ρ̄crit is located
at (30) and it gets smaller as J increases. For instance, when J = 1
nd E0 = 6.0 (shown as green ‘‘+’’ signs), we have ρ̄crit =

1
4+

√
10

≈

.14 and the maximum flux is about 748 cars per hour.
The fundamental diagrams of the density–velocity relationship

n Fig. 6(c) and (d) also show differences between two look-
head rules (note that the ranges of Y -axis are different in two
igures). Fig. 6(c) for the first rule (8) shows that at the same
¯ , the ensemble-averaged velocity ⟨v⟩ decreases as J increases.
ll cases of different J start from a low value of ⟨v⟩ = 0.66
ells per second (≈4.4 m/s or 9.9 miles/h) at ρ̄ = 0.01. As we
ointed out in Fig. 5(c) in Section 5.3, the low average velocity
v⟩ at low densities indicates that the first look-ahead rule (8)
s not reasonable for large look-ahead distances L. Here again,
ig. 6(d) shows that for large look-ahead distances L, the second
ook-ahead rule (9) produces more reasonable results. All curves
f different cases of J gradually decrease from a high value of
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Fig. 6. Comparison results of the traffic flow on the one-lane highway with five different values of the multiple move parameter J . In all KMC simulations, we
take the highway distance of ≈4.17 miles (≈6704 m, M = 1000 cells), the look-ahead distance of L = 1000 and the final time 1 h. (a) (b): Long-time averages of
the density–flow relationship; (c) (d): Ensemble-averaged velocity of cars versus the density ρ̄; (e) (f): Long-time averages of the flow–velocity relationship. (Left
anel): Results of the first look-ahead rule (8) with E0 = 2.0. (Right panel): Results of the second look-ahead rule (9) with E0 = 6.0. Note that for each value of
= 1, 2, . . . , 5, the fluxes of the KMC simulation in (a) and (b) agrees with the macroscopic averaged fluxes in (28a) and (28b) (shown as the dashed black curves),
espectively. Also, note the differences in the ranges of Y -axis between the left and right panels.
v⟩ = 3.74 cells per second (≈25.0 m/s or 56.1 miles/h) at ρ̄ =

.01 and eventually decay to zero with the increasing density ρ̄.
Fig. 6(e) and (f) of the flow–velocity relationship show that

for a fixed value of ⟨v⟩, the magnitude of the flow ⟨F⟩ decreases
ith increasing J . However, the value of ⟨v⟩crit where the flow ⟨F⟩

eaches its maximum does not change too much as J increases.
or the first look-ahead rule (8) shown in Fig. 6(e), the value of
v⟩crit is around 0.25 cells per second (≈1.67 m/s or 3.75 miles/h).
or the second rule (9) shown in Fig. 6(f), the value of ⟨v⟩crit is

around 1.5 cells per second (≈10 m/s or 22.5 miles/h).

6. Conclusion

We have presented a new class of one-dimensional (1D) mod-
els to study traffic flows. Our work is motivated by the growing
need to understand mechanisms leading to traffic jams and de-
velop a quantitative approach to the optimal design of transporta-
tion systems. The cellular automata (CA) traffic models proposed
here incorporate stochastic dynamics for the movement of cars by
using the Arrhenius type look-ahead rules of each car, which take
into account of the nonlocal slow-down effect. In particular, we
considered two different look-ahead rules: the first one is based
on the distance from the car under consideration to the car in
front of it; the second one depends on the car density ahead.
Both rules feature a novel idea of multiple moves, which plays
a key role in recovering the right-skewed non-concave flux in
the macroscopic dynamics. Through a semi-discrete mesoscopic
stochastic process, we derive the coarse-grained macroscopic
dynamics of the CA model.

To simulate the proposed CA models, we applied an efficient
list-based KMC algorithm with a fast search that can further im-
prove computational efficiency. In the KMCmethod, the dynamics
of cars is described in terms of the transition rates corresponding
to possible configurational changes of the system, and then the
corresponding time evolution of the system can be expressed in
terms of these rates. While the Metropolis Monte Carlo (MMC)



12 Y. Sun and C. Tan / Physica D 413 (2020) 132663
method is a way of simulating an equilibrium distribution for a
model, the KMC is more suitable for simulating the time evolution
of the traffic systems. Moreover, since the KMC algorithm is
‘‘rejection-free’’, we choose the KMC as one of our contributions
in terms of computational efficiency. The KMC simulations relied
on the calibration of model parameters: the characteristic time
τ0, the interaction strength E0, the look-ahead parameter L and
the multiple move parameter J . Then we used the KMC simu-
lations to quantitatively predict the time evolution of the traffic
flows.

Our numerical results show that the fluxes of the KMC sim-
ulations agree with the coarse-grained macroscopic averaged
fluxes under various parameter settings. We obtained funda-
mental diagrams that display several important observed traf-
fic states. In particular, our models capture the right-skewed
non-concave asymmetry in the fundamental diagram of the den-
sity–flow relationship, which is well-known in realistic traffic
measurements [8]. Comparison of the numerical results of the
two look-ahead rules shows that in long-range interactions limit
with large look-ahead parameter L (> 10), the two rules produce
different coarse-grained macroscopic averaged fluxes. But for
small L (∼ O(1)), both rules produce similar results.

Physically we do not expect that human drivers would (or
even could) have a perception of traffic up front for many cars.
Therefore, the look-ahead horizon is typically in the range of 50
to 150 m, which corresponds to the small-to-intermediate values
of L = 8 to 24 and both rules exhibit reasonable behavior in
this regime. However, with the fast development of self-driving
vehicles equipped with vehicle-to-vehicle communication and
a variety of techniques to perceive their surroundings, such as
radar, Lidar, sonar, odometry and GPS [56], we/cars may ‘‘look’’
far ahead to reach large L. In that situation, the second look-ahead
rule may be more suitable than the first one.

As one of our main goals is to compare the two look-ahead
rules, we propose our CA models in a closed system and take
the periodic boundary conditions to keep the number of cars and
the density constant in a single simulation. Therefore, we have
not applied our models to simulate some more complex non-
stationary features, such as traffic breakdowns at bottlenecks [6].
It is possible to improve the models further in the following direc-
tions. We can include entrances and exits in the models by adding
dynamical mechanisms such as adsorption/desorption. In reality,
there are multi-lanes on highways and fast vehicles may change
lanes to bypass slow ones. We also need to consider different
types of vehicles, such as cars and trucks with unequal sizes and
speeds. More complicated models addressing these aspects will
be explored in the future.
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