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Abstract: Owing to the heterogeneity exhibited by many chronic diseases, precise

personalized medicine, also known as precision medicine, has garnered increased

attention in the scientific community. One main goal of precision medicine is to

develop the most effective tailored therapy for each individual patient. To this

end, one needs to incorporate individual characteristics to determine a proper in-

dividual treatment rule (ITR), which is used to make suitable decisions on treat-

ment assignments that optimize patients’ clinical outcomes. For binary treat-

ment settings, outcome-weighted learning (OWL) and several of its variations

have been proposed to estimate an ITR by optimizing the conditional expected

outcome, given patients’ information. However, for multiple treatment scenarios,

it remains unclear how to use OWL effectively. It can be shown that some di-

rect extensions of OWL for multiple treatments, such as the one-versus-one and

one-versus-rest methods, can yield suboptimal performance. In this paper, we

propose a new learning method, called multicategory outcome-weighted margin-

based learning (MOML), for estimating an ITR with multiple treatments. Our
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proposed method is very general and covers OWL as a special case. We show

the Fisher consistency of the estimated ITR, and establish its convergence rate

properties. Variable selection using the sparse l1 penalty is also considered. Sim-

ulations and a type-2 diabetes mellitus observational study are used to demon-

strate the competitive performance of the proposed method.

Key words and phrases: Angle-based Classifier, Large-margin, Multiple Treat-

ments, Outcome Weighted Learning, Precision Medicine, Support Vector Ma-

chine.

1. Introduction

An important goal of precision medicine is to develop effective statisti-

cal methods for evaluating treatments with heterogeneous effects among

patients. In particular, a treatment that works for patients with certain

characteristics may not be effective for others (Simoncelli, 2014). A pop-

ular method of maximizing the overall benefits that patients receive from

a recommended therapy involves identifying proper individual treatment

rules (ITRs), which are functions that map patient characteristics onto the

treatment space.

More recently, studies have begun building ITRs for binary treatment

cases. For example, Tian et al. (2014) studied the ITR problem and con-
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ducted a subgroup analysis using a regression approach. Qian and Murphy

(2011) incorporated ITR detection into an optimization problem, based on

a conditional expectation that contains an indicator function. Zhao et al.

(2012) used a weighted classification framework and proposed outcome-

weighted learning (OWL), which replaces the indicator function with a sur-

rogate loss. Zhou et al. (2017) proposed using the residuals from a linear

regression between the outcome and the covariates to improve the finite-

sample performance of the method proposed by Zhao et al. (2012). Zhang

et al. (2012) proposed a robust ITR method to handle potential regression

model misspecification when modeling the outcome.

Despite the successful developments in ITR estimation for binary treat-

ments, how the idea should be adapted to multicategory treatment scenarios

requires additional research. In general, some regression-based methods can

be applied for this purpose under parametric assumptions, such as certain

model mean structures (Robins et al., 2008). However, violating these as-

sumptions can lead to misleading results. In this study, we develop a statis-

tical learning framework for conducting optimal ITR detection for nominal

multicategory treatment cases. For simplicity, in the remainder of the pa-

per, we use the term multicategory to represent “nominal multicategory”

when there is no confusion.

Statistica Sinica: Preprint 
doi:10.5705/ss.202017.0527



4

In the classification literature, large-margin classifiers are popular and

widely used in practice. Well-known examples include the support vec-

tor machine (SVM) and penalized logistic regression (PLR) (Hastie et al.

(2009)). There are two main types of large-margin classifiers: soft and

hard classifiers (Liu et al., 2011). The essential difference is whether ob-

taining the classifier requires estimating the conditional probability of each

class. Soft classifiers, such as the PLR, estimate the class conditional prob-

ability, whereas hard classifiers, such as the SVM, target the classification

boundary only. Liu et al. (2011) showed that the performance of soft and

hard classifiers can vary for problems with different settings. In addition,

they proposed the large-margin unified machine (LUM) loss family, which

includes both soft and hard classifiers by using a tuning parameter, and

works well for different problems.

To solve k-class multicategory problems, one direct approach uses se-

quential binary classifiers. In particular, there are two common approaches

in the literature, namely, the one-versus-one and one-versus-rest approaches

(Allwein et al., 2001). However, these sequential binary classifiers can be

suboptimal. A common approach handling a k-class problem simultane-

ously is to estimate k functions with the sum-to-zero constraint (Lee et al.,

2004; Liu and Yuan, 2011; Zhang and Liu, 2013). Recently, Zhang and
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Liu (2014) pointed out that this approach can be inefficient because one

needs to add an extra sum-to-zero constraint to the optimization problem

to guarantee the identifiability and desirable properties of the classifiers. In

this way, an extra computational cost is incurred when solving the corre-

sponding constrained optimization problem. To overcome this drawback,

Zhang and Liu (2014) proposed an angle-based large-margin classification

technique using k − 1 functions, without the sum-to-zero constraint. This

method was shown to perform well in terms of both prediction accuracy

and computational efficiency.

With the success of large-margin classifiers in conducting standard clas-

sifications, it is desirable to adapt them to the OWL framework to help

find an ITR for multicategory treatments. In this paper, we propose a

new technique called multicategory outcome-weighted margin-based learn-

ing (MOML) to solve this problem. We start with the binary treatment

scenario, and then generalize the methods to the muticategory treatment

case. In particular, we use the vertices of a k-vertex simplex, with the

origin as its center, in a k − 1 Euclidean space to represent the k treat-

ments. Next, we construct k − 1 functions to map the covariates of each

patient onto a k − 1-dimensional vector. Then, we define the prediction

as the treatment that has the smallest angle between this vector and the
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corresponding vertex of the simplex. Motivated by Zhao et al. (2012), we

specify the objective function in the loss + penalty form. The loss part is

the weighted expectation of a loss function, `(·), of the angle between the

(k− 1)-dimensional function vector and the vertex of the actual treatment.

The penalty term is used to control the model complexity. In this paper,

we compare two penalty terms: l1 and l2 penalties. Note that the former

can lead to sparse models and, hence, can be used for variable selection.

Based on the loss term introduced, MOML detects the ITR as follows: for

patients who have a good clinical outcome, the estimated optimal treatment

should have a small angle with the actual treatment; on the other hand, for

patients who have poor clinical results, the estimated optimal treatments

should have large angles with the actual treatments.

The main contributions of this study are as follows. First, we propose

using outcome-weighted margin-based learning (OML) to achieve ITR es-

timation for binary treatments. This learning technique produces a flexible

class of decision functions that includes both soft and hard classifiers to

obtain additional information and better prediction performance. Second,

we propose a weighted angle-based method to adapt OML to multicate-

gory treatment scenarios. For soft classifiers, we discuss how to obtain the

estimated ratio of clinical rewards for each treatment pair in order to deter-
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mine the balance between the cost and the gain. We show the consistency

properties and convergence rates of excess risks for MOML. In addition, we

compare MOML with the one-versus-one and one-versus-rest extensions of

OWL. Third, for the case of linear decision boundaries, we propose using an

l1 penalty to achieve variable sparsity. We further show that this technique

leads to variable selection consistency, under certain assumptions.

The remainder of the paper is organized as follows. In Section 2, we

review the OWL method and show how OML is introduced for the ITR

estimation under the binary treatment setting. Then, we extend OML

to multicategory cases, and explain how to maintain Fisher consistency by

choosing a loss function. We also point out how the fitted decision functions

can be connected to the ratios of the predicted clinical rewards under soft

classifiers. In Sections 3 and 4, we provide six simulated examples and an

application to a type-2 diabetes mellitus observational study, respectively,

to evaluate the finite-sample performance of MOML. Discussions and con-

clusions are provided in Section 5. Several additional theories, including

the excess risk convergence rate and selection consistency, and all technical

details and proofs are provided in the online Supplementary Material.
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2. Methodology

In this section, we first introduce the concepts and notation related to ITRs

in Section 2.1, and then discuss how to use binary margin-based classifiers

to find the optimal ITR for two treatments in Section 2.2. In Section 2.3,

we extend the proposed method to the case of multiple treatments.

2.1 ITRs and OWL

Suppose we observe the training data set {(xi, ai, ri); i = 1, . . . , n} from an

underlying distribution P (X, A,R), where X ∈ Rp is a patient’s covariate

vector, A ∈ {1, . . . , k} is the treatment, and R is the observed clinical out-

come, namely, the reward. In particular, P (x, a, r) = f0(x)pr(a|x)f1(r|x; a),

where f0 is the unknown density ofX, pr(a|x) is the probability of receiving

treatment a for a patient with covariates x, and f1 is the unknown density

of R, conditional on (X;A). We assume that larger values of R are more

desirable. In this paper, we focus on k-arm trials. An ITR D is a mapping

from the covariate space Rp onto the treatment set {1, . . . , k}.

Before discussing multicategory treatments, we first introduce the bi-

nary optimal ITR, and formulate it as an outcome-weighted binary clas-

sification problem. To better understand ITRs, we use E to denote the

expectation with respect to P . For any ITR D(·), we let PD be the distri-
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2.1 ITRs and OWL9

bution of {X, A,R}, under which the treatment A is decided byD(X), with

PD(x, a, r) = f0(x)I(a = D(x))f1(r|x; a), and let ED be the corresponding

expectation. Therefore, PD is the distribution with the same X-marginal

as P and, given X = x, the conditional distribution of R is P (r|X =

x;A = D(x)). We assume pr(A = a|x) > 0 for any a ∈ {1, . . . , k}. One

can verify that PD is absolutely continuous with respect to P , and that

the Radon−Nikodym derivative is dPD/dP = I{a = D(x)}/πa(x), where

I(·) is the indicator function, and πa(x) = pr(A = a|x). Consequently, the

expected reward for a given ITR D is

ED(R) =

ˆ
RdPD =

ˆ
R
dPD

dP
dP =

ˆ
R
I{A = D(X)}

πA(X)
dP.

An optimal ITRD∗ is defined asD∗ = argmaxD E
D(R) = argmaxD E

[
R I{A=D(X)}

πA(X)

]
.

An equivalent expression ofD∗ is that, for any x, D∗(x) = argmaxa∈{1,...,k}E(R|X =

x;A = a). In other words, D∗ is an optimal ITR if for any x, the expected

reward that corresponds to D∗(x) is larger than that of any treatment in

{1, . . . , k}\D∗(x). The optimal rule D∗(x) is estimated from the observed

training data from the joint distribution of (X, A,R). For a future patient

with observed covariate x, the optimal treatment is predicted based on the

estimated D∗(x) .

Statistica Sinica: Preprint 
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2.1 ITRs and OWL10

In the literature, a common approach to finding D∗ is to estimate E(R |

A = a;X = x) for each treatment, using parametric or semiparametric

regression models (Robins, 2004; Moodie et al., 2009; Qian and Murphy,

2011). For a new patient with covariates x, the treatment recommendation

is the maximum Ê{R | A = a;X = x}.

When there are two treatments, we can express them as A ∈ {+1,−1}.

Qian and Murphy (2011) showed that, in this case, finding D∗ can be

formulated as a binary classification problem. In particular, one can verify

that D∗ is the minimizer of

ˆ
R

πA(X)
I{A 6= D(X)}dP. (2.1)

Note that (2.1) can be viewed as a weighted 0–1 loss in a weighted binary

classification problem. To see this, note that with the training data set

{(xi, ai, ri); i = 1, . . . , n}, we wish to minimize the following empirical loss

that corresponds to (2.1):

1

n

n∑
i=1

ri
πai(xi)

I{aiD(xi) 6= 1}. (2.2)

However, because the indicator function is discontinuous, solving (2.2) can

be NP-hard. To overcome this difficulty, we can use a surrogate loss func-
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tion `(·) for binary margin-based classification. Zhao et al. (2012) proposed

OWL, which employs a hinge loss in the SVM for the optimization. In par-

ticular, they assumed that ri ≥ 0 for all i, and used a single function f(x)

for classification, as is typical in binary margin-based classifiers. The treat-

ment is assigned by D(x) = sign{f(x)}. The corresponding optimization

problem in Zhao et al. (2012) can be written as

argmin
f

1

n

n∑
i=1

ri
πai(xi)

{1− aif(xi)}+ + λJ(f), (2.3)

where (1−u)+ = max(0, 1−u) is the hinge loss function, J(f) is a penalty

on f to prevent overfitting, and λ is the tuning parameter.

Note that Zhao et al. (2012) considered only nonnegative rewards; thus

the corresponding problem remains a convex optimization. When there are

negative rewards, they recommend shifting all rewards by a constant. Chen

et al. (2017) showed that the performance of OWL varies with the choice

of the shifting constant. To address this problem, they modified the loss to

handle negative rewards directly.

Statistica Sinica: Preprint 
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2.2 OML for Binary Treatments

As discussed in Section 1, there are many open problems, despite the sem-

inal progress in Zhao et al. (2012). In particular, many choices of margin-

based loss functions have not been fully studied in the literature. To inves-

tigate this problem, we propose an OML method. In Section 2.2, we focus

on the case where k = 2 and A ∈ {+1,−1}, and propose the following OML

optimization problem:

argmin
f

1

n

n∑
i=1

ri
πai(xi)

`{aif(xi)}+ λJ(f), (2.4)

where `(·) is a loss function in a margin-based classification. Here, `(·)

denotes a classification method. For example, SVMs use the hinge loss

in (2.3), and a logistic regression uses the deviance loss `(u) = log{1 +

exp(−u)}. See the Supplementary Material for plots of several commonly

used loss functions. We generalize our OML method to handle problems

with multiple treatments in Section 2.3.

To explore different soft and hard classifiers, we need to define the

theoretical minimizer of a classifier. First, we assume that ri ≥ 0. Conse-

quently, (2.4) is convex if `(·) and J(f) are convex, in which case, it can

be solved using standard optimization methods, such as those in Boyd and
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Vandenberghe (2004). We defer the discussion of negative rewards until af-

ter Theorem 1. Define the conditional expected loss with respect to (2.4) as

S(x) = E[ R
πA(X)

`{Af(X)} | X = x], where the expectation is taken with

respect to the marginal distribution of (R,A), for a given x. We define the

theoretical minimizer of S(x) as

f ∗(x) = argmin
f

S(x) = argmin
f

E[
R

πA(X)
`{Af(X)} |X = x].

Note that f ∗ depends on the loss function `.

Next, we discuss the consistency of a classifier. In the standard margin-

based classification literature, Fisher consistency (Lin, 2002; Liu, 2007), also

known as classification calibration (Bartlett et al., 2006), is a fundamental

requirement of classifiers. For problems that require finding optimal ITRs

using classification, a method is said to be Fisher consistent if the predicted

treatment based on f ∗ leads to the best expectation of the outcome rewards

(Zhao et al., 2012). In other words, for binary problems, the method is

Fisher consistent if sign{f ∗(x)} = argmaxaR(x, a), where R(x, a) =
´

(R |

X = x, A = a)dP is the expected reward for a given treatment a at a fixed

x. Zhao et al. (2012) proved that the OWL method using the hinge loss

is Fisher consistent for nonnegative rewards. In the next proposition, we

Statistica Sinica: Preprint 
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provide a more general result that can be applied to various loss functions.

Proposition 1. To find optimal ITRs using binary margin-based classi-

fiers, assume that the rewards are nonnegative. Then, the method is Fisher

consistent if `(·) is differentiable at 0, and `(u) < `(−u), for any u > 0.

Proposition 1 shows that in ITR problems, many binary margin-based clas-

sifiers are Fisher consistent. For instance, both soft and hard classifiers in

the LUM loss family (Liu et al., 2011) are Fisher consistent. Note that the

LUM family uses a parameter c to control whether the classification is soft

(c = 0) or hard (c → ∞). See the appendix for additional information on

LUM loss functions.

In a standard margin-based classification, in addition to Fisher consis-

tency, f ∗ can also be used to estimate the class conditional probabilities.

This approach is widely used in the literature. See, for example, Hastie

et al. (2009) and Liu et al. (2011), among others. For completeness, we

include a brief explanation on how to estimate probabilities using f ∗ in the

appendix. For problems that employ binary classifiers to find optimal ITRs,

the next theorem shows that when we use certain loss functions, f ∗ can be

used to find the ratio between R(x,+1) and R(x,−1).

Theorem 1. To find optimal ITRs using binary margin-based classifiers,

assume that the rewards are nonnegative. Furthermore, assume that the

Statistica Sinica: Preprint 
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loss function `(·) is differentiable with `′(u) < 0, for all u. Then, we have

that

R(x,+1)

R(x,−1)
=
`′(−f ∗)
`′(f ∗)

. (2.5)

As a result, for any new observation x, once we obtain the fitted classifica-

tion function f̂(x), we can estimate the ratio of R(x,+1) to R(x,−1) using

`′{−f̂(x)}/`′{f̂(x)}, which provides more information than the ITR itself

does.

Remark 1. Theorem 1 shows that estimating the ratio of expected rewards

in ITR problems is similar to the class conditional probability estimation

in a standard margin-based classification. In particular, let P+1(x) and

P−1(x) be the conditional class probabilities for classes +1 and −1, respec-

tively, in a binary classification (see the appendix for further details). We

can verify that, with similar conditions on `, we can use `′(−f̂)/`′(f̂) to

estimate P+1(x)/P−1(x). For example, in a standard logistic regression,

estimating P+1(x)/P−1(x) by `′(−f̂)/`′(f̂) is equivalent to using the logit

link function for probability estimation. Similar discussions on class prob-

ability estimations for standard multicategory classification problems are

presented in Zou et al. (2008), Zhang and Liu (2014), and Neykov et al.

Statistica Sinica: Preprint 
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(2016).

Using Theorem 1, we can explore the difference between using soft and

hard classifiers to find optimal ITRs. In particular, we plot log{R(x,+1)/R(x,−1)},

denoted by r+1−1, against f ∗ for some loss functions in the LUM family in

Figure 1. We can see that, with soft classifiers (c = 0), there is a one-to-one

correspondence between r+1−1 and f ∗. In other words, we can estimate

the ratio between the expected rewards for any new patients using the es-

timated f̂ . This ratio information can be important in practical problems,

as discussed in Section 1. As discussed in Section 3, if the underlying ra-

tios are smooth functions, soft classifiers tend to perform better than hard

classifiers in terms of accurately estimating the ratios.

For c > 0, the flat region of r+1−1 makes estimating this ratio more

difficult. In particular, if f̂ ∈ [−c/(1+c), c/(1+c)], then the method cannot

provide an estimate of r+1−1. As c increases, the flat region enlarges. In the

limit (c → ∞), the hard classifier provides little information about r+1−1.

In other words, hard classifiers bypass the estimation of r+1−1 and focus on

the boundary (i.e., R(x,+1) = R(x,−1) in binary problems) estimation

only. In the Supplementary Material, we show that when the underlying

ratios are close to step functions, hard classifiers outperform soft classifiers,

because an accurate estimation of r+1−1 can be very difficult.

Statistica Sinica: Preprint 
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Figure 1: Plot of log{R(x,+1)/R(x,−1)} (r+1−1 on the y axis) against f∗ for

some LUM loss functions. Here, c = 0 corresponds to the soft LUM loss, and

c→∞ corresponds to the SVM hinge loss, which is a hard classifier. Note that

a is another parameter in the LUM family (see the appendix), and a = 1 and

c = 1 correspond to the loss function in a distance-weighted discriminant analysis

(Marron et al., 2007).

Next, we discuss how to address negative rewards using our OML

method. Recall that when all ri ≥ 0, we can use a surrogate loss function `

that is a convex upper bound of the 0−1 loss, as from (2.2) to (2.4). When

ri < 0, the corresponding 0−1 loss is equivalent to −|ri|I{aiD(xi) 6= 1},

which can be regarded as a −1−0 loss (Chen et al., 2017). In this case,

because the reward is negative, it is desirable to consider the other treat-

ment, rather than ai. Based on these observations, we propose the following

Statistica Sinica: Preprint 
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2.2 OML for Binary Treatments18

optimization of binary problems for both positive and negative rewards:

argmin
f

1

n

n∑
i=1

|ri|
πai(xi)

`ri{aif(xi)}+ λJ(f), (2.6)

where `ri(u) = `(u) if ri ≥ 0, and `ri(u) = `(−u) if ri < 0 (the inverted

loss). Note that `(−u)−1 is the tight convex upper bound of the −1−0 loss

as long as ` is convex, and minimizing `{−aif(xi)} − 1 and `{−aif(xi)}

with respect to f are equivalent. The treatment recommendation rule for

negative rewards is still D(x) = sign{f(x)}.

The next theorem shows that our binary OML method with negative

rewards also enjoys Fisher consistency, with mild conditions on the loss

function.

Theorem 2. When finding optimal ITRs using binary OML classifiers

(2.6), a method is Fisher consistent if `(·) is differentiable at zero, and

`(u) < `(−u) for any u > 0.

From Theorem 2, by including the inverted loss functions for negative re-

wards, our OML method can still be asymptotically consistent. In contrast,

the estimation of the rewards ratio becomes more complicated if R can be

negative. The next theorem shows that our OML method is able to provide

an upper or lower bound for the corresponding rewards ratios, under some

Statistica Sinica: Preprint 
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mild assumptions.

Theorem 3. To find optimal ITRs using binary margin-based classifiers,

assume that the expected rewards satisfy R(x, a) > 0, for all x and a. Fur-

thermore, assume that the loss function `(·) is differentiable, with `′(u) < 0

for all u. Then, we have that


R(x,+1)
R(x,−1) ≥

`′(−f∗)
`′(f∗)

, if R(x,+1) > R(x,−1),

R(x,+1)
R(x,−1) ≤

`′(−f∗)
`′(f∗)

, if R(x,+1) < R(x,−1).

(2.7)

Theorem 3 shows that `′(−f̂)/`′(f̂) can be used as a lower bound for

the rewards ratio when treatment +1 is better, and an upper bound if −1

is better. The condition that R(x, a) > 0 for all x and a can be satisfied,

for example, when patients with no treatments have zero expected rewards,

and all treatments under study have preliminary results to show that they

are effective overall. Note that when there are negative rewards, our OML

method cannot provide an accurate estimation of the rewards ratio, but can

provide a bound (see the proof of Theorem 3 in the Supplementary Material

for further details), yet the method is still Fisher consistent. Hence, we can

see that in ITR problems, calculating a rewards estimation can be more

difficult than a treatment recommendation. This is analogous to a standard

classification, in which a probability estimation can be more difficult than

Statistica Sinica: Preprint 
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making a label prediction.

In the next section, we generalize our OML method to handle problems

with multiple treatments.

2.3 MOML

To find D∗ in a practical problem with k > 2 treatments, we can employ

sequential binary classifiers, such as the one-versus-one and one-versus-rest

approaches. However, these can lead to inconsistent ITR estimators (see the

Supplementary Material for a proof of the inconsistency of the one-versus-

rest SVM approach). As discussed in Section 1, it can be desirable to have

a multicategory classifier that considers all k treatments simultaneously in

one optimization problem.

In the literature, many commonly used simultaneous multicategory

margin-based classifiers employ k classification functions for the k classes.

Furthermore, they impose a sum-to-zero constraint on the k functions to

reduce the parameter space and to ensure certain theoretical properties,

such as Fisher consistency. Recently, Zhang and Liu (2014) showed that

this approach can be redundant and suboptimal in terms of computational

speed and classification accuracy. To overcome these difficulties, Zhang

and Liu (2014) proposed an angle-based classification method. In this pa-

Statistica Sinica: Preprint 
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per, we propose identifying optimal ITRs with multiple treatments in an

angle-based classification framework.

The standard angle-based classification can be summarized as follows.

Let {(xi, yi); i = 1, . . . , n} be the training data set, where y represents

the class label. Define a simplex W with k vertices {W 1, . . . ,W k} in a

(k − 1)-dimensional space, such that

W j =


(k − 1)−1/21k−1, j = 1,

−(1 + k1/2)/{(k − 1)3/2}1k−1 + {k/(k − 1)}1/2ej−1, 2 ≤ j ≤ k,

where 1k−1 is a vector of ones of length k − 1, and ej ∈ Rk−1 is a vector

with the jth element equal to one, and zero elsewhere. This simplex is

symmetric with all vertices an equal distance from each other. The angle-

based classifier uses a (k − 1)-dimensional classification function vector

f = (f1, . . . , fk−1)
T , which maps x to f(x) ∈ Rk−1. Note that f introduces

k angles with respect to W 1, . . . ,W k, namely, ∠(f ,Wj); j = 1, . . . , k.

The prediction rule is based on which angle is the smallest. In particular,

ŷ(x) = argminj∈{1,...,k}∠(f ,Wj), where ŷ(x) is the predicted label for x.

Figure 2 illustrates how to make predictions using this angle-based classifi-

cation when k = 2, 3, and 4. When k = 3, for example, the mapped obser-

vation f̂ is predicted as the class corresponding to W 1, because θ1 is the
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smallest angle. Based on the observation that argminj∈{1,...,k}∠(f ,Wj) =

argmaxj∈{1,...,k}〈f ,W j〉, Zhang and Liu (2014) proposed the following op-

timization problem for the angle-based classifier:

argmin
f

1

n

n∑
i=1

`{〈W yi ,f(xi)〉}+ λJ(f), (2.8)

where `(·) is a binary margin-based surrogate loss function, which is typ-

ically nonnegative and satisfies `(u) < `(−u) for any u > 0, J(f) is a

penalty on f to prevent overfitting, and λ is a tuning parameter to balance

the goodness of fit and the model complexity. One advantage of the angle-

based classifier is that it is free of the sum-to-zero constraint and, thus,

leaning more efficient for large data sets.

To generalize our OML method from the binary setting to handle mul-

ticategory problems, we propose the following optimization:

argmin
f

1

n

n∑
i=1

|ri|
πai(xi)

`ri{〈W ai ,f(xi)〉}+ λJ(f), (2.9)

where `ri is defined as in (2.6). For the penalty term J(f), we discuss two

options: l2 and l1 penalties. When applying the l1 penalty, we can remove

covariates that have zero coefficient estimates in all k−1 components of the

fitted f . We show in Section 4 that such a sparse penalty can exhibit selec-

Statistica Sinica: Preprint 
doi:10.5705/ss.202017.0527



2.3 MOML23

Figure 2: Illustration of the angle-based classification with k = 2, 3, and
4. For example, when k = 3 (as the plot in the middle shows), the mapped
observation f̂ is predicted as the class corresponding to W 1, because θ1 <
θ3 < θ2.

tion consistency under linear learning. For a new patient with the covariate

vector x, once the fitted classification function vector f̂ is obtained, the cor-

responding treatment recommendation is argmaxa∈{1,...,k}〈W a, f̂(x)〉. We

can verify that when k = 2, (2.9) reduces to (2.6). Hence, for the statistical

learning theory (see the Supplementary Material), we focus on multicate-

gory classification, and the results can be applied to binary cases directly.

Next, we study the Fisher consistency of MOML for multicategory

treatments. In the literature on standard margin-based classification, Fisher

consistency is more complicated in multicategory problems than it is in bi-

nary settings. For example, it is known that the binary SVM is Fisher

consistent (Lin, 2002). However, its direct generalization to the multicate-
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gory classifier is inconsistent, both in the framework with k functions and

a sum-to-zero constraint (Liu, 2007), and in the framework of angle-based

classification (Zhang and Liu, 2014). To overcome these challenges, many

new multicategory SVMs have been proposed. See, for example, Lee et al.

(2004) and Liu and Yuan (2011), among others. To find optimal ITRs, we

have the following result for the Fisher consistency of our MOML method

in multicategory treatment problems.

Before presenting our main result, we introduce an important assump-

tion. First, recall that the expected reward for a given treatment j at x

is R(x, a) =
´

(R | X = x, A = a)dP . Define the positive part of a con-

ditional reward as R+
j (x) =

´
(R | X = x, A = j)I(R > 0)dP , and the

negative part as R−j (x) =
´

(R |X = x, A = j)I(R < 0)dP . We can verify

that R(x, j) = R+
j (x) + R−j (x). Here, R−j (x) can be used to measure the

possibility and severity of adverse effects for treatment j on patients with

the covariate vector x. The next assumption requires that R−(x) of the

best treatment for a given patient should not be small.

Assumption 1. For a patient with the covariate vector x, denote the best

treatment by j (i.e., R(x, j) > R(x, i), for any i 6= j). Then, R−j (x) ≥

R−i (x), for any i 6= j.

Assumption 1 is desirable, and often necessary for practical problems.
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In particular, for any patient, we should expect that the best treatment does

not have a large probability of adverse effects, and that its adverse effects

are relatively mild. Assumption 1 can be satisfied, for example, when the

rewards are all positive, or when the marginal distributions of the rewards

for different patients and treatments are the same, except for a constant shift

(e.g., normal distributions with a common variance). With Assumption 1,

we are ready to present the theorem for the Fisher consistency of our MOML

method.

Theorem 4. To find optimal ITRs using MOML classifiers (2.9), suppose

Assumption 1 is valid. Then the method is Fisher consistent if `(·) is convex

and strictly decreasing. Moreover, MOML with a hinge loss is not Fisher

consistent.

Note that Theorem 4 provides a sufficient condition for the MOML

classifier to be Fisher consistent. In the literature, some classifiers have

loss functions that do not satisfy the condition in Theorem 4, yet we can

still verify that the corresponding MOML method is Fisher consistent. For

example, we can use a similar approach to that in the proof of Theorem 4

to show that our MOML method using the proximal SVM loss is Fisher

consistent. On the other hand, our MOML SVM (i.e., using the standard

hinge loss) is not Fisher consistent. To overcome this challenge, we propose
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using the LUM loss function with a large, but finite c. This loss function

is very close to the SVM hinge loss, which corresponds to c→∞, and can

preserve Fisher consistency. Note that a similar approach was previously

used in Zhang and Liu (2014) to obtain a Fisher consistent angle-based

classifier.

To estimate the ratio of the expected rewards for different treatments,

we have the following theorem.

Theorem 5. Suppose the loss function `(u) is convex and differentiable,

with `′(u) < 0 for all u. If the random reward satisfies R ≥ 0, then for any

i 6= j ∈ {1, . . . , k}, we have

R(x, i)

R(x, j)
=
`′(〈f ∗,W j〉)
`′(〈f ∗,W i〉)

.

From Theorem 5, once f̂(x) is obtained for a new patient with x, we

can estimate the rewards ratio between the ith and jth treatments as

`′{〈f̂(x),W j〉}/`′{〈f̂(x),W i〉}. Additional discussions on soft and hard

classifiers are provided in the Supplementary Material.

We also develop additional theoretical results for MOML such as the

convergence rate of excess risks. In addition, we show that MOML enjoys

variable selection consistency under linear ITRs with J(f) as the l1 penalty.
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Additional information is included in the additional statistical learning the-

ory section of the Supplementary Material.

3. Numerical Studies

In this section, we use six simulation studies with both linear and nonlinear

ITR boundaries to assess the finite-sample performance of the proposed

MOML method. For all examples, we fit MOML using the l2 penalty, and

compare it to the standard OWL (Zhao et al. (2012)) with extensions of

one-versus-rest (OWL-1) and one-versus-one (OWL-2). Furthermore, to

evaluate the performance of the variable selection, as discussed in Section

3.2, we implement MOML using the l1 penalty (MOML-l1) for all linear ITR

boundary examples. When fitting OWL, we replace the hinge loss with the

modified loss in (7) to improve its performance for a fair comparison. For

the one-versus-rest extension, we conduct sequential one-versus-rest binary

optimal treatment estimations (i.e., 1 vs. others, 2 vs. others, · · · , k vs.

others), and then pick the treatment recommended by the classifier f̂ j

with the largest magnitude among j = 1, · · · , k. For the one-versus-one

extension, we first estimate the decision function f̂ l, for l = 1, · · · , k(k −

1)/2, based on each pair of treatments (i.e., 1 vs. 2, 1 vs. 3, · · · , k − 1 vs.

k), and then pick the treatment suggested by f̂ l with the largest magnitude.
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Note that the one-versus-one extension uses only a subset of the data to fit

each f̂ l. For a meaningful comparison, we restrict f to be linear functions

of x for all of the models in the linear ITR boundary examples, and apply

Gaussian kernel learning to fit f in nonlinear ITR boundary examples.

When we generate the data sets, we first simulate a training set, which

is used to fit the model. We also generate an independent and equal-size

tuning set to find the best combination of tuning parameters, as well as

a much larger testing set to evaluate the model performance (10 times

as big as the training set). For the tuning parameter range, we choose

a from {0.1, 1, 10}, let c vary in {0, 1, 10, 100, 1000}, and let λ vary in

{0.001, 0.01, 0.1, 1, 10}. We report the averages and standard deviations

of the misclassification rates and the empirical value functions of the test-

ing sets as the criteria for model assessment. The empirical value function

is defined as P∗n[I(A = D(X))R/πA(X)]/P∗n[I(A = D(X))/πA(X)], where

P∗n denotes the empirical average of the testing data set (Zhao et al., 2012).

The value function is treated as a more comprehensive measure of how close

the estimated ITR is to the true optimal ITR. We repeat the simulations

50 times in each example.

In the first four examples, we generate the data sets in which the op-

timal treatment boundaries are linear functions of the covariates. We add
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additional covariates as random noise in Examples 3 and 4. In the last

two examples, we discuss nonlinear ITR scenarios, and perform Gaussian

kernel learning classifiers. We let the dimensions of the covariates x vary in

p ∈ {10, 50} for all examples. The kernel bandwidth τ is fixed as 1/(2σ̂2),

where σ̂ is the median of the pairwise Euclidean distance of the simulated

covariates (Wu and Liu, 2007). The details of each setting are presented

below.

Example 1 We consider three points (c1, c2, c3) that are equal dis-

tances from the p-dimensional space to represent the cluster centroids of

the true optimal treatments. For each cj, where j = 1, 2, 3, we generate

its covariate Xi from a multivariate normal distribution N(cj, Ip), where

Ip is a p-dimensional identity matrix. The actually assigned Ai follows a

discrete uniform distribution U{1, 2, 3}. The reward Ri follows a Gaussian

distribution N(µ(Xi, Ai, di), 1), where µ(Xi, Ai, di) = XT
i β+ 5 · I(Ai = di),

βT = (1Tp/2,−1Tp/2), and di is the optimal treatment for Xi, as determined

by the cluster centroids. The training data set is of size 300.

Example 2 We define a five-treatment scenario in which the five cen-

troids (c1, · · · , c5) form a simplex in R4. The marginal distribution Xi|cj

follows a normal distribution with mean cj and covariate matrix 0.1Ip.

The treatment Ai follows a discrete uniform U{1, · · · , 5}. The reward
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Ri ∼ N(µ(Xi, Ai, di), 0.1), where µ(Xi, Ai, di) = XT
i β + 3 · I(Ai = di) + 1

and βT = 0.1× (1Tp/2,−1Tp/2). The training data set is of size 500.

Example 3 This example includes 10 treatments, and the optimal ITR

boundary depends on the first two covariates, that is, (X1, X2). The 10 cor-

responding centroids (c1, · · · , c10) are spread out evenly on the unit circle

X2
1 + X2

2 = 1, and the marginal distribution of (X1, X2)
T is a normal dis-

tribution with mean cj and covariate matrix 0.03I2. Similarly to Example

2, Ai ∼ U{1, · · · , 10} and Ri ∼ N(µ(Xi, Ai, di), 1), where µ(Xi, Ai, di) =

XT
i β+ 5 · I(Ai = di)− 2 and βT = (1T5 ,−1T5 ,0Tp−10). The training data set

is of size 600.

Example 4 All settings are the same as Example 2, except that βT =

0.1× (1, 1,−1,−1,0Tp−4).

Example 5 This is a three-class example, with each centroid cj, for

j = 1, 2, 3, distributed on two mess points with equal probabilities. The

marginal distribution of (X1, X2)
T is a mixture of two normal distribu-

tions 0.5N [(cos(jπ/3), sin(jπ/3))T , 0.08I2] + 0.5N [(cos(π + jπ/3), sin(π +

jπ/3))T , 0.08I2]. The treatment Ai ∼ U{1, 2, 3} and the reward Ri ∼

N(µ(Xi, Ai, di), 1), where µ(Xi, Ai, di) = XT
i β + 5 · I(Ai = di) − 1 and

βT = (1Tp/2,−1Tp/2). The training data set is of size 300.
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Example 6 In this example, the optimal treatment di for each Xi is

determined with probability 95% by the signs of two underlying nonlinear

functions, f1(X) = X2
1 +X2

2 + exp{0.5X3} and f2(X) = X2
4 −X3

5 −X6. A

random noise is added to di with probability 5% to create a positive Bayes

error. In particular, we have di defined as

di = d(Xi) =


1 + [sign(f1(Xi)−m1)]+ + 2× [sign(f2(Xi)−m2)]+

Ui

with prob. 0.95

with prob. 0.05

,

where m1 and m2 are the medians of f1 and f2, respectively, and Ui follows

a discrete U{1, 2, 3, 4}, which is independent of (Ai, Xi). The covariate Xi

follows a continuous uniform distribution U(0, 1), Ai ∼ U{1, · · · , 4}, and

Ri ∼ N(µ(Xi, Ai, di), 1), where µ(Xi, Ai, di) = XT
i β+ 5 · I(Ai = di)−1 and

βT = (1Tp/2,−1Tp/2). The training data set is of size 500.
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Figure 3: Plots of misclassification rates of simulation studies. OWL-1 and
OWL-2 represent extensions of OWL (one-versus-rest and one-versus-one),
MOML and MOML-l1 represent outcome weighted margin-based learning
with l2 and l1 penalties, respectively, and Bayes represents the empirical
Bayes error.
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Figure 4: Plots of value functions of simulation studies. OWL-1 and
OWL-2 represent extensions of OWL (one-versus-rest and one-versus-one),
MOML and MOML-l1 represent outcome weighted margin-based learning
with l2 and l1 penalties, respectively, and Bayes represents the empirical
Bayes error.
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Figures 3 and 4 plot the sample means of the misclassification rates

and the empirical value functions produced by the models. The numerical

results, with standard deviations, are reported in tables in the Supplemen-

tary Material. From the results, MOML with the l2 penalty, MOML with

the l1 penalty, and OWL-1 (with one-versus-rest extension) perform equiv-

alently when the underlying ITR is not very complicated and the treatment

effect is sufficiently strong, as Example 1 shows when p = 10. Example 2

represents situations when the linear ITR becomes more complicated and

the treatment effect is intermediate. Here, MOML produces significantly

larger empirical value function results than the two simple OWL extensions

do. Example 4 has a similar setting to Example 2, with noise variables

added to the covariate set. Under this scenario, MOML with the l1 penalty

outperforms MOML with the l2 penalty, because it is able to remove many

unnecessary noise variables. This improvement in prediction accuracy be-

comes clearer when there are higher covariate dimensions, that is, p = 50.

For the selection result, when p = 10, MOML-l1 removes 64.6% of the noise,

on average, while keeping all useful variables; when p = 50, about 57.6%

of the noise is removed, and all useful variables are kept. Example 3 repre-

sents a difficult ITR detection scenario, with a large number of treatments

(k = 10). In this case, the two MOML methods have much smaller mis-

Statistica Sinica: Preprint 
doi:10.5705/ss.202017.0527



34

classification rates than those of the two OWL extensions, implying that

MOML can produce stable estimation results. The variable selection results

show that MOML-l1 succeeded in removing 68.8% and 60.2% of the noise

under p = 10 and p = 50, respectively. All true variables are kept under

both cases. Examples 5 and 6 are nonlinear ITRs. In Example 5, MOML

maintains a low misclassification rate when the covariate dimension is not

large (i.e., p = 10). As more variables are added to the covariate space, all of

the methods produce significantly worse prediction performance, although

MOML still outperforms the two OWL extensions. As such, we recommend

reducing the covariate dimension before applying nonlinear MOML in prac-

tice. In Example 6, we intentionally include outliers in the samples to assess

the models’ robustness. All of the methods are affected, although MOML

still produces better prediction results than those of the other methods.

Finally, we explore the advantages of soft and hard classifiers using Ex-

amples 1 and 6. We try different values of c, and show that a properly tuned

classifier performs very well. The details are provided in the Supplementary

Material.
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4. Application to a Type-2 Diabetes Mellitus Study

In this section, we apply the proposed method to a type-2 diabetes melli-

tus (T2DM) observational study to assess its performance in real-life data

applications. The study includes people with T2DM during the period

2012−2013, with data provided by the Clinical Practice Research Datalink

(CPRD) (Herrett et al. (2015)). Four anti-diabetic therapies are consid-

ered in this study: glucagon-like peptide-1 (GLP-1) receptor agonist, long-

acting insulin only, intermediate-acting insulin only, and a regime including

short-acting insulin. The primary target variable is the change in HbA1c

before and after the treatment. Seven clinical factors are used: age, gen-

der, ethnicity, body mass index, high-density lipoprotein cholesterol (HDL),

low-density lipoprotein cholesterol (LDL), and smoking status. In total, 634

patients satisfy the aforementioned requirements, and around 5% have com-

plete observations. Considering the large missing proportion, we perform

the following steps. First, all factors that have a missing rate larger than

70% are removed. Second, a standard t test is implemented for each re-

maining factor to check whether its missing indicator affects the response.

If the test result is statistically significant, we keep the variable, while re-

moving all of its missing observations. Otherwise, we delete the variable.

We have 230 observations left after this cleaning process.
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Training Validation
OWL-1-Linear 2.712 (0.329) 2.371 (0.483)
OWL-2-Linear 2.487 (0.233) 2.221 (0.561)

OWL-1-Gaussian 4.118 (0.401) 3.285 (0.490)
OWL-2-Gaussian 4.003 (0.374) 3.221 (0.468)

MOML-Linear 2.610 (0.130) 2.440 (0.320)
MOML-l1-Linear 2.813 (0.138) 2.533 (0.182)
MOML-Gaussian 4.105 (0.221) 3.612 (0.328)

Table 1: Analysis Results for the T2DM Data Set. Estimated averages and
standard deviations (in parentheses) of the value function are reported using
five-fold cross-validation with 50 replications. OWL-1 and OWL-2 represent
two extensions of OWL (one-versus-rest and one-versus-one, respectively),
and MOML and MOML-l1 represent outcome weighted margin-based learn-
ing with l2 and l1 penalties, respectively. The observed average reward for
the cleaned data set is 2.246.

We apply the same methods with linear and Gaussian kernels to the

cleaned T2DM data set as those in the simulation analysis. We use the

negative HbA1c change as the reward, because the treatment goal is to

decrease HbA1c. The prosperity score πA(X) is calculated based on a

fitted multinomial logistic regression between the assigned treatment and

all covariates. We use five-fold cross-validation to choose the best tuning

parameter over 50 replications. Specifically, we randomly divide the clean

data into five equal-sized subsets, train the model based on every fourth set

(training sets), and make a prediction using the remaining set (validation

sets). The means and standard deviations of the empirical value functions

for the training and validation sets are presented in Table 1.
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Table 1 shows that the proposed MOML with the Gaussian kernel gives

the best predicted value function, with a smaller standard deviation than

that of OWL with the Gaussian kernel. MOML-l1 suggests keeping all

of the variables over the 50 replicates, which indicates that the covariates

remaining in the clean data may all be important when a linear function

is chosen to fit the ITR. In terms of the estimated optimal treatment as-

signment results, the one-versus-rest extension of OWL with a Gaussian

kernel (OWL-1-Gaussian) assigns around 32% of the patients to the short-

acting insulin group, and the rest to the other three treatment groups in a

relatively even way. MOML with the Gaussian kernel recommends that ap-

proximately 40% of the patients take the short-acting insulin, around 25%

and 23% patients take intermediate and long-acting insulin, respectively,

and less than 12% take the GLP-1. This conclusion is consistent with the

findings of some studies on short-acting insulins, which shows the benefit

of reducing HbA1c (Holman et al., 2007). On the other hand, prandial

insulins can also increase the risk of hypo and weight gain. As a result, it

may be worth treating some composite metric as the outcome that com-

bines HbA1c change, hypo events, and weight gain information, to find the

corresponding optimal treatment rules.
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5. Conclusion

In this paper, we propose a margin-based loss function to solve the optimal

individual treatment estimation problem for binary treatments, and then

extend it to include multicategory treatment scenarios. For binary treat-

ments, we develop a loss based on the LUM family, such that the proposed

method includes a wide range of ITRs, varying from soft to hard classifiers.

The standard OWL is a special case of the proposed margin-based learning

methods because the LUM family loss becomes the hinge loss when c→∞

and a = 1. For multiple treatments, we formulate the loss as a weighted

sum of the angles between the estimated decision function f and the actual

treatment A. We show that MOML enjoys desirable theoretical properties,

and has a higher prediction accuracy than that of the other methods under

both linear and nonlinear treatment assignment boundaries. Our method

produces straightforward ITR results with a clear geometric interpretation.

Moreover, the optimization problem of MOML is unconstrained and, hence,

can be more efficient to compute compared with other multicategory meth-

ods with the sum-to-zero constraint. We also showed that the proposed

MOML exhibits selection consistency using the l1 penalty for the case with

linear decision boundaries. This idea can be extended to nonlinear bound-

aries as well. One possibility is to use the idea of weighed kernels, and to
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impose a weight vector w in front of the covariate x in the standard kernel

definition (Chen et al., 2017).
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