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Abstract: In relation to variable selection, most existing screening methods focus on marginal effects
and ignore the dependence between covariates. To improve the performance of variable selection, we
incorporate pairwise effects in covariates for screening and penalization. We achieve this by studying
the asymptotic distribution of the maximal absolute pairwise sample correlation between independent
covariates. The novelty of the theory is that the convergence is related to the dimensionality p, and
is uniform with respect to the sample size n. Moreover, we obtain an upper bound for the maximal
pairwise R squared when regressing the response onto two covariates. Based on these extreme-value
results, we propose a screening procedure to detect covariates pairs that are potentially correlated
and associated with the response. We further combine the pairwise screening with sure independence
screening and develop a new regularized variable selection procedure. Numerical studies show that our

method is competitive in terms of both prediction accuracy and variable selection accuracy.
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1. INTRODUCTION

1. Introduction

With the growing prevalence of big data, high-dimensional problems are becoming increas-
ingly commonplace in many scientific fields, where the number of variables may be compara-
ble to, or even much larger than the sample size. For example, in genetic studies, one often
has tens of thousands of genes in microarray data sets based on only a few hundred patients,
and in neuroscience, fMRI images may contain millions of voxels.

Many recent studies have focused on how to handle high-dimensional data analyses. Of
the methods proposed, the penalized least squares plays an important role. One of the most
well-known methods is the LASSO, proposed by Tibshirani [1996], which is the solution to

the following penalized problem:

win iy — XBI3 + AP(8), (1)

where AP(B) = A 0, |B)| is the l;-penalty. Tibshirani [1996] showed that the LASSO
leads to a sparse estimator that shrinks the OLS solution and sets some of the estimated
coefficients to zero. Despite its good theoretical properties and practical performance, the
LASSO has two major drawbacks. First, it may over-shrink the estimates, causing significant
bias. Second, in the case of a group of highly correlated variables, the LASSO tends to select
only one of them. To address these issues, Zou and Hastie [2005] introduced the elastic net
method, which uses \||B||1 + X2||3]|3 as the regularization term in (1.1), thus encouraging
a grouping effect. Furthermore, various other penalized variable selection methods have

been proposed as extensions to the LASSO, including the Dantzig selector [Candes and
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Tao, 2007] and the smoothly clipped absolute deviation (SCAD) penalty [Fan and Li, 2001],
among many others; see Hastie et al. [2003] and Fan and Lv [2010] for a comprehensive
overview.

In high-dimensional variable selection, it is crucial that we account for the dependency
structure of the covariates. Such information improves the accuracy of selection and provides
practical insights. For instance, in gene expression data, rather than working independently,
genes usually function as biological pathways. However, classical penalized variable selection
methods usually do not explicitly consider the relationships between covariates. To address
this problem, Yuan and Lin [2006] proposed the group LASSO method, which takes advan-
tage of the grouping of the covariates. Extension to the group LASSO include, but are not
limited to Breheny and Huang [2015]. Other methods use the structure information as a
predictor graph (see Li and Li [2008], Pan et al. [2010], Zhu et al. [2013], Yu and Liu [2016],
among others).

A common assumption in the aforementioned methods is that the underlying predictor
graph is given, which may not hold in practice. When prior information is not available,
clustering can be used to improve regression performance. Specifically, Park et al. [2007]
proposed performing hierarchical clustering on the covariates, and then using the cluster
averages as new predictors for the regression. Other methods use supervised clustering to
encourage highly correlated pairs of covariates to be included or excluded, simultaneously
[Bondell and Reich, 2008, Sharma et al., 2013]. Similarly, another type of method aims to
make correlated covariates have similar regression coefficients [She, 2010]. Nevertheless, a

large sample correlation between two variables does not necessarily indicate that they are
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dependent, in the population sense. When the dimensionality continues to increase, the
maximal pairwise correlation between p independent covariates can be close to one [Fan and
Lv, 2010]. Therefore, it is important to identify covariates that are truly correlated, and to
incorporate such information into the variable selection procedures.

In this study, we examine the limiting behavior of the maximal absolute pairwise sample
correlation between covariates when they are independent Gaussian random variables. In
contrast to prior works, we investigate the limiting distribution as the dimensionality p
diverges. Therefore, the proposed asymptotic results can potentially be applied to data
sets with arbitrarily large dimensionality. We also discuss the extreme behavior of the
maximal absolute Spearman rho statistic for covariates with general distributions, and obtain
the upper bound of the maximal pairwise R squared when regressing the response onto
pairs of covariates. Using the extreme-value results, we formulate a screening procedure to
identify covariate pairs that are potentially dependent and associated with the response. We
further combine the pairwise screening with sure independence screening (SIS) [Fan and Lv,
2008], and propose a novel penalized variable selection method. More specifically, we assign
different penalties to each individual covariate, according to the screening results. Numerical
experiments show that the performance of our proposed method is competitive compared
with existing approaches in terms of both variable selection and prediction accuracy.

The remainder of this paper is organized as follows. We first investigate the limiting
distribution of the maximal pairwise sample correlation between covariates in Section 2.1.
We also show that our asymptotic results cover that of Cai and Jiang [2012] as a special

case. Then, we propose an upper bound for the maximal pairwise R squared in Section
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2.2. In Section 3.1, we formulate our proposed variable selection approach as a penalized
maximum likelihood problem, and discuss potential extensions of our method in Section 3.2.
Theoretical properties are discussed in Section 4. In Section 5, we use simulated experiments
and two real data sets to show that the proposed method exhibits improved performance
when important variables are highly correlated. Finally, we conclude this paper and discuss
possible future work in Section 6. Proofs of the theoretical results are provided in the

Appendix.

2. Pair screening for covariates

Suppose we have the following linear model:

v =XB+e, (2.2)

where y = (y1,92,- -+ ,yn)" is the response vector, X = (x1,Xa, - ,X,) is an n x p design
matrix, with x; being n independent and identical observations from the covariate X,;. We
assume that the covariate vector x = (X1, Xo, -+, X,)” has a multivariate distribution with

unknown covariance matrix X, and € = (e1,&9, - ,&,)7

is a vector of independent and
identically distributed (i.i.d.) random variables with mean zero and standard deviation o,
and is independent of the covariate vector x.

For the linear model given in (2.2), variable selection methods aim to identify the nonzero

components of B, in other words, the important variables among all candidate predictors.

In particular, if two covariates have a large pairwise correlation, we may want to include or
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exclude these two variables simultaneously when conducting variable selection. However, the
sample correlation can be spurious, especially when the number of covariates p is relatively
large. Therefore, it is important to identify covariates that are truly correlated. In other
words, we need to find a threshold for the pairwise sample correlation between the covariates
in order to screen the covariate pairs. In the following subsection, we discuss the asymptotic

results that generate the screening rule.

2.1 Extreme laws of pairwise sample correlation between covariates

We propose choosing a bound based on the extreme laws of pairwise sample correlations
when the p covariates are independent. Our investigations are under two settings: (a) the

covariates are normally distributed; (b) the covariates are nonGaussian random variables.

2.1.1 (Gaussian covariates

A recent study shows that the maximal absolute Pearson sample correlation between p i.i.d.
Gaussian covariates and an independent response has a Gumble-type limiting distribution
as p goes to infinity [Zhang, 2017]. Motivated by this result, we find that the maximal
absolute pairwise sample correlation between p independent covariates also has a limiting

distribution, as stated in the following theorem.

Theorem 1. Suppose X1, Xs, -, X, are p independent Gaussian variables, and we observe

n independent samples from each X;. Let W, = maxi<,<j<p |pij|, where p; ; = W(Xi, X;)
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is the Pearson sample correlation between X; and X;. Then, as p — 0o,

WQn — Upn -2 1 2 n—2
i R ™ B (2 e o
(2.3)
which is uniform for any n > 3. Here, a,, =1 —p= /"¢, b, = 2p= 42 . and

Cpn = (ﬂB(%, n=2),/1 — p_4/(”_2))2/(n_2) are the normalizing constants.

In random matrix theory, W, is also known as the coherence when the design matrix X
is random. Specifically, the coherence is defined as the largest magnitude of the off-diagonal
entries of the sample correlation matrix associated with a random matrix. The limiting
behavior of the coherence has been well studied when the sample size n goes to infinity.
For example, Cai et al. [2011] studied the asymptotic distribution under certain regularity
conditions, and applied the results to test a covariance matrix. Cai and Jiang [2012] obtained
the limiting laws of the coherence for different divergence rates of p with respect to n, and
summarized the results as phase-transition phenomena. Our result unifies the convergence
in terms of the sample size, and includes the results of Cai and Jiang [2012] as special cases,

as described in the following corollary.

Corollary 1. Let W, be defined as in Theorem 1, where X; are independent normal random

variables. Let T, =log(1 — W} ).

(a) (Sub-Exponential Case) Suppose p = p, — 0o as n — oo and (logp)/n — 0; then,

as n — 0o,

1 _xz/2

P (nT,, +4logp —loglogp < x) = 1—¢ V& ©
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(b) (Exponential Case) Suppose p = p, satisfies (logp)/n — B € (0,00) as n — oo.

Then, as n — oo,
P (nT,, + 4logp —loglogp < z) — 1 —exp {K(ﬁ)e(msﬁ)/z}’

where K(B) = (%(#)1/2.

1—4e—4P)

(c) (Super-Ezxponential Case) Suppose p = p, satisfies (logp)/n — 00 as n — oo.

Then, as n — oo,

4n 1 _xz/2

logp —logn < x) —1—¢ va©

P | nT,, +
( L

Compared with those of previous works, our asymptotic distribution is novel in two
respects. First, the convergence in Theorem 1 is with respect to p, not n, making it ap-
plicable to high-dimensional data, or even ultrahigh-dimensional problems. Moreover, our

convergence result is uniform for any n > 3; thus, finite-sample performance is guaranteed.

2.1.2 NonGaussian covariates

When the covariates are nonGaussian random variables, it is more desirable to choose a
distribution-free statistic for the screening rule. Therefore, instead of using Pearson’s sample
correlation, we study the extreme behavior of the Spearman rho statistic [Spearman, 1904].
Recall that x; = (X1;, Xaj,+ -+, Xpn;)? are n i.i.d. observations from the covariate X;. Let

fw and QF; be the ranks of X;; and Xy, in {X1;, -+, X,,;} and { Xy, -+, X,,; }, respectively.
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Then, Spearman rho is defined as

(@ - (@ — Q)
V(@ — QUYL (@ - Q12

(2.4)

where QJ, = QF = .

Similarly to the normal setting, we are particularly interested in the limiting distribution
of S2, = max<;j<p pj; When the covariates are all independent, which has been studied in
Han and Liu [2014]. The following proposition states that as n increases, Sﬁn converges to a

Gumble-type distribution.

Proposition 1. Suppose X1, -+, X, are i.i.d. random variables, and we have n independent
samples for each of the covariates. Let Sﬁn = mMaxi<i<j<p p?j be the squares of the maximal
pairwise Spearman rho statistics. Then, for logp = 0(n1/3), we have

lim [P ((n— 1)5;,1 —4logp +loglogp < z) —exp{ — (8m)~1/2 exp(—z/2)}| =0. (2.5)

n—oo

Theorem 1 and Proposition 1 characterize the magnitude of the maximal pairwise cor-
relation and Spearman rho statistic, respectively, when the covariates are independent. If
a pair of covariates, say X; and Xs, have an absolute sample correlation greater than the
95% quantile of the distribution given in Theorem 1 or Proposition 1, then they tend to be
marginally dependent. Because we are only interested in pairs of truly important covariates,
we further investigate the extreme behavior of the maximal pairwise R squared under the

null model; that is, all 3; are equal to zero.
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2.2 R-squared screening for pairs of covariates

Using the asymptotic distributions introduced in the previous subsections, we can identify
covariates pairs that are potentially dependent. However, such screening does not consider
the association between the covariates and the response. It is possible that an important
variable has a large sample correlation with unimportant variables, or that two highly cor-
related covariates are both unrelated to the response. To address such issues, we introduce
another screening procedure based on the R squared from regressing the response Y onto
the pairs of covariates.

Consider a linear regression in which we regress Y onto a pair of covariates X; and Xj,
with ¢ # j. Here, we can obtain the corresponding R-squared, R?j. Under the model setting

in (2.2), when all coefficients are zeros, the maximal pairwise R-squared, max R?, cannot

1<i<j<p 7’

be too large. In fact, there exists an asymptotic bound for max R?, as described in the

1<i<j<p Y’

following theorem.

Theorem 2. Let Rfm = maXi<i<j<p R?j, where Rfj 15 the pairwise R-squared after regressing
Y onto X; and X, where i # j. Suppose Xi,---,X, and Y are from the model setting in
(2.2) and that'Y is normally distributed. Then, when 3; are all zero, we have the following,

for any fizedn >4, 6 >0, as p — co: P(R2, > 1—p~4H/0=8)) = O(p=0/%) — 0.

Using the bound given by Theorem 2, we can design a screening rule to find pairs of
covariates that are potentially associated with the response. In Section 3, we explain how to

use the theoretical results for variable selection.
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3. Penalized variable selection using pairwise screening

In this section, we propose a pairwise screening procedure that takes advantage of the asymp-
totic results in Section 2. Furthermore, we establish a new penalization algorithm for variable

selection.

3.1 Screening-based penalization

Given the limiting distribution of the maximal pairwise sample correlation described in Sec-
tion 2, we propose the following screening rule to identify covariates pairs that are potentially

correlated and related to the response:

G ={(i,j) i < j,|Corr(X;, X;)| > a and R% > 1}, (3.6)

where a is the 100(1 — a)% quantile of the distribution given in Theorem 1 (for Gaussian
covariates) or Proposition 1 (for nonGaussian covariates), and ry = 1 — p~(4+9/("=3)_ Note
that the values of o and 0 can affect the size of G, where larger values mean that fewer pairs
are included in G. In practice, we suggest setting o = 0.05 and 6 = 0.1.

The group definition in (3.6) is a screening procedure with respect to covariate pairs.
Screening is prevalent for high-dimensional data analyses. In particular, for penalized vari-
able selection methods, high dimensionality makes it more difficult to capture the inherent
sparsity structure, making dimension reduction necessary. To this end, Fan and Lv [2008]
introduced the SIS method, which ranks the covariates based on the magnitude of their

sample correlation with the response. Specifically, let w = (wy,ws, - ,w,)" be a vector,



Statistica Sinica: Preprint
doi:10.5705/ss.202018.0170

3. PENALIZED VARIABLE SELECTION USING PAIRWISE SCREENING

such that w; = ](i)?r(Xj, Y)|, and let v be a constant between (0,1). Then, a sub-model is
defined as

M., ={j : w; is amongst the largest [yn] of all}, (3.7)

where [yn] denotes the integer part of yn. Fan and Lv [2008] further demonstrated that SIS
is screening consistent under some conditions. This guarantees that all X; with 3; # 0 are
included in the subset of covariates.

To take advantage of the distribution information in implementing dimension reduction,
we propose a new penalized variable selection approach that applies different penalties to each
covariate, based on the screening results. Let M be the index set of covariates that have the
largest [n\ log n] absolute sample correlation with the response from among Xy, Xo, -+, X,.

Define the set of paired covariates as

C = {X, : 3j such that (i,5) € G}. (3.8)

Our proposed method solves the following optimization problem:

min |y - X8B3+ A S B+ Y 4 (39)

eERrRr 2n
B jiecenmM jiECAM

subject to 5; = 0, for j ¢ M. In other words, we ignore the covariates that fail the marginal
screening.
From the above problem, it can be seen that we apply different penalties to the covariates,

based on the results of two types of screening. Intuitively, the proposed penalty works as
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follows:

e For a covariate that is included in both C and M, we apply the lo-penalty only because

it tends to be an important variable that we need to include in the final model.

e For a covariate that is included in M, but not in C, we apply the [;-penalty only,

because there is no significant multicollinearity between it and other covariates.

e For a covariate that is not included in M, because it does not pass the marginal screen-
ing, we no longer consider it in the regression. This is because SIS enjoys screening
consistency under certain assumptions, which implies that M covers all important

variables.

Our proposed method is connected with existing penalization approaches when the co-
variates have a certain covariance structure. In particular, when the covariates are all inde-
pendent, our method reduces to the SIS-LASSO, which performs marginal screening first,
and then implements the LASSO on the remaining covariates; and, when the predictors are
all highly correlated, such that G includes all covariate pairs, our method is equivalent to
the SIS-Ridge.

Thus far, we have established a new penalized variable selection. Now, we discuss how to
solve the optimization problem in (3.9). The penalty part of (3.9) is convex. Therefore, we

can solve it efficiently using coordinate descent algorithm [Friedman et al., 2010]. Specifically,
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the updating rule has the following form:

N
1 (i .
S(N Z%’j(yi — ), M) for j€CTNM,
= . (3.10)
% > e iy = Gi)
1+ Ao

for j e CNM,

where gjgj) = By + > 4 Zie is the fitted value, excluding the effect of z;j, and S(z) =
sign(z)(]z] — A)+ is the soft-thresholding function. In practice, we can first implement SIS

to obtain M when the dimension is high, and then run the algorithm on the covariates Xj,

for j € M.

Remark 1. The computational cost of the pairwise screening procedure is O(p?), which
can become very inefficient as p increases. In our proposed procedure, to reduce the com-
putational complexity, we implement the marginal screening first to obtain M. Because the

cardinality of M is O(n/log(n)), the computational cost of applying pairwise screening to

M reduces to O((n/log(n))?).

3.2 Further extensions

As discussed in the previous subsection, we introduce a new penalized method that combines
marginal screening with pairwise screening in a linear model setting. Note that the pairwise
covariate screening does not involve the response. Therefore, our method can be extended to
include generalized linear models (GLM), such as the logistic regression for binary responses,
or the Cox model for survival data. Suppose the response Y is from the following one-

parameter exponential family f(y|x, ) = h(y) exp{yd—0b(#)}. Moreover, we assume § = x* 3
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for GLMs.

Similarly to (3.6), we define the pairwise screening as
G ={(i,) : i < j, |Corr(X;, X;)| > a}. (3.11)

The difference is that we do not consider the R-squared screening for GLMs. This is because
for GLMs, it is not reasonable to use the regression R-squared to evaluate the associations
between the covariates and the response. We further define the set of paired covariates as
follows:

C, = {X; : 3j such that (i,j) € G }. (3.12)

Let Py, 2 (8) =\ Z EARRY Z ,832 be our proposed screening-based penalty.
jijeCcsnm j:jECiNM
Then, for the logistic regression, we need to solve the following penalized maximum likelihood

problem:

min } _ (3 B) — log(1 + € 7)) + P, (8). (3.13)
=1

In the above optimization problem, the log-likelihood part can be approximated by a
quadratic function, which is a weighted least squares term [Friedman et al., 2010]. Therefore,
it can still be solved using the coordinate descent algorithm. Similarly, we can use the
algorithm proposed by Simon et al. [2011] to solve the regularized Cox proportional hazard

model using the screening-based penalty Py, ,(8).
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4. Theoretical properties

In this section, we study the theoretical properties of the proposed pairwise correlation
screening (PCS) method. More specifically, we investigate the conditions under which PCS
achieves variable selection consistency.

Note that we implemented the marginal screening using SIS on the covariates set. Fan
and Lv [2008] demonstrated that, under certain regularity conditions, SIS exhibits screening
consistency; that is, the resulting subset of covariates includes all important variables. Owing
to space constraints, we present the main result only. The regularity conditions (A1)-(A4)

are provided in the Appendix.

Proposition 2 (Fan and Lv [2008]). Under (A1)-(A4), if 2k + 7 < 1, then there is some

0 < 1— 2k — 7 such that, when vy ~ cn=% with ¢ > 0, we have, for some C > 0,

P(M* C M) =1— Olexp{—C""%*/log(n)}], (4.14)

where M., is the subset of covariates obtained from the SIS.

The above proposition guarantees that all important variables survive the marginal
screening with high probability. In order to achieve selection consistency, we also need
to ensure that only important variables can pass the pairwise screening. In the following
theorem, we present the technical conditions required such that the event C N M C M*

occurs with high probability.

Theorem 3. Suppose the following conditions hold:
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(B1) n/p* — 0.

(B2) There exists n > 0, such that either one of the following two conditions holds:

(a) lim,_, log p/n — 1o, maxepr jepm |Corr(X;, X;)| < min{n,1 — e~}

(b) lim,_, log p/n — 0, max;eprr jerm= | Corr( Xy, X;)| < .

Here, Corr(X;, X;) denotes the population correlation between covariates X; and X;. Then,

under conditions (B1) and (B2)(a) or conditions (B1) and (B2)(b), we have that as n — o,

P(CNMCM)=1. (4.15)

Given Proposition 2 and Theorem 3, to demonstrate the selection consistency of PCS, we
need only show that the [;-penalty in (3.9) can identify the important variables in C° N M
exactly. This relates to the selection consistency of the LASSO, which has been studied
extensively. In particular, Zhao and Yu [2006] have shown that the Irrepresentable Condition
(specified later) is almost necessary and sufficient for the LASSO to select all important
variables.

We first introduce some necessary notation. Let C' = %X TX. Without loss of generality,
assume that B = (81, Ba, ..., 3,)7, where 8; # 0 for j = 1,...,s, and 3; = 0 otherwise. By
Theorem 3, we further assume that CNM = {1,...,s1}, where 1 < s; < 's. Then, the design
matrix X can be expressed as X = (X (11), X (21), X(2)), where X (11) corresponds to the first s;
columns, X (21) corresponds to the (s; 4+ 1)th to the sth columns and X () corresponds to the

last p — s columns of X. Similarly, we write B = (81,...,8:,)7, B = (Bs,s1,....8,)7,
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and B® = (Byy1,... ,Bp) 7T

Set Oy = 1x}, X},

O = SXGXD, O = [ XG Xy, O = X} X, and O =

C( )_ 1X2 TX2

(12) _ 1y1 T2
On” =, Xoy X v Xy

by Xty i = X0 X

(1 @)

Cél = 1X(TQ)

%X (21)TX 2)- Then, C' can be expressed in blockwise form, as follows:

11 12 1
ci? oy? o
21 22 2
ciV o o

Cy) O O

We impose the following assumption, which is analogous to the Irrepresentable Condition
introduced by Zhao and Yu [2006]. Specifically, we assume that there exists a constant 6 > 0,
such that

ICS(CI) " sign (B8 lmax < 116, (4.16)

where || - ||max is the max norm.
In fact, we can show that this condition is implied by the Irrepresentable Condition on
the full covariates set M, under mild assumptions. We illustrate this result in the following

theorem.

Theorem 4. Assume there exists \g > 0, such that )\mm(Cﬁl)) > Ao, )\mm(Cm)) > N\o, and
that conditions (B1) and (B2)(b) hold. Suppose the Irrepresentable Condition holds; that is,
3¢ >0, s.t.

||C2101_115ign(161)“max S 11— 57 (417)
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(1) ~(12)
Cn’ COn T - »
where C1; = , Oy = 02(%) CQ(?) ,B1 = (B1,...,0s)", and € is a positive
21 22
o’ o
constant. Then, with probability tending to one, condition (4.16) holds.
: (11) (22) . . (11)
The assumptions Ay, (Cy;7') > Ao and Ay (C177) > A in Theorem 4 require that Cy;
and 082) have eigenvalues bounded below. Given the Irrepresentable Condition in (4.17),

we need additional constraints on the random noise ¢; and the coefficients of the important

variables [y, -, fs.

(C1) g; are i.i.d. random variables with a finite 2k moment E(g;)?* < oo, for an integer

k> 0.

(C2) There exists 0 < a < 1 and dy > 0, such that net min;_; ... 5|5;| > do.

Thus far, we have discussed the theoretical assumptions required to ensure the selection
consistency of the proposed PCS method. We conclude the consistency result in the following

theorem.

Theorem 5. Suppose conditions (A1)-(A4), (C1)-(C2), and inequality (4.17) hold, and
that the assumptions of Theorem J are satisfied. Then, for any A\ such that \A/—lﬁ = o(n*/2)
A1

and :(2L) — oo, we have
p\v/n

P({jzﬁj#()}:/\/l*>—>1a3n—>oo, (4.18)

where B = (B, ..., B,)7T is the solution to (3.9).
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The proof follows immediately from Proposition 2 and Theorems 3 and 4, as well as
from the selection consistency of the LASSO. Thus, under certain conditions, our proposed
method is consistent in terms of variable selection. In Section 5, we use numerical examples

to show that our proposed method performs well in practice.

5. Numerical studies

In Section 3, we established a new regularized variable selection approach for high-dimensional
linear models. In this section, we demonstrate the performance of our proposed method using

both simulations and real-data examples.

5.1 Simulation study

In this section, we use several simulations to show that our method with PCS or pairwise
rank-based correlation screening (PRCS) outperforms some existing variable selection pro-
cedures. Specifically, PCS denotes our proposed method using the limiting distribution in
Theorem 1, and PRCS uses the asymptotic result in Proposition 1.

For the comparison, we consider the LASSO, elastic net (Enet), SIS-LASSO, SIS-elastic
net (SIS-Enet), and SIS-PACS methods. The SIS-PACS applies the PACS method proposed
by Sharma et al. [2013] after implementing the SIS procedure. For the SIS-type methods, we
first implement SIS to identify those covariates with the largest [n\ logn] absolute sample
correlations with the response. Then, we perform the LASSO, Enet, or PACS on these

variables. We evaluate the variable selection accuracy using false negatives (FN) and false

A

positives (FP). FN is defined as FN = »7_, I(8; = 0) x I(B; # 0), where I(-) denotes the
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Table 1: Results for Example 1. For each method, we report the average MSE, [>-distance,
FN, and FP over 100 replications (with standard errors given in parentheses).

Method MSE 18 — Boll FN FP
p=1000, o =2
Elnet 5.94 (0.07)  1.40 (0.03) 0.00 (0.00)  1.64 (0.24)
SIS-Elnet  5.47 (0.06)  1.30 (0.03) 0.00 (0.00)  1.15 (0.12)
LASSO 5.95 (0.07)  1.50 (0.03) 0.00 (0.00) 1.28 (0.18)
SIS-LASSO  5.47 (0.06)  1.42 (0.03) 0.00 (0.00)  0.85 (0.10)
SIS-Ridge  86.00 (0.76) 4.50 (0.01) 0.00 (0.00) 12.00 (0.00)
SIS-PACS  4.69 (0.07) 0.48 (0.02) 0.00 (0.00) 0.01 (0.01)
PCS 4.74 (0.05)  0.76 (0.02) 0.00 (0.00)  0.03 (0.02)
PRCS 4.91 (0.05)  0.93 (0.02) 0.00 (0.00)  2.55 (0.15)
p=>5000, o=2
Elnet 6.42 (0.09) 1.57 (0.03) 0.00 (0.00)  2.45 (0.26)
SIS-Elnet  5.64 (0.06) 1.41 (0.03) 0.00 (0.00)  1.28 (0.12)
LASSO 6.41 (0.08) 1.64 (0.04) 0.00 (0.00)  2.06 (0.21)
SIS-LASSO  5.65 (0.06) 1.52 (0.03) 0.00 (0.00)  1.03 (0.10)
SIS-Ridge  88.74 (0.75) 4.59 (0.01) 0.00 (0.00) 12.00 (0.00)
SIS-PACS  4.97 (0.08) 0.72 (0.02) 0.00 (0.00)  1.78 (0.43)
PCS 4.77 (0.05)  0.81 (0.03) 0.00 (0.00)  0.02 (0.02)
PRCS 4.85 (0.06)  0.89 (0.03) 0.00 (0.00)  1.21 (0.11)

indicator function, and FP is defined as F'P = Z?zll(ﬁj # 0) x I(B; = 0). We use the

following quantities to evaluate the prediction accuracy:

e ||B — Boll2: the Iy-distance between the estimated coefficient vector and the true coef-

ficients By;

e Out-of-sample mean squared errors (MSE) on the independent test data;

We generate the simulated data from Model (2.2) and conduct 100 replications. Each

simulated data set includes a training set of size 100, an independent validation set of size

100, and an independent test set of size 400. Here, we fix the sample size at 100 throughout

the simulation study. In the next subsection, we also vary the sample size in our sensitivity
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Table 2: Results for Example 2. The format of this table is the same as Table 1.

Method MSE 18 — Boll FN FP
p=1000, o =2
Enet 6.75 (0.08)  2.45 (0.02) 1.00 (0.01)  0.98 (0.25)
SIS-Enet 6.47 (0.10)  2.30 (0.03) 0.76 (0.05)  3.16 (0.41)
LASSO 6.75 (0.08)  2.45 (0.02) 1.00 (0.01)  0.98 (0.25)
SIS-LASSO  6.47 (0.10)  2.30 (0.03) 0.76 (0.05)  3.16 (0.41)
SIS-Ridge  14.14 (0.10) 3.85 (0.00) 0.27 (0.04) 19.27 (0.04)
SIS-PACS  6.53 (0.14) 2.43 (0.04) 1.06 (0.05)  3.39 (0.73)
PCS 5.24 (0.12) 1.41 (0.08) 0.34 (0.05) 1.63 (0.13)
PRCS 572 (0.13)  1.75 (0.08) 0.43 (0.05)  1.34 (0.24)
p=15000, =2
Elnet 7.16 (0.08)  2.55 (0.02) 1.02 (0.01)  0.40 (0.09)
SIS-Elnet  7.02 (0.09)  2.49 (0.03) 0.94 (0.03)  1.31 (0.34)
LASSO 7.16 (0.08)  2.55 (0.02) 1.02 (0.01)  0.36 (0.08)
SIS-LASSO  7.03 (0.09)  2.49 (0.03) 0.94 (0.03)  1.31 (0.34)
SIS-Ridge ~ 14.40 (0.11) 3.87 (0.00) 0.59 (0.05) 19.59 (0.05)
SIS-PACS  7.28 (0.16) 2.83 (0.04) 1.26 (0.07)  2.41 (0.95)
PCS 5.96 (0.14)  1.83 (0.09) 0.63 (0.06)  0.74 (0.08)
PRCS 6.48 (0.13)  2.14 (0.07) 0.68 (0.05)  0.73 (0.24)

Table 3: Results for Example 3. The format of this table is the same as Table 1.

Method MSE 18 = Boll FN FP

Enet 69.71 (0.88) 5.13 (0.03) 4.99 (0.13)  1.57 (0.37)
SIS-Enet 72.54 (0.88)  5.25 (0.03) 5.65 (0.10)  0.23 (0.12)
LASSO 72.78 (0.87)  5.41 (0.03) 6.06 (0.10)  0.09 (0.04)
SIS-LASSO  70.12 (0.86) 5.35 (0.04) 5.69 (0.12)  0.94 (0.19)
SIS-Ridge  109.66 (0.87) 5.74 (0.01) 4.46 (0.06) 16.46 (0.06)
SIS-PACS  71.27 (0.89) 5.58 (0.02) 5.06 (0.02)  3.45 (0.07)
PCS 58.87 (0.50)  4.80 (0.04) 4.95 (0.03)  0.06 (0.06)
PRCS 59.76 (0.56)  4.83 (0.04) 4.97 (0.02)  0.00 (0.00)

study. We only fit models on the training data, and we use the validation data to select the
tuning parameters. Given the fitted model, we can calculate the FN, FP, and estimation

error HB — Boll2, and make predictions and calculate the out-of-sample MSEs using the test
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Table 4: Results for Example 4. The format of this table is the same as Table 1.

Method Classification Error |8 — Bol|2
Enet 0.129 (0.003)  5.79 (0.01)
SIS-Enet 0.126 (0.003)  5.69 (0.03)
LASSO 0.136 (0.003) 5.83 (0.01)
SISLASSO  0.130 (0.003)  5.75 (0.02)
SIS-Ridge 0.311 (0.003)  6.28 (0.01)
PCS 0.098 (0.004)  5.39 (0.05)
PRCS 0.099 (0.004)  5.34 (0.06)

FN FP
2.16 (0.17) 1277 (1.54)
1.37 (0.15)  7.48 (0.39)
4.19 (0.13)  4.25 (0.49)
3.94 (0.12)  3.50 (0.32)
0.11 (0.05) 12.11 (0.05)
1.73 (0.14)  2.92 (0.31)
1.71 (0.13)  3.26 (0.32)

Table 5: Results for Example 5. The format of this table is the same as Table 1.

Method
Enet
SIS-Enet
LASSO
SIS-LASSO
SIS-Ridge
SIS-PACS
PCS

PRCS

MSE
102.47 (1.84)
96.60 (2.74)
103.11 (1.89)
96.97 (2.78)
226.52 (3.78)
89.82 (2.70)
79.79 (3.16)
74.60 (1.24)

IB-Bol:  FN FP

3.90 (0.08) 1.51 (0.12)  4.88 (0.86)
3.49 (0.09) 1.02 (0.12)  4.20 (0.37)
4.42 (0.08) 2.30 (0.13)  3.74 (0.71)
4.27 (0.08) 2.05 (0.14)  1.87 (0.20)
4.95 (0.03) 0.26 (0.08) 12.26 (0.08)
3.54 (0.15) 0.26 (0.08)  7.32 (0.45)
2.42 (0.14) 0.42 (0.10)  1.29 (0.33)
2.15 (0.12)  0.31 (0.08)  0.06 (0.03)

data. We simulate the covariates from the multivariate Gaussian distribution (0, ), where

¥ = (04)pxp 1s the correlation matrix.

Details of the simulated examples are as follows:

Example 1: We consider p = 1000 or 5000, ¢ = 2, and 8 = (2,2,---

72707“' 7O)Ta

where the first 10 coefficients are nonzero and equal to two. We set 0;; = 0.8 for 1 < i #

7 <5,6<i%# 7 <10 and set it to zero for all the other i # j. We also consider ¢ = 6; see

the Supplementary Material. In other words, there are two groups in the covariates, where

each group has five important variables.

Example 2: We consider p = 1000 or 5000, 0 = 2, and By = (3, —1.5,2,0,---,0,---

) 0>T7
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where the first three coefficients are nonzero. We also consider o = 6; see Supplementary
Material. We generated Gaussian covariates with o;; = O.5|i_j‘, for 1 <4 # 5 <1000.

Example 3: The coefficients have the same setup as those in Example 1. However, we
set 0;; = 0.8 for 1 <4 # j <5, and to zero for all the other ¢ # j. Therefore, only some
of the important variables are highly correlated. We consider p = 5000 and ¢ = 6 in this
example.

Example 4: Here, we examine the performance of all methods under the logistic
regression setting. We simulate the binary response Y from the binomial distribution
Binom(1, %), where X and 3 follow the same setups as those in Example 1.
We consider p = 5000 and ¢ = 6 in this example. Instead of comparing MSEs, we calcu-
late the classification errors on the test data. We do not include SIS-PACS in this example
because the R program does not support GLMs.

Example 5: In this example, we generate the covariates from a multivariate t-distribution,
where X; are t-distributed with degrees of freedom five. The covariance structure of the co-
variates and the coefficients are set up as in Example 1. We consider p = 5000 and o = 6 in
this example.

The results for Example 1 are shown in Table 1. We see that when there are groups in
the covariates, the performance improvement of our approach is significant compared with
that of other penalized methods. Although the elastic net-based procedures perform better
than LASSO-type approaches do in terms of FN, as illustrated by Zou and Hastie [2005],
they still miss approximately one important covariate, on average. In contrast, the model

selection results of our method are much closer to the correct model for this example. In
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addition, although SIS-PACS shows competitive performance when o is small, it tends to
include more unimportant variables in the model when the noise level increases, and therefore
may not work well.

Table 2 displays the performance comparisons for Example 2. Compared with Example
1, this setting is a more difficult one for our method, because correlations exist between all
pairs of covariates. Nevertheless, PCS and PRCS perform better than, or as well as, other
methods do in terms of the estimation error and prediction accuracy. Moreover, with the
exception of SIS-Ridge, our proposed methods are able to identify more important variables
than the other methods do in this example when the noise level is low.

Table 3 shows the results for Example 3, where only some of the important variables
are correlated. This example is more difficult than the scenario in Example 1, owing to
the correlation structure of the covariates. For example, there are significantly more FNs
in all the procedures. Nevertheless, our method still outperforms all the others in terms of
prediction and variable selection accuracy.

Example 4 considers a logistic regression setting; see Table 4. The results show that the
proposed method performs competitively, even as the correlations between the covariates
vary.

Table 5 displays the results for all methods in a nonGaussian covariate setting. Similarly
to Example 1, our proposed PCS and PRCS significantly outperform their competitors.
Moreover, owing to the nonGaussian setups, the nonparametric method PRCS outperforms
PCS.

In summary, our method is able to take advantage of the correlation structure among
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the predictors. Compared with other penalized variable selection procedures, our method

performs well, especially when the covariates are highly correlated.

5.2 Sensitivity study

In this subsection, we investigate whether the performance of our method depends on the
sample size, dimensionality, and noise level. In particular, we consider n = 100 or 500,
p = 500, 1000, 2000, or 5000, and ¢ = 2 or 6 in Example 1 in Section 5.1. We illustrate the
MSE, || B8 — Boll2, FN, and FP against different values of p for each configuration of sample
size and noise level in Figure 1.

The plots show that the performance of PCS does not change much as the dimensionality
p increases from 500 to 5000, especially in terms of the MSE and the estimation error of 3.
Moreover, the performance is better when the sample size and signal-to-noise ratio (SNR)
become larger, which is expected. In general, our proposed PCS method is robust to the

sample size, dimensionality, and SNR.

5.3 Soil data

We first demonstrate the performance of our method in real applications using a small
data set. This data set contains 15 covariates of soil characteristics for 20 plots within the
same area in the Appalachian Mountains. The outcome variable is the forest diversity for
each plot. More descriptions of the data can be found in Bondell and Reich [2008]. To
better demonstrate the correlation structure of covariates, we obtain the absolute pairwise

correlation matrix, and show the heatmap in Figure 2. One can see that some predictors
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Figure 1: Performance of PCS for different dimensionality p.

are highly correlated. In particular, the magnitudes of the pairwise correlations between the

sum of cations (SumCation), calcium, magnesium, the base saturation (BaseSat), and the

cation exchange capacity (CEC) are as large as 0.9. This is because SumCation, BaseSat,

and CEC are characteristics of cations, whereas calcium and magnesium are examples of

cations [Bondell and Reich, 2008].
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Figure 2: Heatmap for the absolute pairwise correlation matrix of the covariates for soil

data.

We conduct a total of 100 replications.

In each replication, 15 samples are chosen

randomly as the training set, and the remainder form the test set. As in the simulation

experiments, we applied the LASSO, Enet, Ridge, and our proposed PCS and PRCS to the

data set. For each method, five-fold cross-validation is used to choose the tuning parameters,

Method

Enet

LASSO

Ridge
PCS
PRCS

MSE
1.088 (0.047)
1.068 (0.045)
1.113 (0.044)
0.996 (0.062)
1.028 (0.063)

Model Size
3.70 (0.38)
2.08 (0.21)

15.00 (0.00)
5.82 (0.37)
5.96 (0.38)

Table 6: Average MSE and model size (with standard errors in parentheses) for Enet,
LASSO, Ridge, and the proposed method for soil data.
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because the sample size is very small. We report the average prediction errors on the test
data and the model size in Table 6. The results show that PCS and PRCS outperform all
other procedures in terms of prediction accuracy. Moreover, PCS and PRCS tend to include
more covariates in the model than the LASSO and Enet do.

To further investigate the performance in terms of variable selection, we summarize
the frequency with which each covariate is selected for the LASSO, Enet, and the proposed
method; see Table 7. The variables that are most frequently selected by the LASSO and Enet,
for instance, CEC, Mn, and HumicMatt, also tend to be included by our method. Moreover,
our method can identify covariates that are strongly correlated. For example, potassium,
sodium, and copper are variables related to cations, and all have a large sample correlation
with CEC, which is a potentially important variable. These variables are frequently selected

by our method, but not by the Enet or LASSO.

5.4 Riboflavin data

In this section, we consider a real data set on riboflavin production in Bacillus subtilis. The
data contain n = 71 samples, where the response variable is the logarithm of the riboflavin
production rate, and the covariates are the logarithms of the expression levels of p = 4081
genes. More detail about the data set can be found in Biithlmann et al. [2014]. Before the
analysis, all covariates are standardized to have zero means and unit standard deviations.
For the comparison, we apply the LASSO, Enet, SIS-LASSO, SIS-Enet, SIS-ridge, and
our method to the data set. We conduct 100 replications, and randomly split the data set

into a training set of size 50, with the remainder as the test data. For all methods, we
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PCS Enet LASSO

Variables

BaseSat 16 9 0

SumCaton 32 23 0

CECbuffer 86 62 48
Ca 37 32 11
Mg 6 10 0

K 49 27 12
Na 22 10 6

P 32 15 5

Cu 47 17 9

Zn 29 17 4

Mn 69 43 32
HumicMatt 89 70 69
Density 25 15 4

pH 27 11 4

ExchAc 16 9 4

Table 7: Frequency of each variable being selected for PCS, Enet, and the LASSO out of
100 replications.

implement 10-fold cross-validation on the training data to select the penalty parameters.

The results are reported in Table 8, and show that PCS exhibits significant improvement
in terms of the out-of-sample MSE over those of its competitors. On the other hand, PRCS
does not perform well compared with PCS. A possible reason is that, in this data set, all
variables are log transformations and are approximated well by a Gaussian distribution.
Moreover, owing to the assumption of Proposition 1, where logp = o(n'/?), PRCS is more
sensitive to the dimensionality and the sample size of the data set. As a result, PRCS may
not achieve good performance when the dimensionality is too high.

We also examine the gene selection results. Eight genes are selected at least 50 times in
the 100 replications using our method, that is, XTRA _at, YCKE_at, YDAR_at, YOAB_at,

YWEFO_at, YXLC_at, YXLD_at, and YXLE_at. Apart from YXLC_at, all the other genes
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Method
SIS-Enet

MSE
0.358 (0.015

Model Size
15.66 (0.46

) )
SIS-Lasso  0.356 (0.016)  9.12 (0.18)
SIS-Ridge 0.632 (0.024) 26.00 (0.00)
PCS 0.327 (0.014) 15.04 (0.39)
PRCS 0.361 (0.018) 12.77 (0.37)

Table 8: Average MSE and model size (with standard errors in parentheses) for SIS-Enet,
SIS-LASSO, SIS-Ridge, PCS, and PRCS for riboflavin data.

appear among the most frequently selected genes by SIS-Enet and SIS-LASSO, with a fre-
quency no less than 50. For YXLC_at, we find that the magnitude of the pairwise sample
correlations between this gene and two other genes, YXLD_at and YXLE_ at, are greater
than 0.95. This indicates that our method is capable of identifying potentially important

variables that are highly correlated with other variables.

6. Discussion

We have proposed a novel variable selection method that regularizes covariates selectively
based on the results from two screening procedures: pairwise screening and marginal screen-
ing. The screening process for covariate pairs takes advantage of the distribution information
about the maximal absolute pairwise sample correlation between covariates, and is applicable
to large-scale problems. Simulation experiments and real-data studies demonstrate that the
proposed method performs well when important variables are highly correlated, compared
with existing approaches. Future research can consider other extensions to our proposed

method, such as the Cox model for survival data.
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Supplementary Material

The online Supplementary Material contains proofs of Corollary 1 and Theorem 2, and

additional numerical studies.

A. Technical Proofs

We present some regularity conditions and key proofs in the appendix.
Regularity Conditions for Sure Independence Screening Define z = ¥ /%x, Z =
XY"Y2 Let M* be the index set of covariates with nonzero coefficient. The following

assumptions are imposed:
(A1) p > n and log(p) = O(n) for some € € (0,1 — 2k), where & is given by condition (A3).

(A2) z has a spherically symmetric distribution, and Jcgy, ¢; > 1,Cy > 0 such that
P (Aol GZ27) > & 08 A (G227 < 1/cr) < exp(—Cin)

holds for any n x p submatrix Z of Z with con < p < p.

(A3) Var(Y) = O(1), and for some x > 0 and ¢, c3 > 0,
. Co . —1
> = . ) >
i b2 5 i CovlBY, %) 2

(A4) There are some 7 > 0 and ¢4 > 0 such that X\, (3) < eyn.

Proof of Theorem 1. To prove Theorem 1, we need to use the following lemma, which is
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from Arratia et al. [1989].

Lemma 1. Let I be an index set and {Ba,a € I} be a set of subsets of I, that is, B, C I

for each o« € I. Let also {n,,a € I} be random variables. For a given t € R, set A =

Y act P (o >1). Then
P (ma'jxna < t) —e M < (TAXT)(by + by + b3)
aec

where by = 3 ZﬂeBa P(na>t)P g >1), bo = 3 o Za;ﬁﬂeBa P (na>t,mg>1) and
bs = > uer EIP (Mo > tlo(ng, B¢ Ba)) — P(na >1)|, and o(ng, B ¢ B.) is the o-algebra

generated by {ngz, B ¢ Ba.}. In particular, if n, is independent of {nz, 8 ¢ B} for each «,

then bs=0.

In our proof, we take I = {(i,7);1 < i < j < p}. Let a = (i,5) € I, we define
By = {(k,l) € I; one of k and [ = i or j, but (k1) # a}, and A, = A;; = {|pi;|*> > t}, where
pij = |C/(-)?r(Xi7 X;)|. Let Wy, = maxi<;<;j<p |pij|, by the Chen-Stein method (in particular,

Lemma 6.2 in Cai and Jiang (2011)),

|[P(Wy, <t) — e | < by + by, (A.19)

where Ay = Yooy P(Aa) = BEUP(Ap), and by = 3,01 Y sep, P(Aa) P(Ag), by =

Zael Za#ﬁEBa P(AOZAB)

Moreover, we have by < 2p3P(A5)? and by < 2p° P(A12A13).

Since X7, ---, X, are independent, A3 and A3 are also independent with equal proba-
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bility. Therefore we have by V by < 2p* P(A1)?.

On the other hand, |p; ;|* ~ B(3,%52). Take t* = a,, + bypz (x < %52), where a,, =

1 - p_4/(n_2)cp,n;bp,” - %p_At/(n_Q)Cpmv and Cpn = (nTﬂB<%7an2> 1_p_4/(n_2))2/(”_2)'

Then
2(1 _ t*)(n—Q)/Z
P(A},) = 1+0 .
N T CEE NG TR
_ 2 n=2 []— p_4/(”_2) by, 1/2
=p (- 1) ? (1+(-2"2))* (1 + O(log ™ (1))
" Apn pn (A.20)
- = log log(p) 2
=p2(1- z)* (1+0 14+ O(log™*
p (1= ) T (1 OCEE) (14 O(1os ™ (1)
- n-2 log log(p)
=p (1 — x) 2 (140
p (U= =5 T (0 0))
Therefore, uniformly for any n > 3, b1 V by = O(1/p), and lim,_, A = 5 (1 — 252) =

Then it follows from (A.19) that uniformly for any n > 3 and x < ”T’z,

lim [P(W2, < %) — exp { — %(1 - = 2 2gc)"T_Q}| —0. (A.21)

p—o0

When = > "T_Q, t* =14 (252 —1)p~¥®™ ¢, . > 1. Therefore, uniformly for any n > 3,

n—2

lim P(W,, < t*) = 1 (A.22)

p—r00
Combining (A.21) and (A.22) we have uniformly for any n > 3,

n—2 1 2

)exp{—§(1— n—2

lim |[P(W,, <t*)—I(x < x)anQ}—](x>

p—o0 2

) =0. (A.23)

n—2
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Or equivalently,

W2 - Upn -2 1 2 n—2 —
;L%|P(T_x)—l(x§n2 )exp{——(l—n_ x) 22}—]($>n )| = 0.
(A.24)
O

Proof of Theorem 3. Let event A = {R% <1 —p~ /(=3 for all i, j € M\M*}, event
B = {p; < f(n,p,a) fori € M* j € M\M*} where p;; = \C/o?r(Xi,Xj)], f(n,p,a) is
the screening threshold for pairwise correlation screening. Then A implies that no pairs
of unimportant variables passed the R squares screening. B implies that important and
unimportant variables can not be too highly correlated.

By the definition of C, we have

P(CAMC M) > P(ANB) > P(A) + P(B) — 1. (A.25)

For the event A, we have

P(A) —1— P( U R2 Z 1 — —(4+5)/(n—3)) 2 1 — Z P(RZZJ Z 1 _p—(4+5)/(n—3))
i#jeEM\M* i#jeEM\M*

=1— (n/log(n))*P(Beta(l, ”T_?’) > 1 — p-(4+)/(-3))

=1 (n/log(n))?p~ "+

Under the assumption (B1), (n/log(n))?p~“+%/2 — 0 as n — oo. Therefore we have
P(A) — 1.

Next we show that P(B) — 1 as n — oco. We have
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PB)=1-p( | p=fupa)=1— > Pl = f(n,pa)

ieEM* jEM\M* iEM* jE M\ M*
=1~ (n/log(n))’P (py; > max{a,, + bpnFn(a), n})

=1 — (n/log(n))*P (pij > 6pn)

where F,,(«) is the 100(1 — «) quantile of the limiting cumulative distribution function of

the maximal pairwise correlation statistic, and we denote max{a,,, + by, F,.(a),n} by ,.,.

Note that
2
o+ DpnFn(@) =1 —p YD (1 - 2Fn(a))

n —

=1 —p 2, {—2log(l — a)}¥ "2

n—2_1n-—2 o=
—1— (Oa 2= ip 2 1- 74/(n72>)
C%(n—2)(1 —pY=2)\ 55
=1 —O( aln = 2)( 1 P )) * for large enough n
p
logp
=1- O(e_T) for large enough n

Let p;; be the population correlation coefficient between X; and X;. Write z(n) =

145y 14py
1 log 1:’;5, ¢ = Llog 724, Tt has been shown that as n — 0o, n'/2(z(n) — &) — N(0,1).

L=pij
We have
- (Z > (G log T2t — ) + on<1>) < e (420
2o Norem

1o 14
where C,,, = 5 log o &

If log(p)/n — oo as n — oo, then ay,, + b,,F,(o) — 1. Therefore 6,,, — 1, which
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yields C,,,, — co. Then the tail probability in (A.26) goes to zero as n — oo. It follows that
P(B) —» 1 asn — oo.

If log(p)/n — mo as n — oo, then d,, — max{l —e ™ n}. Under assumption (B2)

14+max{l—e= %10 n}
1—max{l—e=%70 n}

that p;; < max{l—e ™ n}, lim, o0 Cpn = lim, 00 % log —& > 0. Again the
tail probability in (A.26) goes to zero as n — oo. It follows that P(B) — 1 as n — oc.
If log(p)/n — 0 as n — oo, then a,, + b,,F,(a) — 0. Hence d,,, — 1. Under the

assumption (B2), we have lim,, o C,,, = log % — & > 0. Therefore P(B) — 1 as n — 0.

Given P(A) — 1 and P(B) — 1, we have PCNM C M*) — 1 as n — 0. O

Proof of Theorem 4. It follows from (4.17) directly that

() — et eiN () — eGP (EG) ) sign(B) lmax < 1€, (A27)

where ||-||max denotes the max norm of a matrix. Based the definition of C, we have the follow-

) .. . 12 21 . .
ing element wise inequalities HCfl )Hmax < Cnpas HC{l )Hmax < Cppa- Here ¢, 4 is the pair-

wise correlation screening bound. Since C’l(}l) is positive definite, there exists an orthogonal
matrix () s.t. C’ﬁl) = QAQT, where A is a diagonal matrix consists of the eigenvalues of Cﬁl).

By assumption, we have /\mm(Cﬁl)) > Xo. Therefore ||C’g1)(081))*1032)||max <\t 82

n7p1a

Under the assumption that log(p)/n — 0, cppa = 0n(1). It follows that A\y'c2 s? = 0,(1).

n7p7a

By assumption (B2), [[C4)[lmax < 7. Thus [[C5)(CHY)CH? [lmax < Ag'Menpas?, then
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HCS)(Cﬁl))_lcﬁm||max = 0,(1) as n — oo. Therefore

(5 — e (CGN eGP — eV (eY)tel?) Tsign(BP)) — O (CE) sign(B))|max

_ -1 .
= (c (@t i) teh? - o et (6 — eV (e e sign(BY) | max

Write A = C57(C1) O (CY) ' on?, B = ¢y (C) el D = et (o) e,
and Y = sign(,BEZ)). Then the above term becomes |[(A — B)(Cl(?) — D)"Y || smax. Moreover,
we have

I(A = B)(CE? = D)Y |lnax < (5 = 5114 = Bllmax][(C17 = D)™V | .

. _ 2 21 11 12
Since || Allmax < Ay (5=50)21C8 [[max | C5 2 (CHP) O lmax < Ay 2025052 (5—51)2, || Bllmax <

Aalncn7p7as%, and
1(CED = D) [l < (5 = $DI(CH = D) Ylmax < (5 = 51) (Mo — Ay 208D L.

Therefore we have
I(A = B)(CH = D) Y lax < (5 = 50)* (Ao 2162 a51(5 = 51)° + A0 enpast) (Mo = Ag 'l 08T) !

= 0p(1),

as n — oo. It follows that C’Q(?(CSZ))_lsign(Bf)) < 1—¢&/2 with probability tending to 1 as

n — oo which concludes the proof if we take § = &£/2. O
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