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Abstract: In relation to variable selection, most existing screening methods focus on marginal effects

and ignore the dependence between covariates. To improve the performance of variable selection, we

incorporate pairwise effects in covariates for screening and penalization. We achieve this by studying

the asymptotic distribution of the maximal absolute pairwise sample correlation between independent

covariates. The novelty of the theory is that the convergence is related to the dimensionality p, and

is uniform with respect to the sample size n. Moreover, we obtain an upper bound for the maximal

pairwise R squared when regressing the response onto two covariates. Based on these extreme-value

results, we propose a screening procedure to detect covariates pairs that are potentially correlated

and associated with the response. We further combine the pairwise screening with sure independence

screening and develop a new regularized variable selection procedure. Numerical studies show that our

method is competitive in terms of both prediction accuracy and variable selection accuracy.

Key words and phrases:Pairwise Screening, Penalized Regression, Sure Independence Screening, Vari-

able Selection
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1. INTRODUCTION

1. Introduction

With the growing prevalence of big data, high-dimensional problems are becoming increas-

ingly commonplace in many scientific fields, where the number of variables may be compara-

ble to, or even much larger than the sample size. For example, in genetic studies, one often

has tens of thousands of genes in microarray data sets based on only a few hundred patients,

and in neuroscience, fMRI images may contain millions of voxels.

Many recent studies have focused on how to handle high-dimensional data analyses. Of

the methods proposed, the penalized least squares plays an important role. One of the most

well-known methods is the LASSO, proposed by Tibshirani [1996], which is the solution to

the following penalized problem:

min
β∈Rp
‖y −Xβ‖22 + λP (β), (1.1)

where λP (β) = λ
∑p

j=1 |βj| is the l1-penalty. Tibshirani [1996] showed that the LASSO

leads to a sparse estimator that shrinks the OLS solution and sets some of the estimated

coefficients to zero. Despite its good theoretical properties and practical performance, the

LASSO has two major drawbacks. First, it may over-shrink the estimates, causing significant

bias. Second, in the case of a group of highly correlated variables, the LASSO tends to select

only one of them. To address these issues, Zou and Hastie [2005] introduced the elastic net

method, which uses λ1‖β‖1 + λ2‖β‖22 as the regularization term in (1.1), thus encouraging

a grouping effect. Furthermore, various other penalized variable selection methods have

been proposed as extensions to the LASSO, including the Dantzig selector [Candès and
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1. INTRODUCTION

Tao, 2007] and the smoothly clipped absolute deviation (SCAD) penalty [Fan and Li, 2001],

among many others; see Hastie et al. [2003] and Fan and Lv [2010] for a comprehensive

overview.

In high-dimensional variable selection, it is crucial that we account for the dependency

structure of the covariates. Such information improves the accuracy of selection and provides

practical insights. For instance, in gene expression data, rather than working independently,

genes usually function as biological pathways. However, classical penalized variable selection

methods usually do not explicitly consider the relationships between covariates. To address

this problem, Yuan and Lin [2006] proposed the group LASSO method, which takes advan-

tage of the grouping of the covariates. Extension to the group LASSO include, but are not

limited to Breheny and Huang [2015]. Other methods use the structure information as a

predictor graph (see Li and Li [2008], Pan et al. [2010], Zhu et al. [2013], Yu and Liu [2016],

among others).

A common assumption in the aforementioned methods is that the underlying predictor

graph is given, which may not hold in practice. When prior information is not available,

clustering can be used to improve regression performance. Specifically, Park et al. [2007]

proposed performing hierarchical clustering on the covariates, and then using the cluster

averages as new predictors for the regression. Other methods use supervised clustering to

encourage highly correlated pairs of covariates to be included or excluded, simultaneously

[Bondell and Reich, 2008, Sharma et al., 2013]. Similarly, another type of method aims to

make correlated covariates have similar regression coefficients [She, 2010]. Nevertheless, a

large sample correlation between two variables does not necessarily indicate that they are
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dependent, in the population sense. When the dimensionality continues to increase, the

maximal pairwise correlation between p independent covariates can be close to one [Fan and

Lv, 2010]. Therefore, it is important to identify covariates that are truly correlated, and to

incorporate such information into the variable selection procedures.

In this study, we examine the limiting behavior of the maximal absolute pairwise sample

correlation between covariates when they are independent Gaussian random variables. In

contrast to prior works, we investigate the limiting distribution as the dimensionality p

diverges. Therefore, the proposed asymptotic results can potentially be applied to data

sets with arbitrarily large dimensionality. We also discuss the extreme behavior of the

maximal absolute Spearman rho statistic for covariates with general distributions, and obtain

the upper bound of the maximal pairwise R squared when regressing the response onto

pairs of covariates. Using the extreme-value results, we formulate a screening procedure to

identify covariate pairs that are potentially dependent and associated with the response. We

further combine the pairwise screening with sure independence screening (SIS) [Fan and Lv,

2008], and propose a novel penalized variable selection method. More specifically, we assign

different penalties to each individual covariate, according to the screening results. Numerical

experiments show that the performance of our proposed method is competitive compared

with existing approaches in terms of both variable selection and prediction accuracy.

The remainder of this paper is organized as follows. We first investigate the limiting

distribution of the maximal pairwise sample correlation between covariates in Section 2.1.

We also show that our asymptotic results cover that of Cai and Jiang [2012] as a special

case. Then, we propose an upper bound for the maximal pairwise R squared in Section
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2. PAIR SCREENING FOR COVARIATES

2.2. In Section 3.1, we formulate our proposed variable selection approach as a penalized

maximum likelihood problem, and discuss potential extensions of our method in Section 3.2.

Theoretical properties are discussed in Section 4. In Section 5, we use simulated experiments

and two real data sets to show that the proposed method exhibits improved performance

when important variables are highly correlated. Finally, we conclude this paper and discuss

possible future work in Section 6. Proofs of the theoretical results are provided in the

Appendix.

2. Pair screening for covariates

Suppose we have the following linear model:

y = Xβ + ε, (2.2)

where y = (y1, y2, · · · , yn)T is the response vector, X = (x1,x2, · · · ,xp) is an n × p design

matrix, with xj being n independent and identical observations from the covariate Xj. We

assume that the covariate vector x = (X1, X2, · · · , Xp)
T has a multivariate distribution with

unknown covariance matrix Σ, and ε = (ε1, ε2, · · · , εn)T is a vector of independent and

identically distributed (i.i.d.) random variables with mean zero and standard deviation σ,

and is independent of the covariate vector x.

For the linear model given in (2.2), variable selection methods aim to identify the nonzero

components of β, in other words, the important variables among all candidate predictors.

In particular, if two covariates have a large pairwise correlation, we may want to include or
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2. PAIR SCREENING FOR COVARIATES

exclude these two variables simultaneously when conducting variable selection. However, the

sample correlation can be spurious, especially when the number of covariates p is relatively

large. Therefore, it is important to identify covariates that are truly correlated. In other

words, we need to find a threshold for the pairwise sample correlation between the covariates

in order to screen the covariate pairs. In the following subsection, we discuss the asymptotic

results that generate the screening rule.

2.1 Extreme laws of pairwise sample correlation between covariates

We propose choosing a bound based on the extreme laws of pairwise sample correlations

when the p covariates are independent. Our investigations are under two settings: (a) the

covariates are normally distributed; (b) the covariates are nonGaussian random variables.

2.1.1 Gaussian covariates

A recent study shows that the maximal absolute Pearson sample correlation between p i.i.d.

Gaussian covariates and an independent response has a Gumble-type limiting distribution

as p goes to infinity [Zhang, 2017]. Motivated by this result, we find that the maximal

absolute pairwise sample correlation between p independent covariates also has a limiting

distribution, as stated in the following theorem.

Theorem 1. Suppose X1, X2, · · · , Xp are p independent Gaussian variables, and we observe

n independent samples from each Xj. Let Wpn = max1≤i<j≤p |ρi,j|, where ρi,j = Ĉorr(Xi, Xj)
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is the Pearson sample correlation between Xi and Xj. Then, as p→∞,

lim
p→∞
|P (

W 2
pn − ap,n
bp,n

≤ x)− I(x ≤ n− 2

2
) exp

{
− 1

2

(
1− 2

n− 2
x
)n−2

2
}
− I(x >

n− 2

2
)| = 0,

(2.3)

which is uniform for any n ≥ 3. Here, ap,n = 1 − p−4/(n−2)cp,n, bp,n = 2
n−2p

−4/(n−2)cp,n, and

cp,n =
(
n−2
2
B(1

2
, n−2

2
)
√

1− p−4/(n−2)
)2/(n−2)

are the normalizing constants.

In random matrix theory, Wpn is also known as the coherence when the design matrix X

is random. Specifically, the coherence is defined as the largest magnitude of the off-diagonal

entries of the sample correlation matrix associated with a random matrix. The limiting

behavior of the coherence has been well studied when the sample size n goes to infinity.

For example, Cai et al. [2011] studied the asymptotic distribution under certain regularity

conditions, and applied the results to test a covariance matrix. Cai and Jiang [2012] obtained

the limiting laws of the coherence for different divergence rates of p with respect to n, and

summarized the results as phase-transition phenomena. Our result unifies the convergence

in terms of the sample size, and includes the results of Cai and Jiang [2012] as special cases,

as described in the following corollary.

Corollary 1. Let Wpn be defined as in Theorem 1, where Xj are independent normal random

variables. Let Tpn = log(1−W 2
pn).

(a) (Sub-Exponential Case) Suppose p = pn →∞ as n→∞ and (log p)/n→ 0; then,

as n→∞,

P (nTpn + 4 log p− log log p ≤ x)→ 1− e−
1√
8π
ex/2

.
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(b) (Exponential Case) Suppose p = pn satisfies (log p)/n → β ∈ (0,∞) as n → ∞.

Then, as n→∞,

P (nTpn + 4 log p− log log p ≤ x)→ 1− exp
{
K(β)e(x+8β)/2

}
,

where K(β) =
(

β
2π(1−4e−4β)

)1/2
.

(c) (Super-Exponential Case) Suppose p = pn satisfies (log p)/n → ∞ as n → ∞.

Then, as n→∞,

P

(
nTpn +

4n

n− 2
log p− log n ≤ x

)
→ 1− e−

1√
2π
ex/2

.

Compared with those of previous works, our asymptotic distribution is novel in two

respects. First, the convergence in Theorem 1 is with respect to p, not n, making it ap-

plicable to high-dimensional data, or even ultrahigh-dimensional problems. Moreover, our

convergence result is uniform for any n ≥ 3; thus, finite-sample performance is guaranteed.

2.1.2 NonGaussian covariates

When the covariates are nonGaussian random variables, it is more desirable to choose a

distribution-free statistic for the screening rule. Therefore, instead of using Pearson’s sample

correlation, we study the extreme behavior of the Spearman rho statistic [Spearman, 1904].

Recall that xj = (X1j, X2j, · · · , Xnj)
T are n i.i.d. observations from the covariate Xj. Let

Qj
ni and Qk

ni be the ranks of Xij and Xik in {X1j, · · · , Xnj} and {X1k, · · · , Xnj}, respectively.
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Then, Spearman rho is defined as

ρij =

∑n
i=1(Q

j
ni − Q̄j

n)(Qk
ni − Q̄k

n)√∑n
i=1(Q

j
ni − Q̄

j
n)2
∑n

i=1(Q
k
ni − Q̄k

n)2
, (2.4)

where Q̄j
n = Q̄k

n = n+1
2

.

Similarly to the normal setting, we are particularly interested in the limiting distribution

of S2
pn = max1≤i<j≤p ρ

2
ij when the covariates are all independent, which has been studied in

Han and Liu [2014]. The following proposition states that as n increases, S2
pn converges to a

Gumble-type distribution.

Proposition 1. Suppose X1, · · · , Xp are i.i.d. random variables, and we have n independent

samples for each of the covariates. Let S2
pn = max1≤i<j≤p ρ

2
ij be the squares of the maximal

pairwise Spearman rho statistics. Then, for log p = o(n1/3), we have

lim
n→∞

|P
(
(n− 1)S2

pn − 4 log p+ log log p ≤ x
)
− exp

{
− (8π)−1/2 exp(−x/2)

}
| = 0. (2.5)

Theorem 1 and Proposition 1 characterize the magnitude of the maximal pairwise cor-

relation and Spearman rho statistic, respectively, when the covariates are independent. If

a pair of covariates, say X1 and X2, have an absolute sample correlation greater than the

95% quantile of the distribution given in Theorem 1 or Proposition 1, then they tend to be

marginally dependent. Because we are only interested in pairs of truly important covariates,

we further investigate the extreme behavior of the maximal pairwise R squared under the

null model; that is, all βj are equal to zero.
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2. PAIR SCREENING FOR COVARIATES

2.2 R-squared screening for pairs of covariates

Using the asymptotic distributions introduced in the previous subsections, we can identify

covariates pairs that are potentially dependent. However, such screening does not consider

the association between the covariates and the response. It is possible that an important

variable has a large sample correlation with unimportant variables, or that two highly cor-

related covariates are both unrelated to the response. To address such issues, we introduce

another screening procedure based on the R squared from regressing the response Y onto

the pairs of covariates.

Consider a linear regression in which we regress Y onto a pair of covariates Xi and Xj,

with i 6= j. Here, we can obtain the corresponding R-squared, R2
ij. Under the model setting

in (2.2), when all coefficients are zeros, the maximal pairwise R-squared, max
1≤i<j≤p

R2
ij, cannot

be too large. In fact, there exists an asymptotic bound for max
1≤i<j≤p

R2
ij, as described in the

following theorem.

Theorem 2. Let R2
pn = max1≤i<j≤pR

2
ij, where R2

ij is the pairwise R-squared after regressing

Y onto Xi and Xj, where i 6= j. Suppose X1, · · · , Xp and Y are from the model setting in

(2.2) and that Y is normally distributed. Then, when βj are all zero, we have the following,

for any fixed n ≥ 4, δ > 0, as p→∞: P (R2
pn ≥ 1− p−(4+δ)/(n−3)) = O(p−δ/2)→ 0.

Using the bound given by Theorem 2, we can design a screening rule to find pairs of

covariates that are potentially associated with the response. In Section 3, we explain how to

use the theoretical results for variable selection.
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3. Penalized variable selection using pairwise screening

In this section, we propose a pairwise screening procedure that takes advantage of the asymp-

totic results in Section 2. Furthermore, we establish a new penalization algorithm for variable

selection.

3.1 Screening-based penalization

Given the limiting distribution of the maximal pairwise sample correlation described in Sec-

tion 2, we propose the following screening rule to identify covariates pairs that are potentially

correlated and related to the response:

G = {(i, j) : i < j, |Ĉorr(Xi, Xj)| ≥ a and R2
ij ≥ r0}, (3.6)

where a is the 100(1 − α)% quantile of the distribution given in Theorem 1 (for Gaussian

covariates) or Proposition 1 (for nonGaussian covariates), and r0 = 1 − p−(4+δ)/(n−3). Note

that the values of α and δ can affect the size of G, where larger values mean that fewer pairs

are included in G. In practice, we suggest setting α = 0.05 and δ = 0.1.

The group definition in (3.6) is a screening procedure with respect to covariate pairs.

Screening is prevalent for high-dimensional data analyses. In particular, for penalized vari-

able selection methods, high dimensionality makes it more difficult to capture the inherent

sparsity structure, making dimension reduction necessary. To this end, Fan and Lv [2008]

introduced the SIS method, which ranks the covariates based on the magnitude of their

sample correlation with the response. Specifically, let w = (w1, w2, · · · , wp)T be a vector,
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such that wj = |Ĉorr(Xj, Y )|, and let γ be a constant between (0, 1). Then, a sub-model is

defined as

Mγ = {j : wj is amongst the largest [γn] of all}, (3.7)

where [γn] denotes the integer part of γn. Fan and Lv [2008] further demonstrated that SIS

is screening consistent under some conditions. This guarantees that all Xj with βj 6= 0 are

included in the subset of covariates.

To take advantage of the distribution information in implementing dimension reduction,

we propose a new penalized variable selection approach that applies different penalties to each

covariate, based on the screening results. LetM be the index set of covariates that have the

largest [n\ log n] absolute sample correlation with the response from among X1, X2, · · · , Xp.

Define the set of paired covariates as

C = {Xi : ∃j such that (i, j) ∈ G}. (3.8)

Our proposed method solves the following optimization problem:

min
β∈Rp

1

2n
‖y −Xβ‖22 + λ1

∑
j:j∈Cc∩M

|βj|+ λ2
∑

j:j∈C∩M

β2
j , (3.9)

subject to βj = 0, for j /∈M. In other words, we ignore the covariates that fail the marginal

screening.

From the above problem, it can be seen that we apply different penalties to the covariates,

based on the results of two types of screening. Intuitively, the proposed penalty works as
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follows:

• For a covariate that is included in both C andM, we apply the l2-penalty only because

it tends to be an important variable that we need to include in the final model.

• For a covariate that is included in M, but not in C, we apply the l1-penalty only,

because there is no significant multicollinearity between it and other covariates.

• For a covariate that is not included inM, because it does not pass the marginal screen-

ing, we no longer consider it in the regression. This is because SIS enjoys screening

consistency under certain assumptions, which implies that M covers all important

variables.

Our proposed method is connected with existing penalization approaches when the co-

variates have a certain covariance structure. In particular, when the covariates are all inde-

pendent, our method reduces to the SIS-LASSO, which performs marginal screening first,

and then implements the LASSO on the remaining covariates; and, when the predictors are

all highly correlated, such that G includes all covariate pairs, our method is equivalent to

the SIS-Ridge.

Thus far, we have established a new penalized variable selection. Now, we discuss how to

solve the optimization problem in (3.9). The penalty part of (3.9) is convex. Therefore, we

can solve it efficiently using coordinate descent algorithm [Friedman et al., 2010]. Specifically,
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the updating rule has the following form:

β̂j ←


S(

1

N

N∑
i=1

xij(yi − ỹ(j)i ), λ1) for j ∈ Cc ∩M,

1
N

∑N
i=1 xij(yi − ỹ

(j)
i )

1 + λ2
for j ∈ C ∩M,

(3.10)

where ỹ
(j)
i = β̂0 +

∑
k 6=j xikβ̂k is the fitted value, excluding the effect of xij, and S(z) =

sign(z)(|z| − λ)+ is the soft-thresholding function. In practice, we can first implement SIS

to obtain M when the dimension is high, and then run the algorithm on the covariates Xj,

for j ∈M.

Remark 1. The computational cost of the pairwise screening procedure is O(p2), which

can become very inefficient as p increases. In our proposed procedure, to reduce the com-

putational complexity, we implement the marginal screening first to obtainM. Because the

cardinality of M is O(n/ log(n)), the computational cost of applying pairwise screening to

M reduces to O
(
(n/ log(n))2

)
.

3.2 Further extensions

As discussed in the previous subsection, we introduce a new penalized method that combines

marginal screening with pairwise screening in a linear model setting. Note that the pairwise

covariate screening does not involve the response. Therefore, our method can be extended to

include generalized linear models (GLM), such as the logistic regression for binary responses,

or the Cox model for survival data. Suppose the response Y is from the following one-

parameter exponential family f(y|x, θ) = h(y) exp{yθ−b(θ)}. Moreover, we assume θ = xTβ
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for GLMs.

Similarly to (3.6), we define the pairwise screening as

G1 = {(i, j) : i < j, |Ĉorr(Xi, Xj)| ≥ a}. (3.11)

The difference is that we do not consider the R-squared screening for GLMs. This is because

for GLMs, it is not reasonable to use the regression R-squared to evaluate the associations

between the covariates and the response. We further define the set of paired covariates as

follows:

C1 = {Xi : ∃j such that (i, j) ∈ G1}. (3.12)

Let Pλ1,λ2(β) = λ1
∑

j:j∈Cc1∩M

|βj|+λ2
∑

j:j∈C1∩M

β2
j be our proposed screening-based penalty.

Then, for the logistic regression, we need to solve the following penalized maximum likelihood

problem:

min
β

n∑
i=1

(
yi(x

T
i β)− log(1 + ex

T
i β)
)

+ Pλ1,λ2(β). (3.13)

In the above optimization problem, the log-likelihood part can be approximated by a

quadratic function, which is a weighted least squares term [Friedman et al., 2010]. Therefore,

it can still be solved using the coordinate descent algorithm. Similarly, we can use the

algorithm proposed by Simon et al. [2011] to solve the regularized Cox proportional hazard

model using the screening-based penalty Pλ1,λ2(β).
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4. Theoretical properties

In this section, we study the theoretical properties of the proposed pairwise correlation

screening (PCS) method. More specifically, we investigate the conditions under which PCS

achieves variable selection consistency.

Note that we implemented the marginal screening using SIS on the covariates set. Fan

and Lv [2008] demonstrated that, under certain regularity conditions, SIS exhibits screening

consistency; that is, the resulting subset of covariates includes all important variables. Owing

to space constraints, we present the main result only. The regularity conditions (A1)-(A4)

are provided in the Appendix.

Proposition 2 (Fan and Lv [2008]). Under (A1)-(A4), if 2κ + τ < 1, then there is some

θ < 1− 2κ− τ such that, when γ ∼ cn−θ with c > 0, we have, for some C > 0,

P (M∗ ⊂Mγ) = 1−O[exp{−C1−2κ/ log(n)}], (4.14)

where Mγ is the subset of covariates obtained from the SIS.

The above proposition guarantees that all important variables survive the marginal

screening with high probability. In order to achieve selection consistency, we also need

to ensure that only important variables can pass the pairwise screening. In the following

theorem, we present the technical conditions required such that the event C ∩ M ⊂ M∗

occurs with high probability.

Theorem 3. Suppose the following conditions hold:
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(B1) n/p2 → 0.

(B2) There exists η > 0, such that either one of the following two conditions holds:

(a) limn→∞ log p/n→ η0,maxi∈M∗,j∈M\M∗ |Corr(Xi, Xj)| < min{η, 1− e−4η0}

(b) limn→∞ log p/n→ 0,maxi∈M∗,j∈M\M∗ |Corr(Xi, Xj)| < η.

Here, Corr(Xi, Xj) denotes the population correlation between covariates Xi and Xj. Then,

under conditions (B1) and (B2)(a) or conditions (B1) and (B2)(b), we have that as n→∞,

P (C ∩M ⊂M∗)→ 1. (4.15)

Given Proposition 2 and Theorem 3, to demonstrate the selection consistency of PCS, we

need only show that the l1-penalty in (3.9) can identify the important variables in Cc ∩M

exactly. This relates to the selection consistency of the LASSO, which has been studied

extensively. In particular, Zhao and Yu [2006] have shown that the Irrepresentable Condition

(specified later) is almost necessary and sufficient for the LASSO to select all important

variables.

We first introduce some necessary notation. Let C = 1
n
XTX. Without loss of generality,

assume that β = (β1, β2, . . . , βp)
T , where βj 6= 0 for j = 1, . . . , s, and βj = 0 otherwise. By

Theorem 3, we further assume that C∩M = {1, . . . , s1}, where 1 ≤ s1 ≤ s. Then, the design

matrix X can be expressed as X = (X1
(1), X

2
(1), X(2)), where X1

(1) corresponds to the first s1

columns, X2
(1) corresponds to the (s1 + 1)th to the sth columns and X(2) corresponds to the

last p − s columns of X. Similarly, we write β
(1)
1 = (β1, . . . , βs1)

T , β
(1)
2 = (βs1+1, . . . , βs)

T ,
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and β(2) = (βs+1, . . . , βp)
T .

Set C
(11)
11 = 1

n
X1

(1)
T
X1

(1), C
(12)
11 = 1

n
X1

(1)
T
X2

(1), C
(21)
11 = 1

n
X2

(1)
T
X1

(1), C
(22)
11 = 1

n
X2

(1)
T
X2

(1),

C
(1)
21 = 1

n
XT

(2)X
1
(1) , C

(2)
21 = 1

n
XT

(2)X
2
(1), C22 = 1

n
XT

(2)X(2), C
(1)
12 = 1

n
X1

(1)
T
X(2), and C

(2)
12 =

1
n
X2

(1)
T
X(2). Then, C can be expressed in blockwise form, as follows:


C

(11)
11 C

(12)
11 C

(1)
12

C
(21)
11 C

(22)
11 C

(2)
12

C
(1)
21 C

(2)
21 C22

 .

We impose the following assumption, which is analogous to the Irrepresentable Condition

introduced by Zhao and Yu [2006]. Specifically, we assume that there exists a constant δ > 0,

such that

‖C(2)
21 (C

(22)
11 )−1sign(β

(1)
2 )‖max ≤ 1− δ, (4.16)

where ‖ · ‖max is the max norm.

In fact, we can show that this condition is implied by the Irrepresentable Condition on

the full covariates setM, under mild assumptions. We illustrate this result in the following

theorem.

Theorem 4. Assume there exists λ0 > 0, such that λmin(C
(11)
11 ) ≥ λ0, λmin(C

(22)
11 ) ≥ λ0, and

that conditions (B1) and (B2)(b) hold. Suppose the Irrepresentable Condition holds; that is,

∃ξ > 0, s.t.

‖C21C
−1
11 sign(β1)‖max ≤ 1− ξ, (4.17)
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where C11 =

C(11)
11 C

(12)
11

C
(21)
11 C

(22)
11

, C21 =

(
C

(1)
21 C

(2)
21

)
, β1 = (β1, . . . , βs)

T , and ξ is a positive

constant. Then, with probability tending to one, condition (4.16) holds.

The assumptions λmin(C
(11)
11 ) ≥ λ0 and λmin(C

(22)
11 ) ≥ λ0 in Theorem 4 require that C

(11)
11

and C
(22)
11 have eigenvalues bounded below. Given the Irrepresentable Condition in (4.17),

we need additional constraints on the random noise εi and the coefficients of the important

variables β1, · · · , βs.

(C1) εi are i.i.d. random variables with a finite 2k moment E(εi)
2k < ∞, for an integer

k > 0.

(C2) There exists 0 < α ≤ 1 and d0 > 0, such that n
1−α
2 minj=1,··· ,s |βj| ≥ d0.

Thus far, we have discussed the theoretical assumptions required to ensure the selection

consistency of the proposed PCS method. We conclude the consistency result in the following

theorem.

Theorem 5. Suppose conditions (A1)–(A4), (C1)–(C2), and inequality (4.17) hold, and

that the assumptions of Theorem 4 are satisfied. Then, for any λ1 such that λ1√
n

= o(nα/2)

and 1
p
( λ1√

n
)→∞, we have

P
(
{j : β̂j 6= 0} =M∗

)
→ 1 as n→∞, (4.18)

where β̂ = (β̂1, . . . , β̂p)
T is the solution to (3.9).
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The proof follows immediately from Proposition 2 and Theorems 3 and 4, as well as

from the selection consistency of the LASSO. Thus, under certain conditions, our proposed

method is consistent in terms of variable selection. In Section 5, we use numerical examples

to show that our proposed method performs well in practice.

5. Numerical studies

In Section 3, we established a new regularized variable selection approach for high-dimensional

linear models. In this section, we demonstrate the performance of our proposed method using

both simulations and real-data examples.

5.1 Simulation study

In this section, we use several simulations to show that our method with PCS or pairwise

rank-based correlation screening (PRCS) outperforms some existing variable selection pro-

cedures. Specifically, PCS denotes our proposed method using the limiting distribution in

Theorem 1, and PRCS uses the asymptotic result in Proposition 1.

For the comparison, we consider the LASSO, elastic net (Enet), SIS-LASSO, SIS-elastic

net (SIS-Enet), and SIS-PACS methods. The SIS-PACS applies the PACS method proposed

by Sharma et al. [2013] after implementing the SIS procedure. For the SIS-type methods, we

first implement SIS to identify those covariates with the largest [n\ log n] absolute sample

correlations with the response. Then, we perform the LASSO, Enet, or PACS on these

variables. We evaluate the variable selection accuracy using false negatives (FN) and false

positives (FP). FN is defined as FN =
∑p

j=1 I(β̂j = 0)× I(βj 6= 0), where I(·) denotes the
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doi:10.5705/ss.202018.0170



5. NUMERICAL STUDIES

Table 1: Results for Example 1. For each method, we report the average MSE, l2-distance,
FN, and FP over 100 replications (with standard errors given in parentheses).

Method MSE ‖β̂ − β0‖2 FN FP
p = 1000, σ = 2

Elnet 5.94 (0.07) 1.40 (0.03) 0.00 (0.00) 1.64 (0.24)
SIS-Elnet 5.47 (0.06) 1.30 (0.03) 0.00 (0.00) 1.15 (0.12)
LASSO 5.95 (0.07) 1.50 (0.03) 0.00 (0.00) 1.28 (0.18)
SIS-LASSO 5.47 (0.06) 1.42 (0.03) 0.00 (0.00) 0.85 (0.10)
SIS-Ridge 86.00 (0.76) 4.50 (0.01) 0.00 (0.00) 12.00 (0.00)
SIS-PACS 4.69 (0.07) 0.48 (0.02) 0.00 (0.00) 0.01 (0.01)
PCS 4.74 (0.05) 0.76 (0.02) 0.00 (0.00) 0.03 (0.02)
PRCS 4.91 (0.05) 0.93 (0.02) 0.00 (0.00) 2.55 (0.15)

p = 5000, σ = 2
Elnet 6.42 (0.09) 1.57 (0.03) 0.00 (0.00) 2.45 (0.26)
SIS-Elnet 5.64 (0.06) 1.41 (0.03) 0.00 (0.00) 1.28 (0.12)
LASSO 6.41 (0.08) 1.64 (0.04) 0.00 (0.00) 2.06 (0.21)
SIS-LASSO 5.65 (0.06) 1.52 (0.03) 0.00 (0.00) 1.03 (0.10)
SIS-Ridge 88.74 (0.75) 4.59 (0.01) 0.00 (0.00) 12.00 (0.00)
SIS-PACS 4.97 (0.08) 0.72 (0.02) 0.00 (0.00) 1.78 (0.43)
PCS 4.77 (0.05) 0.81 (0.03) 0.00 (0.00) 0.02 (0.02)
PRCS 4.85 (0.06) 0.89 (0.03) 0.00 (0.00) 1.21 (0.11)

indicator function, and FP is defined as FP =
∑p

j=1 I(β̂j 6= 0) × I(βj = 0). We use the

following quantities to evaluate the prediction accuracy:

• ‖β̂ − β0‖2: the l2-distance between the estimated coefficient vector and the true coef-

ficients β0;

• Out-of-sample mean squared errors (MSE) on the independent test data;

We generate the simulated data from Model (2.2) and conduct 100 replications. Each

simulated data set includes a training set of size 100, an independent validation set of size

100, and an independent test set of size 400. Here, we fix the sample size at 100 throughout

the simulation study. In the next subsection, we also vary the sample size in our sensitivity
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Table 2: Results for Example 2. The format of this table is the same as Table 1.

Method MSE ‖β̂ − β0‖2 FN FP
p = 1000, σ = 2

Enet 6.75 (0.08) 2.45 (0.02) 1.00 (0.01) 0.98 (0.25)
SIS-Enet 6.47 (0.10) 2.30 (0.03) 0.76 (0.05) 3.16 (0.41)
LASSO 6.75 (0.08) 2.45 (0.02) 1.00 (0.01) 0.98 (0.25)
SIS-LASSO 6.47 (0.10) 2.30 (0.03) 0.76 (0.05) 3.16 (0.41)
SIS-Ridge 14.14 (0.10) 3.85 (0.00) 0.27 (0.04) 19.27 (0.04)
SIS-PACS 6.53 (0.14) 2.43 (0.04) 1.06 (0.05) 3.39 (0.73)
PCS 5.24 (0.12) 1.41 (0.08) 0.34 (0.05) 1.63 (0.13)
PRCS 5.72 (0.13) 1.75 (0.08) 0.43 (0.05) 1.34 (0.24)

p = 5000, σ = 2
Elnet 7.16 (0.08) 2.55 (0.02) 1.02 (0.01) 0.40 (0.09)
SIS-Elnet 7.02 (0.09) 2.49 (0.03) 0.94 (0.03) 1.31 (0.34)
LASSO 7.16 (0.08) 2.55 (0.02) 1.02 (0.01) 0.36 (0.08)
SIS-LASSO 7.03 (0.09) 2.49 (0.03) 0.94 (0.03) 1.31 (0.34)
SIS-Ridge 14.40 (0.11) 3.87 (0.00) 0.59 (0.05) 19.59 (0.05)
SIS-PACS 7.28 (0.16) 2.83 (0.04) 1.26 (0.07) 2.41 (0.95)
PCS 5.96 (0.14) 1.83 (0.09) 0.63 (0.06) 0.74 (0.08)
PRCS 6.48 (0.13) 2.14 (0.07) 0.68 (0.05) 0.73 (0.24)

Table 3: Results for Example 3. The format of this table is the same as Table 1.

Method MSE ‖β̂ − β0‖2 FN FP

Enet 69.71 (0.88) 5.13 (0.03) 4.99 (0.13) 1.57 (0.37)

SIS-Enet 72.54 (0.88) 5.25 (0.03) 5.65 (0.10) 0.23 (0.12)

LASSO 72.78 (0.87) 5.41 (0.03) 6.06 (0.10) 0.09 (0.04)

SIS-LASSO 70.12 (0.86) 5.35 (0.04) 5.69 (0.12) 0.94 (0.19)

SIS-Ridge 109.66 (0.87) 5.74 (0.01) 4.46 (0.06) 16.46 (0.06)

SIS-PACS 71.27 (0.89) 5.58 (0.02) 5.06 (0.02) 3.45 (0.07)

PCS 58.87 (0.50) 4.80 (0.04) 4.95 (0.03) 0.06 (0.06)

PRCS 59.76 (0.56) 4.83 (0.04) 4.97 (0.02) 0.00 (0.00)

study. We only fit models on the training data, and we use the validation data to select the

tuning parameters. Given the fitted model, we can calculate the FN, FP, and estimation

error ‖β̂ − β0‖2, and make predictions and calculate the out-of-sample MSEs using the test
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Table 4: Results for Example 4. The format of this table is the same as Table 1.

Method Classification Error ‖β̂ − β0‖2 FN FP

Enet 0.129 (0.003) 5.79 (0.01) 2.16 (0.17) 12.77 (1.54)

SIS-Enet 0.126 (0.003) 5.69 (0.03) 1.37 (0.15) 7.48 (0.39)

LASSO 0.136 (0.003) 5.83 (0.01) 4.19 (0.13) 4.25 (0.49)

SIS-LASSO 0.130 (0.003) 5.75 (0.02) 3.94 (0.12) 3.50 (0.32)

SIS-Ridge 0.311 (0.003) 6.28 (0.01) 0.11 (0.05) 12.11 (0.05)

PCS 0.098 (0.004) 5.39 (0.05) 1.73 (0.14) 2.92 (0.31)

PRCS 0.099 (0.004) 5.34 (0.06) 1.71 (0.13) 3.26 (0.32)

Table 5: Results for Example 5. The format of this table is the same as Table 1.

Method MSE ‖β̂ − β0‖2 FN FP

Enet 102.47 (1.84) 3.90 (0.08) 1.51 (0.12) 4.88 (0.86)

SIS-Enet 96.60 (2.74) 3.49 (0.09) 1.02 (0.12) 4.20 (0.37)

LASSO 103.11 (1.89) 4.42 (0.08) 2.30 (0.13) 3.74 (0.71)

SIS-LASSO 96.97 (2.78) 4.27 (0.08) 2.05 (0.14) 1.87 (0.20)

SIS-Ridge 226.52 (3.78) 4.95 (0.03) 0.26 (0.08) 12.26 (0.08)

SIS-PACS 89.82 (2.70) 3.54 (0.15) 0.26 (0.08) 7.32 (0.45)

PCS 79.79 (3.16) 2.42 (0.14) 0.42 (0.10) 1.29 (0.33)

PRCS 74.60 (1.24) 2.15 (0.12) 0.31 (0.08) 0.06 (0.03)

data. We simulate the covariates from the multivariate Gaussian distribution N (0,Σ), where

Σ = (σij)p×p is the correlation matrix.

Details of the simulated examples are as follows:

Example 1: We consider p = 1000 or 5000, σ = 2, and β = (2, 2, · · · , 2, 0, · · · , 0)T ,

where the first 10 coefficients are nonzero and equal to two. We set σij = 0.8 for 1 ≤ i 6=

j ≤ 5, 6 ≤ i 6= j ≤ 10 and set it to zero for all the other i 6= j. We also consider σ = 6; see

the Supplementary Material. In other words, there are two groups in the covariates, where

each group has five important variables.

Example 2: We consider p = 1000 or 5000, σ = 2, and β0 = (3,−1.5, 2, 0, · · · , 0, · · · , 0)T ,
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where the first three coefficients are nonzero. We also consider σ = 6; see Supplementary

Material. We generated Gaussian covariates with σij = 0.5|i−j|, for 1 ≤ i 6= j ≤ 1000.

Example 3: The coefficients have the same setup as those in Example 1. However, we

set σij = 0.8 for 1 ≤ i 6= j ≤ 5, and to zero for all the other i 6= j. Therefore, only some

of the important variables are highly correlated. We consider p = 5000 and σ = 6 in this

example.

Example 4: Here, we examine the performance of all methods under the logistic

regression setting. We simulate the binary response Y from the binomial distribution

Binom(1, exp{XTβ+σ}
1+exp{XTβ+σ}), where X and β follow the same setups as those in Example 1.

We consider p = 5000 and σ = 6 in this example. Instead of comparing MSEs, we calcu-

late the classification errors on the test data. We do not include SIS-PACS in this example

because the R program does not support GLMs.

Example 5: In this example, we generate the covariates from a multivariate t-distribution,

where Xj are t-distributed with degrees of freedom five. The covariance structure of the co-

variates and the coefficients are set up as in Example 1. We consider p = 5000 and σ = 6 in

this example.

The results for Example 1 are shown in Table 1. We see that when there are groups in

the covariates, the performance improvement of our approach is significant compared with

that of other penalized methods. Although the elastic net-based procedures perform better

than LASSO-type approaches do in terms of FN, as illustrated by Zou and Hastie [2005],

they still miss approximately one important covariate, on average. In contrast, the model

selection results of our method are much closer to the correct model for this example. In
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addition, although SIS-PACS shows competitive performance when σ is small, it tends to

include more unimportant variables in the model when the noise level increases, and therefore

may not work well.

Table 2 displays the performance comparisons for Example 2. Compared with Example

1, this setting is a more difficult one for our method, because correlations exist between all

pairs of covariates. Nevertheless, PCS and PRCS perform better than, or as well as, other

methods do in terms of the estimation error and prediction accuracy. Moreover, with the

exception of SIS-Ridge, our proposed methods are able to identify more important variables

than the other methods do in this example when the noise level is low.

Table 3 shows the results for Example 3, where only some of the important variables

are correlated. This example is more difficult than the scenario in Example 1, owing to

the correlation structure of the covariates. For example, there are significantly more FNs

in all the procedures. Nevertheless, our method still outperforms all the others in terms of

prediction and variable selection accuracy.

Example 4 considers a logistic regression setting; see Table 4. The results show that the

proposed method performs competitively, even as the correlations between the covariates

vary.

Table 5 displays the results for all methods in a nonGaussian covariate setting. Similarly

to Example 1, our proposed PCS and PRCS significantly outperform their competitors.

Moreover, owing to the nonGaussian setups, the nonparametric method PRCS outperforms

PCS.

In summary, our method is able to take advantage of the correlation structure among
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the predictors. Compared with other penalized variable selection procedures, our method

performs well, especially when the covariates are highly correlated.

5.2 Sensitivity study

In this subsection, we investigate whether the performance of our method depends on the

sample size, dimensionality, and noise level. In particular, we consider n = 100 or 500,

p = 500, 1000, 2000, or 5000, and σ = 2 or 6 in Example 1 in Section 5.1. We illustrate the

MSE, ‖β̂ − β0‖2, FN, and FP against different values of p for each configuration of sample

size and noise level in Figure 1.

The plots show that the performance of PCS does not change much as the dimensionality

p increases from 500 to 5000, especially in terms of the MSE and the estimation error of β0.

Moreover, the performance is better when the sample size and signal-to-noise ratio (SNR)

become larger, which is expected. In general, our proposed PCS method is robust to the

sample size, dimensionality, and SNR.

5.3 Soil data

We first demonstrate the performance of our method in real applications using a small

data set. This data set contains 15 covariates of soil characteristics for 20 plots within the

same area in the Appalachian Mountains. The outcome variable is the forest diversity for

each plot. More descriptions of the data can be found in Bondell and Reich [2008]. To

better demonstrate the correlation structure of covariates, we obtain the absolute pairwise

correlation matrix, and show the heatmap in Figure 2. One can see that some predictors
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(a) MSE (b) Estimation error

(c) FN (d) FP

Figure 1: Performance of PCS for different dimensionality p.

are highly correlated. In particular, the magnitudes of the pairwise correlations between the

sum of cations (SumCation), calcium, magnesium, the base saturation (BaseSat), and the

cation exchange capacity (CEC) are as large as 0.9. This is because SumCation, BaseSat,

and CEC are characteristics of cations, whereas calcium and magnesium are examples of

cations [Bondell and Reich, 2008].
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Figure 2: Heatmap for the absolute pairwise correlation matrix of the covariates for soil
data.

We conduct a total of 100 replications. In each replication, 15 samples are chosen

randomly as the training set, and the remainder form the test set. As in the simulation

experiments, we applied the LASSO, Enet, Ridge, and our proposed PCS and PRCS to the

data set. For each method, five-fold cross-validation is used to choose the tuning parameters,

Method MSE Model Size
Enet 1.088 (0.047) 3.70 (0.38)
LASSO 1.068 (0.045) 2.08 (0.21)
Ridge 1.113 (0.044) 15.00 (0.00)
PCS 0.996 (0.062) 5.82 (0.37)
PRCS 1.028 (0.063) 5.96 (0.38)

Table 6: Average MSE and model size (with standard errors in parentheses) for Enet,
LASSO, Ridge, and the proposed method for soil data.
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because the sample size is very small. We report the average prediction errors on the test

data and the model size in Table 6. The results show that PCS and PRCS outperform all

other procedures in terms of prediction accuracy. Moreover, PCS and PRCS tend to include

more covariates in the model than the LASSO and Enet do.

To further investigate the performance in terms of variable selection, we summarize

the frequency with which each covariate is selected for the LASSO, Enet, and the proposed

method; see Table 7. The variables that are most frequently selected by the LASSO and Enet,

for instance, CEC, Mn, and HumicMatt, also tend to be included by our method. Moreover,

our method can identify covariates that are strongly correlated. For example, potassium,

sodium, and copper are variables related to cations, and all have a large sample correlation

with CEC, which is a potentially important variable. These variables are frequently selected

by our method, but not by the Enet or LASSO.

5.4 Riboflavin data

In this section, we consider a real data set on riboflavin production in Bacillus subtilis. The

data contain n = 71 samples, where the response variable is the logarithm of the riboflavin

production rate, and the covariates are the logarithms of the expression levels of p = 4081

genes. More detail about the data set can be found in Bühlmann et al. [2014]. Before the

analysis, all covariates are standardized to have zero means and unit standard deviations.

For the comparison, we apply the LASSO, Enet, SIS-LASSO, SIS-Enet, SIS-ridge, and

our method to the data set. We conduct 100 replications, and randomly split the data set

into a training set of size 50, with the remainder as the test data. For all methods, we
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PCS Enet LASSO
Variables
BaseSat 16 9 0
SumCaton 32 23 0
CECbuffer 86 62 48
Ca 37 32 11
Mg 6 10 0
K 49 27 12
Na 22 10 6
P 32 15 5
Cu 47 17 9
Zn 29 17 4
Mn 69 43 32
HumicMatt 89 70 69
Density 25 15 4
pH 27 11 4
ExchAc 16 9 4

Table 7: Frequency of each variable being selected for PCS, Enet, and the LASSO out of
100 replications.

implement 10-fold cross-validation on the training data to select the penalty parameters.

The results are reported in Table 8, and show that PCS exhibits significant improvement

in terms of the out-of-sample MSE over those of its competitors. On the other hand, PRCS

does not perform well compared with PCS. A possible reason is that, in this data set, all

variables are log transformations and are approximated well by a Gaussian distribution.

Moreover, owing to the assumption of Proposition 1, where log p = o(n1/3), PRCS is more

sensitive to the dimensionality and the sample size of the data set. As a result, PRCS may

not achieve good performance when the dimensionality is too high.

We also examine the gene selection results. Eight genes are selected at least 50 times in

the 100 replications using our method, that is, XTRA at, YCKE at, YDAR at, YOAB at,

YWFO at, YXLC at, YXLD at, and YXLE at. Apart from YXLC at, all the other genes
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Method MSE Model Size
SIS-Enet 0.358 (0.015) 15.66 (0.46)
SIS-Lasso 0.356 (0.016) 9.12 (0.18)
SIS-Ridge 0.632 (0.024) 26.00 (0.00)
PCS 0.327 (0.014) 15.04 (0.39)
PRCS 0.361 (0.018) 12.77 (0.37)

Table 8: Average MSE and model size (with standard errors in parentheses) for SIS-Enet,
SIS-LASSO, SIS-Ridge, PCS, and PRCS for riboflavin data.

appear among the most frequently selected genes by SIS-Enet and SIS-LASSO, with a fre-

quency no less than 50. For YXLC at, we find that the magnitude of the pairwise sample

correlations between this gene and two other genes, YXLD at and YXLE at, are greater

than 0.95. This indicates that our method is capable of identifying potentially important

variables that are highly correlated with other variables.

6. Discussion

We have proposed a novel variable selection method that regularizes covariates selectively

based on the results from two screening procedures: pairwise screening and marginal screen-

ing. The screening process for covariate pairs takes advantage of the distribution information

about the maximal absolute pairwise sample correlation between covariates, and is applicable

to large-scale problems. Simulation experiments and real-data studies demonstrate that the

proposed method performs well when important variables are highly correlated, compared

with existing approaches. Future research can consider other extensions to our proposed

method, such as the Cox model for survival data.
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Supplementary Material

The online Supplementary Material contains proofs of Corollary 1 and Theorem 2, and

additional numerical studies.

A. Technical Proofs

We present some regularity conditions and key proofs in the appendix.

Regularity Conditions for Sure Independence Screening Define z = Σ−1/2x, Z =

XΣ−1/2. Let M∗ be the index set of covariates with nonzero coefficient. The following

assumptions are imposed:

(A1) p > n and log(p) = O(nε) for some ε ∈ (0, 1− 2κ), where κ is given by condition (A3).

(A2) z has a spherically symmetric distribution, and ∃c0, c1 > 1, C1 > 0 such that

P
(
λmax(p̃Z̃Z̃

T ) > c1 or λmin(p̃Z̃Z̃T ) < 1/c1

)
≤ exp(−C1n)

holds for any n× p̃ submatrix Z̃ of Z with c0n < p̃ ≤ p.

(A3) V ar(Y ) = O(1), and for some κ ≥ 0 and c2, c3 > 0,

min
j∈M∗

|βj| ≥
c2
nκ
, min

j∈M∗
Cov(β−1j Y,Xj) ≥ c3

(A4) There are some τ ≥ 0 and c4 > 0 such that λmax(Σ) ≤ c4n
τ .

Proof of Theorem 1. To prove Theorem 1, we need to use the following lemma, which is
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from Arratia et al. [1989].

Lemma 1. Let I be an index set and {Bα, α ∈ I} be a set of subsets of I, that is, Bα ⊂ I

for each α ∈ I. Let also {ηα, α ∈ I} be random variables. For a given t ∈ R, set λ =∑
α∈I P (ηα > t). Then

|P
(

max
α∈I

ηα < t

)
− e−λ| ≤ (1 ∧ λ−1)(b1 + b2 + b3)

where b1 =
∑

α∈I
∑

β∈Bα P (ηα > t) P (ηβ > t), b2 =
∑

α∈I
∑

α6=β∈Bα P (ηα > t, ηβ > t) and

b3 =
∑

α∈I E|P (ηα > t|σ(ηβ, β /∈ Bα)) − P (ηα > t) |, and σ(ηβ, β /∈ Bα) is the σ-algebra

generated by {ηβ, β /∈ Bα}. In particular, if ηα is independent of {ηβ, β /∈ Bα} for each α,

then b3=0.

In our proof, we take I = {(i, j); 1 ≤ i ≤ j ≤ p}. Let α = (i, j) ∈ I, we define

Bα = {(k, l) ∈ I; one of k and l = i or j, but (k, l) 6= α}, and Aα = Aij = {|ρi,j|2 ≥ t}, where

ρi,j = |Ĉorr(Xi, Xj)|. Let Wpn = max1≤i<j≤p |ρi,j|, by the Chen-Stein method (in particular,

Lemma 6.2 in Cai and Jiang (2011)),

|P (W 2
pn ≤ t)− e−λp,n| ≤ b1 + b2, (A.19)

where λp,n =
∑

α∈I P (Aα) = p(p−1)
2

P (A12), and b1 =
∑

α∈I
∑

β∈Bα P (Aα)P (Aβ), b2 =∑
α∈I
∑

α6=β∈Bα P (AαAβ).

Moreover, we have b1 ≤ 2p3P (A12)
2 and b2 ≤ 2p3P (A12A13).

Since X1, · · · , Xp are independent, A12 and A13 are also independent with equal proba-
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bility. Therefore we have b1 ∨ b2 ≤ 2p3P (A12)
2.

On the other hand, |ρi,j|2 ∼ B(1
2
, n−2

2
). Take t∗ = ap,n + bp,nx (x ≤ n−2

2
), where ap,n =

1 − p−4/(n−2)cp,n, bp,n = 2
n−2p

−4/(n−2)cp,n, and cp,n =
(
n−2
2
B(1

2
, n−2

2
)
√

1− p−4/(n−2)
)2/(n−2)

.

Then

P (A∗12) =
2(1− t∗)(n−2)/2

B(1
2
, n−2

2
)(n− 2)

√
t∗

(1 +O(
1

log(p)
)).

= p−2
(
1− 2

n− 2
x
)n−2

2

√
1− p−4/(n−2)

ap,n

(
1 + (

bp,n
ap,n

x)
)−1/2(

1 +O(log−1(p))
)
.

= p−2
(
1− 2

n− 2
x
)n−2

2
(
1 +O(

log log(p)

log(p)
)
)(

1 +O(log−1(p))
)2

= p−2
(
1− 2

n− 2
x
)n−2

2
(
1 +O(

log log(p)

log(p)
)
)

(A.20)

Therefore, uniformly for any n ≥ 3, b1∨ b2 = O(1/p), and limp→∞ λp,n = 1
2

(
1− 2

n−2x
)n−2

2

Then it follows from (A.19) that uniformly for any n ≥ 3 and x ≤ n−2
2

,

lim
p→∞
|P (W 2

pn ≤ t∗)− exp
{
− 1

2

(
1− 2

n− 2
x
)n−2

2
}
| = 0. (A.21)

When x ≥ n−2
2

, t∗ = 1+( 2
n−2x−1)p−4/(n−2)cp,n ≥ 1. Therefore, uniformly for any n ≥ 3,

lim
p→∞

P (Wpn ≤ t∗) = 1 (A.22)

Combining (A.21) and (A.22) we have uniformly for any n ≥ 3,

lim
p→∞
|P (Wpn ≤ t∗)− I(x ≤ n− 2

2
) exp

{
− 1

2

(
1− 2

n− 2
x
)n−2

2
}
− I(x >

n− 2

2
)| = 0. (A.23)
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Or equivalently,

lim
p→∞
|P (

W 2
pn − ap,n
bp,n

≤ x)− I(x ≤ n− 2

2
) exp

{
− 1

2

(
1− 2

n− 2
x
)n−2

2
}
− I(x >

n− 2

2
)| = 0.

(A.24)

Proof of Theorem 3. Let event A = {R2
ij ≤ 1− p−(4+δ)/(n−3) for all i, j ∈M\M∗}, event

B = {ρ̂ij ≤ f(n, p, α) for i ∈ M∗, j ∈ M\M∗} where ρ̂ij = |Ĉorr(Xi, Xj)|, f(n, p, α) is

the screening threshold for pairwise correlation screening. Then A implies that no pairs

of unimportant variables passed the R squares screening. B implies that important and

unimportant variables can not be too highly correlated.

By the definition of C, we have

P (C ∩M ⊂M∗) ≥ P (A ∩B) ≥ P (A) + P (B)− 1. (A.25)

For the event A, we have

P (A) = 1− P (
⋃

i6=j∈M\M∗
R2
ij ≥ 1− p−(4+δ)/(n−3)) ≥ 1−

∑
i6=j∈M\M∗

P (R2
ij ≥ 1− p−(4+δ)/(n−3))

= 1− (n/ log(n))2P (Beta(1,
n− 3

2
) ≥ 1− p−(4+δ)/(n−3))

= 1− (n/ log(n))2p−(4+δ)/2

Under the assumption (B1), (n/ log(n))2p−(4+δ)/2 → 0 as n → ∞. Therefore we have

P (A)→ 1.

Next we show that P (B)→ 1 as n→∞. We have
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P (B) = 1− p(
⋃

i∈M∗,j∈M\M∗
ρ̂ij ≥ f(n, p, α)) ≥ 1−

∑
i∈M∗,j∈M\M∗

P (ρ̂ij ≥ f(n, p, α))

= 1− (n/ log(n))2P (ρ̂ij ≥ max{ap,n + bp,nFn(α), η})

= 1− (n/ log(n))2P (ρ̂ij ≥ δp,n) ,

where Fn(α) is the 100(1 − α) quantile of the limiting cumulative distribution function of

the maximal pairwise correlation statistic, and we denote max{ap,n + bp,nFn(α), η} by δp,n.

Note that

ap,n + bp,nFn(α) = 1− p−4/(n−2)cp,n(1− 2

n− 2
Fn(α))

=1− p−4/(n−2)cp,n{−2 log(1− α)}2/(n−2)

=1−
(
Cαp

−2n− 2

2
B(

1

2
,
n− 2

2
)
√

1− p−4/(n−2)
) 2
n−2

=1−O
(C2

α(n− 2)(1− p−4/(n−2))
p4

) 1
n−2

for large enough n

=1−O
(
e−

log p
n

)
for large enough n

Let ρij be the population correlation coefficient between Xi and Xj. Write z(n) =

1
2

log
1+ρ̂ij
1−ρ̂ij , ξ = 1

2
log

1+ρij
1−ρij . It has been shown that as n→∞, n1/2(z(n)− ξ)→ N (0, 1).

We have

P (ρ̂ij ≥ δp,n) =P

(
n1/2(z(n)− ξ) ≥ n1/2(

1

2
log

1 + δp,n
1− δp,n

− ξ)
)

=P

(
Z ≥ n1/2(

1

2
log

1 + δp,n
1− δp,n

− ξ) + on(1)

)
≤ e−Cp,nn√

2πnCp,n
,

(A.26)

where Cp,n = 1
2

log 1+δp,n
1−δp,n − ξ.

If log(p)/n → ∞ as n → ∞, then ap,n + bp,nFn(α) → 1. Therefore δp,n → 1, which
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yields Cp,n →∞. Then the tail probability in (A.26) goes to zero as n→∞. It follows that

P (B)→ 1 as n→∞.

If log(p)/n → η0 as n → ∞, then δp,n → max{1 − e−4η0 , η}. Under assumption (B2)

that ρij < max{1−e−4η0 , η}, limn→∞Cp,n = limn→∞
1
2

log 1+max{1−e−4η0 ,η}
1−max{1−e−4η0 ,η} − ξ > 0. Again the

tail probability in (A.26) goes to zero as n→∞. It follows that P (B)→ 1 as n→∞.

If log(p)/n → 0 as n → ∞, then ap,n + bp,nFn(α) → 0. Hence δp,n → η. Under the

assumption (B2), we have limn→∞Cp,n = log 1+η
1−η − ξ > 0. Therefore P (B)→ 1 as n→∞.

Given P (A)→ 1 and P (B)→ 1, we have P (C ∩M ⊂M∗)→ 1 as n→∞.

Proof of Theorem 4. It follows from (4.17) directly that

‖(C(2)
21 − C

(1)
21 (C

(11)
11 )−1C

(12)
11 )

(
C

(22)
11 − C

(21)
11 (C

(11)
11 )−1C

(12)
11

)−1
sign(β

(2)
1 )‖max ≤ 1− ξ, (A.27)

where ‖·‖max denotes the max norm of a matrix. Based the definition of C, we have the follow-

ing element wise inequalities ‖C(12)
11 ‖max ≤ cn,p,α, ‖C(21)

11 ‖max ≤ cn,p,α. Here cn,p,α is the pair-

wise correlation screening bound. Since C
(11)
11 is positive definite, there exists an orthogonal

matrix Q s.t. C
(11)
11 = QΛQT , where Λ is a diagonal matrix consists of the eigenvalues of C

(11)
11 .

By assumption, we have λmin(C
(11)
11 ) ≥ λ0. Therefore ‖C(21)

11 (C
(11)
11 )−1C

(12)
11 ‖max ≤ λ−10 c2n,p,αs

2
1.

Under the assumption that log(p)/n→ 0, cn,p,α = on(1). It follows that λ−10 c2n,p,αs
2
1 = on(1).

By assumption (B2), ‖C(1)
21 ‖max ≤ η. Thus ‖C(1)

21 (C
(11)
11 )−1C

(12)
11 ‖max ≤ λ−10 ηcn,p,αs

2
1, then
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‖C(1)
21 (C

(11)
11 )−1C

(12)
11 ‖max = op(1) as n→∞. Therefore

‖(C(2)
21 − C

(1)
21 (C

(11)
11 )−1C

(12)
11 )

(
C

(22)
11 − C

(21)
11 (C

(11)
11 )−1C

(12)
11

)−1
sign(β

(2)
1 )− C(2)

21 (C
(22)
11 )−1sign(β

(2)
1 )‖max

=‖
(
C

(2)
21 (C

(22)
11 )−1C

(21)
11 (C

(11)
11 )−1C

(12)
11 − C

(1)
21 (C

(11)
11 )−1C

(12)
11

)(
C

(22)
11 − C

(21)
11 (C

(11)
11 )−1C

(12)
11

)−1
sign(β

(2)
1 )‖max

Write A = C
(2)
21 (C

(22)
11 )−1C

(21)
11 (C

(11)
11 )−1C

(12)
11 , B = C

(1)
21 (C

(11)
11 )−1C

(12)
11 , D = C

(21)
11 (C

(11)
11 )−1C

(12)
11 ,

and Y = sign(β
(2)
1 ). Then the above term becomes ‖(A−B)(C

(22)
11 −D)−1Y ‖max. Moreover,

we have

‖(A−B)(C
(22)
11 −D)−1Y ‖max ≤ (s− s1)‖A−B‖max‖(C(22)

11 −D)−1Y ‖max.

Since ‖A‖max ≤ λ−10 (s−s0)2‖C(2)
21 ‖max‖C(21)

11 (C
(11)
11 )−1C

(12)
11 ‖max ≤ λ−20 ηc2n,p,αs

2
1(s−s1)2, ‖B‖max ≤

λ−10 ηcn,p,αs
2
1, and

‖(C(22)
11 −D)−1Y ‖max ≤ (s− s1)‖(C(22)

11 −D)−1‖max ≤ (s− s1)(λ0 − λ−10 c2n,p,αs
2
1)
−1.

Therefore we have

‖(A−B)(C
(22)
11 −D)−1Y ‖max ≤ (s− s0)2(λ−20 ηc2n,p,αs

2
1(s− s1)2 + λ−10 ηcn,p,αs

2
1)(λ0 − λ−10 c2n,p,αs

2
1)
−1

= op(1),

as n→∞. It follows that C
(2)
21 (C

(22)
11 )−1sign(β

(2)
1 ) < 1− ξ/2 with probability tending to 1 as

n→∞ which concludes the proof if we take δ = ξ/2.
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