1910.02910v2 [cs.RO] 8 Mar 2020

arxiv

Scaled Autonomy: Enabling Human Operators to Control Robot Fleets

Gokul Swamy!, Siddharth Reddy', Sergey Levine', Anca D. Dragan!

Abstract— Autonomous robots often encounter challenging
situations where their control policies fail and an expert human
operator must briefly intervene, e.g., through teleoperation. In
settings where multiple robots act in separate environments,
a single human operator can manage a fleet of robots by
identifying and teleoperating one robot at any given time. The
key challenge is that users have limited attention: as the number
of robots increases, users lose the ability to decide which robot
requires teleoperation the most. Our goal is to automate this
decision, thereby enabling users to supervise more robots than
their attention would normally allow for. Our insight is that
we can model the user’s choice of which robot to control as
an approximately optimal decision that maximizes the user’s
utility function. We learn a model of the user’s preferences
from observations of the user’s choices in easy settings with a
few robots, and use it in challenging settings with more robots
to automatically identify which robot the user would most likely
choose to control, if they were able to evaluate the states of all
robots at all times. We run simulation experiments and a user
study with twelve participants that show our method can be
used to assist users in performing a simulated navigation task.
We also run a hardware demonstration that illustrates how our
method can be applied to a real-world mobile robot navigation
task.

I. INTRODUCTION

Sliding autonomy [1]-[4] is a promising approach to
deploying robots with imperfect control policies: while a
fleet of autonomous robots acts in separate environments,
a human operator monitors their states, and can intervene
to help a robot via teleoperation when the robot encoun-
ters a challenging state. Imagine, for instance, a fleet of
delivery robots: at any given time, most of them may be
driving in easy conditions with few pedestrians, while one
of them encounters a crowded sidewalk and requires operator
intervention. Ideally, the performance of such a human-
robot centaur team would scale smoothly with the increasing
capabilities of the robot: as autonomy improves, challenging
states become rarer, and a single human operator should be
able to control a larger fleet of robots.

Unfortunately, while the user may be a skilled operator,
they have limited attention. As the fleet grows larger, the
user’s ability to maintain awareness of the states of all
robots and identify the robot that most requires intervention
degrades.

We propose to overcome this challenge by automating
the operator’s choice of which robot to control. Given a
large number of robots running in separate environments, our
approach is to train a model that predicts which robot the user
would teleoperate, if the user had the ability to analyze all

Department of Electrical Engineering and Computer Science, University
of California, Berkeley

Fig. 1. We learn which robot a user would prefer to control, by
observing the user manage a small number of robots. We then use the
learned preference model to help the user control a much larger number of
robots. We evaluate our method (a) on a simulated navigation task and real
hardware demonstration (b) through controlled, synthetic experiments with
expert agents that stand in for users, and a human user study with twelve
participants (c).

the robots’ current states quickly enough. Our insight is that
we can use decisions that the operator makes in easy settings
with only a few robots, where they can feasibly pay attention
to all the robots’ current states, to train a predictive model
of user behavior that generalizes to challenging settings with
many robots.

The key to generalizing the user’s choices from easy to
hard settings is to treat them as observations of relative
preferences between robots: every choice the person makes
to control one particular robot instead of any of the other
robots is assumed to be an approximately optimal decision,
with respect to maximizing the user’s utility function. Every
choice gives us information about that utility, namely that
the utility of controlling the chosen robot was higher than
the utility of controlling any other robot. We can thus use
observations of the operator’s choices to fit a model of their
utility function. At test time, we apply the learned model
to the current state of each robot, and automatically switch
the user to controlling the robot with the highest predicted
likelihood of being chosen.

We test our method in simulation and through an in-
person user study, on a simulated navigation task and real
hardware demonstration. In the navigation task, the robot
must successfully navigate through a video game environ-
ment with hazards and health packs to reach a goal state (see

schematic in Figure 4). We initially evaluate our method in
synthetic experiments where we simulate user input under
ideal assumptions, and where we have access to ground-
truth user preferences. We find that our method effectively
generalizes the user’s choices in easy settings with a small
number of robots to challenging settings with a large number
of robots. We also find that modeling the user’s choices as a
function of relative preferences between robots is important
for this generalization. To show that our results extend to real
user data, we conduct an in-person user study with twelve
human participants, where we evaluate each participant’s
ability to manage twelve robots with and without assisted
choice. We find that assisted choice enables users to perform
significantly better than they can on their own.

II. RELATED WORK

In shared autonomy, a human operator and robot collab-
orate to control a system which neither the operator nor the
robot could control effectively by themselves [5]. Previous
work in this area [6]-[10] has focused on some combination
of inferring user intent and acting to achieve it. We instead
focus on helping the user process information quickly enough
to manage a fleet of robots. The problem we tackle is more
akin to that addressed by a continuously-running search
engine like the Remembrance Agent [11], which assists a
user’s decision-making by displaying information relevant to
the user’s current context.

The closest prior work is in sliding autonomy [1]-[4]
and active learning [12], where the robot can request user
intervention in challenging or uncertain situations. Prior
methods tend to require knowledge of the task in order to
determine when user intervention is needed. Our method
makes minimal assumptions about the task, and instead
allocates the user’s attention using a learned model of the
user’s preferences. To our knowledge, we are the first to use
a general-purpose learning approach to allocating operator
interventions.

III. LEARNING TO ALLOCATE
OPERATOR INTERVENTIONS

Our goal is to help the user choose which robot to control
at any given time. To do so, we learn to mimic the way the
user manages a small number of robots, then use the learned
model to assist the user in controlling a large number of
robots.

A. Problem Formulation

We formalize the problem of automating the operator’s
decision of which robot to control as one of estimating the
operator’s internal scoring function: a function that maps
the state of a robot to a real-valued score of how useful it
would be to take control of the robot, in terms of maximizing
cumulative task performance across robots.

User choice model. Let [n] denote {1,2,...,n}, i € [n] denote
the i-th robot in a fleet of n robots, and &, € [n] denote the

robot controlled by the user at time 7. We assume the user
selects robot #; using the Luce choice model [13],

Py =i = *¢)/ Y &), (1)
j=1

where ¢ : . — R is the user’s scoring function, and s is the
state of robot i at time ¢. In other words, we assume users
choose to control higher-scoring robots with exponentially
higher probability. Crucially, we also assume that the score
of each robot is independent of the other robots. This makes
it possible to scale the model to a large number of robots
n, which would not be practical if, e.g., scores depended on
interactions between the states of different robots.

User rationality model. We assume the user’s control policy
Ty . x o/ — [0,1] maximizes the user’s utility function R.
At time ¢, the user chooses a robot iﬁ, to control, then controls
it using their policy my. We assume the user’s scoring
function ¢ maximizes the cumulative task performance of
all robots:

n T-1
¢ =argmaxE | Y Y R(s),a}) | my, 7z | , ()
e i=11=0

where T is the episode horizon. The actions a} are determined
by whether the user was in control and executed their policy
Ty, or the robot relied on its own policy mg. Formally,

Pla; = a] = Pliy = i|my(als;) + (1 = Pliy = i) 7r(alsi), (3)

where the user’s choice P[if; = i] of whether or not to control
robot i is modeled in Equation 1.!

Robot policy. We assume the robot policy 7 is identical for
each of the n robots, and that it does not perfectly maximize
the user’s utility function R. Our method is agnostic to how
7g is constructed: e.g., it could be a decision tree of hard-
coded control heuristics, or a planning algorithm equipped
with a forward dynamics model of the environment. In this
work, we choose 7z to be a learned policy that is trained
to imitate user actions. This allows us to make minimal
assumptions about the task and environment, and enables
the robot policy to improve as the amount and quality of
user demonstration data increases.

Knowns and unknowns. We assume we know the robot
policy 7g, but we do not know the user’s utility function R,
the user’s control policy 7y, or the user’s scoring function
9.2

Problem statement. Our assumptions about the user’s ratio-
nality may not hold in settings with a large number of robots
n: because the user has limited attention, they may not be
able to evaluate the scores of the states of all robots at all
times using their internal scoring function ¢. As a result,

'We assume the user’s scoring function ¢ is optimal with respect to the
utility objective in Equation 2 for the sake of clarity. However, our method
is still useful in settings where ¢ is suboptimal. In such settings, our method
will, at best, match the performance of the user’s suboptimal ¢.

2We assume the user’s utility function R is unknown for the sake of
clarity. However, our method is also useful in settings where the user’s
utility function R is known, but the utility-maximizing policy 7y is difficult
to compute or learn from demonstrations.

they may make systematically suboptimal choices that do not
maximize the expected cumulative task performance across
all robots.

B. Our Method

Our aim is to help the user maximize the expected
cumulative task performance across all robots, in settings
with a large number of robots n. We do so by learning a
scoring model ¢ and using it to automate the user’s choice
of which robot to control. In conjunction, we train the robot
policy mr to imitate user action demonstrations — collected
initially on a single robot, then augmented with additional
demonstrations collected as the user operates each robot
chosen by the scoring model ¢.

We split our method into four phases. In phase one, we

train the robot policy 7z using imitation learning. The user
controls a single robot in isolation, and we collect a demon-
stration dataset Zgemo Of state-action pairs (s,a). Our method
is agnostic to the choice of imitation learning algorithm. In
phase two, we learn a scoring model ¢ by asking the user
to manage a small number of robots, observing which robot
i; the user chooses to control at each timestep based on
their internal scoring function ¢, then fitting a parametric
model of ¢ that explains the observed choices. In phase three,
we enable the user to manage a large number of robots by
using the learned scoring model ¢ to automatically choose
which robot to control for them. In phase four, we update
the robot’s imitation policy 7z with the newly-acquired user
action demonstrations from phase three.
Phase one (optional): training the robot policy 7. In this
work, we train the robot policy 7z to imitate the user policy
7. We record state-action demonstrations Zgemo generated
by the user as they control one robot in isolation, and
use those demonstrations to train a policy that each robot
can execute autonomously during phases two and three. We
implement 7z using a simple nearest-neighbor classifier that
selects the action taken in the closest state for which we have
a demonstration from 7y. Formally,

1 if (,a) = argmingg y)c g, |ls =5[>
0 otherwise.

nr(als) = 4)
We choose a simple imitation policy for 7z in order to model
real-world tasks for which even state-of-the-art robot control
policies are suboptimal. Improving the autonomous robot
policy 7g is orthogonal to the objective of this paper, which
is to enable an arbitrary robot policy 7g to be improved by
the presence of a human operator capable of intervening in
challenging states.

Phase two: learning the scoring model ¢. Our approach to
assisting the user involves estimating their scoring function
¢. To do so, we have the user manage a small number of
robots n. While the user operates one robot using control
policy 7y, the other robots take actions using the robot policy
mg trained in phase one. The user can monitor the states of
all robots simultaneously, and freely choose which robot to
control using their internal scoring function ¢. We observe
which robot i}, the user chooses to control at each timestep,

and use these observations to infer the user’s scoring function
¢. In particular, we compute a maximum-likelihood estimate
by fitting a parametric model ¢ = ¢ that minimizes the
negative log-likelihood loss function,

" '
0(6;2) = 90 (57,) +log [Y- e t)), &)
() (537'.'7§%)e@ e iy g]:le)

where 2 is the training set of observed choices, and 6 are the
weights of a feedforward neural network ¢g.> The learned
scoring model ¢ is optimized to explain the choices the
user made in the training data, under the assumptions of the
choice model in Equation 1. Fitting a maximum-likelihood
estimate ¢ is the natural approach to learning a scoring model
in our setting, since the MLE can be used to mimic the user’s
internal scoring function and thereby assist choice in phase
three, and because it can be accomplished using standard
supervised learning techniques for training neural networks.
Phase three: assisted choice. At test time, we assist the user
at time ¢ by automatically switching them to controlling the
robot with the highest predicted likelihood of being chosen:
robot argmax;c(, @(s). This enables the user to manage a
large number of robots n, where the user is unable to evaluate
the scores of the states of all robots simultaneously using
their internal scoring function ¢, but where we can trivially
apply the learned scoring model ¢ to the states of all robots
simultaneously.

Phase four (optional): improving the robot policy 7.
While performing the task in phase three, the user generates
action demonstrations (s,a) as they control each chosen robot
— demonstrations that can be added to the training data Zgemo
collected in phase one, and used to further improve the robot
policy g through online imitation learning. One of the aims
of assisted choice in phase three is to improve the quality of
these additional demonstrations, since operator interventions
in challenging states may provide more informative demon-
strations.

IV. SIMULATION EXPERIMENTS

In our first experiment, we simulate human input, in
order to understand how our method performs under ideal
assumptions. We seek to answer two questions: (1) does
a model trained on data from a small fleet generalize to
a large fleet, and (2) is our idea of treating choices as
observations of preferences important for this generalization?
Simulating user input enables us to assess not just the task
performance of our learned scoring model, but also its ability
to recover the true internal scoring function; e.g., by posing
counterfactual questions about how often the predictions
made by our learned scoring model agree with the choices
that would have been made by a simulated ground-truth
scoring function.

3In our experiments, we used a multi-layer perceptron with two layers
containing 32 hidden units each and ReLU activations.

A. Experiment Design

Setup. We evaluate our method on a custom navigation
task in the DOOM environment [14]. In the navigation
task, the robot navigates through a video game environment
containing three linked rooms filled with hazards and health
packs to reach a goal state (see screenshot in Figure 1 and
schematic in Figure 4). The robot receives low-dimensional
observations s € R* encoding the robot’s 2D position, angle,
and health, and takes discrete actions that include moving
forward or backward and turning left or right. The default
reward function outputs high reward for making progress
toward the goal state and collecting health packs while avoid-
ing hazards. To introduce stochasticity into the environment,
we randomize the initial state of each robot at the beginning
of each episode.

Simulating user input. Although simulating user input is
not a part of our method, it is useful for experimentally
evaluating our method under ideal assumptions. We simulate
the human operator with a synthetic user policy 7y trained
to maximize the environment’s default reward function via
deep reinforcement learning — in particular, the soft actor-
critic algorithm [15]. Note that our algorithm is not aware
of the utility function R, and simply treats the reinforcement
learning agent 7y the same way it would treat a human user.
We choose the simulated ground-truth scoring function ¢ to
be the gain in value from running the user policy 7y instead
of the robot policy ng,

O(s) = V™ (s;) —V™R(s}), (6)

where V denotes the value function, which we fit using tem-
poral difference learning [16] on the environment’s default
rewards. Note that our choice of ¢ does not necessarily
maximize the cumulative task performance of all robots, as
assumed in Equation 2 in Sec. III-A. It is a heuristic that
serves as a replacement for human behavior, for the purposes
of testing whether we can learn a model of ¢ that performs as
well as some ground-truth ¢. We would like to emphasize
that our method does not assume knowledge of 7wy or ¢,
and that the design decisions made above are solely for the
purpose of simulating user input in synthetic experiments.
Manipulated variables. We manipulate the scoring function
used to select the robot for the synthetic user to control.
The scoring function is either (1) the ground-truth scoring
function @, (2) a model of the scoring function trained using
our method (ﬁluce, or (3) a model of the scoring function
trained using a baseline classification method (ﬁbase.

Our method follows the procedure in Sec. III-B: in phase
two, it fits a scoring model @y to explain observations of
the user’s choices in a setting with a small number of robots
n =4, under the modeling assumptions in Sec. III-A.

The baseline method fits a scoring model (ﬁbase that as-
sumes a much simpler user choice model than our method:
that the user selects robot i with probability o (¢ (s})), where
o is the sigmoid function. In other words, the baseline
method trains a binary classifier to distinguish between states
where the user intervened and states where the user did not

intervene. Unlike our method, this approach does not model
the fact that the user chose where to intervene based on
relative differences in scores, rather than the absolute score
of each robot. Because of this modeling assumption, the
baseline may incorrectly infer that a state s} was not worth
intervening in because the user did not select robot i at time 7,
when, in fact, the user would have liked to intervene in robot
i at time ¢ if possible, but ended up selecting another robot
Jj that required the user’s attention even more than robot i.

We test each scoring function in a phase-three setting with
a large number of robots n = 12. At each timestep, we use the
scoring function to choose which robot to control: the chosen
robot executes an action sampled from the user policy 7y,
while all other robots execute actions sampled from the robot
policy 7g.

We also test each scoring function in a phase-four setting,
where we re-train the robot’s imitation policy 7z using the
newly-acquired user demonstrations from phase three, then
evaluate 7 by running it on a single autonomous robot.
Dependent measures. To measure the performance of the
human-robot team in the phase-three setting with n = 12
robots, we compute the cumulative reward across all robots.
To measure the predictive accuracy of each learned scoring
model, we compute the top-1 accuracy of the robot ranking
generated by the learned scoring models Qe and Gpase
relative to the ranking produced by the ground-truth scoring
function ¢. To measure the data impact of each scoring
model on the quality of demonstrations used to improve
the robot policy @z in phase four, we evaluate the task
performance of the robot’s imitation policy 7g after being re-
trained on the user action demonstrations generated in phase
three.

Hypothesis H1 (generalization). Our learned scoring model
Puce performs nearly as well as the ground-truth scoring
function ¢ in the phase-three setting with a large number
of robots, in terms of both the cumulative reward of the
human-robot team and the data impact on the performance
of a single robot.

Hypothesis H2 (modeling relative vs. absolute prefer-
ences). Our learned scoring model qSluce outperforms the
baseline scoring model @pase, in terms of all dependent
measures — cumulative reward, predictive accuracy, and data
impact.

B. Analysis.

Figure 2 plot the performance and data impact of each
scoring function for the navigation task. In line with our
hypotheses, (ﬁluce outperforms quase in all measures, while
performing slightly worse than ¢. In terms of predictive
accuracy, we find that Q... generalizes reasonably well: it
agrees 79% of the time with the ground truth, compared to
32% for (ﬁbase, which translates to better team performance.
Furthermore, demonstration data from assisted choice with
Pruce induces a stronger imitation policy 7z. One explanation
for this result is that collecting expert action demonstrations
in challenging states leads to a better imitation policy 7mg
than demonstrations in less challenging states. Users tend to

Navigation Team Performance of ¢ Variants Navigation Imitation Performance of ¢ Variants

810 Base. Luce . GT] Base. I Luce . GT
© S 1200
g g
580 % 1100
v £
Z & 1000
g 70 3
E £ 900
2780 S
S g 800
<770 <
700
Fig. 2. Left: our learned scoring model ¢, outperforms the baseline

scoring model @yqse, While performing slightly worse than the ground-
truth (GT) scoring function ¢. Rewards are averaged across all twelve
robots, and across 250 trials. Right: the scoring function affects which
states the user demonstrates actions in during phase three, which in turn
affect the performance of the imitation policy after re-training with the
new demonstrations in phase four. The ground-truth (GT) scoring function
¢ leads to the best imitation performance, followed by our method (juce.
The baseline ﬁme induces less informative demonstrations. Rewards are
for a single robot policy 7z that runs without human intervention, and are
averaged across 250 trials of 8 episodes each.

Unassisted Assisted F(1,11) p-value
Q1 2.92 4.50 17.49 < 0.01
Q2 2.25 3.92 13.75 <0.01
Q1* 2.67 4.17 17.47 < 0.01
Q2% 292 3.25 0.88 0.37

Fig. 3. QIl: it was easy to guide the robots to their goals. Q2: I was
successful at guiding the robots. Q*: Q after objective measures revealed.
Survey responses on a 7-point Likert scale, where 1 = Strongly Disagree,
4 = Neither Disagree nor Agree, and 7 = Strongly Agree.

prefer to take over robots in states that are challenging for
the robot policy mg. Our learned scoring model may capture
that preference and, through assisted choice, allocate the
user’s expert actions to more challenging states. These results
suggest that our assisted choice method might be useful for
active learning [17] in the context of training robots via
imitation [18] — one possible direction for future work.

V. USER STUDY

The previous section analyzed our method’s performance
with synthetic data. Here, we investigate to what extent those
results generalize to real user data.

A. Experiment Design

Setup. We use the navigation task for the study, which is
split into the four phases described in Sec. III-B. In phase
one, we collect data for training our robot policy 7z via
imitation: participants control a single robot — initialized
with a uniform random policy — using the arrow keys on
a keyboard, correcting it whenever it performs an action
they would prefer it did not. We do this for ten episodes.
In phase two, we collect data to train our scoring model
¢: participants manage n = 4 robots, which they monitor
simultaneously. Participants manually choose which robot to
control. In phase three, participants manage n = 12 robots,
and either manually choose which robot to control, or let
the learned scoring model choose which robot to control for
them. In phase four, we re-train the imitation policy 7z on
the action demonstrations from phase three, and evaluate the
task performance of 7g in isolation.

User Study Team Performance =)

Manual Assisted

B 710
2 700
Q
P 690
(]
2 680
o
—:E; 670
£ 660 ‘

Y 650
640
630

User Study Imitation Performance

Manual Assisted

1100

.
o
=)
S

1050 ‘

® o
1 =1
S S

Avg. Cumulative Reward
e}
o1
[e]

®
=)
S

Fig. 4. Performance of the human-robot team in phase three, averaged
across twelve participants and eight trials per participant (top), and the
robot’s imitation policy in phase four (bottom). In the navigation task, the
agent starts at s and navigates to g, while avoiding the gray hazard region
and collecting health packs indicated by crosses. The heat maps render the
learned scoring models ¢ of three different users, showing the positions
where the model predicts each user would most prefer to take control of
the robot. Darker indicates higher predicted score, and orange circles are
peaks.

Manipulated variables. We manipulate whether or not the
user is assisted by the learned scoring model ¢ in choosing
which of the n = 12 robots to control at any given time
in phase three. In the manual condition, the user is able to
view the states of all robots simultaneously, and freely selects
which robot to control using their internal scoring function
¢. In the assisted condition, every fifteen timesteps the user
is automatically switched to controlling the robot with the
highest predicted likelihood of being chosen according to
the learned scoring model ¢.*

Dependent measures. As in the synthetic experiments, we
measure performance of the human-robot team using the
cumulative reward across all robots, and data impact using
the reward achieved by a single robot running the imitation
policy 7y after training on the user demonstrations generated
in the phase-three setting with n = 12 tobots. We also
conduct a survey using Likert-scale questions to measure
subjective factors in the user experience, like the user’s self-
reported ease of use and perception of success with vs.
without assisted choice. We administered this survey after
each condition, once before and once after revealing the
cumulative reward to the participants.

Hypothesis H3. We hypothesize that assisted choice will
improve our objective and subjective dependent measures.

4We also tried a more flexible interface where, instead of automatically
switching the user to the predicted robot, the interface continued showing
all robots’ states and merely highlighted the robot with the highest predicted
likelihood of being chosen. The users in this pilot study tended to get
confused by the suggestion interface, and preferred to be automatically
switched to the predicted robot.

Hardware Team Performance

Manual Assisted

2 3.00
<
2275
i’}
~ 250
[
2225
=
= 2.00
§175
Y 150
1.25
1.00

Avg

Fig. 5. Left: performance of the human-robot team in phase three, averaged
across five one-minute trials. Right: as in Figure 4, the heat map renders
the learned scoring model ¢.

Subject allocation. We conducted the user study with twelve
participants, nine male and three female, with a mean age
of twenty-one. We used a within-subjects design and coun-
terbalanced the order of the two conditions: manual choice,
and assisted choice.

B. Analysis.

Objective measures. We ran a repeated-measures ANOVA
with the use of assisted choice (vs. manual choice) as a
factor and trial number as a covariate on the performance
of the human-robot team. Assisted choice significantly out-
performed manual choice (F(1,184) = 12.96, p < .001),
supporting H3 (see left plot in Figure 4). Assisted choice
also slightly improved the performance of the robot’s imi-
tation policy 7mg in phase four (see the right plot in Figure
4), although the difference was not statistically significant
(F(1,23)=.31, p=.59). One explanation for this result is that
switching the user to a different robot every 15 timesteps was
not frequent enough to produce the number of informative
demonstrations needed to significantly improve 7g.

Figure 4 illustrates the learned scoring models ¢ of two

different users in the study. Each model is qualitatively
different, showing that our method is capable of learning
personalized choice strategies. The model for the first user
predicts they prefer to take control of robots near the goal
position — a strategy that makes sense for this particular user,
since the autonomous robot policy trained in phase one was
not capable of completing the task near the end. The models
for the second user predicts they would prefer to intervene
near health packs, which makes sense since the robot policies
trained to imitate that user tended to fail at maneuvering close
to health packs.
Subjective measures. Table 3 shows that users self-reported
that they found it easier to guide the robots to their goals and
were more successful at guiding the robots in the assisted
choice condition compared to the manual choice condition.
The table also shows the results of running a repeated-
measures ANOVA on each response. The improvement with
our method was significant in all but one case: how success-
ful users felt after we revealed their score to them.

VI. HARDWARE DEMONSTRATION

The previous sections analyzed our method’s performance
on a simulated navigation task. Here, we investigate to what

extent those results generalize to real hardware.

We evaluate our method with a single human user driving
laps with up to three NVIDIA JetBot mobile robots while
avoiding centrally-placed buckets and surrounding obstacles
(see Figures 1 and 5). We use an OptiTrack motion capture
system to measure the positions and orientations of the
robots. We enable the user to control each robot’s velocity —
via discrete keyboard actions for driving left, right, forward,
and backward — while looking through the robot’s front-
facing camera. The reward function outputs +1 upon each
lap completion. Each episode lasts one minute.

We repeat the three phases from Sec. V. In phase one,
we collect 2000 state-action demonstrations for training our
robot policy mg via imitation. In phase two, we collect 1300
examples of a human’s preferences (s,s5,i};) to train our
scoring model @: the human — an author, for the purposes
of our demonstration — manages n = 2 robots, which they
monitor simultaneously. In phase three, they manage n =3
robots, and either manually choose which robot to control, or
let the learned scoring model choose which robot to control
for them every five seconds.

As in Sec. V, we manipulate whether or not the user is
assisted by the learned scoring model ¢ in choosing which
of the n = 3 robots to control at any given time in phase
three. We measure performance of the human-robot team
using the cumulative reward across all robots.

We find that again, assisted choice improves the per-
formance of the human-robot team in phase three (Figure
5). The learned scoring model ¢ helpfully predicts high
scores for states close to the bucket, the boundary of the
environment, or a corner where the robot tends to get stuck,
where user interventions tend to be concentrated during
phase two.

VII. LIMITATIONS AND FUTURE WORK

We have evaluated our method in a simulated environ-
ment, and demonstrated its feasibility on real hardware in
a controlled lab setting. For complex, real-world tasks, it
may be the case that learning a scoring model is as difficult
as learning the user’s policy. In such cases, exploiting our
method’s ability to gather useful demonstration data by
focusing the user’s attention on informative states would be
an interesting area for further investigation.

Another direction for future work could be to investigate
tasks where users tend to change their control policies and
internal scoring models as the number of robots increases,
and whether iteratively applying our method addresses non-
stationary user models.

ACKNOWLEDGMENT

This work was supported in part by NSF SCHOOL,
Intel, Berkeley DeepDrive, GPU donations from NVIDIA,
NSF IIS-1700696, AFOSR FA9550-17-1-0308, NSF NRI
1734633, an NVIDIA Graduate Fellowship. The authors
would like to thank Justin Yim for his help in setting up
motion capture for the hardware experiment.

[1]

[2

—

[3]

[4

=

[5]

[6

=

REFERENCES

M. B. Dias, B. Kannan, B. Browning, G. Jones, B. Argall, M. F.
Dias, M. Zinck, M. M. Veloso, and A. Stentz, “Sliding autonomy for
peer-to-peer human-robot teams,” 2008.

D. Kortenkamp, D. Keirn-Schreckenghost, and R. P. Bonasso, “Ad-
justable control autonomy for manned space flight,” in 2000 IEEE
Aerospace Conference. Proceedings (Cat. No. 00TH8484), vol. 7.
IEEE, 2000, pp. 629-640.

D. J. Bruemmer, D. D. Dudenhoeffer, and J. L. Marble, “Dynamic-
autonomy for urban search and rescue.” in AAAI mobile robot compe-
tition, 2002, pp. 33-37.

B. Sellner, R. Simmons, and S. Singh, “User modelling for principled
sliding autonomy in human-robot teams,” in Multi-Robot Systems.
From Swarms to Intelligent Automata Volume III. Springer, 2005,
pp. 197-208.

P. Aigner and B. McCarragher, “Human integration into robot control
utilising potential fields,” in Proceedings of International Conference
on Robotics and Automation, vol. 1. IEEE, 1997, pp. 291-296.

S. Javdani, S. S. Srinivasa, and J. A. Bagnell, “Shared autonomy
via hindsight optimization,” Robotics science and systems: online
proceedings, vol. 2015, 2015.

A. D. Dragan and S. S. Srinivasa, “A policy-blending formalism
for shared control,” The International Journal of Robotics Research,
vol. 32, no. 7, pp. 790-805, 2013.

S. Reddy, A. D. Dragan, and S. Levine, “Shared autonomy via deep
reinforcement learning,” arXiv preprint arXiv:1802.01744, 2018.

W. Schwarting, J. Alonso-Mora, L. Pauli, S. Karaman, and D. Rus,
“Parallel autonomy in automated vehicles: Safe motion generation
with minimal intervention,” in 2017 IEEE International Conference
on Robotics and Automation (ICRA). 1EEE, 2017, pp. 1928-1935.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

A. Broad, T. Murphey, and B. Argall, “Highly parallelized data-
driven mpc for minimal intervention shared control,” arXiv preprint
arXiv:1906.02318, 2019.

B. Rhodes and T. Starner, “Remembrance agent: A continuously
running automated information retrieval system,” in The Proceedings
of The First International Conference on The Practical Application Of
Intelligent Agents and Multi Agent Technology, 1996, pp. 487-495.
R. Cohn, E. Durfee, and S. Singh, “Comparing action-query strategies
in semi-autonomous agents,” in Twenty-Fifth AAAI Conference on
Artificial Intelligence, 2011.

R. D. Luce, Individual choice behavior: A theoretical analysis.
Courier Corporation, 2012.

M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaskowski,
“ViZDoom: A Doom-based Al research platform for visual
reinforcement learning,” in [EEE Conference on Computational
Intelligence and Games. Santorini, Greece: IEEE, Sep 2016,
pp. 341-348, the best paper award. [Online]. Available: http:
/farxiv.org/abs/1605.02097

T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan,
V. Kumar, H. Zhu, A. Gupta, P. Abbeel, and S. Levine, “Soft actor-
critic algorithms and applications,” Tech. Rep., 2018.

G. Tesauro, “Temporal difference learning and td-gammon,” Commu-
nications of the ACM, vol. 38, no. 3, pp. 58-68, 1995.

B. Settles, “Active learning literature survey,” University of Wisconsin-
Madison Department of Computer Sciences, Tech. Rep., 2009.

B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and autonomous

systems, vol. 57, no. 5, pp. 469-483, 2009.

	I Introduction
	II Related Work
	III Learning to AllocateOperator Interventions
	III-A Problem Formulation
	III-B Our Method

	IV Simulation Experiments
	IV-A Experiment Design
	IV-B Analysis.

	V User Study
	V-A Experiment Design
	V-B Analysis.

	VI Hardware Demonstration
	VII Limitations and Future Work
	References

