


schematic in Figure 4). We initially evaluate our method in

synthetic experiments where we simulate user input under

ideal assumptions, and where we have access to ground-

truth user preferences. We find that our method effectively

generalizes the user’s choices in easy settings with a small

number of robots to challenging settings with a large number

of robots. We also find that modeling the user’s choices as a

function of relative preferences between robots is important

for this generalization. To show that our results extend to real

user data, we conduct an in-person user study with twelve

human participants, where we evaluate each participant’s

ability to manage twelve robots with and without assisted

choice. We find that assisted choice enables users to perform

significantly better than they can on their own.

II. RELATED WORK

In shared autonomy, a human operator and robot collab-

orate to control a system which neither the operator nor the

robot could control effectively by themselves [5]. Previous

work in this area [6]–[10] has focused on some combination

of inferring user intent and acting to achieve it. We instead

focus on helping the user process information quickly enough

to manage a fleet of robots. The problem we tackle is more

akin to that addressed by a continuously-running search

engine like the Remembrance Agent [11], which assists a

user’s decision-making by displaying information relevant to

the user’s current context.

The closest prior work is in sliding autonomy [1]–[4]

and active learning [12], where the robot can request user

intervention in challenging or uncertain situations. Prior

methods tend to require knowledge of the task in order to

determine when user intervention is needed. Our method

makes minimal assumptions about the task, and instead

allocates the user’s attention using a learned model of the

user’s preferences. To our knowledge, we are the first to use

a general-purpose learning approach to allocating operator

interventions.

III. LEARNING TO ALLOCATE

OPERATOR INTERVENTIONS

Our goal is to help the user choose which robot to control

at any given time. To do so, we learn to mimic the way the

user manages a small number of robots, then use the learned

model to assist the user in controlling a large number of

robots.

A. Problem Formulation

We formalize the problem of automating the operator’s

decision of which robot to control as one of estimating the

operator’s internal scoring function: a function that maps

the state of a robot to a real-valued score of how useful it

would be to take control of the robot, in terms of maximizing

cumulative task performance across robots.

User choice model. Let [n] denote {1,2, ...,n}, i∈ [n] denote

the i-th robot in a fleet of n robots, and itH ∈ [n] denote the

robot controlled by the user at time t. We assume the user

selects robot itH using the Luce choice model [13],

P[itH = i] = eφ(st
i)/

n

∑
j=1

e
φ(st

j), (1)

where φ : S →R is the user’s scoring function, and st
i is the

state of robot i at time t. In other words, we assume users

choose to control higher-scoring robots with exponentially

higher probability. Crucially, we also assume that the score

of each robot is independent of the other robots. This makes

it possible to scale the model to a large number of robots

n, which would not be practical if, e.g., scores depended on

interactions between the states of different robots.

User rationality model. We assume the user’s control policy

πH : S ×A → [0,1] maximizes the user’s utility function R.

At time t, the user chooses a robot itH to control, then controls

it using their policy πH . We assume the user’s scoring

function φ maximizes the cumulative task performance of

all robots:

φ = argmax
φ∈Φ

E

[

n

∑
i=1

T−1

∑
t=0

R(st
i,a

t
i) | πH ,πR

]

, (2)

where T is the episode horizon. The actions at
i are determined

by whether the user was in control and executed their policy

πH , or the robot relied on its own policy πR. Formally,

P[at
i = a] = P[itH = i]πH(a|s

t
i)+(1−P[itH = i])πR(a|s

t
i), (3)

where the user’s choice P[itH = i] of whether or not to control

robot i is modeled in Equation 1.1

Robot policy. We assume the robot policy πR is identical for

each of the n robots, and that it does not perfectly maximize

the user’s utility function R. Our method is agnostic to how

πR is constructed: e.g., it could be a decision tree of hard-

coded control heuristics, or a planning algorithm equipped

with a forward dynamics model of the environment. In this

work, we choose πR to be a learned policy that is trained

to imitate user actions. This allows us to make minimal

assumptions about the task and environment, and enables

the robot policy to improve as the amount and quality of

user demonstration data increases.

Knowns and unknowns. We assume we know the robot

policy πR, but we do not know the user’s utility function R,

the user’s control policy πH , or the user’s scoring function

φ .2

Problem statement. Our assumptions about the user’s ratio-

nality may not hold in settings with a large number of robots

n: because the user has limited attention, they may not be

able to evaluate the scores of the states of all robots at all

times using their internal scoring function φ . As a result,

1We assume the user’s scoring function φ is optimal with respect to the
utility objective in Equation 2 for the sake of clarity. However, our method
is still useful in settings where φ is suboptimal. In such settings, our method
will, at best, match the performance of the user’s suboptimal φ .

2We assume the user’s utility function R is unknown for the sake of
clarity. However, our method is also useful in settings where the user’s
utility function R is known, but the utility-maximizing policy πH is difficult
to compute or learn from demonstrations.



they may make systematically suboptimal choices that do not

maximize the expected cumulative task performance across

all robots.

B. Our Method

Our aim is to help the user maximize the expected

cumulative task performance across all robots, in settings

with a large number of robots n. We do so by learning a

scoring model φ̂ and using it to automate the user’s choice

of which robot to control. In conjunction, we train the robot

policy πR to imitate user action demonstrations – collected

initially on a single robot, then augmented with additional

demonstrations collected as the user operates each robot

chosen by the scoring model φ̂ .

We split our method into four phases. In phase one, we

train the robot policy πR using imitation learning. The user

controls a single robot in isolation, and we collect a demon-

stration dataset Ddemo of state-action pairs (s,a). Our method

is agnostic to the choice of imitation learning algorithm. In

phase two, we learn a scoring model φ̂ by asking the user

to manage a small number of robots, observing which robot

itH the user chooses to control at each timestep based on

their internal scoring function φ , then fitting a parametric

model of φ that explains the observed choices. In phase three,

we enable the user to manage a large number of robots by

using the learned scoring model φ̂ to automatically choose

which robot to control for them. In phase four, we update

the robot’s imitation policy πR with the newly-acquired user

action demonstrations from phase three.

Phase one (optional): training the robot policy πR. In this

work, we train the robot policy πR to imitate the user policy

πH . We record state-action demonstrations Ddemo generated

by the user as they control one robot in isolation, and

use those demonstrations to train a policy that each robot

can execute autonomously during phases two and three. We

implement πR using a simple nearest-neighbor classifier that

selects the action taken in the closest state for which we have

a demonstration from πH . Formally,

πR(a|s) =

{

1 if (·,a) = argmin(s′,a′)∈Ddemo
‖s− s′‖2

0 otherwise.
(4)

We choose a simple imitation policy for πR in order to model

real-world tasks for which even state-of-the-art robot control

policies are suboptimal. Improving the autonomous robot

policy πR is orthogonal to the objective of this paper, which

is to enable an arbitrary robot policy πR to be improved by

the presence of a human operator capable of intervening in

challenging states.

Phase two: learning the scoring model φ̂ . Our approach to

assisting the user involves estimating their scoring function

φ . To do so, we have the user manage a small number of

robots n. While the user operates one robot using control

policy πH , the other robots take actions using the robot policy

πR trained in phase one. The user can monitor the states of

all robots simultaneously, and freely choose which robot to

control using their internal scoring function φ . We observe

which robot itH the user chooses to control at each timestep,

and use these observations to infer the user’s scoring function

φ . In particular, we compute a maximum-likelihood estimate

by fitting a parametric model φ̂ = φθθθ that minimizes the

negative log-likelihood loss function,

`(θθθ ;D) = ∑
(st

1,...,s
t
n,i

t
H )∈D

−φθθθ

(

sitH

)

+ log

(

n

∑
j=1

e
φθθθ

(

st
j

)

)

, (5)

where D is the training set of observed choices, and θθθ are the

weights of a feedforward neural network φθθθ .3 The learned

scoring model φ̂ is optimized to explain the choices the

user made in the training data, under the assumptions of the

choice model in Equation 1. Fitting a maximum-likelihood

estimate φ̂ is the natural approach to learning a scoring model

in our setting, since the MLE can be used to mimic the user’s

internal scoring function and thereby assist choice in phase

three, and because it can be accomplished using standard

supervised learning techniques for training neural networks.

Phase three: assisted choice. At test time, we assist the user

at time t by automatically switching them to controlling the

robot with the highest predicted likelihood of being chosen:

robot argmaxi∈[n] φ̂(s
t
i). This enables the user to manage a

large number of robots n, where the user is unable to evaluate

the scores of the states of all robots simultaneously using

their internal scoring function φ , but where we can trivially

apply the learned scoring model φ̂ to the states of all robots

simultaneously.

Phase four (optional): improving the robot policy πR.

While performing the task in phase three, the user generates

action demonstrations (s,a) as they control each chosen robot

– demonstrations that can be added to the training data Ddemo

collected in phase one, and used to further improve the robot

policy πR through online imitation learning. One of the aims

of assisted choice in phase three is to improve the quality of

these additional demonstrations, since operator interventions

in challenging states may provide more informative demon-

strations.

IV. SIMULATION EXPERIMENTS

In our first experiment, we simulate human input, in

order to understand how our method performs under ideal

assumptions. We seek to answer two questions: (1) does

a model trained on data from a small fleet generalize to

a large fleet, and (2) is our idea of treating choices as

observations of preferences important for this generalization?

Simulating user input enables us to assess not just the task

performance of our learned scoring model, but also its ability

to recover the true internal scoring function; e.g., by posing

counterfactual questions about how often the predictions

made by our learned scoring model agree with the choices

that would have been made by a simulated ground-truth

scoring function.

3In our experiments, we used a multi-layer perceptron with two layers
containing 32 hidden units each and ReLU activations.



A. Experiment Design

Setup. We evaluate our method on a custom navigation

task in the DOOM environment [14]. In the navigation

task, the robot navigates through a video game environment

containing three linked rooms filled with hazards and health

packs to reach a goal state (see screenshot in Figure 1 and

schematic in Figure 4). The robot receives low-dimensional

observations s ∈R
4 encoding the robot’s 2D position, angle,

and health, and takes discrete actions that include moving

forward or backward and turning left or right. The default

reward function outputs high reward for making progress

toward the goal state and collecting health packs while avoid-

ing hazards. To introduce stochasticity into the environment,

we randomize the initial state of each robot at the beginning

of each episode.

Simulating user input. Although simulating user input is

not a part of our method, it is useful for experimentally

evaluating our method under ideal assumptions. We simulate

the human operator with a synthetic user policy πH trained

to maximize the environment’s default reward function via

deep reinforcement learning – in particular, the soft actor-

critic algorithm [15]. Note that our algorithm is not aware

of the utility function R, and simply treats the reinforcement

learning agent πH the same way it would treat a human user.

We choose the simulated ground-truth scoring function φ to

be the gain in value from running the user policy πH instead

of the robot policy πR,

φ(st
i) =V πH (st

i)−V πR(st
i), (6)

where V denotes the value function, which we fit using tem-

poral difference learning [16] on the environment’s default

rewards. Note that our choice of φ does not necessarily

maximize the cumulative task performance of all robots, as

assumed in Equation 2 in Sec. III-A. It is a heuristic that

serves as a replacement for human behavior, for the purposes

of testing whether we can learn a model of φ that performs as

well as some ground-truth φ . We would like to emphasize

that our method does not assume knowledge of πH or φ ,

and that the design decisions made above are solely for the

purpose of simulating user input in synthetic experiments.

Manipulated variables. We manipulate the scoring function

used to select the robot for the synthetic user to control.

The scoring function is either (1) the ground-truth scoring

function φ , (2) a model of the scoring function trained using

our method φ̂luce, or (3) a model of the scoring function

trained using a baseline classification method φ̂base.

Our method follows the procedure in Sec. III-B: in phase

two, it fits a scoring model φ̂luce to explain observations of

the user’s choices in a setting with a small number of robots

n = 4, under the modeling assumptions in Sec. III-A.

The baseline method fits a scoring model φ̂base that as-

sumes a much simpler user choice model than our method:

that the user selects robot i with probability σ(φ(st
i)), where

σ is the sigmoid function. In other words, the baseline

method trains a binary classifier to distinguish between states

where the user intervened and states where the user did not

intervene. Unlike our method, this approach does not model

the fact that the user chose where to intervene based on

relative differences in scores, rather than the absolute score

of each robot. Because of this modeling assumption, the

baseline may incorrectly infer that a state st
i was not worth

intervening in because the user did not select robot i at time t,

when, in fact, the user would have liked to intervene in robot

i at time t if possible, but ended up selecting another robot

j that required the user’s attention even more than robot i.

We test each scoring function in a phase-three setting with

a large number of robots n= 12. At each timestep, we use the

scoring function to choose which robot to control: the chosen

robot executes an action sampled from the user policy πH ,

while all other robots execute actions sampled from the robot

policy πR.

We also test each scoring function in a phase-four setting,

where we re-train the robot’s imitation policy πR using the

newly-acquired user demonstrations from phase three, then

evaluate πR by running it on a single autonomous robot.

Dependent measures. To measure the performance of the

human-robot team in the phase-three setting with n = 12

robots, we compute the cumulative reward across all robots.

To measure the predictive accuracy of each learned scoring

model, we compute the top-1 accuracy of the robot ranking

generated by the learned scoring models φ̂luce and φ̂base

relative to the ranking produced by the ground-truth scoring

function φ . To measure the data impact of each scoring

model on the quality of demonstrations used to improve

the robot policy πR in phase four, we evaluate the task

performance of the robot’s imitation policy πR after being re-

trained on the user action demonstrations generated in phase

three.

Hypothesis H1 (generalization). Our learned scoring model

φ̂luce performs nearly as well as the ground-truth scoring

function φ in the phase-three setting with a large number

of robots, in terms of both the cumulative reward of the

human-robot team and the data impact on the performance

of a single robot.

Hypothesis H2 (modeling relative vs. absolute prefer-

ences). Our learned scoring model φ̂luce outperforms the

baseline scoring model φ̂base, in terms of all dependent

measures – cumulative reward, predictive accuracy, and data

impact.

B. Analysis.

Figure 2 plot the performance and data impact of each

scoring function for the navigation task. In line with our

hypotheses, φ̂luce outperforms φ̂base in all measures, while

performing slightly worse than φ . In terms of predictive

accuracy, we find that φ̂luce generalizes reasonably well: it

agrees 79% of the time with the ground truth, compared to

32% for φ̂base, which translates to better team performance.

Furthermore, demonstration data from assisted choice with

φ̂luce induces a stronger imitation policy πR. One explanation

for this result is that collecting expert action demonstrations

in challenging states leads to a better imitation policy πR

than demonstrations in less challenging states. Users tend to







REFERENCES

[1] M. B. Dias, B. Kannan, B. Browning, G. Jones, B. Argall, M. F.
Dias, M. Zinck, M. M. Veloso, and A. Stentz, “Sliding autonomy for
peer-to-peer human-robot teams,” 2008.

[2] D. Kortenkamp, D. Keirn-Schreckenghost, and R. P. Bonasso, “Ad-
justable control autonomy for manned space flight,” in 2000 IEEE

Aerospace Conference. Proceedings (Cat. No. 00TH8484), vol. 7.
IEEE, 2000, pp. 629–640.

[3] D. J. Bruemmer, D. D. Dudenhoeffer, and J. L. Marble, “Dynamic-
autonomy for urban search and rescue.” in AAAI mobile robot compe-

tition, 2002, pp. 33–37.
[4] B. Sellner, R. Simmons, and S. Singh, “User modelling for principled

sliding autonomy in human-robot teams,” in Multi-Robot Systems.

From Swarms to Intelligent Automata Volume III. Springer, 2005,
pp. 197–208.

[5] P. Aigner and B. McCarragher, “Human integration into robot control
utilising potential fields,” in Proceedings of International Conference

on Robotics and Automation, vol. 1. IEEE, 1997, pp. 291–296.
[6] S. Javdani, S. S. Srinivasa, and J. A. Bagnell, “Shared autonomy

via hindsight optimization,” Robotics science and systems: online

proceedings, vol. 2015, 2015.
[7] A. D. Dragan and S. S. Srinivasa, “A policy-blending formalism

for shared control,” The International Journal of Robotics Research,
vol. 32, no. 7, pp. 790–805, 2013.

[8] S. Reddy, A. D. Dragan, and S. Levine, “Shared autonomy via deep
reinforcement learning,” arXiv preprint arXiv:1802.01744, 2018.

[9] W. Schwarting, J. Alonso-Mora, L. Pauli, S. Karaman, and D. Rus,
“Parallel autonomy in automated vehicles: Safe motion generation
with minimal intervention,” in 2017 IEEE International Conference

on Robotics and Automation (ICRA). IEEE, 2017, pp. 1928–1935.

[10] A. Broad, T. Murphey, and B. Argall, “Highly parallelized data-
driven mpc for minimal intervention shared control,” arXiv preprint

arXiv:1906.02318, 2019.

[11] B. Rhodes and T. Starner, “Remembrance agent: A continuously
running automated information retrieval system,” in The Proceedings

of The First International Conference on The Practical Application Of

Intelligent Agents and Multi Agent Technology, 1996, pp. 487–495.

[12] R. Cohn, E. Durfee, and S. Singh, “Comparing action-query strategies
in semi-autonomous agents,” in Twenty-Fifth AAAI Conference on

Artificial Intelligence, 2011.

[13] R. D. Luce, Individual choice behavior: A theoretical analysis.
Courier Corporation, 2012.

[14] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaśkowski,
“ViZDoom: A Doom-based AI research platform for visual
reinforcement learning,” in IEEE Conference on Computational

Intelligence and Games. Santorini, Greece: IEEE, Sep 2016,
pp. 341–348, the best paper award. [Online]. Available: http:
//arxiv.org/abs/1605.02097

[15] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan,
V. Kumar, H. Zhu, A. Gupta, P. Abbeel, and S. Levine, “Soft actor-
critic algorithms and applications,” Tech. Rep., 2018.

[16] G. Tesauro, “Temporal difference learning and td-gammon,” Commu-

nications of the ACM, vol. 38, no. 3, pp. 58–68, 1995.

[17] B. Settles, “Active learning literature survey,” University of Wisconsin-
Madison Department of Computer Sciences, Tech. Rep., 2009.

[18] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and autonomous

systems, vol. 57, no. 5, pp. 469–483, 2009.


	I Introduction
	II Related Work
	III Learning to AllocateOperator Interventions
	III-A Problem Formulation
	III-B Our Method

	IV Simulation Experiments
	IV-A Experiment Design
	IV-B Analysis.

	V User Study
	V-A Experiment Design
	V-B Analysis.

	VI Hardware Demonstration
	VII Limitations and Future Work
	References

