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Abstract—Human input has enabled autonomous systems to
improve their capabilities and achieve complex behaviors that
are otherwise challenging to generate automatically. Recent work
focuses on how robots can use such input — like demonstrations
or corrections — to learn intended objectives. These techniques
assume that the human’s desired objective already exists within
the robot’s hypothesis space. In reality, this assumption is often
inaccurate: there will always be situations where the person
might care about aspects of the task that the robot does not
know about. Without this knowledge, the robot cannot infer the
correct objective. Hence, when the robot’s hypothesis space is
misspecified, even methods that keep track of uncertainty over
the objective fail because they reason about which hypothesis
might be correct, and not whether any of the hypotheses are
correct. In this paper, we posit that the robot should reason
explicitly about how well it can explain human inputs given its
hypothesis space and use that situational confidence to inform how
it should incorporate human input. We demonstrate our method
on a 7 degree-of-freedom robot manipulator in learning from
two important types of human input: demonstrations of motion
planning tasks, and physical corrections during the robot’s task
execution.

Index Terms—Bayesian inference, physical human-robot in-
teraction, learning from demonstration, inverse reinforcement
learning.

I. INTRODUCTION

A
UTONOMOUS systems are increasingly interfacing and

collaborating with humans in a variety of contexts, such

as semi-autonomous driving, automated control schemes on

airplanes, or household robots working in close proximity with

people. While the improving capabilities of robotic systems are

opening the door to new application domains, the substantially

greater complexity and interactivity of these settings makes it

challenging for system designers to account for all relevant

operating conditions and requirements ahead of time. For

example, a household robot designer may not know how an

end-user would like the robot to interact with the personal

possessions in the user’s home.

In situations like these, it can be beneficial for the robot

to utilize human input as guidance on the desired behavior.
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Fig. 1: A household robotics scenario where the person phys-

ically interacts with the robot. The person prefers the robot

to keep cups closer to the table, but accounting for the table

(outside of collisions) is not in the robot’s hypothesis space for

what the person might care about. Thus, the robot’s internal

situational confidence, β, about what the human input means

is low for all hypotheses θ.

In fact, human input has enabled researchers and engineers to

program advanced behaviors that would have otherwise been

extremely challenging to specify. Helicopter acrobatics [1],

aggressive automated car maneuvers [2], and indoor navigation

[3] are three cases that exemplify the benefit of using human

input for guiding robot behavior.

In order to utilize human input, system designers typically

equip robots with a representation of possible objectives that

the human could care about. These representations can range

from quadratic cost models [4] to complex temporal logic

specifications [5] to neural networks [6]. However, anticipating

all motivations for human input and specifying a complete

model is challenging. Consider Fig. 1 where a human is

attempting to change the robot’s behavior in order to make

it consistently stay close to the table, but the robot’s model of

what the human might care about does not include distances

to the table. By choosing a class of functions, the system

designer implicitly assumes that what the human wants (and

is giving input about) can be represented via a member of

that class. Unfortunately, when this assumption breaks, the
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system can misinterpret human guidance, perform unexpected

or undesired behavior, and degrade in overall performance.

Two approaches to mitigating this problem could be to either

start with a more complex objective space or to continuously

increase its complexity given more data. Unfortunately, even

complex models are not guaranteed to encompass all possi-

bilities and re-computing the best objective space based on

human data faces the threat of overfitting to the most recent

observations. In contrast, we argue the robot should be able to

understand when it cannot understand the input. For example,

if the end-user in the home is trying to guide the robot to

handle fragile objects with care but the system does not posses

a model of fragility, the robot should deduce that this input

cannot be well explained by any of its given hypotheses.

In this work, we formalize how autonomous systems can

explicitly reason about how well they can explain given human

inputs. To do this, we observe that if a human input appears

unlikely with respect to all possible hypotheses, then the

robot’s model is misspecified. We build on previous work cen-

tered around this observation to propose a Bayesian inference

framework focused on inferring both model parameters, and

their corresponding situational confidence. If the robot is in

situations like Fig. 1 where none of the hypotheses explain

the human’s input well, then the situational confidence will be

low for all hypotheses, indicating that the robot’s model is not

sufficiently rich to understand the human’s input. However,

when the robot’s model is well specified, our framework does

not impede the robot from inferring the correct task objectives

— in fact, the situational confidence will be high, providing an

indicator of how well the system can understand the objective.

We illustrate the utility of situational confidence estimation

in quantifying objective space misspecification for two types

of human input: demonstrations and corrections. Our contri-

butions in this work are:

1) we introduce a general framework for quantifying ob-

jective space misspecification when the human and the

robot are acting on the same dynamical system;

2) we showcase the framework for learning from demon-

strations using user demonstration data for an arm

motion planning task;

3) we showcase the framework for learning from physical

corrections by deriving an algorithm for online (close to

real-time) inference and testing it in a user study.

We note that this work is an extension of [7], which

was originally presented at the Conference on Robot Learn-

ing, 2018. We build on this work by introducing a general

framework for quantifying objective space misspecification,

and instantiating it in a new type of human input: learning

from demonstrations. Not only are demonstrations the most

widely used type of input for learning objective functions,

but the applicability across two input types suggests that the

approach could be adapted more broadly to more types of

human feedback.

The remainder of this paper is organized as follows: Section

II places this work in the context of existing literature on

robots learning from humans and model confidence estimation.

Section III frames the confidence estimation problem more

formally for scenarios where the human and robot operate on

the same dynamical system. Section IV directly instantiates

the framework in Section III for the case of learning from

demonstrations. Section V presents a derivation of approxima-

tions of the general formalism for tractable online inference

from human corrections. Section VI showcases our proposed

approach in several case studies where the robot’s hypothesis

space cannot or only partially explain the human’s input.

Section VII presents the results of a user study of our approach

as applied to a 7-DoF robotic manipulator learning from

human participants. Section VIII concludes with a discussion

of some of the limitations of our work, as well as suggestions

for future research directions.

Overall, we think that the ability to detect misspecification

when learning objectives from human input will become

increasingly important as robotics capability advances and we

will want end-users to customize how the robot behaves. Our

work takes a step in this direction by enabling robots to detect

when none of the hypotheses they have explain the user input,

and our experiments show promising results. Of course, there

are still limitations to this. One limitation is in the experi-

ments themselves, which are only for motion planning tasks

with low-dimensional hypothesis spaces. A more fundamental

limitation is that there will still be cases when the person wants

something outside the robot’s hypothesis space, but the robot

can nonetheless explain their current input relatively well with

what it has access to, thus confusing misspecification for slight

noise in the human input. This will especially be the case as the

hypothesis space is more expressive, and can only be solved

by the robot receiving a lot more human input: each might be

explainable by some hypothesis, but eventually no hypothesis

can explain all input. More work is needed in studying how to

query for diverse human input, as well as how to convey what

the robot has learned back to the person, and in general how

to have a true collaborative interaction to detect and resolve

misspecification in the objective space.

II. RELATED WORK

We group prior work into three main categories: enabling

robots to learn from human input, doing so while leveraging

uncertainty, and estimating model confidence.

A. Robots learning from humans

The programming of robots through direct human interac-

tion is a well-established paradigm. Human input can be given

to the robot in a variety of forms, from teleoperation of the

robot by a user to kinesthetic teaching [8].

In such interaction paradigms, the robot aims to infer a

cost function or policy that best describes the examples that

it has received. New avenues of research focus on learning

such robot objectives from human input through demonstra-

tions [9], [10], teleoperation data [11], corrections [12], [13],

comparisons [14], examples of what constitutes a goal [15],

or even specified proxy objectives [16]. In this paper, we

focus on learning from two of such types of human input –

demonstrations and physical corrections – although we stress

that the principles outlined in our formalism are more general

and could be applied to the other interaction modes mentioned.
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One approach to learning behaviors from human inputs is

inverse reinforcement learning (IRL). In classical IRL, the

robot receives complete optimal demonstrations of how to

perform a task, and the robot learns the human’s cost function

from these observations [10], [17], [18]. In this paradigm, it

is typically assumed that the expert is trying to optimize an

unknown cost function. The robot uses the observations of the

human’s behavior to recover the underlying objective.

Another useful form of human input are corrections: here,

the robot performs the task according to how it was pro-

grammed and the user corrects aspects of the task to better

match their preferences. From these sparse interactions, the

robot also performs cost function inference to improve perfor-

mance during the next task iteration [19]–[21]. Examples of

learning from corrections have been explored in offline [12],

[22] and online settings [13], [23], [24], [25].

Although powerful, the aforementioned IRL works assume

that the human expert provides optimal demonstrations, which

is often an unrealistic assumption. Real human input, espe-

cially during interaction with high degree-of-freedom systems

like robotic manipulators, is noisy and sub-optimal. Second,

much of the corrections literature has focused on estimates

of the human’s objectives. However, in practice, even the

most likely estimate might not be a very likely one. Thus,

in both domains, we stress that it is important to maintain the

uncertainty over the estimated objectives.

B. Uncertainty in robot learning

Rather than estimating a single objective, some learning

methods maintain an entire probability distribution over what

the objective might be [16], [26]–[28]. This not only enables

the robot to leverage a prior, but also to then generate its

behavior in a way that is mindful of the entire distribution,

rather than just using the the maximum likelihood estimator.

Bayesian IRL [28] treats demonstrations as evidence about

the objective, and does a Bayesian belief update on a prior

distribution. Inverse Reward Desing [16] treats the objective

a designer specified for a particular set of environments (a

“proxy” objective) as evidence about the true desired objective,

again obtaining a full distribution over what the designer

might actually want. The intuition is that this observed proxy

objective (that may be misspecified) incentivizes behavior that

is approximately optimal with respect to the true objective.

Lastly, specifically for input as physical corrections, [27]

reasons over the uncertainty of the estimated human pref-

erences through the means of a Kalman filter. The method

maintains a mean estimate and a covariance of this estimate

as a measure of confidence. These are used in planning the

robot’s trajectory such that it optimizes for features it is

confident about, while avoiding features it is uncertain about.

Although they maintain a full distribution, these works still

assume that what the human wants is in the robot’s objective

space. We argue that this is not necessarily a realistic assump-

tion, and later showcase some consequences that arise when it

is not true. When the robot’s hypothesis space is misspecified,

even when maintaining uncertainty over the objective, state-

of-the-art methods interpret human input as evidence about

which hypothesis is correct, rather than considering whether

any hypothesis is correct. In this work, we focus on the latter.

C. Situational confidence estimation

Some recent works are studying how to enable robots

to understand that their models cannot explain human input

well [29]–[31]. The authors in [30], [31] employ a noisily-

optimal model of human pedestrian motion when the human

and the robot operate on separate dynamical systems (and

have separate objective functions). The paper introduces the

notion of model confidence estimation and uses the apparent

likelihood of the human’s choice of actions to adjust the

confidence in predictions about their behavior.

This work draws inspiration from the notion of model

confidence estimation, generalizing it to the setting of inferring

what the robot’s objective ought to be. Instead of focusing on

misspecification of a discrete set of physical goal locations

for pedestrian navigation, here we study misspecification of a

relatively complex set of possible robot objectives in motion

planning tasks. As a result of focusing on robot objectives, we

also study a different form of human input – that is, input in

the context of operating on the same dynamical system, such

as full task demonstrations and physical corrections.

III. PROBLEM FORMULATION AND APPROACH

We consider a robot R operating in the presence of a human

H whom it seeks to assist in the execution of some task. In the

most general setting, the robot and the human are both able

to affect the evolution of the state x ∈ R
n over time through

their respective control inputs:

xt+1 = f
(

xt, ut
R, u

t
H

)

, (1)

with uR ∈ UR and uH ∈ UH , where Ui (i ∈ {H,R}) are

compact sets. We assume that the human has some consistent

preference ordering between different state trajectories and

input signals, which could in principle be expressed through

a cost function of the form

C∗(x,uR,uH) (2)

where the state trajectory is x = [x0, x1, . . . , xT ] ∈ R
n(T+1),

the robot’s control input is uR = [u0
R, u

1
R, . . . , u

T
R] ∈ R

n(T+1),

and the human’s is uH = [u0
H , u1

H , . . . , uT
H ] ∈ R

n(T+1).1 Note

that this hypothesized cost function C∗ can be quite general,

encoding an arbitrary preference ordering. However, the robot

does not in general have access to the human’s preferences C∗,

and must instead attempt to infer and represent them tractably.

In order to do this, the robot can typically reason over

a parametrized approximation of the cost function, which

introduces an inductive bias, making inference tractable at the

cost of limiting expressiveness: in some cases, the chosen set

of parametric functions may fail to encode preferences that

would explain the human’s behavior with sufficient accuracy.

In this work, we will denote by Cθ the cost function induced

1For deterministic dynamics (1), having x0,uR and uH is enough to fully
specify the entire state trajectory x. In this case, the cost function could be
rewritten as C∗(x0,uR,uH) by implicitly encoding (1). For clarity, we use
the more general form in (2) and make the dependence explicit where needed.
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by parameters θ ∈ Θ, and the robot seeks to estimate the

human’s preferred θ from her control inputs uH .

In a general setting, since the state trajectory x is determined

not only by the human’s actions uH but also the robot’s uR,

the human would need to reason about how the robot will re-

spond to her decisions. This requires analyzing the interaction

in a game-theoretic framework [32], [33], which will not be the

object of this work. Instead, we focus on common interaction

scenarios in which the robot can approximately assume that

the human does not explicitly account for the coupled mutual

influence between both agents’ decisions. This happens fre-

quently if the human is either providing a demonstration for

the robot or intervening to correct the robot’s default behavior.

In these settings, the typical assumption is that the human has

all necessary information about the robot’s control input uR

before deciding on her own uH .

Thus, given observations of the human input uH from an

initial state x0, the robot needs to draw inferences on the cost

parameter θ:

P (θ | x0,uR,uH) =
P (uH | x

0,uR; θ)P (θ)
∫

θ̄
P (uH | x0,uR; θ̄)P (θ̄)dθ̄

, (3)

where P (uH | x
0,uR; θ) characterizes how the robot expects

the human’s input to be informed by her preferences, condi-

tioned on the initial state and the robot’s expected controls.

For example, if the human were assumed to act optimally,

this model would place all probability on the set of optimal

states and actions with respect to the cost Cθ. Of course,

this would be an unreasonably strong assumption given that

the robot’s parametrized cost constitutes a best effort to ap-

proximate the human’s preferences. Instead, a useful modeling

choice can be to characterize the human as being more likely

to take actions that are well-aligned with her preferences.

One such model is inspired by the Boltzmann energy-based

model satisfying the maximum entropy principle [34]. Fol-

lowing its adaptations as a model of human decision-making

in [13], [35], [36], we model the human as a noisily-optimal

agent that tends to choose control inputs that approximately

minimize the modeled cost:

P (uH | x
0,uR; θ, β) =

e−βCθ

(

x(·;x0,uR,uH),uR,uH

)

∫

ūH
e−βCθ

(

x(·;x0,uR,ūH),uR,ūH

)

dūH

.

(4)

In this model, the inverse temperature coefficient β ∈ [0,∞)
determines the degree to which the robot expects to observe

human actions that are consistent with the cost model.

The goal is to detect when the robot does not have a rich

enough hypothesis space, i.e. when C∗ lies far outside of

any Cθ. We call this problem objective space misspecification.

Rather than only interpreting human input as evidence about

which hypothesis is correct, we additionally focus on consid-

ering whether any hypothesis is correct. It is thus crucial that

the robot can quantify the extent to which any parameter value

θ ∈ Θ can correctly explain the observed human input.

A. Situational confidence estimation

The key to our approach goes back to the inverse tempera-

ture parameter β in (4). Typically, β is a fixed term, encoding

the degree to which the robot expects to observe human actions

that are optimal. Setting it to 0 models a randomly-acting hu-

man, while setting it to ∞ models a perfectly optimal human.

However, the possibility of objective space misspecification

brings fixing β into question: when the space is correctly

specified, we would expect the human actions to indeed be

somewhat close to optimal; but when the space is misspecified,

we should expect the actions to be far from optimal for any

θ. Thus, rather than treating β as a fixed term, we build on

the work in [30], [31] and explicitly reason over β as an

additional inference parameter along with θ. Since β directly

impacts the entropy of the human’s decision model, it can

be used as an effective and computationally efficient measure

of the robot’s confidence in its parametric interpretation of

the human’s preference: we say that the robot is assessing its

situational confidence for the inference task at hand.

Thus, the robot maintains a joint Bayesian belief b(θ, β).
For each new measurement of uH given x0,uR, this belief is

updated as:

b′(θ, β) =
P (uH | x

0,uR; θ, β)b(θ, β)
∫

θ̄,β̄
P (uH | x0,uR; θ̄, β̄)b(θ̄, β̄)dθ̄dβ̄

, (5)

where b′(θ, β) = P (θ, β | x0,uR,uH).
This inference can be seen as analogous to performing

Bayesian Inverse Reinforcement Learning [28] with the Maxi-

mum Entropy Inverse Optimal Control [37] observation model,

where we maintain the full belief instead of just the maximum

likelihood estimate, and we explicitly reason over the addi-

tional scaling parameter β. By actively performing inference

over β, the robot can gain insight into the reliability of its

human model in light of new evidence.

1) Context-dependent usage of situational confidence: How

this insight should be used is dependent on the context of the

robot’s operation. Here, we provide some examples of how

situational confidence can be integrated into various human-

robot interaction scenarios and robot motion planners.

In collaborative settings where the human and robot are

accomplishing a task together (e.g. manipulating an object

together), it may be desirable for the robot to stop and ask for

clarification from the human whenever sufficient probability

mass indicates low confidence:

∀θ ∈ Θ, argmax
β

b′(β | θ) < ε . (6)

That is, for a predefined threshold ε, if all hypotheses have

the most mass on βs lower than ε, the robot can raise a flag.

In assistive applications, where the robot is carrying out

a task in close physical proximity to the human, the robot

may receive intermittent human input to correct it’s task

performance. In such scenarios, it may be appropriate for

the robot to simply dismiss human corrections that it cannot

explain in terms of modeled preference parameters and carry

on with its pre-defined task. That is, when a human input

results in a b′(θ, β) that satisfies (6), the input gets discarded.

Situational confidence could also be leveraged by robot mo-

tion planners that excel at decision making under uncertainty.

Here, the robot may use its joint posterior belief b′(θ, β) to

make goal-driven decisions in the presence of the human. To
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this end, the coupling between the inference problem and

the robot’s planning problem can be viewed as a partially

observable Markov decision process (POMDP), where the

hidden parts of the state are the cost parameter θ and the

situational confidence β, the robot receives observations about

them via human actions uH , it takes actions uR, and it

optimizes an unknown parametrized cost Cθ. Our problem is,

thus, akin to identifying misspecification in the state space of

the POMDP. However, inference and planning in such spaces

requires solving the full POMDP, which is computationally

intractable for large, real-world problems [38].

Alternative, less computationally demanding motion plan-

ning approaches are also amenable to our framework, where

the robot plans to minimize the expected cost for the human

given its current belief, by marginalizing over β:

min
uR

E
θ∼b

[

Cθ(x,uR,uH)
]

, (7)

for an expected human input uH that will typically be 0 if the

robot is attempting to successfully perform the task without

the need for active human intervention. To understand the

implication (7) has as a function of the inference over β,

we need to understand the posterior belief marginalized over

β that we are taking the expectation over. At one extreme,

if for all θs the conditional distribution b′(β | θ) puts all

probability mass on β = 0 (i.e. input poorly explained), since

P (uH | x
0,uR; θ, β = 0) is the same for all θs, the robot

will obtain a posterior for θ that is equal to the prior. The

optimization above becomes the same as optimizing using the

robot’s prior, i.e. the robot ignores the human input. At the

other extreme, if there is one θ that perfectly explains the input

and all others do not, the posterior will put all probability mass

on that θ, and the robot will switch to optimizing it.

The objective expectation may also be appropriately

weighted by the robot’s situational confidence for each θ:

min
uR

E
θ,β∼b

[

βCθ(x,uR,uH)
]

, (8)

which leads to the robot prioritizing those components of the

task about which it is most certain.

In Sections IV and V we discuss some of these possibilities

in the context of learning from demonstrations and corrections.

B. Cost representation through basis functions

One way to approximate the infinite-dimensional space of

possible cost functions using a finite number of parameters

is the use of a finite family of basis functions Φi [18]. This

family can be seen as a truncation of an infinite collection of

basis functions spanning the full function space. Parametric

approximations Cθ of the cost function C∗ then have the form

Cθ(x,uR,uH) =

d
∑

i=1

θiΦi(x,uR,uH) = θTΦ(x,uR,uH) .

(9)

Consistent with classical utility theories [35], we further

assume that the human’s preferences can be approximated

through a cumulative return over time, rewriting (9) as

Cθ(x,uR,uH) =

d
∑

i=1

θi
T
∑

t=0

φi(x
t, ut

R, u
t
H) , (10)

Fig. 2: (Left) Visual example of a full human-provided

demonstration x. (Right) Visual example of a human physical

correction ut
H onto the robot’s current trajectory x.

where φi : R
n×U ×U → R are fixed, pre-specified, bounded

real-valued basis functions, θ is the unknown parameter that

the robot is trying to fit according to the human’s preferences,

and d is the dimensionality of its domain Θ.

In the domains presented in Sections IV and V, the func-

tions φi output feature values that encode key aspects of a

task—for example distance between the robot body and obsta-

cles in the environment, speed of the motion, or characteristics

of a motion planning task. In general, the φi can either

be hand-engineered by a system designer or more generally

learned through data-driven approaches [6].

It is important to stress that the misspecification issue we

are trying to mitigate is quite general and does not exclusively

affect objectives based on hand-crafted features: any model

could ultimately fail to capture the underlying motivation of

some human actions. While it may certainly be possible,

and desirable, to continually increase the complexity of the

robot’s model to capture a richer space of objectives, there

will still be a need to account for the presence of yet-unlearned

components of the true objective. In this sense, our work is

complementary to open-world objective modeling efforts.

Note that, using a cost model in the form of (10), the

observation model (4) becomes overparametrized, since for

any (θ, β) pair with θ ∈ Θ and β ∈ [0,∞), one can always

find a different θ′ = cθ with an associated β′ = β/c leading

to the same probability distribution over human choices. This

is equivalent to using an unrestricted Θ and β = ‖θ‖. Due

to this overparametrization, the absolute value of β does not

have a universal meaning, and restricting θ to have a fixed

norm is necessary in order to make comparisons between the

β values associated to different θ hypotheses. We thus restrict

our Θ to the set of vectors with unit norm.

Consider the case where the human provides input for a cost

function in the robot’s objective space. This results in the robot

inferring high probability on the corresponding θ vector on the

unit sphere with a high magnitude β. However, if the cost that

the human cares about and provides input for is outside the

robot’s hypothesis space, the robot will infer low probability

on all θ vectors in the unit sphere, with low magnitude βs.

We now proceed by describing the explicit algorithmic

approaches to inferring situational confidence in the learning

from demonstrations and corrections domains.
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IV. ALGORITHMIC APPROACH: DEMONSTRATIONS

A. Formulation

In learning from demonstrations, the human directly con-

trols the state trajectory x through her input uH , which enables

her to offer the robot a demonstration of how to perform the

task. Fig. 2 (left) is an example of such a demonstration.

During the demonstration, the robot is often put in gravity

compensation mode or is teleoperated, to grant the person full

control over the desired trajectory. As such, in this setting,

the cost function Cθ does not depend on the robot controls

uR. Additionally, since the person is primarily concerned

with the robot’s states and not with the (robot or human)

actions required to reach those states , we model the human’s

internal preferences as only dependant on the state trajectory

x. Accordingly, the cost function in (10) becomes:

Cθ(x) = θTΦ(x). (11)

The cost does not have a direct dependence on the actions,

but it has an indirect one, as x depends on uR and uH .

In our problem formulation, we would like the robot to ex-

plicitly reason about how well it can explain the demonstration

given its human model. Thus, we can adapt the model in (4)

to use this new cost function2,

P (x | θ, β) =
e−βθTΦ(x)

∫

x̄
e−βθTΦ(x̄)dx̄

, (12)

then perform the Bayesian update in (5)

b′(θ, β) =
P (x | θ, β)b(θ, β)

∫

θ̄,β̄
P (x | θ̄, β̄)b(θ̄, β̄)dθ̄dβ̄

. (13)

Given b′(θ, β), we now can use any of (6), (7) or (8). Next,

we discuss making inference with (12) and (13) tractable.

B. Approximation

Although the proposed formalism enables us to capture

if the robot’s hypothesis space cannot explain the human’s

input, it is non-trivial to implement tractably for continuous

β and θ, and large state and action spaces. Concretely, notice

that equations (12) and (13) constitute a doubly-intractable

system with denominators that cannot be computed exactly.

For this reason, we employ several approximations in order to

demonstrate the benefits of estimating situational confidence.

Note that we do not consider these a contribution of our

work: we choose the simplest approximations that facilitate

tractability. There are many methods for approximate inference

of θ studied in the literature that could be used for the joint

(θ, β) spaces as well, from Metropolis Hastings [16], [39],

to acquiring an MLE only via importance sampling of the

partition function [6] or via a Laplace approximation [40].

To approximate the intractable integral in (12), we sampled

a set X of 1500 trajectories. We sampled costs according to

(11) given by random unit norm θs, then optimized them with

an off-the-shelf trajectory optimizer. We used TrajOpt [41],

which is based on sequential quadratic programming and

uses convex-convex collision checking. This way, we obtain

2For deterministic (1), P (uH | x0,uR; θ, β) is equivalent to P (x | θ, β).

dynamically feasible trajectories that optimize for different

features in varying proportions. While this sampling strategy

cannot be justified theoretically, it works well in practice: the

resulting optimized trajectories are a heuristic for sampling

diverse and interesting trajectories in the environment. Future

work will address this shortcoming by either providing theo-

retical guarantees or using importance sampling instead.

For the second approximation to (13), we discretized the

space of θ ∈ Θ and β ∈ B into sets ΘD and BD, which leaves

us with a finite, easy to compute posterior. For more practical

details on specific discretization schemes, see Appendix A-A.

Using the above discretization3, we can now perform

tractable inference from demonstrations D to obtain a discrete

posterior b(θ, β). Algorithm 1 summarizes the full procedure:

given ΘD,BD,X , and D, our method iteratively updates the

belief using (12) and (13), resulting in the posterior b(θ, β).
Lacking any a-priori information, we chose a uniform prior

but our method will work with any prior. We next present ex-

amples for what this posterior looks like in different scenarios.

Algorithm 1 Learning from Demonstrations (Offline)

Input: Discretized sets ΘD,BD,X , set of demonstrations D.

Output: Posterior belief b(θ, β) inferred from D.

b(θ, β)← Uniform(θ, β).
for x in D do

for all θ ∈ ΘD, β ∈ BD do

P (x | θ, β) = e−βθT Φ(x)

∑
x̄∈X

e−βθT Φ(x̄)
as per (12).

b(θ, β)← P (x|θ,β)b(θ,β)
∑

θ̄∈Θ,β̄∈B
P (x|θ̄,β̄)b(θ̄,β̄)

as per (13).

end for

end for

C. Examples

To provide intuition for how situational confidence can

indicate when a robot’s hypothesis space is misspecified, we

illustrate some examples with a robot manipulator learning

from a human demonstrator. These examples help prepare the

setup we will present in our actual experiments in Section VI.

The robot manipulator is performing a household task of

moving cups from a shelf onto the kitchen table. The robot

needs to learn from the person’s demonstrations how to best

perform this task. For this purpose, the person physically

guides the robot through one or a few demonstrations of

moving the cup down to the table, from which the robot infers

the hidden objective function.

In these examples, the robot’s hypothesis space includes

three features: efficiency (E) as sum of squared velocities

over the trajectory, keeping the cup close to the table (T), and

keeping the cup away from the laptop (L) depicted in black.

3In situations where the designer might want high fidelity inference over a
large space of θ vectors, reasoning over a heavily discretized space would be
more computationally expensive. However, longer offline computation is pos-
sible in our learning-from-demonstrations scenario as the inference happens
offline, after providing the robot with human demonstrations. Alternatively,
we could use Monte Carlo sampling approaches, similar to [16], [28].
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(a) In the true graphical model,
uH is an observation of θ and
the situational confidence β.

(b) We use the proxy variable Φ to first
estimate β efficiently.

(c) We interpret the estimate β̂ as an indirect observa-
tion of the unobserved E, which we then use for the
θ estimate.

Fig. 4: Graphical model formulation (a) and modifications to it ((b) and (c)) for real-time tractability.

V. ALGORITHMIC APPROACH: CORRECTIONS

A. Formulation

We consider the setting in which human input is provided

in the form of physical interventions during the robot’s task

execution. Fig. 2 (right) is an example of such a correction.

The human may provide a correction to improve some aspect

of the task execution that is not represented in the robot’s

objective space. When the robot receives input, it should be

able to reason about its situational confidence in light of the

correction and replan its trajectory accordingly for the rest of

the task execution or until a new correction happens. Thus,

the robot must have access to an inference algorithm that can

run in real time. In this section, we will present an online

version of our situational confidence framework.

In the physical corrections setting, the robot starts with

an initial guess of the parameter θ and uses a trajectory

optimization scheme to compute a motion plan seeking to

minimize the associated cost Cθ. The robot performs the task

at hand by applying controls uR via an impedance controller

in order to track the computed trajectory x.

At any timestep t during the trajectory execution, the

human may physically interact with the robot, inducing a joint

torque ut
H . When this happens, the robot can use the human

input to update its estimated θ parameter, and thereby the

corresponding objective Cθ. Given the new adapted objective,

the robot replans an optimized trajectory x and tracks it until

the next human input is sensed or until the task is completed.

Following [13], the robot’s representation of the task as-

sumes that the human does not explicitly care about the robot’s

control effort, but only about features of the state trajectory.

In addition, the human is assumed to have a preference for

minimizing her own control effort. This captures the human’s

incentive to have the robot perform the task autonomously,

providing only minimal input to guide the robot towards

the correct behavior when necessary. Encompassing these

assumptions, the cost (10) takes the form:

Cθ(x, u
t
H) = θTΦ(x) + λ‖ut

H‖
2. (15)

To approximately compute the trajectory resulting from the hu-

man’s input, we follow the approach in [13] and introduce the

notion of a deformed trajectory xD. This trajectory constitutes

the robot’s estimate of the human’s desired trajectory given

her applied torque ut
H . Given the robot’s default trajectory

xR := x(·;x0,uR,0) and having observed the instantaneous

human intervention ut
H , we compute xD by deforming the

robot’s default trajectory in the direction of ut
H :

xD = xR + µA−1
ũH , (16)

where µ > 0 scales the magnitude of the deformation,

A∈ R
n(T+1)×n(T+1) defines a norm on the Hilbert space

of trajectories4 and dictates the deformation shape [42], and

ũH∈ R
n(T+1) is ut

H at indices nt through n(t + 1) and 0

otherwise. The human is therefore modeled by (15) as trading

off between inducing a good trajectory xD with respect to θ,

and minimizing her effort.

Equipped with this cost function, we need the robot to

reason about the reliability of its objective space given new

inputs in the form of corrections. In contrast with our analysis

in Section IV, here the person does not give full demonstra-

tions x, but instead offers corrections ut
H based on the robot’s

default trajectory xR. Applying (4) to this setting, we have:

P (ut
H | x

0,uR; θ, β) =
e−β(θ>Φ(xD)+λ‖ut

H‖2)

∫

e−β(θ>Φ(x̄D)+λ‖ū‖2)dū
, (17)

where xD and x̄D are given by (16) applied to their respective

controls ut
H and ū.

Ideally, with this model of human actions, illustrated in

Fig. 4a, we would perform inference over both the situa-

tional confidence β and the modeled parameters θ by main-

taining a joint Bayesian belief b′(θ, β). Analogously to the

demonstrations case, our probability distribution over θ would

automatically adjust for well-explained corrections, whereas

for poorly-explained ones the robot’s posterior would not

deviate significantly form its prior on θ. Unfortunately, this

Bayesian update is not generally feasible in real time, given

the continuous and possibly high-dimensional nature of the

parameter space Θ. Even in simple scenarios with a small

number of continuous features, discretizing Θ as we did in

the demonstrations case would generally yield an overly slow

inference, making the method impractical for use in the real-

time collaborative scenarios that we are interested in here.

4We used a norm A based on acceleration, consistent with [13], but other
norm choices are possible as well.
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Thus, to evaluate the benefits of estimating β we need to derive

an online method that goes beyond simple discretization.

B. Approximation

To alleviate the computational challenge of performing joint

inference over β and θ, we introduce a structural assumption

that will enable us to approximately decouple the two infer-

ence problems.

1) Estimating β: To estimate β without dependence on θ,

we will assume that in order to decide what correction to

provide, the human will first choose the desired features Φ of

the resulting trajectory xD and then select an input ut
H that

will obtain these features (Fig. 4b).

Based on the observed human input ut
H and the trajectory

features of the deformed trajectory Φ(xD), the robot can

obtain an estimate of β by considering how efficient the

human’s input was for the features achieved. Letting UΦ be

the set of inputs that achieve the same observed features

ΦD := Φ(xD), the Boltzmann decision model gives

P (ut
H | x

0,uR; ΦD, β) =
e−β(θ>ΦD+λ‖ut

H‖2)

∫

UΦ
e−β(θ>Φ(x̄D)+λ‖ū‖2)dū

=
e−βλ‖ut

H‖2

∫

UΦ
e−βλ‖ū‖2dū

, (18)

since the term θ>Φ(x̄D) is constant for all ū ∈ UΦ and equal

to the term θ>ΦD in the numerator.

Using (18), the robot can obtain an estimate of β by

considering how efficient the human’s correction was for the

features achieved—if the input seems highly inefficient, this

is indicative that the features modeled by the robot may not

accurately capture the human’s preference.

It is useful to approximate the integral over the constrained

set UΦ ⊂ U by an integral over the entire set of possible inputs

U , introducing a penalty term in the exponent that results in

a soft indicator function for ū ∈ UΦ:

P (ut
H | x

0,uR; ΦD, β) ≈
e−βλ‖ut

H‖2

∫

U
e−β(λ‖ū‖2+κ‖Φ(x̄D)−ΦD‖2)dū

.

(19)

Note that for an arbitrarily large κ there is an arbitrarily small

probability assigned to U\UΦ in the integral. It is now possible

to apply the Laplace approximation to the unconstrained

integral (see Appendix B for details), yielding:

P (ut
H | x

0,uR; ΦD, β) ≈

e−βλ‖ut
H‖2

e−β(λ‖u∗
H
‖2+κ‖Φ(x∗

D
)−ΦD‖2)

√

βk|Hu∗
H
|

2πk
, (20)

where k is the action space dimensionality and Hu∗
H

is

the Hessian of the exponent in the denominator of (19)

around u∗
H . We obtain the optimal action u∗

H by solving the

constrained optimization problem (see Appendix A-B):

minimize
ũH

‖ũH‖
2

subject to Φ(x+ µA−1
ũH)− ΦD = 0 .

(21)

In other words, the resulting u∗
H is the minimal norm ũH the

human could have taken, constrained to lie in UΦ. As such,

the second norm in the denominator’s exponent is 0, and the

final conditional probability becomes:

P (ut
H | x

0,uR; ΦD, β) = e−βλ(‖ut
H‖2−‖u∗

H‖2)

√

βk|Hu∗
H
|

2πk
.

(22)

We derive below the maximum likelihood estimator (MLE),

noting that a maximum a posteriori (MAP) estimator is often

appropriate given a certain prior on β.

β̂ =argmax
β
{log(P (ut

H | x
0,uR; ΦD, β)}

=argmax
β
{−βλ(‖ut

H‖
2 − ‖u∗

H‖
2) + log(

√

βk|Hu∗
H
|

2πk
)}.

(23)

Applying the first-order condition and setting the derivative to

zero yields the maximizer:

β̂ =
k

2λ(‖ut
H‖

2 − ‖u∗
H‖

2)
. (24)

The estimator5 above yields a high value when the differ-

ence between ut
H and u∗

H is small, i.e. the person’s correction

achieves the induced features Φ(xD) efficiently. For instance,

if xD brings the robot closer to the table, and ut
H pushes

the robot straight towards the table, ut
H is an efficient way

to induce those new feature values. However, when there is a

much more efficient alternative (e.g. when the person pushes

mostly sideways rather than straight towards the table), β̂ will

be small. Efficient ways to induce the feature values will

suggest well-explained inputs, inefficient ones will suggest

poorly-explained corrections.

2) Estimating θ: To tractably estimate θ building on the β
estimate, we introduce an auxiliary binary variable E ∈ {0, 1}
indicating whether the human’s intervention can be well ex-

plained by the robot’s modeled cost features. We will perform

offline training with ground-truth access to this variable in

order to learn its relation to the robot’s estimate β̂.

When E = 1, the human’s desired modification of the

robot’s behavior can be well explained by some vector θ ∈ Θ,

which will lead the intervention to appear less noisy to the

robot (i.e. β is large). As a result, the correction ut
H is likely

to be efficient for the cost encoded by this θ. Conversely, when

E = 0, the intervention appears noisy (i.e. β is small), and

the human’s correction cannot be well explained by any of the

cost features modeled by the robot.

The graphical model depicted in Fig. 4c relates the induced

feature values ΦD to θ as a function of the E. When E = 1,

the induced features will tend to have low cost with respect to

θ; when E = 0, the induced features do not depend on θ, and

we model them as Gaussian noise centered around the feature

values of the robot’s currently planned trajectory xR.

P (ΦD | θ, E) =















e−θ>ΦD

∫

e−θ>Φ(x̃D)dx̃D

, E = 1

(

ν
π

)
k
2 e−ν||ΦD−Φ(xR)||2 , E = 0

(25)

5Note that β̂ is non-negative, since u∗

H
is the minimal-norm ũH that

satisfies the constraint, so the difference in the denominator of (24) is positive.
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Questions Cronbach’s α F-Ratio p-value

ta
sk

The robot accomplished the task in the way I wanted.
0.94 0.88 0.348

The robot was NOT able to complete the task correctly.

u
n

d
er

st
a

n
d

I felt the robot understood how I wanted the task done.
0.95 0.55 0.46

I felt the robot did NOT know how I wanted the task done.

u
n

in
te

n
d

I had to undo corrections that I gave the robot.

The robot wrongly updated its understanding about aspects of the task I did not want to change.
0.91 9.15 0.0046

After I adjusted the robot, it continued to do the other parts of the task correctly.

After I adjusted the robot, it incorrectly updated parts of the task that were already correct.

TABLE I: Results of ANOVA on subjective metrics collected from a 7-point Likert-scale survey.

B. Analysis

1) Objective: We ran a repeated-measures factorial

ANOVA with learning strategy and input quality (well or

poorly explained) as factors for the regret. We found a sig-

nificant main effect for the method (F (1, 187) = 7.8, p =
0.0058), and a significant interaction effect (F (1, 187) =
6.77, p = 0.0101). We ran a post-hoc analysis with Tukey

HSD corrections for multiple comparisons to analyze this

effect, and found that it supported our hypotheses. On tasks

where corrections were poorly explained, the estimated-β
method had significantly lower regret (p = 0.001); on tasks

where corrections were well explained, there was no signif-

icant difference (p = 0.9991). Fig. 12a plots the regret per

task, and indeed the estimated-β method was not inferior on

tasks 1 and 3, and significantly better on tasks 2 and 4.

For the length of the θ̂ path through weight space metric, the

factorial ANOVA analysis found a significant main effect for

the method (F (1, 187) = 76.43, p < 0.0001), and a significant

interaction effect (F (1, 187) = 33.3, p < 0.0001). A similar

post-hoc analysis with Tukey HSD correction for multiple

comparisons also supports our hypotheses. On tasks where

corrections were poorly explained, our method had signifi-

cantly lower average weight paths over time (p = 0.0025);

on tasks where correction were well explained, however, there

was no significant difference (p = 0.1584). The same results

are supported by Fig. 12b, which plots the average length of

θ̂ through weight space per task, and indeed our method was

not significantly inferior for tasks 1 and 3, and significantly

better on tasks 2 and 4.

2) Subjective: We ran a repeated measures ANOVA on the

results of our participant survey. We find that our method is not

significantly different from the baseline in terms of task com-

pletion (F (1, 7) = 0.88, p = 0.348) and task understanding

(F (1, 7) = 0.55, p = 0.46), which supports H3. Participants

also significantly preferred the estimated-β method in terms

of reducing unintended learning (F (1, 7) = 9.15, p = 0.0046),

which supports H4.

VIII. DISCUSSION

Human guidance is becoming increasingly important as au-

tonomous systems enter the real world. One common way for

robots to interpret human input is treating it as evidence about

hypotheses in the robot’s objective space. Since accounting

for all possible hypotheses and situations ahead of time is

challenging if not infeasible, in this paper we claim that robots

should explicitly reason about how well their given hypothesis

space can explain the human inputs.

We introduced the notion of situational confidence β as a

natural way to measure how much the robot should trust its

inputs and learn from them. We presented a general framework

for estimating β in conjunction with any task objectives for

scenarios where the human and the robot are operating the

same dynamical system. We instantiated it for learning from

human demonstrations, as well as for learning from correc-

tions, by deriving a close to real-time approximate algorithm.

In both settings, we exemplified – via human experiments with

a 7-DoF robotic manipulator and a user study – that reasoning

about situational confidence does, in fact, assist the robot in

better understanding when it cannot explain human input.

There are several important limitations in our work. Perhaps

the biggest limitation of all, which we alluded to in Section I,

is that the hypothesis space can be misspecified but the robot

can nonetheless explain the input relatively well, thus confus-

ing misspecification for slight noise. This is especially true in

more expressive hypothesis spaces, where there might always

be some hypothesis that explains the input. This is unfortu-

nately a fundamental problem with detecting misspecification

in expressive hypothesis spaces: a single demonstration or a

single data point will not be enough. Much like learning cost

functions when using such spaces requires much more and

diverse data than when using a less expressive space, with

detecting misspecification too it will be the case that the robot

will require a rich and diverse set of data points. The more data

the robot has access to, and the more diversely it is distributed,

the less of a chance there is that one wrong hypothesis can

explain all the data.

Furthermore, our approach cannot disambiguate between

misspecification of the hypothesis space and misspecification

of the human observation model, i.e. the Boltzmann model.

Algorithmically, while for corrections we derived a way

to handle continuous hypothesis spaces that scales linearly

with the dimensionality of the space, for demonstrations we

relied on simply discretizing the space. This was sufficient for

showcasing the benefit of estimating situational confidence,



IEEE TRANSACTIONS ON ROBOTICS 18

since for demonstrations this is done offline. However, to

scale the method to complex spaces, we need to combine it

with state-of-the-art (Bayesian) IRL approaches that rely on

Metropolis Hastings sampling, or simply estimate the MLE.

Lastly, our experiments for both demonstrations and correc-

tions are limited to a simple motion planning task with a cost

function that depends on only a few features. We do not show

how the method would degrade, both under ideal as well as

under approximate inference.

In subsequent work, we hope to address some of these

limitations. We are also interested in an extension to sequential

time-dependent inputs, where the person could change their

mind about what objective is important to them. Additionally,

we want to explore ways of handling misspecification other

than reducing learning, such as switching to a more expressive

hypothesis space (but demanding more data and computation)

whenever the situational confidence is very low for all θs.

Finally, we are excited to showcase our work on other coupled

dynamical systems, such as autonomous vehicles.

APPENDIX A

PRACTICAL CONSIDERATIONS

A. Demonstrations

1) Discretizing Θ and B in (13): For the Θ discretization,

we chose vectors in the unit sphere, as discussed in Section

III-B. For practical purposes, we restricted the θ components to

be positive due to our task features and the capabilities of our

trajectory optimizer; in general, learning from demonstrations

should be restricted to norm 1, not necessarily to the positive

quadrant. In both our examples in Section IV and experiments

in Sections VI, each θi component was allowed to take values

0, 0.5, or 1. Since we used 3 features, θ’s dimensionality was

3, leading to a possible set Θ equivalent to the 3-fold Cartesian

product of the values above. After normalizing to norm 1, we

were left with 19 unique θ vectors in Θ, weighing the three

features in different proportions, as shown in Figures 3, 7, 8, 9,

and 10. Our discretization scheme ensured an approximately

uniform sampling on the positive quadrant of the unit sphere.

To discretize situational confidence, we found it sufficient

to cover β ∈ {0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0, 100.0},
the log-scale space, similarly to [30], [31]. For different tasks,

a similar discretization should suffice because what matters

is β’s relative magnitude for identifying misspecification, not

its absolute one. We suggest calibrating the threshold ε in (6)

using a few simulated trajectories like the ones in Fig. 3.

B. Corrections

1) Planning and Replanning: We use TrajOpt [41] to

plan and replan robot trajectories. We set up the trajectory

optimization problem to plan a path that minimizes a cost

function of the form of (15). Given different features Φ and

weights θ on these features, different optimal paths may be

found. Additionally, we constrain the optimization to plan a

path between a pre-specified start and goal locations, while

avoiding collisions with the objects in the environment (table,

laptop, or human). The total time of the trajectory is fixed, but

the actual length can differ. That means that the robot moves

faster for longer trajectories, and slower for shorter ones.

When the experiment starts, the robot plans an initial path

from start to goal, using the initial weights θ. When a human

push happens, the robot measures the instantaneous deviation,

which deforms the trajectory via the impedance controller.

Without learning, the robot would resume tracking its original

trajectory. However, we use the human input to update θ
according to (30), which the robot’s planner uses to compute

a new trajectory that the robot can follow instead. In a perfect

world, this entire process would happen at 60Hz. In practice,

however, the trajectory optimizer’s computation lasts longer.

As such, once a push is registered, the robot starts listening

for following torque signals only after the update is complete.

Imagine this process in the context of a typical user ex-

perience. Once the person begins pushing, the robot instantly

starts updating θ and optimizing the new induced path. While

the person is applying their correction, the planner eventually

finishes its computation and passes the updated trajectory to

the robot controller. The user can immediately feel that the

robot changed course and stops intervening.

2) Solving (21): We used SLSQP, an off-the-shelf se-

quential quadratic programming package [44], to solve (21).

In practice, the method can fail to return a good result if

the initialization is bad. We found that if we initialize the

minimization with a guess that does not satisfy the constraint

(e.g. 0), it returns a reasonable estimate of the true u∗
H .

3) Sensitivity Analysis: Both (24) and (30) rely heavily on

hyperparameters λ and ν. Here, we discuss how to set them.

Setting λ affects the magnitude of the resulting estimated

situational confidence β̂ in (24). This magnitude plays an

important role when later estimating θ via (30) because

it affects P (E | β̂). However, note that to compute this

probability we use P (β̂ | E), which is an entirely data-driven

empirical distribution, where the observed β̂ is also computed

via (24). As such, we are not relying on absolute magnitudes

of the estimated situational confidence but on relative ones.

Therefore, the choice of the hyperparameter λ does not affect

our method’s estimates as long as they are computed with the

same hyperparameter that is used for learning P (β̂ | E).

In the case of precision ν in (25), how spread out the

Gaussian noise centered around Φ(xR) is affects the denom-

inator in (30). When ν → 0, the Γ(ΦD, E = 0) term in the

denominator goes to 0, which means that (30) reduces to (31):

our method always learns and never identifies misspecification.

On the other hand, when ν →∞, we can use the L’Hospital

rule to see that Γ(ΦD, E = 0) → 0 as well, as long as

||ΦD − Φ(xR)||
2 6= 0, which is true unless there is no

correction to deform xR, in which case we do not need to

update θ at all. Therefore, it is important that ν is set not too

high and not too low in order for our method to work properly.

The best practice for setting ν also involves using the offline

data calibration from Section VI-B. To calibrate properly, after

computing the empirical P (β̂ | E) distribution, when E = 0
the updated θ should not change much, whereas when E = 1
the θ parameter should change appropriately.
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Without the offline data calibration in Section VI-B, both λ
and ν affect the θ and β estimation, and can have profound

effects on the efficacy of our method. Unfortunately, we cannot

do this calibration automatically yet, which is a limitation of

our work, and we leave it for future research.

4) Trajectory Deformation Parameter Choice: When de-

forming the robot’s trajectory given a human interaction,

there are many choices of the deformation matrix A and the

deformation magnitude parameter µ. A can be an explicit

design choice (for example, constructing A from a finite

differencing matrix [13]), can be solved for via an optimization

problem which penalizes the undeformed trajectory’s energy,

the work done by the trajectory deformation to the human, and

variations total jerk as in [45], or can even be learned from

human data [46]. The magnitude of the deformation µ can also

be tuned for best performance, for example to be robust to the

rate at which deformations occur (see [27] for more details).

APPENDIX B

LAPLACE APPROXIMATION IN EQUATION (19)

Let the cost function in the model in (19) be denoted by:

CΦD
(ū) = λ‖ū‖2 + κ‖Φ(x̄D)− ΦD‖

2, (32)

for an observed ΦD.

First, our cost function can be approximated to quadratic

order by computing a second order Taylor series approxima-

tion about the optimal human action u∗
H (obtained via the

constrained optimization in 21):

CΦD
(ū) ≈ CΦD

(u∗
H) +∇CΦD

(u∗
H)>(ū− u∗

H)

+
1

2
(ū− u∗

H)>∇2CΦD
(u∗

H)(ū− u∗
H) .

(33)

Since ∇CΦD
(ū) has a global minimum at u∗

H then

∇CΦD
(u∗

H) = 0 and the denominator of Equation 19 can

be rewritten as:
∫

U

e−βCΦD
(ū)dū ≈

e−βCΦD
(u∗

H)

∫

U

e−
1
2 (ū−u∗

H)β∇2CΦD
(u∗

H)(ū−u∗
H)dū .

(34)

Since β∇2CΦD
(u∗

H) > 0 for u∗
H 6= 0, the integral is in

Gaussian form, which admits a closed form solution:

∫

U

e−βCΦD
(ūH)dūH ≈ e−βCΦD

(u∗
H)

√

2πk

βk|Hu∗
H
|
,

where Hu∗
H

= ∇2CΦD
(u∗

H) denotes the Hessian of CΦD
at

u∗
H . Replacing CΦD

(ūH) with the expanded cost function, we

arrive at the final approximation of the observation model:

P (ut
H | x

0,uR; ΦD, β) ≈

e−βλ(‖ut
H‖2)

e−β(λ‖u∗
H
‖2+κ‖Φ(x∗

D
)−ΦD‖2)

√

βk|Hu∗
H
|

2πk
. (35)
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