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Abstract

When someone hosts a party, when governments choose an aid program, or when assistive robots

decide what meal to serve to a family, decision-makers must determine how to help even when their

recipients have very different preferences. Which combination of people’s desires should a decision-

maker serve? To provide a potential answer, we turned to psychology: What do people think is best

when multiple people have different utilities over options? We developed a quantitative model of

what people consider desirable behavior, characterizing participants’ preferences by inferring which

combination of “metrics” (maximax, maxsum, maximin, or inequality aversion [IA]) best explained

participants’ decisions in a drink-choosing task. We found that participants’ behavior was best

described by the maximin metric, describing the desire to maximize the happiness of the worst-off

person, though participant behavior was also consistent with maximizing group utility (the maxsum

metric) and the IA metric to a lesser extent. Participant behavior was consistent across variation in

the agents involved and tended to become more maxsum-oriented when participants were told they

were players in the task (Experiment 1). In later experiments, participants maintained maximin behav-

ior across multi-step tasks rather than shortsightedly focusing on the individual steps therein (Experi-

ment 2, Experiment 3). By repeatedly asking participants what choices they would hope for in an

optimal, just decision-maker, and carefully disambiguating which quantitative metrics describe these

nuanced choices, we help constrain the space of what behavior we desire in leaders, artificial intelli-

gence systems helping decision-makers, and the assistive robots and decision-makers of the future.
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1. Introduction

Consider a schoolteacher trying to plan a field trip. Some students learn best kineti-
cally, others enjoy verbal challenges, and some would be overwhelmed by new locations.
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If there is no one action that will maximally satisfy everyone, what is the teacher to do?
Now consider a concerned citizen determining how to donate their money. They furrow
their brow, staring at the screen: donate to the most needy, the organization where dona-
tions will be matched, or the recipient with the tightest time constraints? Next consider a 
high-level government worker, puzzling over who to prioritize, faced with an array of 
programs that will benefit everyone to some extent but some more than others. Finally 
consider an autonomous household robot, trying to determine what to make for the main 
family meal with one kid who only wants to eat orange foods and one parent who is vegan. 
What should all of these decision-makers do?

In today’s society, as preference-aggregation problems become more complex, we can 
turn to tools from computer science to address them. If modern artificial intelligence sys-tems 
know about the preferences of their recipients, they can use vast computational resources to 
optimize: airplane scheduling and ride-share services are examples of using artificial 
intelligence to optimize many people’s preferences. However, these consumer services 
optimize based on the principles of first-come-first-serve, more resources for more money, 
and efficiency. Individuals put in a bid and they receive some service. But in other types of 
situations, people advocate for others rather than themselves. People choose which 
organizations to donate money towards, and governments strive to serve their entire 
populations with aid programs. These situations are just as complex and deserving of 
computational analysis, but they will need a different optimization proce-dure: one that likely 
incorporates fairness.

To develop artificial intelligence tools to help solve coordination problems, we need to 
know what the ground truth is. What internal algorithms do people use to make decisions that 
benefit others? People do not always act in the ways they say they do, but by observ-ing their 
ground truth behavior, we can gain a quantitative understanding of what behav-iors people 
think are right. In computer science, there are existing tools for inferring the values, 
preferences, and utilities that motivate people’s actions and choices. One standard method, 
inverse reinforcement learning (Ng & Russell, 2000), has been used to infer util-ity functions 
from behavior in both the robotics community (e.g., Kuderer, Gulati, & Bur-gard, 2015 in 
which people’s driving styles were inferred from demonstrations) and the computational 
cognitive science community (e.g., Baker, Saxe, & Tenenbaum, 2009, in which intended 
goals were inferred from partially completed paths). There are thus estab-lished methods to 
learn human preferences from actions: Given examples of a person’s driving, we are 
advancing in our ability to tell an autonomous vehicle how to bring them to the store; given 
examples of a person tidying up their home, we are becoming able to tell a robot what to 
clean. Yet these methods only apply to a single person’s preferences at a time. What should 
be done when there is more than one person, and there are a com-bination of utilities to 
optimize? Should an artificial intelligence sum up all of its users’ utilities, or would it be 
more “fair” to minimize the upset of the unhappiest member of the group? When we have 
assistive robots who must act as decision-makers themselves, how should they be 
programmed? We think the first step to answering these questions is to quantitatively 
determine how people—with their intuitions about fairness and effi-ciency and what is good
—behave.
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In this paper, we set out to map the human sense of compromise, and the challenge of
the benign dictator: how to solve the age-old problem of acting in everyone’s best interest
without a vested interest of one’s own. It is a challenging problem that has puzzled
philosophers, arbitrators, and governors for centuries. The question of what should be
done when people disagree is essential, and to build tools that can help solve it, we must
understand the ground-truth of what we want done. This problem becomes increasingly
important not only to advise decision-makers, but to develop artificial intelligence sys-
tems to help decision-makers and eventually create artificial intelligence agents that can
make choices that match what we do ourselves. In the face of this unsolved problem, we
turn to psychology, developing a quantitative model of what people think should be done
when an agent can take only one action that brings different utilities to different people.

Many researchers have thought about these questions. Their work often falls under the
heading of fair allocation, which investigates how items should be divided among people.
The study of fair allocation and fair division (Brams & Taylor, 1996; Konow, 2003)
spans many fields, including those of social choice (Gaertner & Schokkaert, 2012; Moulin
et al., 2016), neuroscience (Hsu, Anen, & Quartz, 2008), artificial intelligence (Dickerson,
Goldman, Karp, Procaccia, & Sandholm, 2014), justice and policy (Fleurbaey, 2008;
Gollwitzer & van Prooijen, 2016; Konow, 2003), and behavioral economics and game
theory, especially within the dictator, ultimatum, and estate games (Ashlagi, Karag€ozo�glu,
& Klaus, 2012; Chmura, Kube, Pitz, & Puppe, 2005; Dreber, Fudenberg, & Rand, 2014;
Fisman, Kariv, & Markovits, 2007; Huck & Oechssler, 1999; Nowak, Page, & Sigmund,
2000; P�alv€olgyi, Peters, & Vermeulen, 2010). Empirical work on fairness is similarly
wide-ranging, including work on cultural differences (Gaertner, Jungeilges, & Neck,
2001; Jungeilges & Theisen, 2008; Sch€afer, Haun, & Tomasello, 2015; Schokkaert &
Devooght, 2003), the developmental trajectory of fairness (Wittig, Jensen, & Tomasello,
2013), the impact of other-regarding preferences in games (Austerweil et al., 2015; Bol-
ton, Brandts, Katok, Ockenfels, & Zwick, 2008), and the weighting of distributive alloca-
tion versus the procedure by which items are allocated (Cooney, Gilbert, & Wilson,
2016; Dupuis-Roy & Gosselin, 2011). Wanting quantitative measures, researchers have
also developed metrics to quantitatively evaluate the fairness of solutions. Several of
these metrics have been compared empirically (Dupuis-Roy & Gosselin, 2009; Engel-
mann & Strobel, 2004; Fehr, Naef, & Schmidt, 2006; Herreiner & Puppe, 2007) and
include, for example, envy-free fairness, proportional fairness, and inequality aversion
(IA). The tradeoffs between fairness and efficiency (maximizing the joint utility of all
agents) are often considered and have been evaluated theoretically (e.g., Bertsimas, Far-
ias, & Trichakis, 2011, 2012).

Much work on fair allocation, however, falls outside our purview, as it considers a
self-interested agent deciding how to distribute resources between themself and others.
When participants have a personal stake in the situation, biases can appear in their inter-
pretation of what is fair or what behavior they exhibit (Babcock, Loewenstein, Issachar-
off, & Camerer, 1995; Beckman, Formby, Smith, & Zheng, 2002; Binmore, 1994;
Cappelen, Nielsen, Sørensen, Tungodden, & Tyran, 2013; Croson & Konow, 2009;
Ellingsen & Johannesson, 2001; G€achter & Riedl, 2006; Herrero, Moreno-Ternero, &
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Ponti, 2010; Konow, 2000, 2009; Traub, Seidl, Schmidt, & Levati, 2005). This paper
focuses on the perspective of a third party, the scenario in which an impartial decision-
maker is choosing how to best help a group of people.

As such, our experiments are most similar to the subset of fair allocation experiments
in which the decision-maker’s utility is tied only to the utilities of the agents it is serving
(e.g., selfless artificial intelligences built to serve human needs). In one such set of stud-
ies, participants acted as dictators to fairly allocate goods when the dictator’s own payoffs
were fixed (Engelmann & Strobel, 2004; Fehr et al., 2006). Another two related papers
investigated the division of multiple goods by an uninvested agent (Herreiner & Puppe,
2007; Yaari & Bar-Hillel, 1984). In these cases, participants chose how to distribute mul-
tiple items across agents whose utility functions were represented in payoff matrices. Our
experiments have a similar structure in that they consider preferred allocations over pay-
off matrices.

Our work is distinct from those previous fair allocation studies, however, in the prob-
lem it is solving: Here, the uninvested agent can take one action that has consequences

for multiple individuals. Our problem formulation is more general than the “fair alloca-
tion” problem, since the idea of “choosing actions that have implications across multiple
utility functions” applies to many situations outside the distribution of items. Specifically,
the problem setup we describe, with utilities over any possible action, is more general
than having utilities over specific items being distributed. While we are still working with
abstract entities in this work, payoff matrices, and in this work only working with posi-
tive utilities, this problem formulation admits a range of scenarios. For example, a
schoolteacher trying to determine what field trip to bring students on is an example of
our problem, but not a fair allocation problem. Necessarily, our formulation also encom-
passes the class of fair allocation problems, including problems like sorting multiple indi-
visible items into “bundles” to be distributed to individuals (e.g., Herreiner & Puppe,
2007). In this case, each “action” is to give each agent each sorted bundle, and if neces-
sary each of these agent-specific actions could be characterized as a single larger action
that could be repeated over multiple allocation decisions.

It is also worth emphasizing how the question posed in this paper differs from others
in the literature, even those that do not involve a self-interested party. For one, this paper
does not singularly employ the zero-sum scenarios present in fair allocation studies. In
fair allocation studies, participants distribute a set number of items between agents, and if
one agent receives an item, another agent loses it. In this work, participants choose to
create an item that can bring utility to multiple agents. For these questions, high utility
for one agent does not necessarily imply low utility for another.

In addition, this paper asks participants “what should be done” rather than what is
“fair.” Empirically, “fairness” can correspond more to ideas like equality and helping the
needy, while questions like “in which society would you like to live?” can evoke
responses that take into account the trade-off between equality and maximizing the bene-
fit to the group. Fairness can also correspond to distributional fairness or procedural fair-
ness—examining the fairness of the final allocation solutions or the process by which
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items are allocated. This work focuses not on fairness but on what decisions participants
believe a third party should make, in terms of creating a shared item to be distributed.

Similarly, the question of “what should be done” is incredibly dependent on context
(see Konow, 2003; Konow & Schwettmann, 2016 for reviews), and our question of what
an uninterested artificial intelligence should do constrains the space of those contexts
enormously. In many decision-making tasks, arbitrators are contending with preferences
for honesty (Dana, Weber, & Kuang, 2007), altruism (Andreoni, 1989; Pelligra & Stanca,
2013), cooperation (Dreber et al., 2014), previous experiences, friendship, spite (Beckman
et al., 2002; Levine, 1998), reciprocity (Berg, Dickhaut, & McCabe, 1995; Bolton & Ock-
enfels, 2000; Cox, 2004; Dufwenberg & Kirchsteiger, 2004), and any number of highly
relevant factors of what is fair and what is preferred. We are interested in what people
think should be done in the absence of such considerations: what they would like their
leaders or assistive artificial intelligence systems to advise before previously existing
social relationships come into play. Artificial intelligences are by default honest and not
more altruistic or cooperative than preferred, so they offer a unique opportunity to act as
independent advisors free from spite, obligation, or reciprocity.

Our question could integrate important factors like need or desert/merit (e.g., Alesina
& Angeletos, 2005; Fleurbaey, 2008; Fong, 2001; Hoffman & Spitzer, 1985; Konow &
Schwettmann, 2016; Nord, Richardson, Street, Kuhse, & Singer, 1995; Schokkaert &
Devooght, 2003; Schokkaert & Lagrou, 1983; Schokkaert & Overlaet, 1989), but the sim-
plified task we choose does not involve agents who are needy or who have worked harder
than others, despite this being a major factor in society. Another way to extend our study
would be to use a paradigm that uses bundles or collections of objects, either for alloca-
tion or as creating these shared resources (both can be construed as an action). Bundles
allow investigation of envy-freeness, and also proportionality, like in “claims problems”
when agents may each have a claim to a resource that is greater than the resource is
worth (Bosmans & Schokkaert, 2009; Thomson, 2003). Additionally, Konow (2003) dis-
cusses the differences between subjective values and objective values, which we simplify
here by directly presenting agent utilities. Given the difficulty of the question of what
should be done, we used a simplified task and save these questions for future work. For
our question and paradigm, we consider it reasonable to limit our literature review to
those topics that are most aligned with our question, though we provide references to the
reader for additional study.

Our task, then, is to determine what an uninvested, autonomous agent should do in a
decision-making scenario with multiple recipients. To investigate what defines a “helpful”
action when balancing multiple utilities, we created the following problem setting: We
asked what decision a manager should make in choosing a drink for two guests. Partici-
pants acted as the manager, repeatedly making choices that we used to develop a model
of what people think are good decisions. Drawing on the literature in economics, com-
puter science, and philosophy, we considered four metrics as hypotheses to capture partic-
ipants’ behavior: maximax, maxsum, maximin, and IA. We determined which combination
of metrics best explained participants’ behavior by statistical analyses and evaluating the
output of a maximum entropy inverse reinforcement learning (MaxEnt) model. Having
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inferred the preferred metrics, we then used these metrics to compare participants’ behav-
ior across conditions.

1.1. Metrics

We now delve into the specifics of our metrics and what stimuli they were applied to.
Many different fields have investigated the question of how people make decisions when
balancing multiple tradeoffs—for example, people could choose to maximize the group
utility or distribute resources evenly. As such, several quantitative models describing
“fair” behavior have been suggested. We investigated four metrics that were often used
(often in combination) in previous studies to characterize human behavior (e.g., Brams,
Edelman, & Fishburn, 2003; Dupuis-Roy & Gosselin, 2009; Engelmann & Strobel, 2004;
Herreiner & Puppe, 2007). We do not believe these metrics span the space of reasonable
preferences people may hold—people’s algorithms for determining what to do in the
world can be extremely complex—but we selected these metrics based on what has been
widely and empirically observed in the literature. We applied these four metrics to a set
of payoff matrices M: in each matrix Mm, two agents’ utilities (A and B) were shown
for each of four drink options (see Fig. 1). We investigated each of the metrics for these
payoff matrices.

Intuitively, one method to select a shared option is to add up the utilities of all agents,
and pick the option that maximizes this joint utility value. This is a metric called max-

sum, which maximizes the happiness of the group rather than individuals. It is a Pareto
optimal option. In Fig. 1, the best maxsum option would be the third cup, because when
utilities of agents A and B are added together, these sums are as follows: 7 (first cup), 13
(second cup), 15 (third cup), and 14 (fourth cup). A different metric enforcing fairness is
maximin: maximizing the utility of the person who is worst-off. Intuitively, this metric
means making sure that no individual agent is very unhappy. In Fig. 1, the best maximin
option would be the second cup, because when we look to which of the agents are worst-
off in each of the pairs, these agents’ utilities are as follows: 3 (first cup), 5 (second

Fig. 1. Example matrix Mm. Columns are options oj, while rows show each agent i’s utility U i. Here, the

problem is to decide which drink to serve to both agents A and B.
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cup), 4 (third cup), and 2 (fourth cup), and the second cup leaves the worst-off agent with
the highest possible utility. Another measure of fairness is IA: decreasing the difference
in utilities between agents. Intuitively, this metric means that agents should be equally
happy. In Fig. 1, the best IA option would be the first cup, because the agents’ utilities
will be maximally close to each other. A final possible measure is maximax: maximizing
the highest utility, searching across both agents. Intuitively, this metric means that any
one agent should be made as happy as possible. This option might not initially seem fair,
but if presented with the opportunity for repeated choices, pleasing one agent each round
may seem like the best solution. In Fig. 1, the best maximax option would be the fourth
cup, because this cup allows one agent to have its highest possible utility. Note that in
Fig. 1, the best example of each metric was a different cup, but in most of our payoff
matrices, the best example of multiple metrics was the same cup. Thus, in this paper, we
evaluated the four metrics of maximax, maxsum, maximin, and IA.

Metrics like maximin and maxsum have a long history in the literature. The concept of
maximin was popularized by Rawls (1971, 1974), who advocated for allocating resources
to the least well-off individual. Harsanyi (1975) argued in favor of expected utilitarian-
ism, loosely the maxsum principle, except in cases where the maximin choice was similar
to the maxsum choice, as in the case in our experiments. There has been a strong focus
on maximin mathematically and in economics (e.g., Amanatidis, Markakis, Nikzad, &
Saberi, 2017; Barman & Krishna Murthy, 2017; Dubois, Fargier, & Prade, 1996; Escof-
fier, Gourv�es, & Monnot, 2013; Kurokawa, Procaccia, & Wang, 2016; Procaccia &
Wang, 2014), including applications to networking (e.g., bandwidth-sharing) (Salles &
Barria, 2008). Choices aligned with the maximin, maxsum metric, and IA metrics are
often compared in studies, and results are often mixed, with participants trading off
between different metrics depending on the numbers and contexts involved (Ahlert,
Funke, & Schwettmann, 2013; Charness & Rabin, 2002; Engelmann & Strobel, 2004;
Faravelli, 2007; Fehr et al., 2006; Gaertner et al., 2001; Gaertner & Schwettmann, 2007;
Konow, 2001, 2003; Konow & Schwettmann, 2016; Mitchell, Tetlock, Mellers, & Ordo-
nez, 1993; Ordo~nez & Mellers, 1993; Pelligra & Stanca, 2013; Schwettmann, 2009,
2012). These studies differ in their experimental paradigms, and results have been subse-
quently different, even as the concept of tradeoffs between a few principles of justice has
remained similar (Konow, 2003). These experiments reveal a few common difficulties as
well. Many experiments attempt to target each metric in isolation, which does not account
for the correlations between choices: A choice that maximizes the maximin metric also
tends to rate highly on the IA metric and less well on the maxsum or maximax metrics.
Additionally, experiments often present somewhat extreme choices and models contain
variables that are occasionally confounded. We aim to address these difficulties in our
study by presenting many nuanced choices to participants, and then using a computational
model and statistical analyses to account for correlations and confounding between met-
rics. Using these tools, we gain the ability to distinguish the relative influence of metrics
on sets of participant choices.

In this paper, we aim to address the question of what policies people would like deci-
sion-makers, and the assistive technologies assisting decision-makers, to have in the

V. Gates, T. L. Griffiths, A. D. Dragan / Cognitive Science 44 (2020) 7 of 42



future. To this end, we focus on research studies that are aimed at non-interested third
parties reasoning about helpful decision-making, the results of which are not always con-
sistent. In these studies, participants are presented with options that implement various
metrics and have to choose how to allocate items across agents (Engelmann & Strobel,
2004; Fehr et al., 2006; Herreiner & Puppe, 2007; Yaari & Bar-Hillel, 1984). Participants
are often shown choices that are used to disambiguate between metrics, and because these
choices are so distinct, participants may only make a single or small number of choices
for any given prompt. We took a different approach with our work: On each prompt we
presented many choices to participants, accepting the high amount of overlap among met-
rics necessary to describe participants’ responses. We constructed a computational model
to accommodate these correlations and used this model to reveal the relative contributions
of different metrics across many probes of participant behavior. We tested the generaliz-
ability of our findings by ensuring the participant behavior was similar across different
prompts. Additionally, previous work often focuses on short-term, single decisions; we
investigated participants’ intuitions in the repeated setting where they could make more
long-term decisions. In summary, our work compares four common metrics in a setting
where participants are making more choices than in previous work and the correlations
among metrics describing those choices are accounted for. We use this higher resolution
into the relative contributions of each of these metrics to directly compare them, and
we probe many questions—including longer-term decision-making—to determine the
generalizability of our findings. These improvements take place in a novel setting, in
which participants are not being asked about how to allocate many items, but to create a
resource to be shared among multiple agents. We thus present a novel test of how corre-
lated metrics interact, in the context of how people feel third-party decision-makers
should balance others’ utilities: a problem formulation that will occur more and more
often in technologies in the future.

In three experiments, we investigated the contributions of the metrics of maximax,
maxsum, maximin, and IA in describing what people consider good or helpful behavior.
In Experiment 1, we examined participants’ choices in the drink task and determined
whether these choices were consistent when the hypothetical decision-maker was
described as a human or a robot, and when the agents receiving the resources were
described as friends or strangers. Our results indicate that participants were consistent in
using the maximin metric to make decisions (maximizing the utility of the worst-off
agent) despite variations in the agents involved. In Experiment 2, we asked what deci-
sions people would make when they had the opportunity to offer more than one drink to
the same set of agents. We tested whether people would make choices while considering
the entire multi-decision expected utility or focus on the individual decisions within. We
found that participants reasoned over the entire multi-decision process, and the maximin

metric could again describe their choices. In Experiment 3, we validated our results from
Experiment 2 by presenting participants with the cumulative sum of the choices available
in Experiment 2, and observing that when the multi-decision problem was condensed to a
single instance again, participants reliably made choices described by the maximin metric.
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2. Experiment 1: Which metrics describe people’s behavior? Are they robust to

changes in agent?

Here we tested which combination of metrics described participants’ behavior on a drink-
choosing task (Fig. 1). We tested a variety of different phrasings and altered scenarios to
ensure that the results were consistent across changes in presentation. Specifically, we tested
whether participants’ choices changed depending on if the decision-maker was an artificial
intelligence (a robot) or a human, whether the recipients of the drinks were friends or stran-
gers, and whether the participant was stated to be one of the recipients of a drink. We might
expect that a participant would perform differently in the “Robot” condition if they thought
that what a robot should do in a manager role was different from what a human manager
should do. For example, participants may think that artificial intelligences need to remain
completely impartial or compute everything exactly, whereas humans should rely on gut
instincts. Similarly, we might expect that participants would have different intuitions about a
server giving drinks to strangers rather than friends. Perhaps participants would think that
when serving friends, a server should worry more about joint happiness rather than making
sure utilities were equitable, since friends could make it up to each other later, while the
same would not be true of strangers. We were also interested in whether participants’ opin-
ions of what decision should be made would change if they themselves were receiving an
item rather than hypothetical recipients. In Experiment 1, we were aiming to test whether
the participants’ empirical intuitions of good decision-making would extend across these
variations in scenarios, which are important for the generalizability of our findings.

2.1. Method

2.1.1. Participants

Participants with U.S. IP addresses were recruited from Amazon Mechanical Turk
across five conditions: “Nominal” (n = 36, 0 participants excluded), “Robot” (n = 35, 1
participant excluded), “Robot Friends” (n = 35, 1 participant excluded), “Robot Stran-
gers” (n = 34, 2 participants excluded), and “Veil of Ignorance” (n = 33, 3 participants
excluded). Participants were paid between $2.50 and $3.00 for their participation. Partici-
pants were excluded if they failed the included attention check or indicated that they did
not understand the experiment.

2.1.2. Stimuli

Stimuli were chosen such that participants would reason over a set of positive-utility
actions, and the effects of each metric could be quantitatively isolated from these data. To
keep the paradigm simple, utilities in the form of numbers in a table were used (“payoff
matrices”), with utilities kept small to allow participants to use simple addition. To maxi-
mize the generalizability of the findings, several constraints on the matrices were put in
place to ensure participants were reasoning over a wide, randomized range of independent
matrices.
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Participants viewed 20 of these payoff matrices (set of matrices M), one at a time.
Each matrix Mm was 2 9 4, where the rows indicated the two agents, the columns indi-
cated the four colored drinks, and each agent’s utility for each drink was shown.

Matrices were generated by rejection sampling. Matrices were subject to the following
general constraints. The sum of agents’ utilities for each option oj,

P

i U
i ojð Þ, was con-

strained to be within 2 and 16, so that there would be a wide range of choices available
but participants would only need to use simple addition. Within each matrix, columns
(both agents’ utilities for an option) were not allowed to repeat, including permutations
within columns, so that there would always be four independent choices within a matrix.
Moreover, within each matrix, for every column, there could be no other column that
strictly dominated that column according to all metrics, because such a column would
rarely be picked and so would be uninformative according to the goals of this study.
Since we were interested in the question of what desired resource should be shared
among recipients, we constrained our actions to positive utilities and did not allow matri-
ces to contain zeros or negative numbers. Finally, in a set of matrices M, any two matri-
ces were not permitted to have more than two of the same columns, where “sameness”
included column permutation, in order to create a set of independent matrices.

In addition to the general constraints, “class” constraints were established to ensure
that the chosen matrices could isolate the effects of each of the metrics. There were thus
four classes: (a) four matrices in which each option was the best choice according to one
of the metrics (e.g., the example in Fig. 1), (b) four matrices in which the maxsum metric
was held constant: all choices had the same joint utility, (c) four matrices in which the
maximin metric was held constant: for all choices, the worst-off person had the same util-
ity, and (d) eight matrices that were randomly generated. The maximax and IA metrics
were not held constant because matrices constructed in this manner did not meet the gen-
eral constraints described above. The matrices used in this study are included in the Sup-
plemental Methods.

2.1.3. Procedure

Upon viewing each matrix, participants read the following text: “You’re the manager
at a hotel and want to serve a drink to the room. Archie and Ben are your guests and
have told you how much they enjoy different drinks (higher numbers mean more enjoy-
ment). Which drink would you like to serve?” Participants then had to select one of the
four drinks and justify their response. The names “Archie” and “Ben” were substituted
with other names beginning with “A” and “B” for each matrix.

We expected that participants would employ a consistent understanding of what made
a “good” decision in the drink-choosing task, but wanted to test the robustness of partici-
pants’ choices by employing several task variations. The variations we tested were the
identity of the server (either human or robot), the relationships of the agents being served
(either friends or strangers), and whether the participant was described as a recipient of a
drink.

In the “Nominal” condition, participants were presented with the default text (“You’re
the manager at a hotel and want to serve a drink to the room...”). In the “Robot”
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condition, the prompt was: “There is a robot manager at a hotel which will serve a drink
to the room. Archie and Ben are its guests and have told it how much they enjoy differ-
ent drinks (higher numbers mean more enjoyment). Which drink would you like the robot
to serve?” In the “Robot Friends” condition, the prompt was the same as in the “Robot”
condition, but the following phrase was added: “Archie and Ben are its guests (they are

friends with each other)....” In the “Robot Strangers” condition, the following phrase was
substituted: “Archie and Ben are its guests (they are strangers to each other)....” Italics
were not included in the participant text. In the “Veil of Ignorance” condition, the
instructions were modified to be: “The manager at a hotel wants to serve a drink to the
room, where you and another guest are sitting. The manager has learned how much you
both enjoy different drinks (higher numbers mean more enjoyment). Given you do not
know which guest (A or B) you are, which drink would you like the manager to serve?”
This condition is named the “Veil of Ignorance” condition as a reference to Rawls
(1971), who suggested that a method of eliciting moral judgments without self-interest
would be to present scenarios in which participants had to make judgments about hypo-
thetical societies they would like to live in, while not knowing anything about their place
in the hypothesized social order. Thus, participants would be “behind a veil of ignorance”
in that they would have to make decisions without knowing whose place they would fill.
Here, in this experimental condition, participants were told they were recipients of a drink
but did not know which recipient (A or B) they were, thus enacting a version of the
Rawlsian thought experiment.

To analyze participant responses according to our metrics, we calculated the value of
each metric (F q), where q indexes the individual metric (maximax, maxsum, maximin,
IA), and F is a vector. Values for the metrics were calculated from the utilities of agent i
(U i) for each option oj:

Fmaximax oj
� �

¼ max
i

U i oj
� �

Fmaxsum oj
� �

¼
X

i
U i oj
� �

Fmaximin oj
� �

¼ min
i

U i oj
� �

F IA oj
� �

¼
Y

i

U i ojð Þ
P

i U
i ojð Þ

These F q ojð Þ values were then normalized to account for the tradeoffs between each
option oj in the matrix Mm

1:

F q ok
� �

¼
F q ok

� �

maxoj2Mm
F q ojð Þ

� � ;8q ð1Þ
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2.2. Results and discussion

We were interested in what metrics participants preferred, meaning which metrics
could describe participants’ demonstrated behavior. We determined preferred metric
through an independent statistical analysis, and then via a maximum entropy model. We
examined the proportion of participants preferring specific metrics in the “Nominal,”
“Robot,” “Robot Friends,” “Robot Strangers,” and “Veil of Ignorance” conditions.

2.2.1. Statistical analysis

We sought to determine which metrics individuals used to make their choices. Before
asking which metrics best described participants’ choices, we first asked whether partici-
pants were behaving according to any of the metrics, by comparing participants’ empiri-
cal choices to a simulated baseline participant making random choices. For each metric
q, we determined whether the F q values from participants’ empirical choices were signif-
icantly larger than the F q values from random choices, summed across participants and
matrices. For our baseline comparison, we drew from the null distribution to generate
enough choices for a complete experiment (choices for each matrix and for each partici-
pant, summed) and repeated that process 10,000 times. We then computed z-scores and
associated p-values for whether the empirical F q values (H1) were significantly greater
than our baseline F q values (H0) for each metric q. We found that the maxsum, maximin,
and IA metrics significantly matched participant behavior, and that the maximin metric
best matched participant behavior (had the highest z-scores) for all conditions except the
“Veil of Ignorance” condition (Table 1). In the “Veil of Ignorance” condition, the max-

sum, maximin, and maximax metrics significantly matched participant behavior, and the
highest z-score was for the maxsum metric, closely followed by the maximin metric. This
analysis was chosen because the comparison between the empirical and null distributions
accounted for the biases within metrics and choice of specific matrices.

2.2.2. Inferring metrics used with a maximum entropy model

To further test which combination of metrics described participants’ choices, we con-
structed a maximum entropy inverse reinforcement learning (MaxEnt) model (Ziebart,
Maas, Bagnell, & Dey, 2008). In this model, we inferred weights, which were associated
with each of the metrics. Mathematically, the weight vector h was indexed by q and com-
posed of [hmaximax, hmaxsum, hmaximin, hIA]. Participants’ preferred metric was evaluated as
the metric with the largest associated weight hq.

We computed a maximum a posteriori estimate for h for each participant given their
choices by combining a uniform prior over the parameters of h with the likelihood of
each individual’s choice ok over the options o for each matrix. Specifically, within each
matrix Mm, for each participant’s choice ok over options o, we maximized the function
logP(ok|h) over h (a vector of length q), where:

PðokjhÞ ¼
eh

T

FðokÞ
P

j e
h
T

FðojÞ
ð2Þ
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Recall that F is the vector containing the values of the individual metrics
[Fmaximax;Fmaxsum;Fmaximin;F IA].

We summed across matrices Mm to create the final cost function
P

m logP ok Mmð Þjh
� �

, and we used the following constraints to compare the relative use
of each of the metrics:

P

q hq ¼ 1, hq ≥ 0. We optimized using sequential least squares
programming (SLSQP) in Python’s scipy package. To calculate the weight vector of an
average individual, we calculated the arithmetic mean over individual participants’ h vec-
tors. Thus, overall the hq value for any given metric was determined by the closeness
between the responses expected under that metric (e.g., maxsum) and a participant’s
responses. In interpreting the results, if any given hq value was high, then participants
often chose responses in accordance with that metric.

We found that participants’ behavior was best explained by the maximin metric for all
conditions according to the MaxEnt model, as shown in Fig. 2. Our conclusion that par-
ticipants’ behavior was best explained by the maximin metric was also supported by using

Table 1

Results for Experiment 1, showing relationship between participants’ responses and hypothetical null distribu-

tion for each metric

Maximax Maxsum Maximin IA

Nominal �0.2 (.58) 11.2 (0) 19.7 (0) 10.9 (0)

Robot 0.6 (.27) 10.7 (0) 16.7 (0) 8.6 (0)

Robot Friends 1.6 (.05) 13.6 (0) 19.0 (0) 9.7 (0)

Robot Strangers 0.6 (.27) 9.5 (0) 14.7 (0) 7.3 (0)

VoI 3.1 (.002) 8.7 (0) 7.8 (0) �0.1 (.53)

Rep2x: Ind.(C1) 4.1 (0) 9.7 (0) 7.8 (0) 1.9 (.03)

Rep2x: Ind.(C2) 1.3 (.10) 5.6 (0) 6.9 (0) 2.8 (.002)

Rep3x: Ind.(C1) �1.2 (.89) 5.7 (0) 11.9 (0) 6.9 (0)

Rep3x: Ind.(C2) 0.4 (.34) 3.6 (1e-4) 5.4 (0) 3.0 (.001)

Rep3x: Ind.(C3) �2.1 (.98) 1.8 (.03) 7.3 (0) 5.0 (0)

Rep2x: Summed �9.4 (1) 9.4 (0) 19.2 (0) 14.4 (0)

Rep3x: Summed �24.0 (1) �0.007 (.50) 26.1 (0) 20.8 (0)

Follow-Up (2x) �11.0 (1) 5.3 (0) 22.1 (0) 14.7 (0)

Follow-Up (3x) �6.4 (1) 7.8 (0) 18.8 (0) 9.9 (0)

Note. Determining which metrics describe participant choices, as compared to what would be expected

given random choices, summed across participants and matrices. Z-scores are shown, calculated as the [em-

pirical (H1) summed scores—mean of the null (H0) distribution summed scores] divided by [SE for the null

(H0) distribution summed scores], along with associated p-values in parentheses, for all metrics. (Summation

is across all matrices and participants.) High scores for any metric indicate that participants often chose

responses in accordance with that metric, above and beyond what they would have done had they been

choosing randomly. Results are shown for all conditions in all experiments: “Nominal,” “Robot,” “Robot

Friends,” “Robot Strangers,” “Veil of Ignorance,” “Repeated 2x: Independent (Choice 1),” “Repeated 2x:

Independent (Choice 2),” “Repeated 3x: Independent (Choice 1),” “Repeated 3x: Independent (Choice 2),”

“Repeated 3x: Independent (Choice 3),” “Repeated 2x: Summed,” “Repeated 3x: Summed,” “Follow-Up

(2x),” and “Follow-Up (3x).” 10,000 samples of summed scores from the null distribution were taken. Condi-

tion names are shortened: “VoI” represents the “Veil of Ignorance” condition and “Rep2x: Ind.(C1)” repre-

sents the “Repeated 2x: Independent (Choice 1)” condition. “0” in the table refers to <0.0001.
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an alternative method of calculating the average weights across participants. Throughout
this work, we sought to determine which combination of metrics described an “average”
individual; however, there are several ways of calculating an average weight vector. In
the main analysis, we set “average” as the arithmetic mean of each individual partici-
pant’s weight vector h. An alternative average assumes that all participants’ data came
from one individual and, given this, calculates a single weight vector h under the assump-
tions of the MaxEnt model described above. Using this, hmaximin = 1 and hmaximax, hmax-
sum, hIA = 0 for the “Nominal,” “Robot,” “Robot Friends,” and “Robot Strangers”
conditions.

Note that the results from the MaxEnt model support and also further the results from
the statistical analysis. In the statistical analysis for Table 1, we compared participants’
responses to those expected from a participant choosing randomly. We saw, compared to
this null distribution, that participants’ choices tended to encompass the maxsum, max-
imin, and IA metrics across the “Nominal,” “Robot,” “Robot Friends,” and “Robot Stran-
gers” conditions. While the results from that analysis suggested that participants’
responses slightly more matched the responses expected from a maximin policy (indicated
by the higher z-scores under the Maximin comparison) compared to other metrics’ poli-
cies, this comparison was indirect (participant and random responses were compared
along each of the metrics, and then the metrics were compared, rather than directly com-
paring the relative influence of each metric in participant responses). To more directly
compare which metrics best described participants’ responses, we examine the results
from the MaxEnt model designed for this purpose. The results from the MaxEnt model
for these conditions clearly differentiate the maximin metric as more descriptive of partic-
ipants’ responses compared to the other metrics.

Fig. 2. MaxEnt model results for Experiment 1, showing mean inferred weight h � SE for each metric

across participants in the “Nominal,” “Robot,” “Robot Friends,” “Robot Strangers,” and “Veil of Ignorance”

conditions. The maximin metric best described participant behavior.
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For the “Veil of Ignorance” condition, the MaxEnt results were more evenly split
between the maximin and maxsum metrics: hmaximin = 0.52, hmaxsum = 0.48, and hmaximax,
hIA = 0. Of note, while the MaxEnt results emphasized the maximin and maximax results
in Fig. 2, the results from fitting a single h emphasize the maximin and maxsum results.
This pattern could arise if there were some participants who behaved very consistently
according to the maximax metric, leading to their being highly represented when h values
were calculated for each participant and averaged, but these participants’ behavior wash-
ing out when all participants’ behavior was aggregated. It is noteworthy that the maximax

and maxsum metrics were highly correlated (the same is true for the maximin and IA met-
rics) such that if participants were commonly making the best maximax choices, these
choices were likely to be well-described by the maxsum metric as well (Fig. 3, leftmost).
This correlation is how there could be a result for the single h providing more support
for the maxsum metric with an average mean providing more support for the maximax

metric. The shared emphasis on the maximin, maxsum, and maximax metrics in the “Veil
of Ignorance” condition is also evident from the statistical analysis described above. In
sum, across each of these result measures behavior of participants in the “Veil of Igno-
rance” condition appears to be described by the maximin, maxsum, and maximax metrics.

The MaxEnt model results were designed to isolate which metric best described partic-
ipants’ behavior by accumulating evidence over all trials. As such, the MaxEnt model
seems to clearly indicate participants were always behaving according to, for example,
the maximin metric. However, in each individual trial, participants could not behave
according to an isolated metric, since each choice they made provided some evidence for
each of the metrics. This inseparability—caused by the correlations among metrics, see
Fig. 3—is what motivated our use of the MaxEnt model. One could argue that partici-
pants may be making choices that were most supporting a single metric on each trial, and
this is possible but not what was empirically observed. Though we do not include trial-
by-trial data, Table 2 provides a histogram of the metrics participants’ behavior most
adhered to, according to the MaxEnt model, and the Supplemental Results (Tables S1–
S14) show each participant’s adherence to each the metrics according to statistical analy-
ses. Participant behavior generally was in accordance with several of the metrics, and
most in accordance with the maximin metric in aggregate.

After constructing the MaxEnt model, we wanted to check that our weight vectors h

generalized and that the model was predictive of human behavior. To that end, we esti-
mated participants’ weight vectors and used these to predict held-out choices. Specifi-
cally, given participants’ weight vectors h, we could predict participants’ choices given a
new set of options in matrix Mm. The predictions okm were calculated by argmaxjPðo

j
mjhÞ.

We calculated weight vectors h for 50% of participants, each trained on 50% of the
matrices. We then used the average weight vector from these participants to predict the
remaining 50% of participants’ choices on the remaining 50% of matrices and report this
prediction accuracy. As a comparison, we also report the accuracy of prediction when
each participant’s weight vector, trained on all matrices, is used to predict that same par-
ticipant’s choices on each matrix. We report the average of 100 training runs for each
prediction.

V. Gates, T. L. Griffiths, A. D. Dragan / Cognitive Science 44 (2020) 15 of 42



Training and testing on 50% participants and matrices, the “Nominal” condition had
72.9% predictive accuracy (non-held-out comparison: 75.4%); the “Robot” condition had
66.4% predictive accuracy (non-held-out comparison: 70.1%); the “Robot Friends”

Fig. 3. Correlations across values of the metrics in the “Nominal” (leftmost), “Follow-Up (2x)” (left), “Fol-

low-Up (3x)” (center), “Repeated 2x: Summed” (right), and “Repeated 3x: Summed” (rightmost) conditions.

For each condition, we computed the value of each metric for all possible choices across all matrices. We

concatenated all of the possible choices across all matrices into one vector for each metric, and we computed

the Pearson correlation coefficient across metrics. Choices well-described by the maximax metric were also

well-described by the maxsum metric (high correlation between maximax and maxsum), while choices well-

described by the maximin metric were also well-described by the inequality aversion (IA) metric (high corre-

lation between maximin and IA). These clusters (maximax and maxsum) and (maximin and IA) tended to be

anti-correlated. Note that the “Nominal” condition plot also describes the “Robot,” “Robot Friends,” “Robot

Strangers,” “Veil of Ignorance,” “Repeated 2x: Independent,” and “Repeated 3x: Independent” conditions,

since participants saw the same stimuli. The summed possible choices used in the “Repeated 2x: Summed”

and “Repeated 3x: Summed” correlation matrices were used only for data analysis and not shown to the par-

ticipants.

Table 2

Percentage of participants whose behavior is best described by each metric, according to the MaxEnt model

Maximax Maxsum Maximin IA

Nominal 8 3 83 6

Robot 14 17 63 6

Robot Friends 9 9 83 0

Robot Strangers 18 6 71 6

VoI 27 18 48 6

Rep2x: Ind.(C1) 29 12 58 0

Rep2x: Ind.(C2) 25 21 46 8

Rep3x: Ind.(C1) 14 10 62 14

Rep3x: Ind.(C2) 19 29 38 14

Rep3x: Ind.(C3) 29 5 48 19

Rep2x: Summed 0 12 87 0

Rep3x: Summed 10 5 71 14

Follow-Up (2x) 3 6 90 0

Follow-Up (3x) 17 0 83 0

Note. Each participant’s final h vector according to the MaxEnt metric was computed for each condition;

the highest-value hq value was taken as the metric that best described the participant’s behavior. Shown is

the percentage of participants for which each metric best described their behavior. These more individual-

level results closely resemble the aggregated results shown in the Figures. Condition names are shortened:

“VoI” represents the “Veil of Ignorance” condition and “Rep2x: Ind.(C1)” represents the “Repeated 2x: Inde-

pendent (Choice 1)” condition.
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condition had 71.3% predictive accuracy (non-held-out comparison: 70.9%); the “Robot
Strangers” condition had 64.6% predictive accuracy (non-held-out comparison: 73.3%);
the “Veil of Ignorance” condition had 59.5% predictive accuracy (non-held-out compar-
ison: 78.2%). Chance accuracy was 25%. We observed high predictive accuracy both
when testing sets were and were not held out compared to chance accuracy, supporting
the validity of our inferred h vectors.

2.2.3. What metric was preferred across conditions?

We also asked whether participants’ judgments of fairness would differ based on what
type of agent they were considering, and whether the participant was considered a drink
recipient. We found that on the whole, participants were consistent in their behavior across
conditions: whether they were thinking about a human manager or a robot manager, whether
the robot manager was serving friends or strangers, and whether they were to receive a
drink. Specifically, participants’ preferred metric did not differ significantly between the
“Nominal,” “Robot,” “Robot Friends,” “Robot Strangers,” and “Veil of Ignorance” condi-
tions (chi-squared test over F q summed over participants and matrices: v2 = 6.67, p = .88,
df = 12). We could have generated many more conditions, but our results suggest that par-
ticipants’ fairness judgments are robust to at least some changes in agent identity, and gener-
ally that participants’ ideas of fairness are similar across varied situations.

The result of similar behavior across conditions is important, because in this work, our goal
is to examine humans’ views of what decisions decision-makers and assistive artificial intelli-
gences should implement in the future. In this experiment we asked participants what a desir-
able decision would be and then checked that the results were not a specific consequence of
slight differences in how we could have asked the question. There were indeed no significant
differences in participants’ reports of what they considered a good decision, despite differences
in the agent considered. This finding is important with respect to the generalizability of our
findings and how we might outsource decisions to technology in the future.

While results were similar across conditions, it is worth noting that the results from
the “Veil of Ignorance” condition subtly differed from the rest, for example by encourag-
ing behavior more closely matching the maxsum metric. In the “Veil of Ignorance” condi-
tion, participants seemed to engage with the question as a new context: Qualitatively,
participants seemed to think less about fairness and more in the sense of “gifts” or “gam-
bling.” When asked to justify their choices, participants in the “Veil of Ignorance” condi-
tion would say things like “one of us might as well be very happy,” “I don’t know what
guest I am so I made the safest choice,” or “Neither of us will get something we don’t
enjoy at all.” Whereas in the other conditions, participants tended to more often use
words like “fair,” “balanced,” or “equal.” A possible explanation for why behavior in the
“Veil of Ignorance” condition was not so closely matched to the maximin metric as was
true in the “Nominal,” “Robot,” “Robot Friends,” and “Robot Strangers” conditions is
this apparent difference in framing. On the one hand (corresponding to the “Veil of Igno-
rance” condition), the participant could either gamble to win a desired item or offer it
generously to an opponent, or alternatively play it safe with a drink everyone would like
a little (Konow & Schwettmann, 2016) reviews the evidence on whether “fair” behavior
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is actually risk-averse behavior). On the other hand (corresponding to the other condi-
tions), the participant would be responsible for the outcomes of two people one does not
know, perhaps encouraging more “fair” allocation strategies.

While participants’ behavior was still more maximin-aligned than maxsum-aligned, the
fact that participants’ behavior was relatively more similar to the maxsum metric in the
“Veil of Ignorance” condition was interesting because the participants could have taken
the opposite perspective. In the “Veil of Ignorance” condition, the participants had (un-
known) stake in the proceedings and could have made sure not to end up with the unfair
end of a bargain by engaging in even more maximin behavior relative to the other condi-
tions. Instead, participants behaved relatively more according to the maxsum metric. This
result is important and should be further explored, since most of us are recipients and not
the decision-maker in many real-life situations, perhaps making the “Veil of Ignorance”
condition the most descriptive of real situations.

Various other studies have empirically evaluated preferences under the veil of igno-
rance (Andersson & Lyttkens, 1999; Carlsson, Gupta, & Johansson-Stenman, 2003; Froh-
lich, Oppenheimer, & Eavey, 1987; Johansson-Stenman, Carlsson, & Daruvala, 2002;
Oleson, 2001). Of the studies that evaluated metrics similar to ours, Frohlich et al. (1987)
found that participants preferred maximizing average income with a floor constraint, and
Oleson (2001) found that participants demonstrated both maximin and IA behavior—how-
ever, this collection of studies was different enough from our paradigm (e.g., studying
risk aversion, or looking at welfare over an entire hypothetical society) that the different
contexts likely significantly affected outcomes. A study by Bosmans and Schokkaert
(2004) was similar to our work in that they asked participants about their preferences
directly, and also under a veil of ignorance. They observed different results between the
directly elicited preferences and veil of ignorance conditions (but not maximally different
results, which occurred in comparing directly elicited preferences to a third self-interested
condition). These results were similar to ours, as we found a small difference in response
profiles between our “Nominal” and “Veil of Ignorance” conditions. A final aspect of our
“Veil of Ignorance” condition is that since our question was about autonomous third-party
decision-makers with no stake in the game, we designed the condition such that partici-
pants would not receive a payout according to their choices. If participants had a stake in
the game (albeit an unknown one), their behavior might have shifted to be more conser-
vative under the assumption of maximizing self-interest—it is known that participants do
change their behavior based on whether they are being paid or not (e.g., G€achter & Riedl,
2006; Herrero et al., 2010). Altogether, the “Veil of Ignorance” results were similar to
those of the other conditions, but future work will have to continue evaluating the con-
texts that influence participants’ conceptions of good decision-making.

3. Experiment 2: Repeated choices

Previously, we evaluated what people thought a decision-maker should do when taking
a single action. However, in the real world, decision-makers will act many times: the
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schoolteacher choosing a new lesson plan for their students every day, or the government
delivering many aid programs over time. Here we investigated whether people have dif-
ferent intuitions for what decision-makers should do when facing repeated decisions with
the same set of agents. Perhaps the decision-maker should give one agent its best choice
the first time, and a different agent its best choice the second; or perhaps the conclusion
is to compromise each time or to attempt to maximize fairness across the sum of all deci-
sions. We tested whether different metrics would describe participants’ actions when par-
ticipants were given repeated choices.

Repeated decision-making has been studied in the literature, often under the name of
sequential or dynamic choices in game theory games. In the repeated version of the Pris-
oner’s Dilemma, participants choose whether to betray their partner or cooperate on each
turn, and there has long been research into the optimal strategy for this game (Andreoni
& Miller, 1993; Boyd & Lorberbaum, 1987) and other competitive/cooperative games
(Kuzmics, Palfrey, & Rogers, 2014), wherein each partner obtains more information
about the other on each turn. Behavior in repeated games is sensitive to anticipated repe-
titions: game outcomes are empirically different when participants are engaging in a
finitely repeated game compared to a repeated one-shot game (Andreoni & Miller, 1993).
In other sequential games, the sequence is not of both agents making choices simultane-
ously and then repeating the game, but rather of agents taking turns right after each other,
for example by claiming an item via sequential allocation (Bouveret & Lang, 2011; Kali-
nowski, Narodytska, & Walsh, 2013), or fair queueing (Demers, Keshav, & Shenker,
1989; Moulin & Stong, 2002). There are also “online” games, in which agents may arrive
at different times (e.g., Kash, Procaccia, & Shah, 2014; Walsh, 2011) and resources must
be divided between them repeatedly. Alternatively, items may arrive over time to the
same set of agents who have preferences over them (e.g., Aleksandrov, Aziz, Gaspers, &
Walsh, 2015), which is more similar to the structure of our experiment.

There is a subset of research studying the situation of a single item being distributed
to a set of agents repeatedly. In this case, researchers are often testing optimum strategies
for allocation that maximize total agent utility, while ensuring that their strategy has use-
ful qualities like being efficient and fair, and encouraging truth-telling of preferences
from each agent on each round. This work can fall under the heading of “dynamic mech-
anism design” and has been widely investigated (e.g., Bergemann & Valimaki, 2006;
Cavallo, 2008; Guo, Conitzer, & Reeves, 2009). Other researchers have argued that these
paradigms do not capture the structure of real-world problems, and so introduced a real-
life food distribution problem in which a central decision-maker must repeatedly allocate
food to different charities in an online fashion over complex preferences where fairness
and efficiency are both considered (Aleksandrov et al., 2015; Walsh, 2015). Our Experi-
ment 2 is similar to this food distribution problem in that we have a repeated task in
which a central decision-maker makes resource choices over the preferences of several
agents, and similar to the dynamic mechanism design studies in that there is a single item
being repeatedly allocated. Our Experiment 2 is different, however, in that the single item
is not being allocated to a single recipient, but rather being created and shared across
agents on every round.
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Freeman, Zahedi, and Conitzer (2017) have perhaps the most similar motivation to our
experiment, as they ask if a central decision-maker should make allocations that are opti-
mized for fairness within every round, or if fairness should be optimized across rounds.
Freeman et al. (2017) analyzed (non-empirically) fair social choice in dynamic settings
with many agents with changing preferences over multiple goods. They chose to optimize
for the overall product of all agents’ utilities and investigated strategies from there. How-
ever, the question of whether real participants would optimize for global utilities across
choices is undetermined, including whether they would optimize for additive utilities (the
global maxsum solution) or the product of utilities (more similar to IA). Given previous
research, we hypothesized that participants would behave differently when presented with
the same choice repeatedly; in other words, we expected that the choices from Experi-
ment 1 would not be repeated three times. We were interested in determining whether
participants’ choices would be described by the same metric in each round, or across all
rounds, and whether these choices would change depending on the number of anticipated
rounds. In summary, in Experiment 2 we presented participants with two or three repeti-
tions of the same payoff matrices to determine how they would act, as central decision-
makers, in the common real-world situation of providing a resource multiple times to the
same group of people.

3.1. Method

3.1.1. Participants

Participants with U.S. IP addresses were recruited from Amazon Mechanical Turk for
two additional conditions: “Repeated 2x” (n = 24, 0 participants excluded) and “Repeated
3x” (n = 21, 4 participants excluded). Participants were paid between $2.50 and $3.00 for
their participation. Participants were excluded if they failed the included attention check
or indicated that they did not understand the experiment.

3.1.2. Stimuli and procedure

In Experiment 2, the procedure and stimuli were similar to Experiment 1, except
instead of viewing each matrix once, participants saw each matrix twice (in the
“Repeated 2x” condition) or three times (in the “Repeated 3x” condition). Matrices were
repeated an even (“Repeated 2x” condition) and odd (“Repeated 3x” condition) number
of times to probe how participants would balance their choices. Procedurally, participants
read the prompt from the “Nominal” condition, made a choice for the presented matrix,
and justified their answer, as in Experiment 1. Then they saw the following prompt:
“Your guests have finished the drinks, and you can now put out another. Which drink
would you like to serve?” and were shown the same matrix again, and asked to make a
choice and justify their answer. The latter prompt and matrix appeared once more in the
“Repeated 3x” condition. Participants were able to scroll up and down the page of
prompts and responses to determine the total number of drinks they were serving, and
could change their choices at any time within the round.
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3.1.3. Analysis

In Experiment 2, participants had the opportunity to serve multiple drinks. In the
“Repeated 2x” condition they chose an option ok from matrix Mm two times (ok1; o

k
2),

while in the “Repeated 3x” condition they chose an option ok matrix Mm three times
(ok1; o

k
2; o

k
3).

Unlike in Experiment 1, choices from each repeated matrix were not independent
given the matrix Mm. We thus calculated two variants on individuals’ preferred metrics.
For the na€ıve analysis, we analyzed each choice in the repeated case as an independent
decision. Specifically, we assigned all choices after ok1 to new “independent” participants.
Thus, in the “Repeated 2x” condition, the number of participants artificially doubled, with
the first set of participants making choices ok1 for each matrix, and the second set of par-
ticipants making choices ok2 for each matrix. F indep

q was calculated and predictions were
made using the same procedure as in Experiment 1, where “indep” indicates the artificial
creation of independent participants.

For the more sophisticated analysis, we assumed that participants were making one
large decision across two or three unordered matrices, rather than making semi-indepen-
dent decisions ok1, o

k
2, (o

k
3). We hypothesized that U ok1 þ ok2 þ ok3

� �

would not be equiva-
lent to U ok1

� �

þ U ok2
� �

þ U ok3
� �

(the assumption that choices were independent). We thus
mapped the repeated choices to a more sophisticated non-repeated choice: one between
all 10 (for the “Repeated 2x” condition) or 20 (for the “Repeated 3x” condition) combi-
nations of individual choices ok1, o

k
2, (o

k
3) participants could have made. We then calcu-

lated F summed
q based on the summed agent utilities across all of these potential

combination of matrices. Order of choices was not taken into account, but repetition of
the same choice ok for ok1, o

k
2, (o

k
3) was allowed. In short, by following this summing pro-

cedure, in the “Repeated 2x” condition, participants had 10 hypothetical choices, rather
than the 4 they actually faced (two times). In the “Repeated 3x” condition, participants
had 20 hypothetical choices, rather than the 4 they actually faced (three times). The anal-
ysis proceeded in the same way as for the “Nominal” condition in Experiment 1 except
that the matrices Mm expanded to contain 10 or 20 choices.

3.2. Results and discussion

In Experiment 2, we wanted to test how participant behavior would change across
repeated conditions. One hypothesis was that participants would, as in Experiment 1, use
the maximin metric for each individual choice, not keeping in mind the overall structure
of the repeated choices. A second hypothesis was that participants would maintain max-

imin behavior when considering their combined choices, but would engage in different
behavior (e.g., suboptimal behavior with respect to the maximin metric) within each indi-
vidual matrix. A third hypothesis was that participants could have chosen to maximize
the utility for one agent, then the other, alternating the optimal maximax options for each
individual choice. This third hypothesis was not borne out in the data and so will not be
further discussed.
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Results especially supported the second hypothesis, that participants may not have
acted independently according to the maximin metric on each choice, but rather made
sure that the overall outcome after all actions was a maximin-supporting outcome.2 To
test this, we evaluated the metrics’ values over participants’ combined choices (F summed

q ).
Statistically, we compared participants’ empirical F summed

q values to 10,000 samples of
F summed

q values from randomly generated choices, where the values were summed over
participants and matrices. This comparison yielded z-scores and p-values relating the
empirical results to the null distribution for each metric. (The statistics here are the same
as explained in Experiment 1.) For both the “Repeated 2x: Summed” and the “Repeated
3x: Summed” conditions, the z-scores for the maximin metric were higher than for any
other metric (Table 1), and they were in the same general range as those of the “Nomi-
nal” condition. The statistical analysis thus supported the conclusion that participants’
behavior could be explained by applying the maximin metric across the set of repeated
matrices they were reasoning over. We also analyzed the results through the MaxEnt
model. We found that the degree to which the maximin metric explained behavior in the
“Repeated: Summed” conditions, both for “Repeated 2x: Summed” (two repeated
choices) and “Repeated 3x: Summed” (three repeated choices), was high and almost
equivalent to in the “Nominal” condition (Fig. 4).

Results also supported the first hypothesis to a lesser extent: that participants’ behavior
could be described by the maximin metric within each individual choice they made
throughout the repeated choices. Here, we analyzed the data in terms of individual
choices, completing a statistical analysis on the summed empirical and null distributions
for the F indep

q values. Z-scores were highest for the maximin metric for almost all condi-
tions (“Repeated 2x: Independent (Choice 2),” “Repeated 3x: Independent (Choice 1),”
“Repeated 3x: Independent (Choice 2),” and “Repeated 3x: Independent (Choice 3)”)
(Table 1). The exception was that the z-score for the “Repeated 2x: Independent (Choice
1)” condition was highest for the metric maxsum. To further analyze our data, we used
the MaxEnt model to infer the combination of metrics that best described participant
behavior over individual choices. We found that the maximin metric best described partic-
ipant behavior for all of the conditions assuming independence: “Repeated 2x: Indepen-
dent (Choice 1),” “Repeated 2x: Independent (Choice 2),” “Repeated 3x: Independent
(Choice 1),” “Repeated 3x: Independent (Choice 2),” and “Repeated 3x: Independent
(Choice 3)” (Fig. 4). The first hypothesis that participants would act according to the
maximin metric for each of their individual choices was thus supported, though not uni-
formly across conditions, and contribution from a combination of metrics was visible
within the MaxEnt results.

Supporting the importance of the maximin metric in describing behavior, estimating a
single h across all participants resulted in values dominated by the maximin metric for all
but one condition in Experiment 2. Specifically, for the “Repeated 2x: Independent
(Choice 1)” condition, hmaxsum = 1 and hmaximin, hmaximax, hIA = 0, the sole condition
where the maxsum metric was ranked highest. For the “Repeated 2x: Independent (Choice
2)” condition, hmaximin = 1 and hmaximax, hmaxsum, hIA = 0. For the “Repeated 2x:
Summed” condition, these averages were hmaximin = 0.81, hmaxsum = 0.19, and hmaximax,
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hIA = 0. For the “Repeated 3x: Independent (Choice 1)” condition, these averages were
hmaximin = 0.92, hmaxsum = 0.08, and hmaximax, hIA = 0. For the “Repeated 3x: Independent
(Choice 2),” “Repeated 3x: Independent (Choice 3),” and the “Repeated 3x: Summed”
conditions, these averages were hmaximin = 1 and hmaximax, hmaxsum, hIA = 0.

This pattern of results suggests that participants consider all of their choices and main-
tain a running maximin metric calculation, though they also seem to apply the maximin

metric to a lesser degree within each individual choice. Support for this argument draws
from the following observation: The dominance of the maximin metric in explaining
behavior is greater for conditions in which choices were considered cumulatively (the
“Repeated: Summed” conditions) than for conditions in which each choice was consid-
ered independently (the “Repeated: Independent” conditions). Specifically, the maximin z-
scores were higher in the statistical analyses and the maximin h values were higher in the
MaxEnt model for the “Repeated: Summed” conditions compared to the “Repeated: Inde-
pendent” conditions, and they were in fact very similar to those in the “Nominal” condi-
tion.

Finally, to verify that our weight vectors in the MaxEnt model generalized, we used
participants’ h vectors to predict held-out data. Training and testing on 50% participants

Fig 4. MaxEnt model results for Experiment 2, showing mean inferred weight h � SE for each metric across

participants. (Above) Participants in the “Repeated 2x” condition, and “Nominal” condition. (Below)

Participants in the “Repeated 3x” condition, and “Nominal” condition. From left to right: hq for each choice

in the repeated condition (choices were treated as independent); hq for summed choices in the repeated

condition, where new matrices were calculated according to F q ok1 þ ok2 þ :::

� �

; and hq from the “Nominal”

condition.
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and matrices, the “Repeated 2x: Independent” condition had 47.0% predictive accuracy
(non-held-out comparison: 53.6%, chance accuracy: 25%); the “Repeated 2x: Summed”
condition had 39.3% predictive accuracy (non-held-out comparison: 43.3%, chance accu-
racy: 10%); the “Repeated 3x: Independent” condition had 45.8% predictive accuracy
(non-held out-comparison: 57.9%, chance accuracy: 25%); the “Repeated 3x: Summed”
condition had 10.9% predictive accuracy (non-held-out comparison: 17.6%, chance accu-
racy: 5%). Our weight vectors were less accurate in predicting “Repeated: Independent”
conditions than they were compared to the non-repeated conditions, but had relatively
high predictive accuracy for held-out test sets compared to non-held-out test sets. In the
“Repeated: Summed” conditions, as chance accuracy fell, predictive accuracy also fell.
With such low predictive accuracy in the “Repeated 3x: Summed” condition especially,
we sought to test whether this was an artifact of the many potential choices available to
participants in the “Repeated” conditions or a consequence of the utilities of the choices
available, motivating Experiment 3.

We observed that in both the “Repeated” conditions and the conditions from Experi-
ment 1, participants’ behavior was best described by the maximin metric. The lack of dif-
ference in the “Repeated” conditions could be construed as a null result, under the
assumption that we did not manipulate the multi-decision conditions strongly enough to
cause a change in participants’ responses. To show that participants were producing dif-
ferent behavior in the “Repeated” conditions, but nevertheless overall their behavior could
be best described by the maximin metric, we show that there is a different pattern of
responses for each “Repeated” independent choice condition compared to the “Nominal”
condition. Specifically, we computed the percentage of matrices wherein participants had
significantly different responses between conditions. We found that that percentage was
lower in comparing the “Repeated (Choice 1)” and “Nominal” conditions, and higher in
comparing the “Repeated (Choice 2)” and “Nominal” conditions (Table 3). This percent-
age also changed with the “Repeated 3x: (Choice 3)” and “Nominal” condition compar-
ison (Table 3). These percentage differences indicate that participants were making
different choices within each matrix of the “Repeated” conditions, even while the overall
results from the MaxEnt model showed continued maximin behavior.

4. Experiment 3: Summed repeated choices

When taking repeated actions, participants’ individual choices tended toward being
described by the maximin metric, but they were described by a combination of other met-
rics as well. Why were participants’ repeated choices not as clearly described by the max-

imin metric as they were when making a single choice? It could be that participants were
attempting to view all of the repeated trial as a single decision, and were trying to maxi-
mize the maximin solution across all choices, but that the mental overhead for this com-
putation led them to less clearly maximin solutions. Alternatively, perhaps computational
overhead was not very influential in participants making different choices than they had
in Experiment 1, and there was something about the way that the repeated stimuli were
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presented that led to dissimilar results in Experiment 1 and 2—for example, perhaps par-
ticipants felt pressure to vary their choices in Experiment 2 when faced with the same
questions.

To isolate whether computational overhead was an effect, we presented participants with
the summed versions of the repeated choices they saw in Experiment 2. Participants could
then see the summed version of choices in Experiment 2, so the computation was easier if
they were attempting to sum utilities across decisions. This manipulation also allowed us to
present participants with a slightly different one-shot matrix (with six options rather than
four) to see if the results from Experiment 1 generalized. We investigated whether partici-
pant choices would be similar to those in Experiment 1, individual decisions in Experiment
2, and the artificially summed decisions in Experiment 2, with an emphasis on whether par-
ticipants’ behavior would be more or less clearly described by the maximin metric, as we
expected from Experiments 1 and 2. In summary, we simplified the multi-decision problem
presented before, testing what metrics described participants’ solutions when Experiment
2’s repeated choices were condensed into a single decision again.

4.1. Method

4.1.1. Participants

Participants with U.S. IP addresses were recruited from Amazon Mechanical Turk
across two additional conditions: “Follow-Up (2x)” (n = 31, 0 participants excluded) and
“Follow-Up (3x)” (n = 29, 3 participants excluded). Participants were paid between $2.50
and $3.00 for their participation. Participants were excluded if they failed the included
attention check or indicated that they did not understand the experiment.

Table 3

Results showing differences in participants’ choices across conditions

Conditions # sig. # inc. total % sig.

Rep2x: Ind.(C1) vs. Nominal 7 20 35

Rep2x: Ind.(C2) vs. Nominal 12 20 60

Rep3x: Ind.(C1) vs. Nominal 0 17 0

Rep3x: Ind.(C2) vs. Nominal 15 20 75

Rep3x: Ind.(C3) vs. Nominal 9 19 47

Rep2x: Ind.(C1) vs. (C2) 4 19 21

Rep3x: Ind.(C1) vs. (C2) vs. (C3) 7 20 35

Note. Shown is the percentage of matrices (“% sig.”) wherein a chi-squared test of independence showed

the histograms of participants’ choices for each matrix were significantly different (p = .05: uncorrected)

across the listed conditions. In more detail: for each matrix, the number of participants who picked each

choice was summed, and this set of values was compared across the two experimental conditions listed. If a

matrix had any expected value of 0 in the computed v2 frequencies, that matrix was removed from the analy-

sis. Note that expected values were often <5. The number of matrices that were significantly different accord-

ing to the chi-squared test of independence (“# sig.”) was divided by the total number of included matrices

(“# inc. total”). Note that condition names are shortened: “Rep2x: Ind.(C1)” represents the “Repeated 2x:

Independent (Choice 1)” condition.
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4.1.2. Stimuli and procedure

The stimuli and procedure were similar to Experiment 1. Participants again viewed
each matrix once, but each matrix contained six choices that were drawn from the
“summed” utilities from Experiment 2. In Experiment 2, for the “Repeated 2x” experi-
ment, participants had 10 hypothetical choices per round, and in the “Repeated 3x” exper-
iment, participants had 20 hypothetical choices per round. These hypothetical choices (of
the form [A’s utility, B’s utility]) were what we used to generate each matrix in Experi-
ment 3.

To generate each matrix, we first tried to include one choice that maximized each met-
ric. Specifically, we examined all 10 or 20 choices for each round from Experiment 2,
and for each metric selected the choice that would be most preferred under that metric
(e.g., [4, 4] might be chosen under the IA metric, but not the maxsum metric if [8, 4]
was also an option in the set). If two metrics had the same best choice (irrespective of
order, so [8, 4] was identical to [4, 8]), this choice was only included once. If a metric
had several best choices (e.g., under the IA metric, [3, 3] would be as good as [4, 4]),
then an unused choice was selected at random. (Metrics with one best choice were exam-
ined first, and then metrics with multiple choices were examined in random order.) The
remaining choices, since six choices were included in each matrix, were selected from
the most popular unused choices from Experiment 2.

4.2. Results and discussion

In Experiment 2, we observed that participants appeared to be reasoning over the
whole set of repeated choices, and that their behavior was best described by the maximin

metric across that set (“Repeated: Summed” conditions). To further test this hypothesis,
we constructed matrices where participants only had to make one choice, but each choice
constituted the sum of previously repeated choices in Experiment 2. Our results corrobo-
rated those from Experiments 1 and 2. With these single-choice matrices, participants’
behavior could be best explained by the maximin metric. In a statistical analysis compar-
ing the empirical choices made by participants to a simulated set of random choices, z-
scores were highest for the maximin metric as compared to the other metrics in the “Fol-
low-Up (2x)” and “Follow-up (3x)” conditions (Table 1). In our MaxEnt model, partici-
pant behavior was also best explained by the maximin metric in the “Follow-Up (2x)”
and “Follow-up (3x)” conditions, to a degree similar as in the “Repeated: Summed (2x)”
and “Repeated: Summed (3x)” as well as the “Nominal” conditions (Fig. 5).3 The simi-
larity of values across the “Follow-Up” conditions and the “Repeated: Summed” condi-
tions support the hypothesis described in Experiment 2, that participants consider the
whole set of choices when they make decisions rather than just each choice individually.

Finally, to check that our MaxEnt weight vectors generalized, we used participants’ h
vectors to predict held-out data. Training and testing on 50% participants and matrices,
the “Follow-Up (2x)” condition had 71.6% predictive accuracy (non-held-out comparison:
71.6%, chance accuracy: 16.7%); the “Follow-Up (3x)” condition had 60.5% predictive
accuracy (non-held-out comparison: 66.7%, chance accuracy: 16.7%). We could predict
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participant responses to the “Follow-Up” conditions well with and without held-out test-
ing sets, indicating the strength of our inferred weight vectors. The high predictive accu-
racy in the “Follow-Up” conditions compared to the “Repeated: Summed” conditions
indicate that the previous low predictive accuracy was a consequence of the large number
of possible choices available in the “Repeated” conditions, and the complexity of not see-
ing the end results directly and having to compute them, rather than a consequence of the
utilities of the choices themselves.

5. General discussion

If a schoolteacher is trying to choose a field trip for a group of students with kinetic
learners, visual learners, children who do not speak English at home, boisterous students,
and students who are scared of new places, what should they do? How should people
donate their money, governments choose between aid programs, or assistive robots medi-
ate between family members’ preferences? In this work, we examined the broader ques-
tion of how a decision-maker should act when people have different preferences.
Specifically, we asked people what they would do in a paradigm where they could take

Fig 5. MaxEnt model results for Experiment 3, showing mean weight h � SE for each metric across partici-

pants. (Above) Participants in the “Follow-Up (2x),” “Repeated 2x” (summed choices, where new matrices

were calculated according to F q ok1 þ ok2 þ :::

� �

), and “Nominal” conditions. (Below) Participants in the “Fol-

low-Up (3x),” “Repeated 3x” (summed choices), and “Nominal” conditions. The maximin metric best

described participant behavior.
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only one action, making a single drink, to the inevitable dismay of some of the people
they were serving. While it is not clear that decision-makers should automatically match
the behaviors that people intuitively use to make group-level decisions, it is informative
to know the ground truth of what people feel are good decisions.

We analyzed participants’ choices by assuming their behavior could be captured by a
combination of four metrics. Of these metrics—maximax, maxsum, maximin, and inequality

aversion (IA)—we observed that participants’ behavior could be reliably described by the
maximin metric, the idea of maximizing the utility of the worst-off agent. With respect to
our story, the schoolteacher may not know what is the right thing to do, but we at least
know how people behave: For each field trip find the child who would have the worst time
and choose the field trip wherein that child enjoys the field trip as much as possible.

Participants behaved according to the maximin metric despite changes in the agents
involved. Specifically, whether considering a robot manager, human manager, or serving
friends or strangers, participants’ behavior was similar and described by the maximin met-
ric (Experiment 1). Participants did tend to move toward behavior more described by the
maxsum metric when they were told they were beneficiaries of the decision, perhaps rea-
soning about the task more as a gambling situation and less as one mandating fairness for
unknown recipients. In Experiment 2, we found that when participants made repeated
decisions, each individual choice therein was characterized by a modest maximin prefer-
ence. However, participants also acted as if they maintained a running total of their
choices across repeated decisions. In particular, participants’ behavior was best described
by the maximin metric under the assumption that they were summing utilities across
repeated decisions. Experiment 3 provided additional support for the hypothesis that peo-
ple maintain an overall calculation in repeated decision-making, rather than reasoning
over each problem individually. When participants’ cumulative choices from Experiment
2 were summed to create a combined set of matrices for Experiment 3, participants’
behavior was described by the maximin metric to the same degree as was shown in the
“Repeated: Summed” and “Nominal” conditions. All of these results suggest that partici-
pants keep track of calculations over time and prefer making decisions consistent with
the maximin metric when allocating indivisible items across agents.

In the remainder of the paper, we discuss the relationship of these results to previous
work, and ways in which these results could be extended.

5.1. Relationship to previous work

We asked what a decision-maker should do when it could take only one action—create
one resource—to be shared among multiple other agents, and our results support the
hypothesis that participants prefer to behave in ways described by the maximin metric.
How, then, do our results compare to the literature? In the nearby literature of fair alloca-
tion, there is not nearly so neat a consensus. However, in most fair allocation studies the
participant acts as a self-interested party, weighing the desires of selfishness and “fair”
allocation. We are interested in the case of what people consider helpful actions when
they have no stake in the outcome. Four studies are similar to our study in that respect.
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The first is Herreiner and Puppe (2007), who presented participants with payoff matri-
ces in which agents could receive different “goods.” Unlike our study, in which there
was only one item to be created/allocated, the paradigm in Herreiner and Puppe (2007)
resembled an estate game in that multiple items, the number of which was often larger
than the number of agents, could be distributed to various agents. This added complica-
tion to the proceedings, as participants then had large numbers of item combinations to
reason over (e.g., their Problem 1 had 33 = 27 different allocations), and they could con-
sider fairness not only over utilities, but over “bundles”—the set (and number) of items
allocated. To this end, Herreiner and Puppe (2007) constructed their payoff matrices with
an eye to the metric of “envy-freeness,” which describes whether any given agent would
be envious of any other agent’s bundle.

The results from Herreiner and Puppe (2007) seem to be consistent with a hypothesis
that participants prefer acting according to a maximin metric, given that in their study this
metric was sometimes confounded with different metrics within a single choice. However,
in their Problem 1 and Problem 6, Herreiner and Puppe (2007) showed results indicating
that participants preferred the IA metric over the maximin metric. In Problem 1, partici-
pants chose to withhold the last item rather than give one agent two items compared to
the other one (preferring the two agents to have utilities [49,48] rather than [49,53]), and
in Problem 6, participants distributed four items across three agents to maintain exactly
equal utilities [45,45,45] rather than choosing the best maximin allocation [48,60,52].
Problem 1 is an interesting case in that participants were considering fairness in both util-
ities and item number. Our participants tended to choose according to the maximin metric
when only considering utilities, but it could be that if we had asked them to reason over
both utilities and item number they would have considered choices emphasizing inequal-
ity aversion as fairer and better, especially when the difference in utilities was small. In
Problem 6, our results suggest that choice complexity could have been influencing the
observed results in Herreiner and Puppe (2007), and in future work it would be interest-
ing to check if participants would choose the IA solution [45,45,45] rather than the max-

imin solution [48,60,52] if directly presented with those choices, rather than being asked
to add utilities from four items across three agents. As a final note on the complexity of
addition, Herreiner and Puppe (2007) noted in their discussion that participants’ final
solutions were correlated with their reported allocation procedures—for example, the
order in which participants assigned items to each agent. Allocation procedures were not
inherent to our problem setup but are well-considered within the fair allocation literature
(see e.g., Dupuis-Roy & Gosselin, 2011), and perhaps also add implicit utilities to partici-
pants’ preferred choices.

In Engelmann and Strobel (2004), the basic structure of the task was very similar to
ours, as participants made choices between three items that three agents had utilities over.
Though the participant acted as one of these agents, the participant’s utility was always
held fixed over all items. Engelmann and Strobel (2004) focused their payoff matrices on
distinguishing between two existing models, each of which had one utility function desig-
nated as participants’ preferred allocation metric. As such, Engelmann and Strobel (2004)
also had many matrices that confounded the metrics we considered, but with this caveat
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the maximin metric could be considered a primary motivation for participants’ behavior.
Relevantly, Engelmann and Strobel (2004) state that one of the models they evaluated
performed well because it captured the maximin metric, but that overall a combination of
maximin, maxsum (which they call efficiency), and selfishness (which we do not consider)
considerations drove participant behavior. Indeed, in several of their payoff matrices, both
the best maxsum and maximin choices were often selected by participants, and the max-

sum choice often garnered a higher proportion of participants.
Fehr et al. (2006), however, provide a rebuttal to the Engelmann and Strobel (2004)

paper, replicating the Engelmann and Strobel (2004) study with non-economics partici-
pants and showing that the maxsum solution was selected far less by participants who
were in different programs. Fehr et al. (2006) did not choose payoff matrices that distin-
guished between the IA and maximin metrics, but their results hint that the subject pool
can influence preferred allocation metrics. Herreiner and Puppe (2007) tested economics
and law student participants, but our study was conducted on Amazon Mechanical Turk
and had a broader population than economics undergraduates. In future work, it would be
interesting to replicate our study with economics undergraduates, and observe whether
this difference is enough to observe participants’ preference for the maxsum metric over
the maximin metric. Fairness perceptions have been observed to differ across different
populations (see, e.g., Andreoni & Vesterlund, 2001; Croson & Gneezy, 2009; Gaertner
& Schwettmann, 2007; Marwell & Ames, 1981; and Camerer, 2011, summarizes some
demographic results for behavioral game theory), so this hypothesis would not be improb-
able, though the review in Konow and Schwettmann (2016) cites that generally demo-
graphic variables seem to have relatively small effects on economics experiments.

Yaari and Bar-Hillel (1984) presented several different types of scenarios wherein a
third party allocated goods according to the maximin metric, maxsum metric, and IA met-
ric. Participants played three types of games, where they had to allocate fruits according
to receiving agents’ needs or tastes/utilities, and also across agents’ differences beliefs
about the fruits. Participant behavior differed across the varying conditions, shifting
according to the tradeoffs presented, as in this work. The authors observed that when
choices were presented in terms of needs—one agent needs a certain type of vitamin to
be healthy, so they needs a certain type of fruit—82% of participants chose the maximin

allocation. In our paradigm, agents did not have needs, rather stated utilities (preferences
over choices). This was much closer to the second condition in Yaari and Bar-Hillel
(1984), in which agents had different “tastes” or stated utilities. Intriguingly, participants
did not adhere as strongly to the maximin choice in this case, as instead 28% chose the
maximin solution, and 35% of participants chose the maxsum allocation. The distribution
of choices also changed in the third condition of Yaari and Bar-Hillel (1984), in which
agents had different perceptions of how much value each of the items would give them.
Yaari and Bar-Hillel (1984) concluded from their experiments that the maximin metric
best describes participant behavior, but only when needs are salient.

In our work, we found that participants made choices according to the maximin metric
outside of needs-based formulations and did so consistently across changes in wording
and repetition over time. Our paradigm differed from that of Yaari and Bar-Hillel (1984),
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however, which could account for the difference in results. The main difference between
our work and that of Yaari and Bar-Hillel (1984) is that we asked a different question:
Given agents had utilities over a set of four or six options, which option should be chosen
to best satisfy those utilities? Yaari and Bar-Hillel (1984) asked a fair allocation question:
Given a specific number of items (and agents’ preferences over the different items in the
“tastes” condition), how should those items be divided between agents? The fair alloca-
tion paradigm is necessarily zero-sum, wherein if one agent receives a resource, another
loses it. In particular, in question 4 from Yaari and Bar-Hillel (1984), participants were
asked to divide 12 grapefruit and 12 avocados between two agents. One agent was stated
as hating avocados (utility = 0), but would buy grapefruit if they were priced under $1
per pound. Meanwhile, the other agent liked both avocados and grapefruit and would pay
for them if they were priced under $0.50 per pound (half the utility of the first agent for
grapefruit). With these agent preferences in mind, participants were now expected to
divide a fixed number of grapefruit and avocados. Compare this to our study, in which
participants decided which drink to give to two agents to share. This task is not zero-sum
—if one agent has high utility for a drink, this does not detract from another agent’s util-
ity for that drink. We did, however, have four matrices out of 20 for each experiment in
which the joint utilities for each drink were identical, meaning that no matter what drink
the participant chose, the agents would only jointly achieve a given happiness. But in this
scenario, the question was not “how many of each item should be given to each agent
given their utilities” (as in Yaari & Bar-Hillel, 1984), but “given there is a fixed amount
of utility to be had, how should that utility be divided between agents?” This is a distinct
question, and it is probable that participants reason differently about a zero-sum problem
of “distribute 12 pieces of fruit between two people or throw some away” (allocation)
compared to “create one shared item that will make two people more or less happy.” We
may expect that Yaari and Bar-Hillel (1984) did not observe as much maximin behavior
because they used a task of zero-sum bundle allocation; this hypothesis should be investi-
gated in future work.

Another difference between our study and that of Yaari and Bar-Hillel (1984) was that
we probed participants’ intuitions of what was fair with 20 questions (4 or 6 choices
each) for each experiment, and we determined which metrics best described participants’
behavior by accumulating evidence across all of these trials. Alternatively, Yaari and
Bar-Hillel (1984) had participants answer one question for each experiment (usually with
5 choices), and we used that single choice to inform which single “mechanism” (analo-
gous to our metrics, but without considering combinations of metrics) best described par-
ticipant behavior. The authors thus did not have a continuous characterization of how
much participants were acting in accordance with different metrics, instead using discrete
choices that distinguished “maximin,” “maxsum/utilitarian,” and other allocations, which
they tested with a single set of choices. With more trials available and a finer-grained
measure of how each choice contributed to the various metrics, Yaari and Bar-Hillel
(1984) may have observed a more maximin-biased distribution, as we did.

As a final aside, with regard to changing in wording, Yaari and Bar-Hillel (1984)
found similar distributions of responses when they asked, first, how participants would
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divide the items, and second, how the two agents would divide the items if the agents
were aiming to be just. In our paradigm, we asked only what a third-party decision-maker
would do, but this result implies that in our paradigm we would find similar responses if
we were asking participants what choices recipients would think were just.

Our study stands in contrast to these four studies in a few ways. First, while our prob-
lem formulation can encompass any fairness allocation problem based on our definition
of an “action,” the specific paradigm we used was specialized to solve the problem of
what single item a decision-maker should choose to distribute to a group (a rather
straightforward action). This stands in contrast to fair allocation studies, and we described
a direct comparison of our study and Yaari and Bar-Hillel (1984) on this axis, with a par-
ticular eye to zero-sum choices. Additionally, some differences in our results may be
attributable to experimental simplicity. For example, in Herreiner and Puppe (2007), par-
ticipants may entertain additional implicit utilities when they reason over bundles (such
as item number fairness), and there may be difficulties in balancing many possible
choices while considering different allocations of 3 to 4 goods. Similarly, Yaari and Bar-
Hillel (1984) introduce motivational features not present in our work, like division based
on agent needs. A second methodological distinction of our study is that the other studies
did not use a continuous measure of behavioral alignment to several metrics, instead
using discrete comparisons over metrics that largely correlate, which leaves the option
open that finer-grained distinctions may change their details of some of their results.
Additionally, a significant advantage of our study is that we employed 20 matrices and
could have employed more, whereas other studies had fewer than 12 payoff matrices, and
these payoff matrices often confounded different metrics due to the authors’ different
emphases. Finally, we showed consistent participant behavior aligning with the maximin

metric, rather than emphasizing the involvement of the maxsum and IA metrics, and
observed this finding over repeated conditions, a contrast which has not been previously
conducted to the authors’ knowledge.

In summary, our study is aimed at a different question than most in the fairness litera-
ture; we aim to study how people would prefer that decision-makers act when they can
benefit multiple people. This question is not addressed in previous studies, but is most
related to other fairness studies examining uninterested third-party (zero-sum) decisions
(note that unlike a fair allocation problem, our problem is not zero-sum since a decision-
maker is creating a resource for two people with different but not opposing utilities.)
Within this previous work, preference for the maximin metric has not been universally
shown, and the maximin metric is often not directly compared with other potential met-
rics. Relatedly, previous studies often do not account for the correlations among metrics
when describing participant choices. Here, we presented many choices to participants,
testing their intuitions many times for each question, and then used a MaxEnt model to
disambiguate between the overlapping metrics that described each choice. We addition-
ally probed participants’ behavior in repeated, longer-term scenarios than have been eval-
uated for this problem setting. We distinguished participants’ choices representative of
the maximin metric by direct comparison with competitive strategies, across many ques-
tion formulations to ensure generalization. We thus provide a novel contribution to the
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question of what people think a decision-maker should do when faced with helping peo-
ple with unique utilities.

5.2. Future directions

An interesting extension to this work would be to do the full study that includes
extreme comparisons. If participants are faced with the choices [4, 80] and [4, 4] (where
agent A receives the first number and agent B receives the second), all participants will
likely choose [4, 80], because the tradeoff between maximizing the sum and trying to
maintain equality between agents is so extreme. These choices could be varied parametri-
cally, gradually making the tradeoffs less extreme (and more difficult to choose between)
with respect to different metrics. Our study lies basically at the center of that parametric
descent, where the choices are most difficult. It is difficult to choose whether [4, 8] or
[5, 5] is better, and behavior according to both the maximin and maxsum metrics is com-
petitive. In this range, determining whether a participant was acting more according to a
maximin or an IA metric required accumulating evidence across trials, motivating the use
of our MaxEnt model. This is because each choice that a participant made could serve a
few possible metrics simultaneously, and in Table 1 we observed this by noting that in
the raw data, participants’ behavior tended to be described by the maxsum, maximin, and
IA metrics rather than a single metric. However, our paradigm would work well in evalu-
ating when participants would change their behavior as tradeoffs become more extreme.
If a participant acts according to the IA metric until the group utility hits a threshold, that
participant should then continue acting according to a maxsum metric for all the more
extreme choices thereafter.

Tradeoffs like those between equity, the maxsum metric, and need (which we do not
examine here) have been widely compared in previous studies. Work like Ahlert et al.
(2013), Charness and Rabin (2002), Engelmann and Strobel (2004), Faravelli (2007), Fehr
et al. (2006), Fisman et al. (2007), Konow (2001, 2003), Konow and Schwettmann
(2016), Mitchell et al. (1993), Ordo~nez and Mellers (1993), Pelligra and Stanca (2013),
Schwettmann (2009, 2012), and Skitka and Tetlock (1992) find that participants do
trade off between different principles based on the choices presented, as we see in our
work when participants make choices in accordance with several of the metrics. The sug-
gested set of experiments would confirm and expand upon our results, as our stimuli were
chosen to isolate which metrics participants thought best when choices were most diffi-
cult. Moreover, a parametric study examining these tradeoffs would provide a large and
systematic dataset to contribute to the empirical literature on this topic.

Another extension to this study could be to consider whether having verbal problem
descriptions, or other representations of utilities, would enhance our paradigm. Hurley,
Buckley, Cuff, Giacomini, and Cameron (2011) replicated the study by Yaari and Bar-
Hillel (1984) with quantitative problem descriptions, verbal problem descriptions, and
both combined. In their verbal descriptions, they instructed participants to create an allo-
cation according to a given metric: “Divide the apples in such a way that the total
amount of vitamin F obtained by both Jones and Smith together is as large as possible,”
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is an example of a maxsum instruction. The authors report that the results from the verbal
problem descriptions were consistent with participants not understanding the relationship
between the described metrics and their quantitative allocations, and that participants
increased maxsum behavior. We used quantitative information in the present study; it
would be hard to adapt the flexibility inherent in the different choices we presented to
participants in a verbal-only description. Hurley et al. (2011) find that verbal and quanti-
tative descriptions together produce results that more closely match quantitative descrip-
tions alone. Because verbal descriptions do not seem to produce an increased
understanding, we expect our paradigm works well with quantitative information, though
the question of how to represent utilities and the effects of that choice on participant
behavior remains an interesting one.

One limitation of this study is that it asks participants to evaluate between two agents
only. The fair allocation literature commonly evaluates over two or three recipient agents;
we expect our results to also scale to three agents, but we do not know how robust our
findings will be at larger group sizes. This question is incredibly important given that
large-scale decision-making impacts many people and so should be done in a way
endorsed by many. We do not know that our results will scale: As group size increases,
utilities become harder for participants (and people in general) to reason over, so we
expect different heuristics will emerge. Fortunately, our experimental paradigm would
serve as a good platform for this work given that we can easily generate sets of matrices
which require participants to make difficult decisions and can analyze participants’
responses with various insertable metrics.

Finally, in future work, we hope to expand the generalizability of our findings. Within
our paradigm, we observed consistent and robust results which were supported by using
many matrices and conditions. Our paradigm differed from most in the fair allocation lit-
erature due to its focus on a more general problem: what a decision-maker should do
when it can take one action (in this case making a drink) that will be shared among
agents with different preferences. This paradigm itself offers many avenues for expansion
—there are many other actions a decision-maker could take besides making an item,
including choosing a field trip, donating to organizations, or making governmental policy
decisions. We should also consider actions that produce choices with negative utilities,
since the dynamics at play in, for example, trolley problems or risk or loss aversion will
likely lead to different behaviors. Drawing from the fair allocation literature also shows
that this paradigm could be made more complex as multi-step actions are introduced
(e.g., an action encompassing bundle distribution), or selfishness, need, desert, and other
factors are considered. Konow (2003) presents a pluralistic approach, in which the prime
considerations when thinking about justice are a sense of equality and need, utilitarinism
and welfare economics, equity and desert, and context (other papers that present pluralis-
tic approaches are Cappelen, Hole, Sørensen, & Tungodden, 2007; Deutsch, 1985; Froh-
lich & Oppenheimer, 1992; Konow & Schwettmann, 2016; Lerner, 1975; Leventhal,
1976) and all will need to be incorporated into a fuller model of what people consider
desirable behavior.
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This work provides a general problem framework and quantitative model of what peo-
ple think a third party should do when taking an action that will bring people different
utilities. While the problem we address is distinct from that of fair allocation, it is
informed by this literature and can contribute to the discussion of desirable descriptions
of helpful behavior. Understanding what actions to take when every choice affects the
well-being of many people with disjoint preferences has important bearings on the future,
whether in designing decision-making algorithms for artificial intelligence systems, quan-
titatively evaluating how to help individuals make decisions that are better in line with
what people consider to be good choices, or even creating accepted assistive robots. This
and future work focusing on making our results more generalizable—and determining
whether we would like our decision-makers to adopt people’s intuitions of preferred
choices—will provide important contributions to this problem.

6. Conclusion

Decision-making would be a much easier problem if everyone had the same prefer-
ences. Even having everyone agree about what to do about diverging preferences would
help reduce the complexity of reasoning over many diverse perspectives. While that is
not quite the spirited environment we live in, in today’s world, we have an opportunity to
make these complex decision-making tasks easier with artificial intelligence systems.
Artificial intelligences can optimize any number of people’s preferences once they know
what they are, and in this work, we develop a quantitative model of people’s intuitive
preferences for what to do when making difficult decisions to help people.

Determining what decision-makers should do is a topic that philosophers and governors
have wrestled with for centuries: How do we think about inequality within individuals
and in society? In this work, we ventured into the morass, developing a general problem
framework that let us ask people how they would choose one action whose impact would
be different for everyone. Deeper questions remain: What are humanity’s morals around
inequality, and how does what we do compare to how we think we should be? We do
not know what to teach our decision-makers yet, and determining the answers to these
questions will require significant collaborative effort. Fortunately, we did determine what
drinks to serve at the resulting conferences.
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Notes

1. The disadvantage of normalizing the values within each metric was that informa-
tion about metrics that had particularly high or low values for a given matrix was
lost. However, we considered this choice better than the alternative unnormalized
option, for which there would be no sense of the alternative options participants
were choosing between.

2. As an example, if participants in the “Repeated 2x” condition were analyzing the
matrix in Fig. 1, to maximize the maximin metric on each choice they would
choose the [A: 5, B: 8] cup twice, but if they were maximizing the maximin metric
across all choices, they would choose the [A: 4, B: 11] cup once and the [A: 12,
B: 2] cup once. Note that choosing the [A: 5, B: 8] cup twice is tied for the sec-
ond-best option for maximizing maximin overall, so this set of choices would still
contribute to the hypothesis that participants were maximizing the maximin metric
across all choices, just not as strongly as would be true if the participant had cho-
sen the [A: 4, B: 11] cup once and the [A: 12, B: 2] cup once.

3. Our results from estimating a single h across all participants, hmaximin = 1 and
hmaximax, hmaxsum, hIA = 0 for the “Follow-Up (2x)” and “Follow-Up (3x)” condi-
tions, also support the conclusion that participants’ behavior was best explained by
the maximin metric.
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