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Abstract. For G a Polish group, we consider G-flows which either contain a comeager
orbit or have all orbits meager. We single out a class of flows, the maximally highly
proximal (MHP) flows, for which this analysis is particularly nice. In the former case, we
provide a complete structure theorem for flows containing comeager orbits, generalizing
theorems of Melleray, Nguyen Van Thé, and Tsankov and of Ben Yaacov, Melleray, and
Tsankov. In the latter, we show that any minimal MHP flow with all orbits meager has a
metrizable factor with all orbits meager, thus ‘reflecting’ complicated dynamical behavior
to metrizable flows. We then apply this to obtain a structure theorem for Polish groups
whose universal minimal flow is distal.
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1. Introduction
Let G be a Polish group. A G-flow is a compact Hausdorff space equipped with a
continuous (right) G-action X × G→ X . If X and Y are G-flows, a map ϕ : X→ Y is
a G-map if ϕ is continuous and respects the G-actions. A subflow of a G-flow X is any
non-empty closed invariant subspace Y ⊆ X . We say X is minimal if the only subflow
of X is X itself. Equivalently, X is minimal if for every x ∈ X , the orbit x · G ⊆ X is
dense. Notice that if ϕ : X→ Y is a G-map, then the image ϕ[X ] ⊆ Y is a subflow; if X
is minimal, so is ϕ[X ], and if Y is minimal, then ϕ is surjective. We often call a surjective
G-map a factor.

By a classical theorem of Ellis, there is a universal minimal flow M(G); this is a minimal
G-flow which admits a G-map onto any other minimal G-flow, and M(G) is unique up
to isomorphism. The study of M(G) is useful because it captures information about all
minimal G-flows. For instance, if M(G) is metrizable, then every minimal G-flow is
metrizable, and if M(G) has a (necessarily unique) comeager orbit, then so does every
minimal G-flow [1]. However, M(G) is often very complicated; for example, if G is
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2 A. Zucker

locally compact, then M(G) is never metrizable, and all of its orbits are meager. However,
there are Polish groups G for which M(G) is a singleton, and many others for which
M(G) is metrizable and has a concrete description. See [9] for several examples of these
phenomena.

The starting point of this paper is the following fact, first proved by the author [12] in
the case that G is non-Archimedean, and then by Ben Yaacov, Melleray, and Tsankov [7]
for general Polish groups.

Fact 1.1. If G is a Polish group and M(G) is metrizable, then M(G) has a comeager orbit.

This fact, along with the structure theorem due to Melleray, Nguyen Van Thé, and
Tsankov [11], provides a complete understanding of the structure of M(G) when it is
metrizable. However, the property of M(G) having a comeager orbit remained less well
understood. Indeed, it was only recently shown, by an example of Kwiatkowska [10], that
the converse of Fact 1.1 does not hold.

The study of M(G) is often undertaken by attempting to understand the Samuel
compactification Sa(G), the Gelfand space of the bounded left uniformly continuous
functions on G. The group G canonically embeds into Sa(G), and for any G-flow X and
any x ∈ X , there is a unique G-map λx : Sa(G)→ X with λx (1G)= x . In particular, any
minimal subflow of Sa(G) is isomorphic to M(G). The main technical tool introduced
in [7] is to view Sa(G) as a topometric space, a topological space endowed with a
possibly finer metric ∂ which interacts with the topology in nice ways. Letting ∂ denote
this finer metric, the authors of [7] show that if M ⊆ Sa(G) is a compact metrizable
subspace, then ∂|M is a compatible metric. When the metrizable M ⊆ Sa(G) is a minimal
subflow, the properties of the metric ∂|M allow them to show that M has a comeager
orbit. However, much remained unclear about this metric, especially when M(G) is non-
metrizable. Namely, if M ⊆ Sa(G) is a minimal subflow, can we define ∂|M just using the
dynamics of M?

This paper singles out a class of flows, called maximally highly proximal flows (MHP),
which all admit a canonical topometric structure. In particular, M(G) and Sa(G) are
both MHP, and the topometric on M(G) agrees with the metric inherited by any minimal
subflow of Sa(G). Using this topometric structure, we provide a structure theorem for
MHP flows with a comeager orbit. Here, a compatibility point is a point in X where the
topology and the metric coincide (see Definition 5.1).

THEOREM 5.5. Let X be an MHP flow. The following are equivalent.
(1) X has a compatibility point with dense orbit.
(2) The set Y ⊆ X of compatibility points is comeager, Polish, and contains a point with

dense orbit.
(3) X has a comeager orbit.
(4) X ∼= Sa(H\G) for some closed subgroup H ⊆ G (see §3.2.1).

In Theorem 7.5, we generalize the main result of [11] by considering the case where X ∈
{M(G), 5(G), 5s(G)}, where5(G) and5s(G) are the universal minimal proximal flow
and the Furstenberg boundary, respectively. In the first and third case, we show that the
closed subgroup H appearing in item (4) is extremely amenable or amenable, respectively,
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Maximally highly proximal flows 3

and in the second case we present a partial result towards showing that H is strongly
amenable.

As an application of Theorem 5.5, we prove the following ‘reflection’ theorem, which
shows that complicated dynamical behavior of the group G already appears in the realm
of metrizable flows. Note that in minimal flows, all orbits are either meager or comeager.

THEOREM 8.1. Let X be a minimal MHP flow all of whose orbits are meager. Then there
is a factor ϕ : X→ Y such that Y is metrizable and also has all orbits meager.

This theorem was first suggested in [7], but in private communication with the authors,
it was realized that the problem remained open.

As an application of Theorem 8.1, we give a complete characterization of when M(G)
is distal in Theorem 9.2 and Corollary 9.3. The theorem says that if M(G) is distal, then
M(G) is metrizable. Then using results from [11], the corollary shows that any such G has
a normal, extremely amenable subgroup H with M(G)∼= H\G.

Notation. We will use some non-standard notation. The phrases ‘non-empty open subset
of’, ‘open neighborhood of’, etc. occur often enough that we introduce some notation for
this. If X is a topological space, then A ⊆op X will mean that A is a non-empty open subset
of X . If x ∈ X , we write x ∈op A or A 3op x to mean that A ⊆ X is an open neighborhood
of x . Omitting the ‘op’ subscript does not mean that a given set is not open; it is just an
easy way to introduce and/or emphasize open sets.

Other notation is mostly standard. We write ω = {0, 1, 2, . . .}, and we identify a non-
negative integer with the set of its predecessors, that is, n = {0, . . . , n − 1}. If f : X→
Y is a function and K ⊆ X , we set f [K ] := { f (x) : x ∈ K }. All topological spaces we
consider are Hausdorff.

2. Topometric spaces
This short section collects the background material on topometric spaces that we will need
going forward. Most of the material here can be found in [4] or [6].

Definition 2.1. A compact topometric space is a triple (X, τ, ∂), where (X, τ ) is a compact
Hausdorff space and ∂ is a metric which is τ -lower semi-continuous (or τ -lsc), meaning
that for every c ≥ 0, the set {(p, q) ∈ X2

: ∂(p, q)≤ c} is (τ × τ)-closed.

Note that the metric need not agree with the underlying topology. As a convention,
when discussing a topometric space, topological vocabulary will refer to τ , while metric
vocabulary will refer to ∂ .

Fact 2.2. Let (X, τ, ∂) be a compact topometric space.
(1) The metric ∂ is finer than the topology.
(2) The metric ∂ is complete.

Remark. One can also define topometric spaces where the underlying topological space is
not compact. One then includes item (1) above in the definition.

The following fact will be needed going forward.
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4 A. Zucker

Fact 2.3. (Ben Yaacov [4]) Let (X, τ, ∂) be a compact topometric space. Then if K ,
L ⊆ X are closed with ∂(K , L) > r , then there is a continuous, 1-Lipschitz function
f : X→ [0, 1] with f [K ] = {0} and f [L] = {r}.

If (X, τ, ∂) is a compact topometric space, K ⊆ X , and c > 0, we define K (c) := {p ∈
X : ∂(p, K ) < c} and K [c] := {p ∈ X : ∂(p, K )≤ c}. If K = {p} for some p ∈ X , we just
write p(c) or p[c], respectively.

Definition 2.4. [6, Definition 1.25] A topometric space (X, τ, ∂) is called adequate if for
every open A ⊆ X and every c > 0, we have A(c) open.

We will prove (see Theorem 4.8) that the topometric spaces we consider in this paper
are all adequate.

3. Maximally highly proximal flows
Throughout this section, G will denote a fixed Polish group. We let dG denote a compatible
left-invariant metric of diameter 1, and for c > 0, we set Uc := {g ∈ G : dG(1G , g) < c}.
We will frequently and without explicit mention make use of the inclusion UcUε ⊆Uc+ε .

Definition 3.1. Let X be a G-flow. We say that X is maximally highly proximal if for every
A ⊆op X , every x ∈ A, and every c > 0, we have x ∈ int(AUc).

3.1. Highly proximal extensions. The name MHP comes from the notion of a highly
proximal extension. If ϕ : Y → X is a surjective G-map, we define the fiber image
of B ⊆op Y to be ϕfib(B) := {x ∈ X : ϕ−1({x})⊆ B}. The set ϕfib(B) is always open
whenever B ⊆op Y , but possibly empty. We call ϕ highly proximal if ϕfib(B) 6= ∅ for every
B ⊆op Y . The composition of highly proximal maps is also highly proximal. Also notice
that if X is minimal and ϕ : Y → X is highly proximal, then Y is also minimal. More
precisely, if X is any G-flow and x ∈ X has dense orbit, then if ϕ : Y → X is any highly
proximal extension, then any y ∈ ϕ−1({x}) also has dense orbit.

To motivate why this notion is named ‘highly proximal’, it is helpful to compare it to
the notion of a proximal extension. A G-map ϕ : Y → X is called proximal if for any
y0, y1 ∈ Y with ϕ(y0)= ϕ(y1), we can find a net gi from G and z ∈ Y with lim y0gi =

lim y1gi = z. Now suppose that X is minimal and that ϕ : Y → X is highly proximal.
Then ϕ is proximal. To see this, let y0, y1 ∈ Y with ϕ(y0)= ϕ(y1)= x . Fix any z ∈ Y , and
let {Bi : i ∈ I } be a base of neighborhoods of z. For each Bi , we have ϕfib(Bi ) := Ai 6= ∅.
By minimality, let gi ∈ G be such that xgi ∈ Ai . Then we see that lim ygi = z for any
y ∈ ϕ−1({x}), so in particular for y0 and y1. In fact, this is historically the definition of a
highly proximal extension.

Fact 3.2. [3, p. 733] Let X be a minimal flow. Then the extension ϕ : Y → X is highly
proximal if and only if for any x ∈ X , there exist a net gi ∈ G and a point y ∈ Y with
ϕ−1({xgi })→ {y}, that is, for any B 3op y, we eventually have ϕ−1(xgi )⊆ Bi .

In the case where X is a minimal flow, Auslander and Glasner [3] prove the existence
and uniqueness of a universal highly proximal extension; this is a highly proximal G-map
πX : SG(X)→ X such that for any other highly proximal ϕ : Y → X , there is a G-map
ψ : SG(X)→ Y with πX = ϕ ◦ ψ .
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SG(X)

X Y

πX
ψ

ϕ

Such a ψ is necessarily also highly proximal.
The notion of a universal highly proximal extension was generalized to any G-flow

in [13], where an explicit construction is given. We briefly review this construction here,
referring to [13] for all proofs.

Definition 3.3. Fix a G-flow X , and write op(X) := {A : A ⊆op X}. A collection p ⊆
op(X) is called a near ultrafilter if the following statements hold.
(1) For every k < ω, A0, . . . , Ak−1 ∈ p, and c > 0, we have

⋂
i<k AiUc 6= ∅. We call

this property the near finite intersection property (NFIP).
(2) p is maximal with respect to satisfying item (1).

Let SG(X) denote the collection of near ultrafilters on op(X). For A ⊆op X , we set
CA = {p ∈ SG(X) : A ∈ p} and NA = {p ∈ SG(X) : A 6∈ p}. We endow SG(X) with a
compact Hausdorff topology given by the base {NA := A ⊆op X}. For p ∈ SG(X), a base
of (not necessarily open) neighborhoods of p is given by {CAUε : A ∈ p, ε > 0}. The group
G acts on SG(X) in the obvious way, where A ∈ pg if and only if Ag−1

∈ p. We also have
a canonical G-map πX : SG(X)→ X , where πX (p)= x if and only if for every A 3op x ,
we have A ∈ p.

Fact 3.4. πX : SG(X)→ X is the universal highly proximal extension of X .

In particular, the map πSG (X) : SG(SG(X))→ SG(X) is an isomorphism. The
construction of the space of near ultrafilters in fact works on any G-space, where the
underlying space X need not be compact. While in this generality we do not get the map
πX , we will still refer to the universal highly proximal extension of the G-space X , and the
construction will still be idempotent. A remark that will be useful later is that if Y ⊆ X is
a dense G-invariant subspace of a G-space X , then SG(X) and SG(Y ) coincide.

PROPOSITION 3.5. The G-flow X is MHP if and only if the universal highly proximal
extension πX : SG(X)→ X is an isomorphism.

Proof. First let X be any G-flow. Fix p ∈ SG(X), and set x = πX (p). Then we must have
p ⊆ Fx := {A ⊆op X : x ∈ A}. To see why, if x 6∈ A, we can find B 3op x and c > 0 with
AUc ∩ BUc = ∅. As B ∈ p by definition of the map πX , we cannot have A ∈ p.

Now suppose the G-flow X is MHP. Then for every x ∈ X , we have that Fx has the
NFIP, so is a near ultrafilter. It follows that if p ∈ SG(X) with πX (p)= x , then we in fact
have p = Fx . In particular, the map πX is injective, hence an isomorphism.

Conversely, suppose X is not MHP. Find some x ∈ X , B ⊆op X with x ∈ B, and c > 0
with x 6∈ int(BUc). Setting C = X \ BUc, we have x ∈ C . Notice that BUc/2 ∩ CUc/2 =

∅, so B and C can never belong to the same near ultrafilter. Set Gx := {A ⊆op X : x ∈ A}.
Let p ∈ SG(X) extend Gx ∪ {B}, and let q ∈ SG(X) extend Gx ∪ {C}. Then p 6= q and
πX (p)= πX (q)= x . �

Downloaded from https://www.cambridge.org/core. 13 Aug 2020 at 20:13:11, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


6 A. Zucker

3.2. Examples of MHP flows. We now collect some examples of MHP flows. Of course,
the universal highly proximal extension of any G-space is an MHP flow, but it will be
useful to have some explicit examples in mind.

3.2.1. Samuel compactifications. Let H ⊆ G be a closed subgroup, and let H\G
denote the right coset space. We equip H\G with the metric that it inherits from G,
which we also denote by dG . Explicitly, if Hg ∈ H\G, the ball of radius ε > 0 around
Hg is given by HgUε . Then the Samuel compactification Sa(H\G) is the Gelfand space
of the bounded uniformly continuous functions on H\G. It is a G-flow characterized by
the property that for any G-flow Y containing a point y ∈ Y with y · h = y0 for every
h ∈ H , then there is a (necessarily unique) G-map ϕ : Sa(H\G)→ Y with ϕ(H)= y. In
the case H = {1G}, we often write yp := ϕ(p). We identify H\G with its image under the
canonical embedding i : H\G ↪→ Sa(H\G).

To see that Sa(H\G) is MHP, suppose ψ : X→ Sa(H\G) is highly proximal. Using
the universal property of Sa(H\G), it is enough to show thatψ−1({H}) is a singleton. First
note that for any x ∈ ψ−1({H}) and any A 3op x , we have H ∈ ψfib(A). In particular, since
ψfib(A) is open, we can for any ε > 0 find Hg ∈ (H\G) ∩ ψfib(A) with dG(Hg, H) < ε.
Now if x 6= y ∈ X satisfies ψ(x)= ψ(y)= H , we can find A 3op x , B 3op y, and ε > 0
with AUε ∩ BUε = ∅. This implies that ψfib(A)Uε ∩ ψfib(B)Uε = ∅, a contradiction as H
is a member of this intersection.

In particular, by taking H = {1G}, we see that Sa(G) is MHP. We also have that M(G) is
MHP. There are two ways of seeing this. One is that SG(M(G)) is a minimal flow mapping
onto M(G), so by uniqueness of M(G) we have that πM(G) : SG(M(G))→ M(G) is an
isomorphism. The other way is to note that M(G) is a retract of Sa(G) and observe that
retracts of MHP flows are also MHP.

Also notice that since H\G is a dense G-invariant subspace of Sa(H\G), we have, by
the remark after Fact 3.4, that Sa(H\G)∼= SG(H\G). When viewing Sa(H\G) as a space
of near ultrafilters, the following fact will be useful to keep in mind (see [14, Ch. 1]).

Fact 3.6. If X is a compact space and f : H\G→ X is a uniformly continuous function,
then the unique continuous extension f : Sa(H\G)→ X is defined by setting, for
p ∈ Sa(H\G) and x ∈ X , f (p)= x if and only if { f −1(U ) :U 3op x} ⊆ p. Given p ∈
Sa(H\G), the existence of an x ∈ X with this property is an easy consequence of
compactness; the uniqueness of such an x requires the uniform continuity of f .

3.2.2. Fraı̈ssé expansion classes. This example will not be needed in later sections
and assumes some familiarity with Fraı̈ssé theory and expansion classes (see [9] or [12]).
Suppose L is a countable language and G = Aut(K) for some Fraı̈ssé L-structure K=
Flim(K) with underlying set ω. Let Fin(K) denote the collection of finite substructures of
K. Let K∗ be a reasonable precompact expansion of K in a countable language L∗ ⊇ L .
Let X L∗ denote the space of L∗-structures on ω endowed with the logic topology. We can
endow X L∗ with a continuous G-action, where for a structure x ∈ X L∗ , a relational symbol
R ∈ L∗ of arity n, points a0, . . . , an−1 ∈ ω, and g ∈ G, we have

Rx ·g(a0, . . . , an−1)⇔ Rx (ga0, . . . , gan−1).
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Maximally highly proximal flows 7

The definition is similar for function and constant symbols. We then form the G-flow

XK∗ = {K∗ ∈ X L∗ :K∗|L =K and K∗|A ∈K∗ for every A ∈ Fin(K)}.

For A ∈ Fin(K) and an expansion A∗ ∈K∗, a typical basic clopen neighborhood of XK∗
is given by

NA∗ = {K∗ ∈ XK∗ :K∗|A = A∗}.

PROPOSITION 3.7. Suppose K∗ has the amalgamation property (AP). Then XK∗ is MHP.

Proof. For A ∈ Fin(K), write UA ⊆ G for the pointwise stabilizer of A. Then UA ⊆ G
is a clopen subgroup and a typical basic open neighborhood of 1G ∈ G. Let W ⊆ XK∗
be open. It suffices to show that WUA is clopen. To that end, we will show that for any
B ∈ Fin(K) with A⊆ B and any expansion B∗ ∈K∗, we have NB∗UA = NA∗ , where A∗ is
the expansion of A inherited from B∗. The left-to-right inclusion is clear. For the reverse,
suppose C ∈ Fin(K) is finite and C∗ is an expansion so that NC∗ ⊆ NA∗ . By shrinking NC∗

if necessary, we may assume that A∗ ⊆ C∗. Using the AP in K∗, we can find D ∈ Fin(K)
and an expansion D∗ so that C∗ ⊆ D∗ and f [B∗] ⊆ D∗ for some f ∈ Emb(B∗, D∗) with
f |A = 1A. If g ∈ G satisfies g|B = f , then NB∗ · g−1

∩ NC∗ ⊇ ND∗ , so is non-empty as
desired. �

We can provide a converse result as follows. Recall that a G-flow X is topologically
transitive if for every A, B ⊆op X , there is g ∈ G with Ag ∩ B 6= ∅.

PROPOSITION 3.8. Suppose X is a metrizable MHP G-flow. Then there is an reasonable,
precompact expansion class K∗ with the AP so that X ∼= XK∗ . If X is also topologically
transitive, then we can take the class K∗ to be Fraı̈ssé.

Proof. Let A ∈ Fin(K). Then if W ⊆ X is open, the equality W ·UA ·UA =W ·UA and
MHP show that W ·UA is clopen. Call a clopen set Y ⊆ X UA-clopen if Y ·UA = Y ; the
collection B(A) of UA-clopen sets forms an algebra.

Suppose B(A) were infinite. Then we could find {Yn : n < ω} a collection of pairwise
disjoint members of B(A). For S ⊆ ω, write YS =

⋃
n∈S Yn . Then if y ∈ YS , we have

y ∈ int(YS ·UA)= int(YS), that is, the set YS is clopen. It follows that for S, T ⊆ ω
disjoint, we have YS ∩ YT = ∅. It follows that if pn ∈ Yn for each n < ω, then {pn : n < ω}
is isomorphic to βN, contradicting our assumption that X is metrizable. Hence B(A) is
finite, hence atomic. Let Atoms(A)⊆ B(A) denote the atoms.

For each A ∈ Fin(K), we can view Atoms(A) as a set of ‘expansions’ of A. Suppose
B ∈ Fin(K), Z ∈ Atoms(B), and f : A→ B is an embedding. We need to determine which
expansion of A is induced by f when we expand B using Z . We do this as follows: first find
g ∈ G with g|A = f . We will argue that Zg is contained in some UA-atom, and that this
does not depend on the g we chose. So suppose W is UA-clopen. By choice of g, We have
g−1UBg ⊆UA, so Wg−1UB =Wg−1. This shows that Wg−1 is UB-clopen. Therefore
if Zg ∩W 6= ∅, then Z ∩Wg−1

6= ∅, so Z ⊆Wg−1 and Zg ⊆W . It follows that Zg is
contained in some UA-atom, say Y . If h ∈ G also satisfies h|A = f , then g−1h ∈UA, so
Zg(g−1h)⊆ Y as well. Therefore if BZ is the corresponding expansion of B, we declare
that AY is the expansion that A inherits from BZ along the map f : A→ B. All of this can
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8 A. Zucker

be coded by adding countably many new relational symbols to L , producing a language
L∗ ⊇ L and a reasonable precompact expansion class K∗ of K.

For each A ∈ Fin(K), the set Atoms(A) is a finite clopen partition of the space X . If
x ∈ X , it follows that x ∈ Y for exactly one UA-atom for each A ∈ Fin(K), giving rise
to a surjective G-map ϕ : X→ XK∗ . If x 6= y ∈ X , then by continuity of the action, we
can find V 3op x , W 3op y, and A ∈ Fin(K) with V UA ∩WUA = ∅, showing that ϕ is
injective, hence an isomorphism.

To show that this expansion class has the AP, suppose we have A, B, C ∈ Fin(K)
with A⊆ B and A⊆ C. Let YA, YB, YC ⊆ X be clopen atomic sets for UA,UB,UC,
respectively, with YB ⊆ YA and YC ⊆ YA. Since YA is a UA-atom, the action of UA on YA

is topologically transitive, so we can find g ∈UA with YC g ∩ YB 6= ∅. We can then find
some suitably large finite D⊆K so that for some UD-atom YD we have YD ⊆ YC g ∩ YB .
By enlarging D more if needed, we can assume that B⊆ D and g−1

[C] ⊆ D. It follows
that iB : BYB → DYD and (g−1)|C : CYC → DYD amalgamate the maps iA : AYA → BYB

and iA : AYA → CYC .
A similar argument shows that if X is topologically transitive, then the expansion K∗

that we constructed above will have the joint embedding property (JEP) as well. �

In the case where X is topologically transitive, MHP, but not necessarily metrizable,
two important cases emerge. Either for every finite A⊆K, the algebra of UA-clopen sets
is atomic, or this fails for some A; the equivalent conditions of Theorem 5.5 correspond to
the first case.

4. Topometrics on MHP flows
For the rest of this section, fix an MHP flow (X, τ ), where τ is the compact topology on
X . Our goal is to endow X with a canonical topometric structure. This has been done in
the case of Sa(G) in [7], where they use the definition below. Before stating the definition,
we note that if f : G→ [0, 1] is left-uniformly continuous, we can continuously extend it
to Sa(G), and we will also use f : Sa(G)→ [0, 1] to denote this extension.

Definition 4.1. Given p, q ∈ Sa(G), we set

∂(p, q)= sup(| f (p)− f (q)| : f : G→ [0, 1] 1-Lipschitz).

Notice that if f : G→ [0, 1] is 1-Lipschitz and we continuously extend to Sa(G), then
f has the following property, which we define more generally.

Definition 4.2. Let X be a G-flow. A function f ∈ C(X, [0, 1]) is called orbit Lipschitz if
whenever x ∈ X and g ∈ G, we have

| f (x)− f (xg)| ≤ dG(1G , g).

We write COL(X, [0, 1]) for the collection of orbit Lipschitz functions.

Eventually, we will show that the analogue of Definition 4.1 with 1-Lipschitz replaced
by orbit Lipschitz provides the MHP flow X with a topometric structure. The problem is
that a priori, we do not know whether X has any non-constant orbit Lipschitz functions.
Therefore we start with an entirely different definition of the topometric structure, then use
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Maximally highly proximal flows 9

Fact 2.3 to produce an ample supply of continuous Lipschitz functions, which will turn out
to be precisely the orbit Lipschitz functions.

Definition 4.3. Given x, y ∈ X and c ≥ 0, we define ∂(x, y)≤ c if and only if any of the
following four equivalent items hold.
(1) Whenever A ⊆op X with x ∈ A and ε > 0, we have y ∈ int(AUc+ε).
(2) Whenever A ⊆op X with x ∈ A and ε > 0, we have y ∈ AUc+ε .
(3) Whenever A 3op x and ε > 0, we have y ∈ int(AUc+ε).
(4) Whenever A 3op x and ε > 0, we have y ∈ AUc+ε .

Remark. The directions (1)⇒ (2)⇒ (4) as well as (1)⇒ (3)⇒ (4) are clear. Suppose
(4) holds, and let A ⊆op X with x ∈ A. Also fix ε > 0. Then as X is MHP, we have

x ∈ int(AUε). By (4), we have y ∈ int(AUε)Uc+ε ⊆ AUc+2ε . Using MHP once more, we
obtain y ∈ int(AUc+3ε), showing that (1) holds.

PROPOSITION 4.4. The function ∂ from Definition 4.3 is a topometric on X.

Proof. Suppose x, y ∈ X have ∂(x, y)= 0. If A 3op x , we can find B 3op x and ε > 0
with BUε ⊆ A. So in particular y ∈ A, so x = y.

Suppose ∂(x, y)≤ c for some c ≥ 0, toward showing that ∂(y, x)≤ c. Let B 3op y and
ε > 0. Notice that if A 3op x , then AUc+ε ∩ B 6= ∅. So also A ∩ BUc+ε 6= ∅. It follows
that x ∈ BUc+ε .

Now suppose ∂(x, y)≤ c and ∂(y, z)≤ d . Fix A 3op x and ε > 0. Then AUc+ε is open
with y ∈ AUc+ε . We then have z ∈ AUc+d+2ε , showing that ∂(x, z)≤ c + d as desired.

Having shown that ∂ is a metric on X , we now show that it is τ -lsc. Fix c ≥ 0, and
let xi → x and yi → y be nets with ∂(xi , yi )≤ c. Let A 3op x , and fix ε > 0. Then for a
tail of xi , we also have xi ∈ A, implying that yi ∈ AUc+ε . So y ∈ AUc+ε , and by MHP,
y ∈ int(AUc+2ε). It follows that ∂(x, y)≤ c. �

Remark. If G is a discrete group and X is an MHP G-flow, then ∂ is just the discrete metric
on X . If G is locally compact and c ≥ 0 is small enough so that Uc+ε ⊆ G is precompact
for some ε > 0, then, given an MHP G-flow X and x, y ∈ X , we have ∂(x, y)≤ c if and
only if there is g ∈ G with d(g, 1G)≤ c and xg = y. Hence topometric structures on MHP
flows are most interesting when G is not locally compact.

Remark. Suppose H ⊆ G is a closed subgroup, and form Sa(H\G). On the orbit H\G ⊆
Sa(H\G), the metric ∂ coincides with the metric d . In particular, this is true for G ⊆
Sa(G). This will be easiest to see by using Corollary 4.7.

Remark. Suppose K= Flim(K) is a Fraı̈ssé structure with G = Aut(K). Write K=⋃
n≥1 An as an increasing union of finite structures. A compatible left-invariant metric d on

G is given by d(g, h)≤ 1/n if and only if g|An = h|An . Write Vn = {g ∈ G : g|An = idAn },
and notice that for any suitably small ε > 0, we have Vn =U1/n+ε .

Now suppose X is an MHP G-flow. As in the discussion before Proposition 3.8, let Bn

be the Boolean algebra of Vn-clopen subsets of X . As we make no metrizability assumption
here, Bn may be infinite. However, if Y ⊆ B and we set Y =

⋃
Y , we see that for y ∈ Y , we

have y ∈ int(Y · Vn)= int(Y ). In particular, Y ∈ Bn . Setting
∨

Y = Y , we see that Bn is

Downloaded from https://www.cambridge.org/core. 13 Aug 2020 at 20:13:11, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


10 A. Zucker

a complete Boolean algebra. Let Xn = St(Bn) be the Stone space. Then X ∼= lim
←−

Xn , and,
given x = (xn)n and y = (yn)n in X , we have that ∂(x, y)≤ 1/n if and only if xn = yn .
To see this, first suppose xn 6= yn , and find some A ∈ Bn with x ∈ A and y 6∈ A. But since
A = AU1/n+ε = AU1/n+ε , we have ∂(x, y) > 1/n by item (4) of Definition 4.3. In the
other direction, suppose xn = yn . Then if A 3op x , we have int(AU1/n+ε) ∈ Bn , hence
y ∈ int(AU1/n+ε). Therefore ∂(x, y)≤ 1/n by item (3) of Definition 4.3.

We next investigate how this topometric structure interacts with the G-flow structure.
Not only is this a canonical topometric to place on an MHP flow X , but it will also behave
well when comparing different MHP flows. When discussing multiple MHP flows X , Y ,
etc., we write ∂X , ∂Y , etc. to refer to the topometric structure on each flow.

PROPOSITION 4.5. Let X and Y be MHP flows endowed with the topometric structure
from Definition 4.3.
(1) If x ∈ X and g ∈ G, then ∂(x, xg)≤ dG(1G , g).
(2) For each g ∈ G, the map ρg : (X, ∂)→ (X, ∂) given by ρg(x)= xg is uniformly

continuous.
(3) If ϕ : X→ Y is a G-map, then ϕ is metrically non-expansive, that is, for any x, y ∈

X, we have ∂Y (ϕ(x), ϕ(y))≤ ∂X (x, y).

Proof. For item (1), write c = dG(1G , g). Then for any ε > 0, we have g ∈Uc+ε . Hence
if A 3op x , we have xg ∈ AUc+ε .

For item (2), fix c > 0. Find d > 0 so that g−1Ud g ⊆Uc. Now suppose x, y ∈ X satisfy
∂(x, y) < d . Let A 3op xg, and fix ε > 0. Then Ag−1

3op x , so y ∈ Ag−1Ud . It follows
that yg ∈ AUc, so ∂(x, y)≤ c.

For item (3), write c = ∂X (x, y), and let B 3op ϕ(x). Then x ∈ ϕ−1(B), so we
have y ∈ ϕ−1(B)Uc+ε = ϕ−1(BUc+ε)⊆ ϕ

−1(BUc+ε) for any ε > 0. So ϕ(y) ∈ BUc+ε as
desired. �

Remark. Notice that item (3) shows that if M ⊆ Sa(G) is a minimal subflow, then the
topometric structure computed internally in M is the same as the topometric structure
inherited from Sa(G). This is because M is a retract of Sa(G).

Denote by CL(X, [0, 1]) the collection of continuous, 1-Lipschitz functions from X to
[0, 1]. The next proposition, along with Fact 2.3, will give us Corollary 4.7, the analogue
of Definition 4.1 for any MHP flow.

PROPOSITION 4.6. CL(X, [0, 1])= COL(X, [0, 1]).

Proof. First suppose f ∈ CL(X, [0, 1]). Then since for any p ∈ X and g ∈ G, we have
∂(p, pg)≤ d(1G , g), we see that f ∈ COL(X, [0, 1]).

Now suppose f ∈ COL(X, [0, 1]), and fix p, q ∈ X . Suppose ∂(p, q)≤ c, and let
ε > 0. Find A 3op p so that | f (p′)− f (p)|< ε for p′ ∈ A. Then q ∈ AUc+ε , so find pi ∈

A and gi ∈Uc+ε with pi gi → q. As f is orbit Lipschitz, we have | f (pi gi )− f (p)|<
c + 2ε. As ε > 0 is arbitrary, we have | f (q)− f (p)| ≤ c as desired. �

COROLLARY 4.7. Let x, y ∈ X. Then ∂(x, y)= sup{| f (x)− f (y)| : f ∈ COL(X,
[0, 1])}.
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We end this section by proving that the topometric space (X, τ, ∂) is adequate. For the
proof, it will be easier to work with closed sets rather than open sets. Given K ⊆ X and
c > 0, we write K (−c) := X \ ((X \ K )(c))= {x ∈ X : x(c)⊆ K }. So a topometric space
(X, τ, ∂) is adequate if for every closed K ⊆ X and every c > 0, we have K (−c) closed.

THEOREM 4.8. The topometric space (X, τ, ∂) is adequate.

Proof. Fix K ⊆ X closed. We show that the set K (−c) is also closed. Write K =
⋂

i Ki

with each Ki a regular closed set. Then K (−c)=
⋂

i Ki (−c). So it suffices to prove the
theorem in the case where K is regular closed (we will only need this at the very end). For
such K , we will show that

K (−c)=
⋂
ε>0
r<c

X \ int
(
(X \ KUε)Ur

)
.

Suppose p ∈ X is not in the left-hand side. Then there is q ∈ X \ K with ∂(p, q) < c.
Given r with ∂(p, q) < r < c, then for every A 3op q, we have p ∈ int(AUr ). Now for
some suitably small ε > 0, we have q ∈ X \ KUε . Taking A = X \ KUε , we see that p is
not in the right-hand side.

Now suppose p ∈ X is not in the right-hand side as witnessed by ε > 0 and r < c.
In particular, we have p ∈ (X \ KUε)Ur . Let A 3op p. Then A ∩ (X \ KUε)Ur 6= ∅. It
follows that AUr ∩ (X \ KUε) 6= ∅. Therefore we have(

X \ KUε
)
∩

(⋂
{AUr : A 3op p}

)
6= ∅.

Fix some q from this set. It follows that ∂(p, q)≤ r < c. To see that q 6∈ K , notice that for
any x ∈ K , we have x ∈ int(K ), so we have x ∈ int(int(K )Uε)= int(KUε). �

5. Comeager orbits in MHP flows
We continue with most of the notation of the previous section. In particular, G is a Polish
group, and (X, τ, ∂) is an MHP G-flow endowed with the topometric structure from
Definition 4.3. In this section, we undertake a deeper study of the interaction between
the topology τ and the metric ∂ , connecting this to various properties that the G-flow X
might enjoy. The main theorem is Theorem 5.5, which gives a complete characterization
of when an MHP flow has a comeager orbit.

Definition 5.1. Let p ∈ X . We say that ∂ is compatible at p or that p is a compatiblity
point if for every c > 0, we have p ∈ int(p(c)).

Compatibility points are precisely the points in X where the topologies given by τ and
∂ coincide. This is a notion which has been studied in the context of continuous logic,
especially with regard to type spaces and the omitting types theorem (see [5, Ch. 12]). We
can now generalize one of the key theorems from [7]. We will repeatedly use the fact that
if A, B ⊆op X with A ∩ B = ∅, then int(A) ∩ int(B)= ∅.

LEMMA 5.2. Suppose x, y ∈ X satisfy ∂(x, y) > 2c. Then there are A 3op x and B 3op y
with AUc ∩ BUc = ∅.
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12 A. Zucker

Proof. We can find A 3op x and ε > 0 with y 6∈ AU2c+2ε . Setting B = X \ AU2c+2ε ,
we have that AUc ∩ BUc = ∅ as desired. Indeed if x ∈ AUc ∩ BUc, then by MHP x ∈
int(AUc+ε) ∩ int(BUc+ε), contradicting that AUc+ε ∩ BUc+ε = ∅. �

THEOREM 5.3. (X, τ ) is metrizable if and only if ∂ is a compatible metric for τ , that is,
if and only if ∂ is compatible at every point in X. Furthermore, if (X, τ ) is not metrizable,
then X embeds a copy of βω, the space of ultrafilters on ω.

Proof. One direction is clear, so suppose ∂ generates a strictly finer topology than τ . In
particular, (X, ∂) is not compact, so find c > 0 and an infinite Y ⊆ X with ∂(x, y) > 2c
for any x 6= y ∈ Y .

We will inductively define infinite Yn ⊆ Y , xn ∈ Yn , and An 3op xn for each n < ω. We
will ensure that the following all hold.
(1) Yn+1 ⊆ Yn for every n < ω.
(2) Yn ∩ AkUc = ∅ for every k < n < ω.
(3) An ∩ AkUc = ∅ for each k < n < ω.

Set Y0 = Y . Suppose Y0, . . . , Yn , x0, . . . xn−1, and A0 . . . An−1 have been chosen.
Pick x 6= y ∈ Yn , and use Lemma 5.2 to find A 3op x and B 3op y with AUc ∩ BUc = ∅.
We also demand, by shrinking A and B if needed, that A ∩ AkUc = ∅ and B ∩ AkUc = ∅

for every k < n; this is possible by item (2). Now at least one of Yn \ AUc and Yn \ BUc is
infinite—without loss of generality the former. Set Yn+1 = Yn \ AUc, xn = x , and An = A.

Having completed the inductive construction, define ϕ : βω→ X to be the continuous
extension of the map ϕ(n)= xn . We show that ϕ is injective. If S ⊆ ω, set AS =

⋃
n∈S An .

It is enough to show that if S, T ⊆ ω with S ∩ T = ∅, then AS ∩ AT = ∅. To see why this
is, note that AS ⊆ int(ASUc/2), likewise for AT , and that ASUc/2 ∩ AT Uc/2 = ∅. �

Next we investigate what happens when some, but not all, points in X are compatibility
points. We remind the reader that the topometric space (X, τ, ∂) was proven in
Theorem 4.8 to be adequate.

LEMMA 5.4.
(1) Let Y ⊆ X denote the set of compatibility points. Then Y is G-invariant, ∂-closed,

and topologically Gδ .
(2) Suppose x ∈ X is not a compatibility point. Then there is c > 0 such that int(x(c))=

∅.

Proof. (1) That Y is G-invariant follows from item (2) of Proposition 4.5. To show

Y is ∂-closed, let yn
∂
−→ y, and fix c > 0. Then for some n < ω, we have yn(c/2)⊆

y(c). By assumption, yn ∈ int(yn(c/2)), so in particular, we have int(y(c)) 6= ∅. Using
adequacy, we have y ∈ (int(y(c)))(c)⊆ int(y(2c)). Lastly, to show that Y is Gδ , let
Yc =

⋃
y∈Y int(y(c)). Then Yc ⊆ X is open with Y =

⋂
c>0 Yc.

(2) Suppose x ∈ X is a point with int(x(c)) 6= ∅ for every c > 0. Then x is a
compatibility point, as by adequacy, we have x ∈ (int(x(c)))(c)⊆ int(x(2c)). �

THEOREM 5.5. The following are equivalent.
(1) X has a compatibility point with dense orbit.
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(2) The set Y ⊆ X of compatibility points is comeager, Polish, and G acts on Y
topologically transitively.

(3) X has a comeager orbit.
(4) X ∼= Sa(H\G) for some closed subgroup H ⊆ G.

Proof. (1)⇒ (2) Letting Y ⊆ X denote the set of compatibility points, item (1) of
Lemma 5.4 shows us that Y is G-invariant, ∂-closed, and Gδ . By (1), Y ⊆ X is dense.
As (Y, τ ) and (Y, ∂) are homeomorphic, we see that (Y, τ ) is separable and that ∂ is a
compatible complete metric, hence Y is Polish. As Y contains a dense orbit, the action of
G on Y is topologically transitive.
(2)⇒ (3) It is enough to show that Y has a comeager orbit. We mostly follow the proof

from [7], with a few differences to adapt to our more general setting. Using a criterion due
to Rosendal (see [7] for a proof of the criterion), we need to show that for every ε > 0
and every A ⊆op Y , there is B ⊆op A such that the local action of Uε on B is topologically
transitive. To that end, let B ⊆op Y be any open set of ∂-diameter less than ε; any A ⊆op Y
will contain such a B since (Y, ∂) and (Y, τ ) are homeomorphic. Fix C0, C1 ⊆op B. If
p0 ∈ C0 and p1 ∈ C1, then ∂(p0, p1) < ε. So p1 ∈ C0Uε . In particular, C0Uε ∩ C1 6= ∅ as
desired.
(3)⇒ (4). Let Z ⊆ X denote the comeager orbit, and pick p ∈ Z . Let H = Stab(p). By

the Effros theorem, we have that Z ∼= H\G as G-spaces. So also SG(Z)∼= SG(H\G)∼=
Sa(H\G). But since Z ⊆ X is dense, we have SG(Z)∼= SG(X)∼= X .
(4)⇒ (1)We will make use of Fact 3.6. For each ε > 0, we have that CHUε ⊆ Sa(H\G)

is a neighborhood of H . Let f : Sa(H\G)→ [0, 1] be continuous and orbit Lipschitz. In
particular, f |H\G is 1-Lipschitz. So if p ∈ CHUε , we have | f (p)− f (H)| ≤ ε. Therefore
CHUε ⊆ H(2ε), so H is a compatibility point in Sa(H\G). �

6. More on Samuel compactifications
Given item (4) in Theorem 5.5, let us spend some time developing a more detailed
understanding of the topometric G-space Sa(H\G), which we continue to view as a
space of near ultrafilters. We first consider the left completion Ĥ\G. Notice that if
f : H\G→ X is a uniformly continuous function with X a complete uniform space, then
f continuously extends to Ĥ\G. In particular, by considering the inclusion i : H\G ↪→

Sa(H\G), we obtain a continuous map from Ĥ\G to Sa(H\G). This map turns out to
be an embedding, and we will identify Ĥ\G with its image in Sa(H\G). We have the
following fact (see [14, Ch. 1.2]).

Fact 6.1. Given p ∈ Sa(H\G), we have p ∈ Ĥ\G if and only if for every ε > 0, there is
A ⊆op H\G of diameter less than ε, with A ∈ p.

From the proof of Theorem 5.5, we know that H ∈ Sa(H\G) is a compatibility point.
As H has dense orbit in Sa(H\G), and since the topology and the metric coincide on the
set of compatibility points, we see that H has a ∂-dense orbit in the set of compatibility
points. Since ∂ and d coincide on H\G, we obtain the following proposition.

PROPOSITION 6.2. In Sa(H\G), the set of compatibility points is precisely Ĥ\G.
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14 A. Zucker

In particular, by Theorem 5.5, we have that Ĥ\G ⊆ Sa(H\G) is comeager. As H\G ⊆
Ĥ\G is comeager, we obtain the following result.

PROPOSITION 6.3. In Sa(H\G), the orbit H\G ⊆ Sa(H\G) is comeager.

Remark. This proposition is really a statement about topology rather than dynamics.
Whenever (X, d) is a Polish metric space and S(X) is the Samuel compactification of
X with its metric uniformity, then X ⊆ S(X) is comeager.

We now take some time to understand the canonical G-map π : Sa(G)→ Sa(H\G).
To do this, we first need to understand how near ultrafilters on H interact with those on
G. Let p ∈ Sa(H). Then if A ∈ p and ε > 0, we have AUε ⊆op G, and the collection
{AUε : A ∈ p, ε > 0} extends to a unique near ultrafilter in Sa(G). This gives rise to an
embedding i : Sa(H) ↪→ Sa(G). More explicitly, given p ∈ G, we set

i(p)= {B ⊆op G : B ∩ AUε 6= ∅ for every A ∈ p, ε > 0}.

Now given p ∈ Sa(G), we have p ∈ i[Sa(H)] if and only if HUε ∈ p for every ε > 0. One
direction is clear. For the other, if HUε ∈ p for every ε > 0, it follows that for every A ∈ p
and ε > 0, we have AUε ∩ H 6= ∅, and the collection

{B ⊆op H : B ∩ AUε 6= ∅ for every A ∈ p, ε > 0}

is a near ultrafilter q on H satisfying i(q)= p.
From here on out, we will identify Sa(H) as a subspace of Sa(G) and suppress the

embedding i . We now consider the quotient π : G→ H\G and extend it continuously to
the respective Samuel compactifications. Given p ∈ Sa(G) and q ∈ Sa(H\G), we have
by Fact 3.6 that π(p)= q if and only if π−1(AUε) ∈ p for every A ∈ q and ε > 0. In
particular, π(p)= H if and only if HUε ∈ p for every ε > 0. We obtain the following
proposition.

PROPOSITION 6.4. With π : Sa(G)→ Sa(H\G) the canonical map, we have
π−1({H})= Sa(H).

In the next section we will be particularly interested in minimal MHP flows. Recall that
S ⊆ G is called syndetic if there is a finite set F ⊆ G with SF = G. We have the following
folklore fact.

Fact 6.5. [2, Ch. 1, Lemma 6] Suppose X is a G-flow and x ∈ X . Then x ∈ X belongs to
a minimal subflow if and only if for every A 3op X , the set {g ∈ G : xg ∈ A} is syndetic.

The following simple proposition gives a combinatorial characterization of when
Sa(H\G) is minimal.

PROPOSITION 6.6. Let H ⊆ G be a closed subgroup. Then the following are equivalent.
(1) Sa(H\G) is minimal.
(2) For every ε > 0, the set HUε ⊆ G is syndetic.

Remark. Compare this to the notion of co-precompactness, where H ⊆ G is co-
precompact if Sa(H\G)∼= Ĥ\G, the left completion of H\G. This occurs if and only
if for every ε > 0, there is a finite F ⊆ G with H FUε = G.
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Proof. First assume Sa(H\G) is minimal. Since H ∈ Sa(H\G) is a compatibility point,
we have that HUε ⊆ H\G is relatively open. Item (2) then follows from minimality.

Conversely, assume item (2) holds. It follows that in Sa(H\G), the return times of H
to any open neighborhood of H are syndetic. Then by Fact 6.5, H ∈ Sa(H\G) belongs to
a minimal subflow, and the orbit of H is dense in Sa(H\G). �

Also in the next section, we will need to consider two closed subgroups H, H ′ ⊆ G and
understand when a G-map ϕ : Sa(H\G)→ Sa(H ′\G) can exist.

PROPOSITION 6.7. Suppose H, H ′ ⊆ G are closed subgroups with both Sa(H\G) and
Sa(H ′\G) minimal. Then there is a G-map ϕ : Sa(H\G)→ Sa(H ′\G) if and only if there
is g ∈ G with H ⊆ g−1 H ′g.

Proof. For the forward direction, let ϕ be a G-map as above. By [1, Proposition 14.1], we
know that ϕ must preserve the comeager orbit. In particular, ϕ(H)= H ′g for some g ∈ G.
It follows that for every h ∈ H , we have H ′gh = H ′g, that is, that H ⊆ g−1 H ′g.

For the reverse direction, if H ⊆ g−1 Hg for some g ∈ G, it follows that H stabilizes
the point H ′g ∈ Sa(H ′\G). Then the existence of a G-map ϕ as above follows from the
universal property of Sa(H\G). �

7. Canonical minimal flows
In this section, we consider the universal minimal flow as well as two other ‘canonical’
minimal flows in the context of Theorem 5.5. These other special flows both deal with the
notion of proximality.

Definition 7.1. Fix a G-flow X .
(1) We say that X is proximal if for any x, y ∈ X , there exist a net gi ∈ G and z ∈ X with

xgi → z and ygi → z. Equivalently, there is p ∈ Sa(G) with xp = yp.
(2) Let P(X) denote the compact space of probability measures on X endowed with the

weak*-topology. Then P(X) is also a G-flow. We say that X is strongly proximal if
P(X) is proximal. Equivalently, X is strongly proximal if and only if X is proximal
and for any µ ∈ P(X), there is a net gi from G with µgi → δx for some x ∈ X ,
where δx denotes the Dirac measure supported at x .

In [8], it is shown that there exist a universal minimal proximal flow, denoted 5(G),
and a universal minimal strongly proximal flow, denoted 5s(G) and often called the
Furstenberg boundary. Here, if P is a property of flows, a universal minimal P flow is
a minimal flow with property P which admits a G-map onto any other minimal flow with
property P. Both are unique up to isomorphism.

LEMMA 7.2. If X is a minimal, proximal G-flow, then the only G-map from X to X is the
identity.

Proof. Suppose ϕ : X→ X is a G-map. If there is x ∈ X with ϕ(x)= x , then also
ϕ(xp)= xp for every p ∈ Sa(G). As X is minimal, this implies that ϕ is the identity
map. Now suppose ϕ 6= idX . Fix x ∈ X , and find p ∈ Sa(G) with xp = ϕ(x)p. But as
ϕ(x)p = ϕ(xp), this is a contradiction since ϕ has no fixed points. �
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16 A. Zucker

LEMMA 7.3. The flows 5(G) and 5s(G) are both MHP.

Proof. Suppose ϕ : X→5(G) is a non-trivial highly proximal G-map. Then it follows
that X is also minimal and proximal, so let ψ : 5(G)→ X be a G-map. It follows that
ψ ◦ ϕ : X→ X is a non-trivial G-map, contradicting Lemma 7.2.

To show that 5s(G) is MHP, suppose ϕ : X→5s(G) is a non-trivial highly proximal
G-map. As a highly proximal extension of a minimal proximal flow, X is proximal. Now
suppose µ ∈ P(X). We can find a net gi ∈ G such that ϕ∗µgi → δp for some p ∈5s(G).
We may assume that µgi → ν for some ν ∈ P(X) supported on ϕ−1({p}). Then since ϕ
is highly proximal and X is minimal, we can use Fact 3.2 and find another net h j ∈ G so
that ϕ−1({p})h j shrinks down to some point x ∈ X . Hence νh j → δx , showing that X is
strongly proximal. Now a similar argument to the proximal case shows that ϕ must be an
isomorphism. �

We can use M(G) to create a particularly nice representation of 5s(G). Form the G-
flow P(M(G)), and let A ⊆ P(M(G)) be a minimal affine subflow of P(M(G)), that is, a
subflow which is closed under convex combinations and minimal with this property. Then
A is strongly proximal, and ex(A), the closure of the extreme points of A, is the unique
minimal subflow of A. We then obtain ex(A)∼=5s(G). More details can be found in
[8, Ch. 3].

From this characterization of 5s(G), it follows that a topological group G is amenable
if and only if G admits no non-trivial minimal strongly proximal actions. As for proximal
actions, we call G strongly amenable if G admits no non-trivial minimal proximal actions.
In particular, every strongly amenable group is amenable.

LEMMA 7.4. Let X be a proximal G-flow, and let H ⊆ G be a closed subgroup with
Sa(H\G) minimal. Then H acts proximally on X.

Proof. Let x, y ∈ X . As X is a proximal G-flow, find p ∈ Sa(G) with xp = yp. Since
Sa(H\G) is minimal, we can find q ∈ Sa(G)with pq ∈ Sa(H). Then xpq = ypq , showing
that H acts proximally on X . �

The following theorem provides a generalization of [11, Theorem 1.2].

THEOREM 7.5. Fix a minimal MHP flow X with a comeager orbit.
(1) X ∼= M(G) if and only if X ∼= Sa(H\G) for some extremely amenable closed

subgroup H ⊆ G.
(2) X ∼=5s(G) if and only if X ∼= Sa(H\G) for some maximal amenable subgroup H ⊆

G.
(3) If X ∼= Sa(H\G) for some strongly amenable closed subgroup H ⊆ G and X is

proximal, then X ∼=5(G).

Proof. (1) First assume X ∼= M(G), and let H ⊆ G be the closed subgroup given by
item (4) of Theorem 5.5. Fix a minimal subflow M ⊆ Sa(G), and consider the canonical
map π : Sa(G)→ Sa(H\G). Then π is surjective, and π |M is an isomorphism. Since by
Proposition 6.4 we have π−1({H})= Sa(H), it follows that M ∩ Sa(H) is a singleton and
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an H -flow. As any minimal subflow of Sa(H) is isomorphic to M(H), we see that H is
extremely amenable.

Conversely, suppose H ⊆ G is an extremely amenable closed subgroup of G with
Sa(H\G) minimal. Then M(G) must have an H -fixed point. It follows that there is a
G-map ϕ : Sa(H\G)→ M(G). As we assumed that Sa(H\G) was minimal, it follows
that ϕ is an isomorphism.
(2) We break the argument into the following parts.

• If X ∼=5s(G), then X ∼= Sa(H\G) with H ⊆ G a closed amenable subgroup.
• If X ∼= Sa(H ′\G) with H ′ ⊆ G a closed amenable subgroup, then X maps onto any

strongly proximal flow.
From these two items the theorem follows, since if H ( H ′ are both closed amenable
subgroups of G, then by Proposition 6.7, we have a non-trivial factor map Sa(H\G)→
Sa(H ′\G). If we had 5s(G)∼= Sa(H\G), then the second item would allow us to build
a non-trivial G-map from 5s(G) to itself, contradicting Lemma 7.2. Conversely, if
X ∼= Sa(H ′\G) for H ′ ⊆ G a maximal amenable subgroup, then, using the second item,
we obtain a map Sa(H ′\G)→5s(G). By the first item, we have 5s(G)∼= Sa(H\G)
for some closed amenable subgroup H ⊆ G. By Proposition 6.7 we must have H ⊆
g−1 H ′g, so in fact H = g−1 H ′g as H was assumed maximal. It follows that Sa(H\G)∼=
Sa(H ′\G)=5s(G).

To prove the first item, suppose X ∼=5s(G)∼= Sa(H\G). Let M ⊆ Sa(G) be a minimal
subflow, and let A ⊆ P(M) be a minimal affine subflow. Then X ∼= ex(A), the unique
minimal subflow of A. Now letting π : Sa(G)→ Sa(H\G) be the canonical map, we have
the affine extension π∗ : P(Sa(G))→ P(Sa(H\G)) to the spaces of measures. Identifying
each p ∈ Sa(H\G) with the Dirac measure δp, we have that Sa(H\G) is the unique
minimal subflow of P(Sa(H\G)). It follows that π∗|ex(A) : ex(A)→ Sa(H\G) is an
isomorphism. However, we also have π−1

∗ ({H})= P(Sa(H)), so P(Sa(H)) ∩ ex(A) is a
singleton and an H -flow, that is, an H -invariant measure on Sa(H). Hence H is amenable.

To prove the second item, we assume X ∼= Sa(H ′\G) with H ′ ⊆ G a closed amenable
subgroup. On P(5s(G)), H ′ acts proximally by Lemma 7.4, hence H ′ acts strongly
proximally on 5s(G). Since H ′ is amenable, it follows that 5s(G) has an H ′-fixed point,
so there is a G-map from Sa(H ′\G) to 5s(G).
(3) We assume that X ∼= Sa(H\G) is proximal and that H ⊆ G is strongly amenable.

By Lemma 7.4, H acts proximally on 5(G). As H is strongly amenable, 5(G) has an
H -fixed point, so there is a G-map from Sa(H\G) to 5(G). As Sa(H\G) was assumed
proximal, we have Sa(H\G)∼=5(G). �

Remark. When considering the Furstenberg boundary or the universal minimal proximal
flow of locally compact groups, we note that if Sa(H\G) is minimal, then in fact
Sa(H\G)= H\G, that is, that H is a cocompact subgroup of G. This is because
H\G ⊆ Sa(H\G) is comeager, but also Fσ , being an orbit of a locally compact group
action. So Sa(H\G) \ (H\G) is Gδ , and if it were non-empty, then by minimality it would
be dense, a contradiction.

The following question addresses whether item (3) in Theorem 7.5 can be strengthened
to have the same form as items (1) and (2).
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Question 7.6. Suppose 5(G)∼= Sa(H\G) for some closed subgroup H ⊆ G. Then must
H be strongly amenable?

8. Reflecting meager orbits
The main theorem of this section is the following ‘reflection’ theorem.

THEOREM 8.1. Let X be a minimal MHP flow all of whose orbits are meager. Then there
is a factor ϕ : X→ Y such that Y is metrizable and also has all orbits meager.

Therefore in addition to the notation of the previous sections, we assume that X is
minimal and does not have a comeager orbit.

The metrizable factor of X that we produce will be a space of uniformly continuous
functions from G (with its left-invariant metric uniformity) to a compact metric space. If
Y is a compact metric space, then Y G is a compact space when endowed with the product
topology. The group G acts on Y G by shift, where for y ∈ Y G and g, h ∈ G, we have
y · g(h)= y(gh). Now suppose y ∈ Y G is uniformly continuous. Then y · G is a uniformly
equi-continuous family, and furthermore, the space y · G is metrizable. To see why the
last claim is true, note that pointwise convergence of a net of uniformly equi-continuous
functions is determined by pointwise convergence on some countable dense subset of G.

In order to obtain factors of X , we use functions which arise from X in the following
way. Suppose f : X→ Y is continuous, and fix x ∈ X . Then we obtain a uniformly
continuous function fx : G→ Y via fx (g)= f (xg). Then notice that fx · g = fxg , and
if xi → y, then fxi → fy . It follows that the map x→ fx is a surjective G-map of X onto
fx · G.

We now turn to the proof of the theorem. Our first task is to provide a ‘global’ version
of item (2) from Lemma 5.4. This does not require minimality.

LEMMA 8.2. Suppose Z is an MHP flow with no comeager orbit. Then there exist some
c > 0 and A ⊆op Z with x[c] nowhere dense for every x ∈ A.

Proof. Notice by the lower semi-continuity of ∂ that x[c] is closed for every c > 0.
Suppose toward a contradiction that for every c > 0, the set Dc := {x ∈ Z : int(x[c]) 6= ∅}
is dense. Using adequacy, we see that for every c > 0, we have Dc/3 ⊆ Ec := {x ∈ Z :
x ∈ int(x[c])}, so Ec is also dense. Then ∂ is compatible at any point in the comeager set⋂

c>0
⋃

x∈Ec
int(x[c]). Theorem 5.5 then shows that Z has a comeager orbit, contradicting

our assumption. �

Fix c > 0 and A ⊆op X as given by Lemma 8.2. Fix D ⊆ X a countable dense set, and
write [D]2 = {{pi , qi } : i < ω}. Keeping in mind Corollary 4.7, find γi ∈ COL(X, [0, 1])
with |γi (pi )− γi (qi )|> ∂(pi , qi )/2. Let γ : X→ [0, 1]ω be the concatenation of the γi . It
will be helpful to view [0, 1]ω as a topometric space whose metric is given by the uniform
distance du .

LEMMA 8.3. Let B ⊆ [0, 1]ω be a closed du-ball of radius c/4. Then γ−1(B) ∩ A ⊆ X is
nowhere dense.
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Proof. As γ−1(B) ∩ A is relatively closed in A, we show that it has empty interior.
Let W ⊆ A be non-empty open. Pick p ∈W ∩ D. Then p[c] is a closed, nowhere
dense set, so find q ∈ (W \ p[c]) ∩ D. Then p, q ∈W with ∂(p, q) > c. Suppose that
{p, q} = {pk, qk}. Then |γk(p)− γk(q)|> c/2. In particular, du(γ (p), γ (q)) > c/2, so
W 6⊆ γ−1(B). �

LEMMA 8.4. Suppose Z is a minimal G-flow, x ∈ Z, and S ⊆ G is syndetic. Then x · S ⊆
Z is somewhere dense.

Proof. Since S ⊆ G is syndetic, find g0, . . . , gk−1 ∈ G with
⋃

i<k Sgi = G. Then⋃
i<k(x · S) · gi = x · G ⊆ Z is dense, so x · Sgi is somewhere dense for some i < k. Then

by translating, x · S is somewhere dense as well. �

Now let α : X→ [0, 1] be a continuous function with α−1({1}) 6= ∅ and α[X \ A] =
{0}. Form the function θ = α × γ : X→ [0, 1] × [0, 1]ω. Pick p ∈ X , and then form
θp : G→ [0, 1] × [0, 1]ω.

We will show that θp · G has all orbits meager. Towards a contradiction, suppose θq ∈

θp · G belonged to a comeager orbit; as {q ∈ X : α(q) > 3/4} ⊆ X is open, we may assume
that q belongs to this set. Let r > 0 be small enough so that both r < c/4 and for g ∈Ur ,
we have α(qg) > 1/2. By the Effros theorem, θq ·U is a relatively open subset of θq · G.
By Fact 6.5, it follows that S := {g ∈ G : θq · g ∈ θq ·U } is syndetic, so by Lemma 8.4,
q · S ⊆ X is somewhere dense. Furthermore, for g ∈ G, we have

θq · g(1G)= θ(qg)

= (α(qg), γ (qg)).

It follows that for g ∈ S, there is h ∈U with α(qg)= α(qh) > 1/2. Hence q · S ⊆ A.
However, by item (1) of Proposition 4.5, γ [q · S] = γ [q ·U ] lies in a du-ball of radius
c/4, contradicting Lemma 8.3.

Question 8.5. Theorem 8.1 shows that for any non-metrizable minimal G-flow X all of
whose orbits are meager, we have a factor ϕ : SG(X)→ Y where Y is metrizable and has
all orbits meager. Is it necessary to pass to the universal highly proximal extension? More
precisely, is there an example of a Polish group G and a minimal G-flow X with all meager
orbits, but all of whose metrizable factors have a comeager orbit?

9. Distal universal minimal flows
As an application of Theorem 8.1, we prove Theorem 9.2, a characterization of when a
Polish group G has distal universal minimal flow.

Definition 9.1. A G-flow X is called distal if for any pair of points x 6= y ∈ X and any net
gi from G with xgi → z ∈ X , we have ygi 6→ z.

THEOREM 9.2. Let G be a Polish group, and assume that M(G) is distal. Then M(G) is
metrizable.

In [11], the authors consider Polish groups which are strongly amenable, groups which
admit no non-trivial minimal proximal flows. They prove that if G is strongly amenable
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and M(G) is metrizable, then G has a closed, normal, extremely amenable subgroup H
with G/H compact and M(G)∼= G/H . As any group G with M(G) distal is also strongly
amenable, we obtain the following corollary.

COROLLARY 9.3. Let G be a Polish group with M(G) distal. Then G has a closed,
normal, extremely amenable subgroup H with G/H compact and M(G)∼= G/H.

We briefly review some facts about enveloping semi-groups and distal flows; see [2] for
more detail. To any G-flow X , we can associate to it the enveloping semi-group E(X).
Given g ∈ G, form the function ρg : X→ X given by ρg(x)= xg. Then E(X) is the
closure of the set {ρg : g ∈ G} in the compact space X X . Each f ∈ E(X) is a function,
and because we take our G-flows to be right actions, it will be more convenient to write
function application and composition on the right, that is, for x ∈ X and f ∈ E(X), we
write x f instead of f (x). Then E(X) becomes a compact left-topological semi-group, in
particular a G-flow, where f · g = ρg ◦ f . For any x ∈ X , the map λx : E(X)→ X given
by λx ( f )= x f is a G-map.

When X is distal, E(X) is a group. Furthermore, if X is also minimal, then E(X)
is a minimal distal system. If f ∈ E(X), then the left multiplication map λ f is a G-
flow automorphism. In particular, if M(G) is distal, then E(M(G))∼= M(G), and for any
p, q ∈ M(G), there is a G-flow automorphism ϕ with ϕ(p)= q.

In the proof of Theorem 9.2, we will need the following simple proposition.

PROPOSITION 9.4. [2, Corollary 7(c)] Let Y be a distal flow, and let ϕ : Y → X be a
factor. Then X is also distal

We will also need to recall the main result of [13].

Fact 9.5. [13, Corollary 3.3] If X is a minimal, metrizable flow with all orbits meager,
then the universal highly proximal extension SG(X) is non-metrizable. In particular, the
map πX : SG(X)→ X is a non-trivial highly proximal extension.

We can now complete the proof of Theorem 9.2. Toward a contradiction, suppose M(G)
is distal, but not metrizable. Then by Theorem 5.3, we have |M(G)| = 2c, so in particular
M(G) contains more than one orbit. As there is a G-flow automorphism bringing any one
orbit to any other, we see that M(G) contains all meager orbits. By Theorem 8.1, let X be
a minimal metrizable flow with all meager orbits. Then by Fact 9.5, πX : SG(X)→ X is a
non-trivial highly proximal extension of minimal flows, which implies that SG(X) is not
distal. Now let ϕ : M(G)→ SG(X) be a G-map. By Proposition 9.4, we must also have
M(G) not distal, completing our contradiction.
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