


trajectories to a goal, left and right, both equally good. Boltzmann

would predict a .5 probability of choosing to go to the left. Next,

imagine that we change the set of alternatives: we add two similar

trajectories to the right. Just because there are more options to

go to the right, Boltzmann now predicts a higher probability that

you will decide to do so: for these four equally good trajectories,

Boltzmann assigns .25 probability each, and estimates going left

with only .25 probability instead of .5 as before. Should this change

in alternatives ś the addition of similar options to go to the right ś

really be reducing the prediction that you will go left by that much?

This example seems artificial ś when are we going to have a) a

group of similar trajectories, and b) an imbalance in the number of

similar trajectories for each option, so that Boltzmann shows this

side-effect? Unfortunately, it is quite representative of real-world

trajectory spaces. Spaces of trajectories are continuous and bounded,

so they naturally contain a continuum of alternatives of varying

similarity to each other, just like the right-side trajectories in our

example. Further, trajectories will have varying amounts of simi-

larity to the rest of the space: just like our left-side trajectory was

dissimilar from the other alternatives, in the real world, trajecto-

ries closer to joint limits or that squeeze in between two nearby

obstacles will be dissimilar from the rest of the trajectory space.

Unfortunately, the Boltzmann model was not designed to han-

dle such spaces. It has its roots in the Luce axiom of choice from

econometrics and mathematical psychology [14, 15], which models

decisions among discrete and different options. When we move to

trajectory spaces, the options now are all connected to some degree:

Our insight is that we need to rethink how to generalize the Luce

axiom to trajectory spaces, and account for how similarity in trajec-

tories should influence their probability.

We take a first step towards this goal by introducing an alterna-

tive to the Boltzmann model that accounts not just for the reward

of each trajectory, but also for the feature-space similarity each

trajectory has with all other alternatives. We name our model LESS,

as it is Limiting Errors due to Similar Selections. We start by testing

that our model does better at predicting human decision (Section 3),

and then move on to analyze its implications for inference. We first

conduct experiments in simulation, with ground truth reward func-

tions, to show that we can make more accurate inferences using our

model (Section 4). Finally, we test inference on real manipulation

tasks with a 7DOF arm, where we learn from user demonstrations

(Section 5)ś though we no longer have ground truth, we show that

we can improve the robustness of the inference if we use LESS.

2 METHOD

Motivated by human prediction and reward inference for robotics,

we seek an improved human behavior model, explicitly designed for

trajectory spaces rather than abstract discrete decisions. To develop

this theory, we first turn to the literature on human decisionmaking.

2.1 Background

2.1.1 Human Decision Making. One of the preeminent theories of

human decision making in mathematical psychology is based on

Luce’s axiom of choice [14, 15]. In this formulation, we consider a set

of options O, and we seek to quantify the likelihood that a human

will select any particular option o ∈ O. The desirability of each

option can bemodeled by a functionv : O → R
+, wherev produces

higher values formore desirable options. As a consequence of Luce’s

choice axiom, the probability of selecting an option o is given by

P(o) = v(o)∑
ō∈Ov(ō)

. (1)

If we further assume that each option o has some underlying reward

R(o) ∈ R, and we allow desirability to be an exponential function

of this reward, then we recover the Luce-Shepard choice rule [20]:

P(o) = eR(o)∑
ō∈OeR(ō)

. (2)

When the options being chosen by the human are trajectories

ξ ∈ Ξ, i.e. sequences of (potentially continuous-valued) actions, we

refer to (2) as the Boltzmann model of noisily-rational behavior

[2, 22]. The reward R is typically a function of a feature vector

ϕ : Ξ → R
k , giving the probability density p over continuous Ξ as

p(ξ ) = eR(ϕ(ξ ))∫
Ξ
eR(ϕ(ξ̄ ))d ξ̄

. (3)

2.1.2 Handling duplicates. Since the introduction of the Luce choice

axiom, related works [5, 7] have pointed out its duplicates problem,

where inserting a duplicate of any option o into O has an undue in-

fluence on selection probabilities. To address this drawback, various

extensions of the Luce model have been proposed which attempt to

group together identical or similar options [3, 23]. Further extend-

ing these ideas, Gul et al. [7] recently introduced the attribute rule,

which reinterprets options as bundles of attributes but maintains

Luce’s idea that choice is governed by desirability values.

Analogous to [7], let X be the set of all attributes, let Xo ⊆ X
be the set of attributes belonging to o, and let XO ⊆ X be the set

of attributes which belong to at least one option o ∈ O. Define
an attribute value, w : X → R

+, that maps attributes to their

desirability, and an attribute intensity, s : X × O → N, that maps

pairs of attributes and options to natural numbers, usually 0 or 1, to

indicate the degree to which an attribute is expressed. For instance,

an attribute could be the property łgreenž and s(łgreenž,o) could
return 1 if option o, say one of a set of cars, is green, and 0 otherwise.

According to the attribute rule, the probability of choosing o is

P(o) =
∑
x ∈Xo

w(x)∑
x̄ ∈XO w(x̄) ·

s(x ,o)∑
ō∈O s(x , ō) , (4)

which describes a process where the human first chooses an at-

tribute x ∈ XO according to a Luce-like rule, then an option o ∈ O
with that attribute according to another Luce-like rule. Note that

(4) reduces to (1) if no pair of options in O shares any attributes;

for example, if each o has a single unique attribute, the first sum in

(4) disappears, and the second fraction evaluates to 1. In this work,

we want to take advantage of the attribute rule’s graceful handling

of duplicates while extending its functionality to trajectories with

continuous-valued features and not only categorical attributes.

2.2 The LESS Human Decision Model

In this paper, we take inspiration from the attribute rule to derive a

novel model of human decision making in continuous spaces. Key

to our approach is introducing a similarity measure on trajectories.

This could be directly in the trajectory space, but more generally



it is in feature space, where features could, in one extreme, be the

trajectory itself. We first instantiate the attribute rule with features

as the attributes, and then soften it to account for feature similarity.

Indeed, the Boltzmann rationalitymodel given by (3) already assigns

selection probabilities based only on trajectory features, so we look

to modify the decision space to depend directly on features as well.

2.2.1 Accounting for Trajectories with Identical Features. We derive

our model by starting from (4) and defining the set of attributes to

be Φ, the set of all possible feature vectors. Accordingly, the set of

attributes that belong to ξ is a single element Φξ = {ϕ(ξ )}, and the

attributes represented in a set Ξ′ ⊆ Ξ are ΦΞ′ = {ϕ(ξ ′) | ξ ′ ∈ Ξ
′}.

Combining this convention with the reward model (3), the modified

attribute rule for trajectories over a finite subset Ξf ⊂ Ξ becomes

P(ξ ) = eR(ϕ(ξ ))∑
ϕ̄ ∈ΦΞf

eR(ϕ̄)
· s(ϕ(ξ ), ξ )∑

ξ̄ ∈Ξf s(ϕ(ξ ), ξ̄ )
. (5)

In the original attribute rule, the attribute intensity s mapped to the

natural numbers. A convenient mapping in this context would be

to use s as an indicator function, where s(x , ξ ) evaluates to 1 only

if x = ϕ(ξ ). With this formulation, if all trajectories have a unique

feature vector, then the rightmost term of (5) is identically 1 and

we recover the Boltzmann model (3), as applied to a finite sample of

trajectories Ξf . If, on the other hand, multiple trajectories share the

exact same feature vector, then they will effectively be considered

as a single option, and the selection probability will be distributed

equally among them. This effect is desirable: since the features ϕ(ξ )
capture all the relevant inputs to the reward, trajectories with the

same features should be considered practically equivalent.

2.2.2 Softening to Feature Similarity. We suggest that such a notion

of attribute intensity is too stringent for continuous spaces, and we

redefine s to be a soft similarity metric s : Φ×Ξ → R
+, which should

be symmetric (s(ϕ(ξ ), ξ̄ ) = s(ϕ(ξ̄ ), ξ )) and positive semidefinite

(s(x , ξ ) ≥ 0), with s(ϕ(ξ ), ξ ) = maxx ∈Φ, ξ̄ ∈Ξ s(x , ξ̄ ) for all ξ ∈ Ξ.

Using this redefined similarity metric s , we extend (5) to be a

probability density on the continuous trajectory space Ξ, as in (3):

p(ξ ) =
eR(ϕ (ξ ))∫

Ξ
s(ϕ(ξ ), ξ̄ ) d ξ̄∫

Ξ

eR(ϕ (ξ̂ ))∫
Ξ
s(ϕ(ξ̂ ), ξ̄ ) d ξ̄

d ξ̂
∝ eR(ϕ(ξ ))∫

Ξ
s(ϕ(ξ ), ξ̄ ) d ξ̄

, (6)

where s(ϕ(ξ ), ξ ) and the integral over ΦΞ are omitted because they

are constant over Ξ and cancel out during normalization.

Under this new formulation, the likelihood of selecting a trajec-

tory is inversely proportional to its feature-space similarity with

other trajectories. This de-weighting of trajectories that are similar

to others is precisely the effect we seek, andwe adopt the probability

given by (6) as our LESS model of human decision making.

2.3 Similarity as Density

The main innovation that differentiates our model from previously

proposed rules is the use of a similarity metric that reweights trajec-

tory likelihoods based on the presence of other trajectories that are

nearby in feature space. We note that the integral of this similarity

over trajectories, the denominator of (6), is akin to a measure of tra-

jectory density in feature space. We estimate similarity as a density

by selecting our similarity metric as a kernel function and perform-

ing Kernel Density Estimation (KDE). There are many choices of

kernel functions, each parametrized by some notion of bandwidth.

In our experiments, we used a radial basis function, which peaks

when x = ϕ(ξ ), then exponentially decreases the farther away x

and ϕ(ξ ) are from one another in feature space:

s(x , ξ ) =
(

1

σ
√
2π

)
exp

(
− ∥x − ϕ(ξ )∥2

2σ 2

)
, (7)

where the bandwidth σ is an important parameter that dictates,

for a given feature difference between two trajectories, how much

that difference affects the ultimate similarity evaluation. Higher σ

means a higher bandwidth and makes everything look more similar.

We find an optimal bandwidth σ ∗ automatically by using a finite

set of samples Ξf ⊂ Ξ and maximizing the sum of the log of

their summed similarities, which is equivalent to maximizing their

likelihood under a probability density estimate produced by KDE:

σ ∗
= argmax

σ ∈R

∑
ξ ∈Ξf

log
©­­«

∑
ξ̄ ∈Ξf

s(ϕ(ξ ), ξ̄ )
ª®®¬
. (8)

2.4 Inference and Prediction with LESS

Let θ ∈ Θ parametrize the reward function R. To predict what the

human will do given a belief b(θ ), we marginalize over θ :

p(ξ ) =
∫
Θ

b(θ )p(ξ |θ )dθ , (9)

withp(ξ |θ ) given by (6). To perform inference over θ given a human

trajectory, we update our belief using Bayesian inference:

b ′(θ ) = b(θ )p(ξ |θ )∫
Θ
b(θ̄ )p(ξ |θ̄ )dθ̄

. (10)

In practice, calculating the integrals in the denominators of (10) and

(6) can be intractable, so we use a discretized set of θ parameters

and finite trajectory sample sets in our experiments. The specific

sampling of the trajectory choice space can significantly impact

inference, and we explore its implications in Section 5.

3 LESS AS A HUMAN DECISION MODEL

We start by testing the hypothesis that LESS is a better model for

human decision making than the standard Boltzmann model.

3.1 Human Decision Model Experiment Design

We design a browser-based user study in which we ask participants

to make behavior decisions, and measure which model best charac-

terizes these decisions. We select a simple navigation task as our

domain, where different behaviors correspond to different ways of

traversing the grid from start to goal, as shown in Figure 2.

3.1.1 Main Design Idea. The key difficulty in designing such a

study is that both models require access to a ground truth reward

function, i.e. user preferences over trajectories. Even though we

can provide participants with some criteria ś in our case optimizing

for path length while avoiding the obstacle ś, this does not mean

our criteria are the only ones they care about. For instance, people

might implicitly prefer trajectories that go closer to or further from

the obstacle, or that go around the obstacle to the left or right.











for inference, with five levels: 10, 30, 100, 300, and 1000. We sample

10 different trajectory sets of each size.

5.1.3 Other Variables. We tested our hypothesis across three house-

hold manipulation tasks where the robot learned to carry a coffee

mug from a start position to a goal according to the person’s pref-

erences. In the first task, which we dub table, the participants were

asked to move the robot arm from start to goal while maintaining

the end-effector close to the table, to prevent the mug from breaking

in case of a slip. In the second task, dubbed laptop, the participants

were instructed to avoid spilling the coffee over a laptop by pro-

viding a demonstration that keeps the robot’s end-effector away

from the electronic device. Lastly, in the third task, dubbed human

we asked the participants to keep the end-effector away from their

body, to avoid spilling coffee on their clothes.

In all scenarios, the robot performs inference by reasoning over

three features: one feature of interest (distance from the table, dis-

tance from the laptop, and distance from the human, respectively),

a second feature drawn from that set, and an efficiency feature

computed as the sum of squared velocities across the trajectory.

5.1.4 Dependent Measures. In total, for each task T , sample size

S , inference method M , and user i , we obtained 10 posterior dis-

tributions PT ,i
M,S

(θ̂ | ξT ,i ) constituting a set PT ,i
M,S

. Our goal was

to test how robust (or consistent) each method’s inference result

was across the ten different trajectory sets. We used an aggregate

Kullback-Leibler divergence as a measure of how much the poste-

rior distributions P ∈ PT ,i
M,S

differ from one another:

KLAддreдate = −
∑

P ∈PT ,i
M,S

∑
Q ∈PT ,i

M,S

∑
θ̂ ∈Θ

P(θ̂ | ξT ,i ) log
(
Q(θ̂ | ξT ,i )
P(θ̂ | ξT ,i )

)
.

5.1.5 Hypothesis.

H6: Performing single inference with LESS across multiple trajec-

tory sets results in higher robustness and, thus, a lowerKLAggregate

measure than inference with Boltzmann.

5.1.6 Subject Allocation. We recruited 12 users (3 female, 9 male,

aged 18-30) from the campus community to physically interact with

a JACO 7DOF robotic arm and provide demonstrations for three

tasks. Figure 7 (left) illustrates the demonstrations collected for

the table task. Before giving any demonstrations, each person was

allowed a period of training with the robot in gravity compensation

mode, in order to get accustomed to interacting with the robot.

5.1.7 Analysis. As seen in Figure 7, given two different trajectory

sets, inference with each method can have drastically different

outcomes. With LESS (top), we see that the resulting posterior

distributions are fairly similar, whereas with Boltzmann inference

(bottom), they differ in entropy/confidence.

For each sample taskT , we performed a factorial repeated-measures

ANOVA. The results for the laptop task are summarized in Fig-

ure 6a. As the trend in the figure indicates, we found a signifi-

cant interaction effect between inference method and sample size

(F (4, 44) = 40.37, p < .001). A post-hoc Tukey HSD test revealed

that LESS produced significantly lower KLAggregate than Boltz-

mann for S = 10, 30, and 100 (p < 0.001 for all), but there was no

significant difference found for S = 300 or 1000 (p ≈ 1.00 for both).

This trend supports our hypothesis that LESS provides more robust

single-demonstration inference, and it reveals that the difference

in KLAggregate between LESS and Boltzmann disappears with in-

creasing sample size. Results from the table task also support this

trend, with a significant main effect of inference method.

While the human task did reveal a significant interaction between

inference method and sample size (F (4, 44) = 2.85,p < .05) it stands

apart from the other two: a post-hoc Tukey HSD test only found a

difference for sample size 1000 (p < .001). This pattern indicates that

demonstrations from this task may be generally more ambiguous

and present a more difficult inference problem than the other two.

5.2 All demonstrations inference

We repeated the same experiment, except this time we run inference

by aggregating all users’ demonstrations for a task (batch inference).

This would happen in practice if we were interested in teaching the

robot about what the average user wants, rather than focusing on

customizing the behavior to each user. Here, we found the opposite

results, also shown in in Figure 6b: LESS has higher divergence

(lower robustness). We attribute this to the phenomenon described

in Section 4.2. When we had only one demonstration before, Boltz-

mann was not robust because, depending on the set of samples,

the demonstration could fall in low- or high-density regions, thus

leading to different Boltzmann inferences for different sets. Now,

with 12 demonstrations at once, the chances of one demonstration

falling in a low-density area are much higher. As we’ve seen in

Section 4.2, when there are multiple demonstrations, Boltzmann

inference will be dominated by those lying in low-density areas.

This leads to a more consistent posterior distribution, so long as

the low-density demonstrations suggest the same reward function.

6 DISCUSSION

We propose a new probabilistic human behavior model and present

compelling evidence that it better captures human decision making

and it attenuates inference errors that arise due to similar selections,

increasing accuracy and robustness.

One limitation of our method is its reliance on a pre-specified

set of robot features for similarity selection, which makes feature

misspecification a possible limitation. Although our experiments

in Section 4.3 reveal that LESS still performs better inference than

Boltzmann, it is unclear whether this outcome is due to the effect

of hypothesis H3 or if our method is truly unaffected by misspecifi-

cation. Further experiments are needed for complete clarification.

Our 12-person aggregate inference results in Section 5 show that

LESS can lead to less robust inference.We attributed this outcome to

the phenomenon in Section 4.2, but it remains unclear whether this

leads to less accurate inference, or whether Boltzmann is actually

preferable in situations with enough varied demonstrations.

Lastly, the Mechanical Turk study in Section 3, although com-

pelling, illustrates simplistic datasets of human choices. Further

studies on human behavior in more realistic settings would be use-

ful, but complicated by lack of access to the "ground truth" reward.

Despite these limitations, Boltzmann rationality has become

so fundamental to how robots do inference and prediction, that

designing a counterpart for continuous robotics domains is sorely

needed. We are excited to have taken a step in this direction.
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