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Abstract

In modern scientific research, data are often collected from multiple modali-
ties. Since different modalities could provide complementary information, statis-
tical prediction methods using multi-modality data could deliver better predic-
tion performance than using single modality data. However, one special challenge
for using multi-modality data is related to block-missing data. In practice, due
to dropouts or the high cost of measures, the observations of a certain modal-
ity can be missing completely for some subjects. In this paper, we propose a

new DlIrect Sparse regression procedure using COvariance from Multi-modality
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data (DISCOM). Our proposed DISCOM method includes two steps to find the
optimal linear prediction of a continuous response variable using block-missing
multi-modality predictors. In the first step, rather than deleting or imputing
missing data, we make use of all available information to estimate the covariance
matrix of the predictors and the cross-covariance vector between the predic-
tors and the response variable. The proposed new estimate of the covariance
matrix is a linear combination of the identity matrix, the estimates of the intra-
modality covariance matrix and the cross-modality covariance matrix. Flexible
estimates for both the sub-Gaussian and heavy-tailed cases are considered. In
the second step, based on the estimated covariance matrix and the estimated
cross-covariance vector, an extended Lasso-type estimator is used to deliver a
sparse estimate of the coefficients in the optimal linear prediction. The num-
ber of samples that are effectively used by DISCOM is the minimum number
of samples with available observations from two modalities, which can be much
larger than the number of samples with complete observations from all modal-
ities. The effectiveness of the proposed method is demonstrated by theoretical
studies, simulated examples, and a real application from the Alzheimer’s Disease
Neuroimaging Initiative. The comparison between DISCOM and some existing

methods also indicates the advantages of our proposed method.

Keywords: Block-missing; Huber’s M-estimate; Lasso; Multi-modality; Predic-

tion; Sparse regression.



1 Introduction

With the advance of modern scientific research, complex data are often collected from
multiple modalities (sources or types). In neuroscience, different brain images such as
magnetic resonance imaging (MRI) and positron emission tomography (PET) are used
to study the brain structure and function. In biology, data from different modalities
such as gene expressions and copy numbers are collected to understand the complex
mechanism of cancers. Since different modalities could provide complementary infor-
mation, statistical prediction methods using multi-modality data could deliver better
prediction performance than using single modality data. However, one special chal-
lenge for using multi-modality data is related to missing data, which is unavoidable due
to some reasons such as the high cost of measures or the patients’ dropout. Generally,
the observations of a certain modality can be missing completely, i.e., a complete block
of the data is missing. One example of block-missing multi-modality data is shown in
Figure 1. In this example, there are n samples (each row represents one sample), three
modalities and one response variable. The blank regions with question mark indicate
missing data. As shown in Figure 1, for many samples, the observations from some
modality are missing completely. The number of samples with complete observations
is much smaller than the sample size n.

To predict the response variable using the high dimensional block-missing multi-
modality data, a common strategy is to use the Lasso (Tibshirani (1996)) or some
other penalized regression methods (e.g., Fan and Li (2001); Zou and Hastie (2005);
Zhang (2010)) only for the data with complete observations. However, this strategy
can greatly reduce the sample size and waste a lot of useful information in the samples
with missing data. Another strategy is to impute the missing data first by some exist-
ing imputation methods (Hastie et al. (1999); Cai et al. (2010)). These methods can be
effective when the positions of the missing data are random, but they can be unstable
when a complete block of the data is missing. Recently, motivated by applications in

genomic data integration, Cai et al. (2016) proposed a new framework of structured
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Figure 1: An illustration of block-missing multi-modality data with three modalities.

matrix completion to impute block-missing data. However, they only consider the case
when the data are collected from two modalities. In the literature, rather than delet-
ing or imputing missing data, some studies focus on using all available information.
For example, Yuan et al. (2012) proposed the Incomplete Multi-Source Feature learn-
ing (IMSF) method. The IMSF method performs regression on block-missing multi-
modality data without imputing missing data. It formulates the prediction problem as
a multi-task learning problem by first decomposing the prediction problem into a set
of regression tasks, one for each combination of available modalities (e.g., modalities
1, 2 and 3; modalities 1 and 2; modalities 1 and 3; modalities 2 and 3 for the example
shown in Figure 1), and then building regression models for all tasks simultaneously.
The important assumption in the IMSF method is that all models involving a specific
modality share the common set of predictors for that particular modality. However,
when different modalities are highly correlated, this assumption could be too strong. In
that case, for some modalities, it can be more reasonable to choose different predictor
subsets for different involved tasks. Therefore, it is desirable to develop flexible and
efficient prediction methods applicable to block-missing multi-modality data.

In this paper, we propose a new Dlrect Sparse regression procedure using COvari-

ance from Multi-modality data (DISCOM). For each sample, if some modality has



missing entries, all the observations from that modality are missing simultaneously.
Regardless of the underlying true model, we aim to find the optimal linear prediction
for the response variable using the block-missing multi-modality data without imputing
the missing data. Our method includes two steps. In the first step, we use all available
information to estimate the covariance matrix of the predictors and the cross-covariance
vector between the predictors and the response variable. The proposed new estimate
of the covariance matrix is a linear combination of the identity matrix, the estimates of
the intra-modality covariance matrix and the cross-modality covariance matrix. Flex-
ible estimates for both the sub-Gaussian and heavy-tailed cases are considered. Many
existing high dimensional covariance estimation methods such as Bickel and Levina
(2008); Cai and Liu (2011); Rothman (2012); Lounici et al. (2014); Cai and Zhang
(2016) can be used in this step. In the second step, based on the estimated covari-
ance matrix and the estimated cross-covariance vector, we use an extended Lasso-type
estimator to estimate the coefficients in the optimal linear prediction.

Note that there are some existing sparse regression methods in the literature using
the estimation of the covariance matrix. For example, Jeng and Daye (2011) pro-
posed the covariance-thresholded Lasso for complete data to improve variable selection
by utilizing the sparsity of the covariance matrix. Loh and Wainwright (2012) and
Datta et al. (2017) proposed new estimators for the high dimensional regression with
corrupted predictors, where all entries of the design matrix are assumed to be noisy
or missing randomly and independently. The missing data problem they considered
can be viewed as a special case of the block-missing multi-modality data where each
modality has only one predictor. To the best of our knowledge, there are no existing
methods using a similar idea to DISCOM tailored for high-dimensional block-missing
multi-modality data. To investigate DISCOM, we have carefully studied its theoret-
ical and numerical performance. For both the sub-Gaussian and heavy-tailed cases,
we establish the consistency of estimation and model selection for the optimal linear

predictor regardless of the underlying true model. Our theoretical studies indicate



that DISCOM could make use of all available information of the block-missing multi-
modality data effectively. The number of samples that are effectively used by DISCOM
is the minimum number of samples with available observations from two modalities,
which can be much larger than the number of samples with complete observations
from all modalities. The comparison between DISCOM and some existing methods
using simulated data and the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
data (www.loni.ucla.edu/ADNI) further demonstrate the effectiveness of our proposed
method.

The rest of this paper is organized as follows. In Section 2, we motivate and intro-
duce our method. In Section 3, we show some theoretical results about the estimates
of the covariance matrix, the cross-covariance vector and the coefficients in the optimal
linear prediction for both the sub-Gaussian and heavy-tailed cases. The results about
the model selection consistency are also provided. In Sections 4 and 5, we demonstrate
the performance of our method on the simulated data and the ADNI dataset. We

conclude this paper in Section 6 and provide all technical proofs in the Appendix.

2 Motivation and Methodology

We first show the motivation and the outline of our proposed method in Section 2.1.
In Section 2.2, we introduce the proposed estimate of the covariance matrix of the
predictors, and the estimate of the cross-covariance vector between the predictors and
the response variable using the block-missing multi-modality data. In Section 2.3, we
introduce the Huber’s M-estimate for the heavy-tailed case. In Section 2.4, we provide
the estimation procedure for the coefficients in the optimal linear prediction.

The following notation will be used in this paper. For a matrix A € R™ ", we

use [|Allr, [|Allmaz, and [|Allo to denote the Frobenius norm /37, a?;, the max norm

5
max;; |a;|, and the infinity norm max; 77, |a;;|, respectively. For a vector b € R™*!,

we use [|b]|2, ||b|lmaz, and [|b]]1 to denote the £y norm />, b7, the max norm max; |b;|,



and the ¢; norm ) ., |b;|, respectively. In addition, we use sign(-) to denote the

function that maps a positive entry to 1, a negative entry to —1, and 0 to 0.

2.1 Motivation

Suppose the predictors are collected from K modalities. For k € {1,2,..., K}, there are
pi, predictors from the k-th modality. Let n denote the sample size, Y = (y1, y2, ..., yn)?
denote the n x 1 response vector centered to have mean 0, and X® € R de-
note the design matrix of the py predictors from the k-th modality. In addition, let
X = (XWX XE)) = (21,2,,...,2,)7 denote the n x p design matrix, where
p=p1+ps+---+ pxg. We assume that x;’s are i.i.d. generated from some multivari-

ate distribution with mean 0,4, and covariance matrix 3. We use C' = Cov(z;,y;) =

(c1,¢2,...,¢,)T € RP to denote the cross-covariance vector between z; and y;.
To predict the response variable y using all predictors X, X, ..., X,, we consider
the optimal linear predictor y = ?:1 X; /6’?, where the coefficient vector
B = (B2, )" = argmin E[(y ZX@ = (1)

The above coefficient vector 8° can be viewed as the solution to the following opti-

mization problem
min EBTEB - C75.
B 2

If we know the true covariance matrix ¥ and the true cross-covariance vector C', and
assume that 30 is sparse, we can estimate 3% by solving the following optimization

problem

1
min 54125 = C15 -+ AlIBl:, (2)



where )\ is a nonnegative tuning parameter.

Motivated by (2), for the high dimensional block-missing multi-modality data, we
propose a new method with two steps. In the first step, we use all available observations
to estimate the covariance matrix 3 and the cross-covariance vector C'. The estimates
of ¥ and C are denoted as 3 and C, respectively. This step is very important to make
full use of the block-missing multi-modality data. In the second step, we estimate 5°

by solving the following optimization problem:
1 ore A
win 3B 2B = CTB+ B (3)

2.2 Standard estimates of ¥ and C

Considering block-missing multi-modality data, for each sample, if a certain modality
has missing entries, all the observations from that modality are missing. For each
predictor j, define S; = {i : z;; is not missing}. For each pair of predictors j and ¢,
define Sj; = {i : z;; and z;; are not missing}. The number of elements in S; and S}
are denoted as n; and nj;, respectively.

For the missing data mechanism, we only need to assume that for each predictor, the
first sample moment and the second sample moment using all available observations are
unbiased estimators of the first theoretical moment and the second theoretical moment
of the distribution, respectively. This assumption is satisfied if we assume that each
modality is missing completely at random. However, different predictors in the same
modality are missing simultaneously. Under this assumption, for each j € {1,2,...,p},
the available observations of the j-th predictor are centered to have mean 0. A natural

initial unbiased estimate of X using all available data is the sample covariance matrix
~ . . 1
¥ = (Gjt)je=12,..p, Where G = — ) wira.
Jt 1€8S;t

For the block-missing multi-modality data, the above initial estimate 3 may have



negative eigenvalues due to the unequal sample sizes nj;’s. Therefore, it is not a good
estimate of the covariance matrix ¥ and not suitable to be used in (3) directly. It is
important to find an estimator that is both positive semi-definite and more accurate
than the initial estimate 2.

According to the partition of the predictors into K modalities, the initial estimate

of the covariance matrix 3 can be partitioned into K2 blocks, denoted by fljt’s, where

J,t€{1,2,...,p} and f)jt is a p; X p; matrix. We denote

_ > . > 0o ... X
E[ _ 22 ’ EC _ 21 2K ’
2KK 2}(1 2[(2 RN 0

where 3/ is called the intra-modality sample covariance matrix which is a p x p block-
diagonal matrix containing K main diagonal blocks of 2, and ¢ = 2 — X/ is called
the cross-modality sample covariance matrix containing all the off-diagonal blocks of
3. We also let ¥; and X denote the true intra-modality covariance matrix and cross-
modality covariance matrix, respectively. As shown in Figure 1, since the observations
of some modalities are missing completely for many samples, there are more available
samples to estimate the intra-modality covariance matrix 3; than the cross-modality
covariance matrix 2. Intuitively, it is relatively easier to estimate 3; than . In
view of this characteristic of the block-missing multi-modality data and the possible

negative eigenvalues of 3, we propose to use the following estimator
2 = 0[12[ + 04220 + Oéng,

where o, s and a3 are three nonrandom weights, and I, is a p X p identity matrix.

Considering all possible linear combinations, we can find the optimal linear combination

¥ = ot 4o X o +ail, whose expected quadratic loss E[||3* — 3|2 is the minimum.



The optimal weights aj,a’ and of are shown in the following Proposition 1. As a
remark, Proposition 1 and all the theoretical analysis in Section 3 are conditional on

the given missing pattern of different modalities.

Proposition 1. Consider the following optimization problem:

min E[|Z - Z[2] subject to X=X 4+ e3¢ + asly,

1,002,003

where the weights a1, a; and ag are nonrandom. Denote v* = tr(X)/p, 62 = E[||%; —

3], 62 = E[|Zc — B¢|?), and 6 = ||7*T, — £;||%. The optimal weights are

0? 1Bl

=7 0,1, a;=-=clr
R A R

€01, az=7"(1-a).

In addition, we have

s s = 20y el®ele oy p_ pys sy
o7 +0 ot + |1 Zcll7

Proposition 1 shows that £* is more accurate than ¥. The relative improvement

in the expected quadratic loss over the sample covariance matrix is equal to

BIS -S| - B —s2 & L& *
! - (1= al) 4 oC (1 —ad).
ST R U L

Therefore, if 3 is relatively accurate (02 is small), the optimal weight af = %
should be large and the percentage of the relative improvement tends to be small. We
can also make the same conclusions about X¢. For the block-missing multi-modality
data, due to the unequal sample sizes, the initial estimate ¥, can be relatively accurate
while the estimate X is relatively inaccurate. It’s reasonable to use different weights
for ¥; and B¢, As a remark, Proposition 1 can be viewed as a generalization of

Theorem 2.1 shown in Ledoit and Wolf (2004), where they studied the optimal linear

combination of the sample covariance matrix and the identity matrix to estimate the



covariance matrix for the complete data.

Regarding the cross-covariance vector C', we can use the following estimate

~ o ~ ~ 1
C = (¢1,¢9,- - ,cp)T, where ¢; = — Zyzaz”

J iGSj
Note that we use all available information to estimate > and C. The theoretical

properties of 3 and € will be discussed in Section 3.

2.3 Robust estimates of X and C

When the predictors and the response variable follow a sub-Gaussian distribution with
an exponential tail, 3* and C introduced in Section 2.2 generally perform well. How-
ever, when the distributions of the predictors and the response variable are heavy-tailed,
>* and C may have poor performance, and therefore some robust estimates of 3 and
C are required.

In this section, we introduce robust estimates of 3 and C' based on the Huber’s
M-estimator (Huber et al. (1964)). In general, suppose Z1, Zs, ..., Z, are i.i.d. copies
of a random variable Z with mean p. The Huber’s M-estimator of u is defined as the

solution to the following equation
> u(Zi—p) =0,
i=1

where 1y (+) is the Huber function which is given by

z if |2| < H,
Vn(z) =

H - sign(z) otherwise.

Using the Huber’s M-estimator, for the block-missing multi-modality data, we can



construct a robust initial estimate of 3 denoted by

> = (Gjt)ji=12,.p, Where d; = the solution to Z VYo, (T — p) = 0.
€S
In general, the parameters H;; used in the Huber function can be chosen to be 1.345
in order to guarantee 95% efficiency relative to the sample mean if the data generating
distribution is Gaussian (Huber et al. (1964)). However, for the block-missing multi-
modality data, considering different numbers of samples available to estimate different
entries of 3, we propose to use different values of H flexibly. The choice of Hj;
will be discussed in Section 3. Based on the robust initial estimate f], we can use
a similar idea introduced in Section 2.2 to find the optimal linear combination > =
ai3; + 330 + a3l whose expected quadratic loss E[[|3* — ||%] is the minimum.
Similarly, we can use the Huber’s M-estimator to deliver a robust estimate of C' which

is defined as

C = (61,09, ,&)", where & = the solution to Zij (wijy; —p) = 0.
1€S;
Here we also propose to use different values of H when estimating different c¢;’s. The
choice of H; will be discussed in Section 3. The theoretical properties of > and C will

be also shown in that section.

2.4 Estimate of 5" in the optimal linear prediction

After getting an initial estimate of ¥ and C, e.g., > and C (or 3 and é’), our proposed
DISCOM method estimates 3° by solving the following optimization problem:

tr(%)
p

mgn%walﬁf +anSe+ (1 — o) —2L)8 — CTB + N|Bl|, (4)

10



where oy € [0,1],a0 € [0,1] are two weights and tr(3)/p is used to estimate ~*.
In practice, both a; € [0,1], as € [0,1], and A can be chosen by cross validation
or an additional tuning dataset. To guarantee that the estimated covariance matrix
S =X [+OCQSC+(1—O{1>M(PQIP is positive semi-definite, we need to choose reasonable
ay and @y from the set {(aq,as) @ a; € [0,1],05 € [0,1], and Apin(X) > 0}, where
)\mm(ﬁl) is the smallest eigenvalue of 3.

Besides the above tuning parameter selection method that searches for the best

values of three parameters, we can use an efficient tuning method incorporating our

theoretical results in Section 3. Our theoretical studies show that the tuning pa-

rameters a; and as should satisfy the conditions 1 — a; = O(y/(logp)/ min; n;) and

1 — as = O(y/(logp)/ minj, nj), respectively. Denote m; = \/(logp)/ min; n; and

my = \/(logp)/minﬂ nj. We can choose oy = 1 — kgmy and o = 1 — kgmg, where
ko € [Kmin, kmaz) 18 a tuning parameter. To guarantee that both a; and s are nonneg-
ative, we set k., = min{l/m,1/ms}. In addition, a reasonable value of ky should
satisfy the following two conditions: (1) oy = 1—komy < 1 and ay = 1 —kems < 1; (2)
the estimate of the covariance matrix 3 is positive semi-definite. The first condition
requires that ky > 0. If the smallest eigenvalue of the initial estimate 3, denoted by
/\mm(fl), is nonnegative, we can show that 3 is positive semi-definite for any nonneg-

ative kq. If )\mm(f)) < 0, since the smallest eigenvalue of 3 satisfies

tr(3)

Amin(2) > Anin () + ko - [Amin (Mo — m1); + my I,) — MaAmin()],

to guarantee that 3 is positive semi-definite, we only need to require that

- ~ ~ tr(2
kO Z _/\mzn(z)/[_mQ : )\mzn(z) + /\mm((mQ - ml)zl + my ( )Ip)]
Therefore, if )\mm(f]) > 0, we choose k,,;, = 0. Otherwise, we choose
- - - tr(f])

11



For the block-missing multi-modality data, since mo > m; > 0, we know that the
matrix (mg — ml)f] 7+ ml%%)lp is positive definite and therefore k,,;, is always less
than k0, = min{1/mq, 1/mo} = 1/mo.

By choosing ay = 1 — kgm; and as = 1 — kgms, our proposed fast tuning parameter
selection method searches the best value of ky € [kmin, kmaz] and the parameter A
rather than searching three parameters o,y and A. In addition, instead of using
the eigendecomposition for each parameter combination to check whether 3 is positive

semi-definite, this method only requires two eigendecompositions of the matrices 3

tr(i)
p

and (mgy — ml)i 71+ my I, before the tuning parameter selection process. For each
ko € [Kmin, kmaz], We can incorporate the coordinate descent algorithm (Friedman et al.
(2010)) on a grid of A values, from the largest one down to the smallest one, using warm
starts. Alternatively, since 3 is positive semi-definite, we can use the LARS algorithm
shown in Jeng and Daye (2011) to compute the solution path.

As many existing high dimensional linear regression studies for the random design,
we use the assumption F(X) = 0 to make our presentation more convenient. Our
proposed DISCOM method can be used for the general case where F(X) # 0. In that
case, we first center the available observations of each predictor and use X, X, ..., X,
to denote the sample means of those p predictors. We also center the observed responses
and use Y to denote the sample mean of the response variable. Let B denote the
estimated regression coefficient vector calculated from the centered data. Our final
predictive model is Y + > (X = X;)f;, where (X7, X3, ... , X;;) is a test data point.
In practice, if our data are collected at various time points by different laboratories
using multiple platforms, the i.i.d. assumption may be violated due to batch-effects. In
that case, we suggest to use some existing statistical methods (e.g., the exploBATCH
R package) to diagnose, quantify and correct batch effects before using our proposed

DISCOM method.

12



3 Theoretical Study

Without loss of generalization, we assume that the true variances of all predictors,
011,092, . . ., Opp, are equal to 1 in our theoretical studies. For each j € {1,2,...,p},
we assume that the observations of the predictor j are scaled such that ), s, T3 = nj.
In that case, we have 7;; = 1. For the Huber’s M-estimator i?, we redefine 7;; to
be 1 for each j. Let B and B denote the solutions to (4) using the sample covariance
and the Huber’s M-estimator, respectively. We assume that 3° is sparse and denote
J ={j: B) # 0} as the index set of the important predictors. Denote s = [.J| as
the number of important predictors. Let 37, = max;e; |3]] and 3),, = minjc; |57].
In Sections 3.1 and 3.2, we will discuss the theoretical properties in the sub-Gaussian

case and the heavy-tailed case, respectively. The model selection consistency of our

proposed method will be shown in Section 3.3.

3.1 Sub-Gaussian case

The following conditions are considered in this section:

(A1) Suppose that there exists a constant L > 0 such that

L%
E(exp(tX;)) < eXp(T) for all j € {1,2,...,p} and t € R,

L2 2
E(exp(ty)) < exp(T) for all t € R.

(A2) Suppose that the true covariance matrix 3 satisfies the following restricted eigen-

value (RE) condition

)

min
se{ucRr:|luse| 1 <Tlluyli} 010

>m > 0.

Under condition (A1), the predictors and the response variable follow sub-Gaussian

distributions with exponentially bounded tails. In this case, we propose to use 3 and

13



C' shown in Section 2.2 as the initial estimate of the covariance matrix ¥ and the
cross-covariance vector C', respectively. The RE condition (A2) is often used to obtain
bounds of statistical error of the Lasso estimate (Datta et al. (2017)). The following

Theorem 1 shows the large deviation bounds of 3 and C.

Theorem 1. Under condition (A1), if min;,n; > 6logp, there exists two positive

constants v; = 8v/6(1 4+ 4L?) and v, = 4 such that

1 ) 1
max P(|65 — 0y > vy | —L) <2 P = Dlar > 1y | —2b—) < 2,
Jit Tt p MmN, ¢ Ny p

There exists another two positive constants v3 = 16(1 + 4Wj(y)l}) max{var(y), 1}

and v4 = 4 such that

lo ~ lo v
max P(1& — 5| > vsy|—2) < 52, P(IC = Cllmas > vy | o) < =,
J n; p min; n; p

Vy
b

Remark 1. In our theoretical studies, we assume that the dimension p goes to infin-
ity as the sample size min;; nj; increases. If we further assume that (logp)/ min;, n; =

o(1), the condition min;;nj > 6logp is satisfied if the sample size min;, n; is suffi-

ciently large. Then, Theorem 1 shows that |% — 2|[,ne = O,(1/(logp)/ min;,; nj;).
The performance of 3 depends on the worst case when there are only min;, nj, sam-

ples to estimate some entries in 3. In addition, the convergence rate of ||C' — C/|lmaz

is O,(+/(logp)/ min; n;)). The performance of C also depends on the worst case when
there are only min; n; samples to estimate the covariance between some predictor and

the response variable. Furthermore, if we only use samples with complete observa-

tions, using a similar proof, we can show that Hi — ¥Ymaz = Op(\/ (log p)/Ncompiete)

and ||C’ — Cllmaz = Op(\/ (log p)/Ncomplete)s Where Neompiete 1s the number of samples
with complete observations. For the block-missing multi-modality data, since ncompiete
can be much smaller than min;; n;; and min; n;, Theorem 1 indicates that the first step

of our proposed DISCOM method can make full use of all available information. Based

14



on the results shown in Theorem 1, we will show the convergence rate of || — 3°||.

Theorem 2. Under conditions (A1) and (A2), let 1 — a; = O(y/(logp)/ min; n;)
and 1—ay = O(y/(log p)/ min;; n;e). If sy/(logp)/ minj; nj; = o(1) and we choose A =
20/C = £8)mar, then we have |15 — 8°)l2 = Opl(y/5X) = Op(118° |1 /(10 P}/ s 0).

Remark 2. As shown in the above Theorem 2, we have || — 3%/ = O,(/s]|C —
313%|maz). If we assume that (a) there is no missing data, (b) the predictors are
generated from a multivariate Gaussian distribution, and (c) the true model is Y =
X3 + €, where € ~ N(0,02L,). Then we will use 3 = X”X/n and C = XTY/n to
estimate X and C, respectively. Therefore, we have ||C' — 28°|maz = || X7 €/l maz =
O,(y/(logp)/n), and || — B°la = O,(/(slogp)/n), which is the minimax fy-norm
rate as shown in Raskutti et al. (2011). Since the complete data generated from
the Gaussian random design can be viewed as a special type of block-missing multi-
modality data, the error bound in Theorem 2 is sharp.

On the other hand, if the true relationship between the conditional expectation
E(y| X1, Xs,...,X,) and the predictors is non-linear, we have C -3 # XTe/n and
IC = 36 maz = Op(||8°)l1+/(log p)/n) as shown in the proof. In this case, if we still

use the Lasso method to estimate the regression coefficients 3° in the optimal linear

predictor, we have ||Brasso — 8°ll2 = Op([|8°/l11/s(log p)/n). For the blocking missing

multi-modality data, since the Lasso method can only use the data with complete

observations, we have ||Brasso — 8°]]2 = O,(118°/111/s(1og p) /Tcompiete).  However, as

shown in Theorem 2, for our proposed DISCOM estimate (3, we have ||B - B, =

O,(|18°/l11/s(log p)/ minj, nj). In practice, the minimum number of samples with
available observations from two modalities (min;;n;) can be much larger than the
number of samples with complete observations from all modalities (ncompiete). Theorem
2 indicates that DISCOM could make use of the block-missing multi-modality data

more effectively than the Lasso method using only the complete data.

In Theorem 2, the assumption sy/(logp)/minj;nj; = o(1) is used to guarantee

that 3 satisfies the RE condition with a high probability if the true covariance matrix
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3 satisfies the RE condition (A2). Note that many existing sparse linear regression
studies focus on the fixed design where the design matrix X is considered to be fixed and
complete. In that case, 3= XTX /n is assumed to satisfy the RE condition directly.
For the general random design, Van De Geer et al. (2009) showed that 3 = X7X /n
satisfies the RE condition as long as the true covariance matrix 3 satisfies the RE
condition and s?logp/n = o(1). For the special Gaussian random design, by a global
analysis of the full random matrix > = XTX /n rather than a local analysis looking
at individual entries of 33, Raskutti et al. (2010) shows that the matrix 3 satisfies the
RE condition with a high probability if the true covariance matrix of the multivariate
Gaussian distribution satisfies the RE condition and n > Constant-slog p. In our paper,
since we consider the general random design including both sub-Gaussian distributions

and heavy-tailed distributions, and study the proposed estimated covariance matrix 3

where 32 # XX /n in most cases, we use the condition sy/(logp)/min;; nj = o(1) to
guarantee that the RE condition is satisfied with a high probability. This condition is
very similar to the condition s?logp/n = o(1) used in Van De Geer et al. (2009) for
the complete data.

For the general random design and the block-missing multi-modality data, it is
difficult to develop a weak condition (e.g., slogp/min;;n;; = o(1)) using a similar

global analysis of the full random matrix 3 as shown in Raskutti et al. (2010). Instead

of using the condition sy/(logp)/min;,;n;; = o(1), we can use the following weak
condition

minng, > (12811 /m)*(s*logp),
‘77

where 1{ > v is a positive constant. This condition is also used in some existing studies

about random designs (Biithlmann and Van De Geer (2011); Zhou et al. (2009)).
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3.2 Heavy-tailed case

In this section, we consider the heavy-tailed case. Instead of assuming that the distri-
butions of the predictors and the response variable have exponential tails, we consider

the following moment condition.

A3) Suppose that max;<i<, B(X?) < Q?/48 and E(y*) < Q2, where Q; and Q, are
<j<p B(A; 1 2

two positive constants.

Condition (A3) assumes that the fourth moments of all predictors X;’s and the re-
sponse variable y are bounded. Under condition (A3), the tails of the distributions
of X;’s and y may not be exponentially bounded. In the literature on Lasso, most
studies consider the fixed design (Zhao and Yu (2006); Zou (2006); Meinshausen and
Biihlmann (2006)) and the noise is usually assumed to be Gaussian (Meinshausen and
Biihlmann (2006); Zhang et al. (2008)), or admits exponentially bounded tail (Bunea
et al. (2008); Meinshausen and Yu (2009)). In this study, we consider a random design
case and relax the distribution of X;’s and y to have finite fourth moments.

Next, we discuss the theoretical properties of the Huber’s M-estimators > and C.
Based on the convergence rates of |2 — 2|[mee and [|C' — C|lmaz, we will show the

convergence rate of || — 5.

Theorem 3. Under condition (A3), let H; = %\/njt/logp for each j,t €

{1,2,...,p}, if min;; n;; > 24logp, we have

log p
Nt p? ’

v | logp 2
P(HE_EHmaszl . )S_
ming ¢ 1 P

H}%XP(W — 0| > @1
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In addition, let H; = (Q1 + Q2)+/n;/logp for each j € {1,2,...,p}, we have

y lo 2
max P(I2; — ;] > 8(Q1 + Qo) [=F) < 5,
J
o log p 2
P(HC_CHmax 28(Q1+Q2) - ) < —.
rnlnj n] p

Remark 3. If we assume that (logp)/ min;, n;; = o(1), the condition min;;n; >
24logp is satisfied if the sample size min;; n;; is sufficiently large. Therefore, we have
12 = Sllnae = O(y/Togp)/mity 1) and [ = Cllas = Op(y/(log p)/ mim,; my).

This indicates that the Huber’s M-estimators for the heavy-tailed case acquire the

same convergence rate as the sample covariance estimates for the sub-Gaussian case.
However, as shown in the next theorem, if the distributions of the predictors X;’s and
the response variable y are not assumed to have exponentially bounded tails, the large
deviation bounds of & and C can be wider than the bounds of the Huber’s M-estimators

> and é, respectively.

Theorem 4. Suppose maxi<j<, BE(X}) < T and E(y*) < T, where T' > 0, £ > 1 are

two constants. Then we have

~ dy p do < dq p do
s [Py A _ > L
rr}atXP(\th o] > 5T njt) = o P([|% = Xlmas

, — 2T\ min; ny~ — p*h?’

where d; > 0, dy > 0, h € (1,¢) are some constants. Furthermore,

~ ds b da = ds p da
Plle: — el > =2 £ < P(|C = Cllpmaz > — - < ;
max (I¢; —¢j| > 57 \/ nj) = (Il [lmaz > o7 \/ min, nj) = peh—?

where d; > 0 and d4 > 0 are two constants.

Remark 4. Under the moment condition, Theorem 4 shows that |3 — 2|mee =

0,(y/p/ min;; nj;) and ||C' — C||ymaz = Op(y/p/ min; n;). According to the Proposition

6.2 in Catoni (2012), the bounds shown in Theorem 4 are actually tight. If the dimen-
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sion p is very large, the large deviation bounds of |3 — 2||mee and [|C' — C|maee can
be much larger than the bounds of [|X — 2|/mee and ||C' — C||pazs respectively. This
necessitates the usage of a robust estimator.

In the next theorem, based on the large deviation bounds of |3 — 2| and

|C' = C|lmaz, We show the convergence rate of || — £°|s.

Theorem 5. Under conditions (A2) and (A3), let 1 — a; = O(+/(log p)/ min; n;),

1 —ag = O(\/(logp)/minji njt), Hip = %\/njt/logp and H; = (Q1 + Q2)\/n;/ logp.
If s1/(logp)/min,, nj; = o(1) and let A = 2||C' — 26°|,naz, then we have |3 — 80|y =

Op(v/sA) = Op([|8°|l1/s(log p) / miny 1)

Remark 5.  Instead of using the condition sy/(logp)/min;;n;; = o(1), we can
assume that

minn;; > (128Q4/m)*(s* logp),
]7

where @)} > @ is a positive constant. Theorem 5 indicates that for the heavy-tailed

case, under (A3), the convergence rate of ||3—3°||, is also O,([18°]111/ (s log p)/ min; ; njy),
which is the same as the rate shown in Theorem 2 under the sub-Gaussian assumption.
However, as shown in our simulation study, if the response variable and the predictors
follow sub-Gaussian distributions, DISCOM using standard estimates 3 and C' gener-
ally has better finite sample performance than the method using robust estimates >
and C.

Remark 6. If we assume that p is fixed, for the sub-Gaussian case considered in
Section 3.1, we can show that |2 — X/mee = O,((min;, n5)~"2) and ||C — Cllmaee =
O,((min; n;)~'/2) according to Lemma 1 in Ravikumar et al. (2011) and a very similar
proof of Theorem 1. For the heavy-tailed case considered in Section 3.2, if we assume
that p is fixed, we can also show that |2 — ||,ae = Op((min;;nj,)~?) and ||C' —
Cllmaz = O,p((min;n;)~*/2) according to Theorem 5 in Fan et al. (2016) and a very
similar proof of Theorem 3. Then, using the same proof of Theorem 2, we can also

show that [|3 — 82 = Op(v/sA) = Op(v/5|C — £ |maz). Since |E = Z|lmee =
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O, ((min;; nj)"Y2), ||C = Cllmaz = Op((min;n;)~1/?), and p is fixed, we can further
show that ||3—3°||2 = O,(8°,,(min,,; n;)~'/?). Similarly, for the heavy-tailed case, we

max

can also show that |5 — 8°)|y = O, (8, (min;, n;,)~'/?). Therefore, the convergence
rate of the estimation error in the classical fixed p setting is faster than the rate in the

high dimensional setting where p grows to infinity.

3.3 Model selection consistency

In this section, we show that our proposed DISCOM method is model selection con-

sistent. The following condition is considered.

(A4) [|XesE7 |0 < 1 —mn, where n € (0,1) is a constant, X c; is the sub-matrix of
Y with row indices in the set J¢ and column indices in the set J, and X ;; is the

sub-matrix of X with both row and column indices in the set J.

Condition (A4) can be viewed as a population version of the strong irrepresentable
condition proposed in Zhao and Yu (2006). In the following Theorem 6 and Theorem
7, we will show that our proposed DISCOM method is model selection consistent for

the sub-Gaussian case and the heavy-tailed case, respectively.

Theorem 6. Under conditions (A1) and (A4), let 1 — ay = O(y/(log p)/ min; n;)
and 1 — ay = O(y/(log p)/ min,; n,). T [[(Z15) s - 1/ SBE — 0, and

ming ¢ nj¢

1 0 1 . s
+ Sﬁmax ng N O, A ||(EE)]J> H N O,
A min; ¢ 1 B

then there exists a solution 3 to (4) such that P(sign(8) = sign(°) — 1, as

minj; n;; — 00 and p — oo.

Remark 7. Note that the condition |[(2,;) ™ |oc+/(s?logp)/ min;; nj = o(1) is used
to guarantee that (a) ||(2,)""||s < Constant - ||(25) e and (b) [|Zes 87 oo <

1— 7 if |[2esE 55l < 1 — 7 for the general random design with a high probability,
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where 7 € (0,1) and n € (0,1) are two constants. For the fixed design, we do not
need this condition. For the special Gaussian random design, as shown in Wainwright
(2009), using some concentration inequalities about the normal distribution and the
fact that ¥ = XTX/n for the complete data, we can obtain model selection consis-
tency with n > Constant - slog(p — s). In our theoretical studies, since we consider
the general random design including both sub-Gaussian distributions and heavy-tailed

distributions, and 3 # XTX /n for the block-missing multi-modality data, we use the

condition [[(X/) e - 1/(s?logp)/ min;; njy = o(1) to guarantee that (a) and (b)
are satisified. Note that this condition was also used in some existing model selection
consistency studies for random designs (Jeng and Daye (2011); Datta et al. (2017)).

As shown in the proof of Theorem 6, to guarantee that (a) and (b) are satisfied,

instead of requiring ||(2,) ™ ||s-1/(s%log p)/ min;, njs = o(1), we can use the following

B s%logp n
E ! oo . < Y
1) e\ iy e = @)

where /| > vy is a positive constant.

weak condition

Theorem 7.  Under conditions (A3) and (A4), let H;; = % nj/logp, H; =

(@1 +Q2)y/n;/logp, 1 — a1 = O(y/(log p)/ min; n;), 1 — ay = O(y/(log p)/ minj s njy).
If [[(277) oo - v/ (s?log p)/ minj; nj; — 0, and

1 0 1 (Bt
+Sﬁmaz ng — 0, A ||( (L)]J) ||OO —>O,
A min; ¢ 1 0 in

then there exists a solution § to (4) such that P(sign(8) = sign(8°)) — 1, as

minj; n;; — 00 and p — oo.

Remark 8. Instead of requiring ||(X ;) |ls - v/(s?logp)/ min;; nj; = o(1), we can

use the following weak condition

N s2logp n
by Y. - . < )
N e\ iy o = @)
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where @)} > @, is a positive constant. The proof of Theorem 7 is very similar to the

proof of Theorem 6. We only show the proof of Theorem 7 briefly in the Appendix.

4 Simulation Study

In this section, we perform numerical studies using simulated examples. We use DIS-
COM and DISCOM-Huber to denote our proposed methods using sample covariance
estimates and Huber’s M-estimates, respectively. The proposed methods using the
fast tuning parameter selection method shown in Section 2.4 are called Fast-DISCOM
and Fast-DISCOM-Huber, respectively. For each example, we compare our proposed
methods with 1) Lasso: Lasso method which only uses the samples with complete ob-
servations; 2) Imputed-Lasso: Lasso method which uses all samples with missing data
imputed by the Soft-thresholded SVD method (Mazumder et al. (2010)); 3) Ridge:
Ridge regression method which only uses the samples with complete observations; 4)
Imputed-Ridge: Ridge regression method which uses all samples with missing data
imputed by the Soft-thresholded SVD method; and 5) IMSF (Yuan et al. (2012)):
the IMSF method which uses all available data without imputing the missing data.
We study four simulated examples, where the data are generated from the Gaussian
distribution or some heavy-tailed distributions.

For each example, the data are generated from three modalities and each modality
has 100 predictors. The training data set is composed of 100 samples with complete
observations, 100 samples with observations from the first and the second modalities,
100 samples with observations from the first and the third modalities, and 100 samples
with observations only from the first modality. The tuning data set contains 200
samples with complete observations and the testing data set contains 400 samples with
complete observations. All methods use the tuning data set to choose the best tuning
parameters. For the four simulated examples, samples with complete observations are

generated from the linear model as follows.
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Table 1: Performance comparison for the Gaussian case.

Methods Example 1 Example 2
IA— Bz MSE FPR FNR TIME ||[f—p3°z MSE FPR FNR TIME
y 0.655 1431 0.069 0015 0016 0920 1.988 0.133 0.002 0.019
asso (0.026)  (0.045) (0.004) (0.009) (0.000)  (0.025) (0.059) (0.007) (0.002) (0.004)
Imputed-  0.674 1338 0.076 0.004 0.802  0.690 1.546 0.122 0.000 1.099
Lasso (0.017)  (0.018) (0.007) (0.004) (0.006)  (0.013) (0.030) (0.007) (0.000) (0.008)
Ridec 1270 3962 1.000 0.000 0.025  1.662 5262 1.000 0.000 0.025
8 (0.004) (0.062) (0.000) (0.000) (0.000)  (0.006) (0.066) (0.000) (0.000) (0.000)
Imputed-  1.094 2304 1.000 0.000 0.780  1.332  3.130 1.000 0.000 1.093
Ridge (0.013)  (0.035) (0.000) (0.000) (0.006)  (0.009) (0.048) (0.000) (0.000) (0.008)
IMSE 0585  1.358 0.173 0.000 5554  0.777  1.730 0.291 0.000 5.900
(0.020)  (0.037) (0.009) (0.000) (0.068)  (0.016) (0.040) (0.012) (0.000) (0.075)
piscoy 046 1133 0.025 0000 13552 0600 1378 0.074 0.000 12.391
(0.013)  (0.016) (0.003) (0.000) (0.078)  (0.020) (0.033) (0.007) (0.000) (0.064)
DISCOM- 0434  1.145 0.026 0.000 28.618  0.605 1380 0.076 0.000 25.907
Huber (0.013)  (0.016) (0.003) (0.000) (0.886)  (0.021) (0.035) (0.008) (0.000) 0.122
Fast- 0465  1.160 0.039 0.000 3.600  0.641  1.438 0.109 0.000 3.241
DISCOM  (0.015) (0.016) (0.005) (0.000) (0.027)  (0.017) (0.033) (0.006) (0.000) (0.029)
Fast- 0481  1.173 0.036 0.000 16.802  0.655  1.457 0.100 0.000 16.767
DISCOM-  (0.015) (0.016) (0.004) (0.000) (0.081)  (0.020) (0.037) (0.007) (0.000) (0.096)
Huber

Example 1:

[Note that the values in the parentheses are the standard errors of the measures.|

The predictors (z;1, x;2, . .

true coefficient vector

The true model is Y = X3° + €, where the errors €, €, . ..

Example 2:

'7xip)T ~ N(0,%) with Ojt = 0.6, The

8" =(0.5,0.5,0.5,0,---,0,0.5,0.5,0.5,0,- -+ ,0,0.5,0.5,0.5,0,- - - , 0).
—— ——

The predictors (x;1, T2, . .

97

97

——
97

Len A N(0,1).

i) ~ N(0,X), where X is a block diag-

onal matrix with p/5 blocks. Each block is a 5 x 5 square matrix with ones on
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the main diagonal and 0.15 elsewhere. The true coefficient vector

———
5 95 5 95 5 95

B’ =(0.5,--+,0.5,0,---,0,0.5,--- ,0.5,0,---,0,0.5,--- ,0.5,0,--- ,0).
—_—— —— —— Y— —

The true model is Y = X3° + €, where the errors €1, €, . . ., €, Sy N(0,1).

Example 3: The predictors (z;1, o, - . ., Tip)’ ~ 15(0,0.6%), where X is the same as
the covariance matrix shown in Example 1. For this multivariate ¢-distribution
with the degrees of freedom 5, the variances of all predictors are equal to 1. The
true coefficient vector 3° is the same as the vector shown in Example 1. The
true model is Y = X% + €, where the errors €, €, ..., €, follow the Student’s

t-distribution with degrees of freedom 10.

Example 4: The predictors (z;1, . .., %)’ ~ the mixture distribution p- N (0, 10I)+
(1 —p) - N(0,0.5I), where p = 0.03 and I is a p X p identity matrix. The true
coefficient vector 3° is the same as the vector shown in Example 1. The true
model is Y = X 3%+€, where the errors €;, €, . . . , €, follow the Skew-t distribution

(Azzalini (2013)) with degrees of freedom 4.

For each example, we repeated the simulation 30 times. To evaluate different meth-
ods, we use the following five measures: (5 distance |3 — 5°2, mean squared error
(MSE), false positive rate (FPR), false negative rate (FNR), and the elapsed time (in
seconds) using R. Tables 1 and 2 show the performance comparison of different meth-
ods in the Gaussian case and the heavy-tailed case, respectively. The results indicate
that our proposed methods deliver the best performance on all these four examples.
For the Gaussian case shown in Table 1, DISCOM delivers better performance than the
DISCOM-Huber method. For the heavy-tailed case shown in Table 2, DISCOM-Huber
performs better. These numerical results are consistent with our theoretical studies
shown in Section 3.

In addition, as shown in Tables 1 and 2, for the Lasso and ridge regression, using
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Table 2: Performance comparison for the heavy-tailed case.

Example 3 Example 4
Methods
- 3% MSE FPR FNR TIME [3-p"|c MSE FPR FNR TIME
Lasso 0.751 1.809 0.070 0.056 0.021 1.305 3.331 0.064 0.419 0.020
(0.036) (0.055) (0.006) (0.017) (0.004) (0.029) (0.087) (0.007) (0.054) (0.005)
Imputed- 0.751 1.669 0.071 0.026 0.687 0.930 2.699 0.147 0.033 0.530
Lasso (0.023) (0.039) (0.008) (0.010) (0.010) (0.030) (0.073) (0.014) (0.016) (0.013)
Ridee 1.294 4.454 1.000 0.000 0.028 1.420 3.548 1.000 0.000 0.039
& (0.004) (0.114) (0.000) (0.000) (0.003) (0.006) (0.069) (0.000) (0.000) (0.006)
Imputed- 1.143 2.731 1.000 0.000 0.657 1.326 3.342 1.000 0.000 0.527
Ridge (0.013) (0.064) (0.000) (0.000) (0.010) (0.011) (0.080) (0.000) (0.000) (0.011)
IMSF 0.622 1.637 0.173 0.004 6.569 1.048 2.878 0.189 0.052 6.989
(0.025) (0.041) (0.013) (0.004) (0.297) (0.028) (0.083) (0.012) (0.017) (0.188)
DISCOM 0.579 1.560 0.037 0.004 12.086 0.871 2.590 0.193 0.011 12.362
(0.022) (0.038) (0.004) (0.004) (0.134) (0.025) (0.067) (0.017) (0.006) (0.153)
DISCOM- 0.507 1.452 0.027 0.000 26.073 0.780 2.468 0.137 0.004 26.925
Huber (0.017)  (0.025) (0.003) (0.000) (0.104) (0.021) (0.054) (0.012) (0.004) (0.228)
Fast- 0.601 1.604 0.040 0.004 3.317 1.151 3.028 0.207 0.085 3.626
DISCOM (0.022) (0.047) (0.004) (0.004) (0.041) (0.025) (0.079) (0.019) (0.033) (0.050)
Fast- 0.561 1.496 0.035 0.000 17.835 0.786 2.482 0.137 0.000 17.042
DISCOM-  (0.021) (0.031) (0.004) (0.000) (0.079) (0.022) (0.055) (0.013) (0.000) (0.134)
Huber

[Note that the values in the parentheses are the standard errors of the measures.|

the imputed data can improve performance in most cases.

However, as shown in

Table 1, the Lasso method using the imputed data may deliver worse estimate of

the true coefficient vector 3°, possibly due to the block-missing pattern. Compared

with the Lasso and Ridge regression methods using the imputed data set or only the

samples with complete observations, the IMSF method delivers better estimation and

prediction. On the other hand, IMSF method has high false positive rates for all four

simulated examples. The comparison between IMSF and our proposed DISCOM and

DISCOM-Huber shows that our proposed methods could use all available data more

effectively and therefore acquires better performance.

For each simulation of the four examples, our proposed Fast-DISCOM method
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using the fast tuning parameter selection method uses only 4 seconds while our original
DISCOM method uses about 13 seconds. The Fast-DISCOM method is also faster than
the IMSF method which uses about 7 seconds for each simulation. On the other hand,
we can observe that the computing times of our original DISCOM and DISCOM-
Huber methods are still acceptable. For the examples 1 and 2 generated from the
Gaussian distribution, although the Fast-DISCOM method does not perform as well
as the DISCOM method, it has better estimation, prediction, and model selection
performance than the Lasso, ridge regression and IMSF methods. Similarly, for the
examples 3 and 4 generated from the heavy-tailed distributions, although the Fast-
DISCOM-Huber method does not perform as well as the DISCOM-Huber method, it
also has better performance than the Lasso, ridge regression and IMSF methods. These
simulation results indicate that our proposed new tuning parameter selection method
accelerates the computational speed without sacrificing the estimation, prediction, and

model selection performance too much.

5 Real Data Analysis

In this section, we show the analysis of the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) data as an application example. The main goal of ADNI is to test whether
serial magnetic resonance imaging (MRI), positron emission tomography (PET), and
some other biological markers and neuropsychological assessments can be combined
to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s
disease (AD). In our study, we extracted features from three modalities: structural
MRI, fluorodeoxyglucose PET, and CerebroSpinal Fluid (CSF). Imaging preprocessing
was performed for MRI and PET images. For the MRI, after some correction, spatial
segmentation, and registration steps, we obtained the subject lableled image based on
the Jacob template (Kabani et al. (1998)) with 93 manually labeled regions of interest
(ROI). For each of the 93 ROIs in the labeled MRI, we computed the volume of gray
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matter as a feature. For each PET image, we first aligned the PET image to its
respective MRI using affine registration. Then, we calculated the average intensity of
every ROI in the PET image as a feature. Therefore, for each ROI, we have one MRI
feature and one PET feature. For the CSF modality, five biomarkers were used in this
study, namely amyloid g (Ap42), CSF total tau (t-tau), tau hyperphosphorylated at
threonine 181 (p-tau), and two tau ratios with respective to A542 (i.e., t-tau/AF42
and p-tau/Ap42).

After data processing, we got 93 features from MRI, 93 features from PET, and
5 features from CSF. There are 805 subjects in total, including 1) 199 subjects with
complete MRI, PET, and CSF features, 2) 197 subjects with only MRI and PET
features, 3) 201 subjects with only MRI and CSF features, and 4) 208 subjects with
only MRI features. The response variable used in our study is the Mini Mental State
Examination (MMSE) score. As a brief 30-point questionnaire test, MMSE can be used
to examine a patient’s arithmetic, memory and orientation (Folstein et al. (1975)). It is
very useful to help evaluate the stage of AD pathology and predict future progression.
We will use all available data from MRI, PET, and CSF to predict the MMSE score.

In our analysis, we divided the data into three parts: training data set, tuning data
set, and testing data set. The training data set consists of all subjects with incom-
plete observations and 40 randomly selected subjects with complete MRI, PET, and
CSF features. The tuning data set consists of another 40 randomly selected subjects
(different from the training data set) with complete observations. The testing data set
contains the other 119 subjects with complete observations. The tuning data set was
used to choose the best tuning parameters for all methods and the testing data set
was used to evaluate different methods. We used all methods shown in the simulation
study to predict the MMSE score. For each method, the analysis was repeated 30
times using different partitions of the data.

The results in Table 3 show that our proposed Fast-DISCOM-Huber method ac-
quires the best prediction performance. All our proposed DISCOM methods deliver
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Table 3: Performance comparison for the ADNI data.

Methods MSE Number of Features TIME
Mean SE Mean SE Mean SE

Lasso 5.711  0.341 11.733 1.638 0.009  0.002
Imputed-Lasso 4.711  0.082 86.700 8.559 0.559  0.017
Ridge 5.273  0.204 191.000 0.000 0.010  0.000
Imputed-Ridge 4.478  0.055 191.000 0.000 0.177  0.006
IMSF 4.630  0.079 28.400 3.025 2.960  0.073
DISCOM 4.285  0.068 27.933 2.261 4.675  0.028
DISCOM-Huber 4.161  0.059 23.100 0.846 10.348  0.025
Fast-DISCOM 4.146  0.055 28.100 0.809 1.565  0.007
Fast-DISCOM-Huber  4.123  0.069 25.833 1.311 8.012  0.019

better performance than the Lasso, Ridge, and IMSF methods. The IMSF method has
better prediction performance than the Lasso and ridge regression using only samples
with complete observations. However, IMSF does not perform as well as the ridge
regression using the imputed data. Regarding the model selection, since the number of
variables selected by the Lasso is at most the sample size (Zou and Hastie (2005)), as
shown in Table 3, the Lasso method using the imputed data selected many more fea-
tures than the method using only samples with complete observations. Both IMSF and
our proposed methods could deliver a model with relatively small numbers of features.

Figure 2 shows the selection frequency of all the 191 features. The selection fre-
quency of each feature is defined as the times of being selected in the 30 times replica-
tions. As shown in Figure 2, for our proposed DISCOM methods, some features were
always selected and many features were never selected in the 30 times replications. This
means that our method could deliver relatively robust performance on model selection.
However, for some other methods such as the Imputed-Lasso method, they selected
very different features in different replications and therefore many features have posi-

tive and low selection frequencies. For the Imputed-Lasso method, one possible reason
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Figure 2: Selection frequency of 191 features for the prediction of MMSE score.
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for the unstable performance on model selection is due to the randomness involved in
the imputation of a lot of block-missing data.

To further understand our results, since each MRI feature and each PET feature
are corresponding to one ROI, we can examine whether the selected features are mean-
ingful by studying their corresponding brain regions. In our 30 times of experiments
using different random splits, there are 9 MRI features and 2 PET features always
selected by our proposed DISCOM-Huber and Fast-DISCOM-Huber methods. Figure
3 shows the multi-slice view of the brain regions (regions with color) corresponding to
these 11 features. Among these 11 brain regions, some regions such as hippocampal
formation right (30-th region), uncus left (46-th region), middle temporal gyrus left
(48-th region), hippocampus formation left (69-th region) and amygdale right (83-th
region), are known to be highly correlated with AD and MCI by many studies using
group comparison methods (Misra et al. (2009); Zhang and Shen (2012)). It would
be interesting to study whether the other six always selected brain regions are truly
related with AD by some scientific experiments.

In addition, as shown in Table 3, all our proposed DISCOM methods solve this real
data analysis problem with 191 features within 11 seconds. This indicates that the
time cost of our methods is not very expensive. In summary, our real data analysis

indicates that our proposed method can solve practical problems well.

6 Conclusion

In this paper, we propose a new two-step procedure to find the optimal linear prediction
of a continuous response variable using the block-missing multi-modality predictors. In
the first step, we estimate the covariance matrix of the predictors using a linear combi-
nation of the identity matrix, and the estimates of the intra-modality covariance matrix
and the cross-modality covariance matrix. The proposed estimator of the covariance

matrix can be positive semi-definite and more accurate than the sample covariance
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Figure 3: The multi-slice view of the brain regions always selected by DISCOM-Huber
and Fast-DISCOM-Huber.

matrix. We also use all available information to estimate the cross covariance vector
between the predictors and the response variable. Robust estimate based on the Hu-
ber’s M-estimate is also proposed for the heavy-tailed case. In the second step, based
on the estimated covariance matrix and the cross-covariance vector, a modified Lasso
estimator is used to deliver a sparse estimate of the coefficients in the optimal linear
prediction. The effectiveness of the proposed method is demonstrated by both theoret-
ical and numerical studies. The comparison between our proposed method and several
existing ones also indicates that our method has promising performance on estimation,

prediction, and model selection for the block-missing multi-modality data.
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