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Abstract

In modern scientific research, data are often collected from multiple modali-

ties. Since different modalities could provide complementary information, statis-

tical prediction methods using multi-modality data could deliver better predic-

tion performance than using single modality data. However, one special challenge

for using multi-modality data is related to block-missing data. In practice, due

to dropouts or the high cost of measures, the observations of a certain modal-

ity can be missing completely for some subjects. In this paper, we propose a

new DIrect Sparse regression procedure using COvariance from Multi-modality
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data (DISCOM). Our proposed DISCOM method includes two steps to find the

optimal linear prediction of a continuous response variable using block-missing

multi-modality predictors. In the first step, rather than deleting or imputing

missing data, we make use of all available information to estimate the covariance

matrix of the predictors and the cross-covariance vector between the predic-

tors and the response variable. The proposed new estimate of the covariance

matrix is a linear combination of the identity matrix, the estimates of the intra-

modality covariance matrix and the cross-modality covariance matrix. Flexible

estimates for both the sub-Gaussian and heavy-tailed cases are considered. In

the second step, based on the estimated covariance matrix and the estimated

cross-covariance vector, an extended Lasso-type estimator is used to deliver a

sparse estimate of the coefficients in the optimal linear prediction. The num-

ber of samples that are effectively used by DISCOM is the minimum number

of samples with available observations from two modalities, which can be much

larger than the number of samples with complete observations from all modal-

ities. The effectiveness of the proposed method is demonstrated by theoretical

studies, simulated examples, and a real application from the Alzheimer’s Disease

Neuroimaging Initiative. The comparison between DISCOM and some existing

methods also indicates the advantages of our proposed method.

Keywords: Block-missing; Huber’s M-estimate; Lasso; Multi-modality; Predic-

tion; Sparse regression.
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1 Introduction

With the advance of modern scientific research, complex data are often collected from

multiple modalities (sources or types). In neuroscience, different brain images such as

magnetic resonance imaging (MRI) and positron emission tomography (PET) are used

to study the brain structure and function. In biology, data from different modalities

such as gene expressions and copy numbers are collected to understand the complex

mechanism of cancers. Since different modalities could provide complementary infor-

mation, statistical prediction methods using multi-modality data could deliver better

prediction performance than using single modality data. However, one special chal-

lenge for using multi-modality data is related to missing data, which is unavoidable due

to some reasons such as the high cost of measures or the patients’ dropout. Generally,

the observations of a certain modality can be missing completely, i.e., a complete block

of the data is missing. One example of block-missing multi-modality data is shown in

Figure 1. In this example, there are n samples (each row represents one sample), three

modalities and one response variable. The blank regions with question mark indicate

missing data. As shown in Figure 1, for many samples, the observations from some

modality are missing completely. The number of samples with complete observations

is much smaller than the sample size n.

To predict the response variable using the high dimensional block-missing multi-

modality data, a common strategy is to use the Lasso (Tibshirani (1996)) or some

other penalized regression methods (e.g., Fan and Li (2001); Zou and Hastie (2005);

Zhang (2010)) only for the data with complete observations. However, this strategy

can greatly reduce the sample size and waste a lot of useful information in the samples

with missing data. Another strategy is to impute the missing data first by some exist-

ing imputation methods (Hastie et al. (1999); Cai et al. (2010)). These methods can be

effective when the positions of the missing data are random, but they can be unstable

when a complete block of the data is missing. Recently, motivated by applications in

genomic data integration, Cai et al. (2016) proposed a new framework of structured
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Figure 1: An illustration of block-missing multi-modality data with three modalities.

matrix completion to impute block-missing data. However, they only consider the case

when the data are collected from two modalities. In the literature, rather than delet-

ing or imputing missing data, some studies focus on using all available information.

For example, Yuan et al. (2012) proposed the Incomplete Multi-Source Feature learn-

ing (IMSF) method. The IMSF method performs regression on block-missing multi-

modality data without imputing missing data. It formulates the prediction problem as

a multi-task learning problem by first decomposing the prediction problem into a set

of regression tasks, one for each combination of available modalities (e.g., modalities

1, 2 and 3; modalities 1 and 2; modalities 1 and 3; modalities 2 and 3 for the example

shown in Figure 1), and then building regression models for all tasks simultaneously.

The important assumption in the IMSF method is that all models involving a specific

modality share the common set of predictors for that particular modality. However,

when different modalities are highly correlated, this assumption could be too strong. In

that case, for some modalities, it can be more reasonable to choose different predictor

subsets for different involved tasks. Therefore, it is desirable to develop flexible and

efficient prediction methods applicable to block-missing multi-modality data.

In this paper, we propose a new DIrect Sparse regression procedure using COvari-

ance from Multi-modality data (DISCOM). For each sample, if some modality has
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missing entries, all the observations from that modality are missing simultaneously.

Regardless of the underlying true model, we aim to find the optimal linear prediction

for the response variable using the block-missing multi-modality data without imputing

the missing data. Our method includes two steps. In the first step, we use all available

information to estimate the covariance matrix of the predictors and the cross-covariance

vector between the predictors and the response variable. The proposed new estimate

of the covariance matrix is a linear combination of the identity matrix, the estimates of

the intra-modality covariance matrix and the cross-modality covariance matrix. Flex-

ible estimates for both the sub-Gaussian and heavy-tailed cases are considered. Many

existing high dimensional covariance estimation methods such as Bickel and Levina

(2008); Cai and Liu (2011); Rothman (2012); Lounici et al. (2014); Cai and Zhang

(2016) can be used in this step. In the second step, based on the estimated covari-

ance matrix and the estimated cross-covariance vector, we use an extended Lasso-type

estimator to estimate the coefficients in the optimal linear prediction.

Note that there are some existing sparse regression methods in the literature using

the estimation of the covariance matrix. For example, Jeng and Daye (2011) pro-

posed the covariance-thresholded Lasso for complete data to improve variable selection

by utilizing the sparsity of the covariance matrix. Loh and Wainwright (2012) and

Datta et al. (2017) proposed new estimators for the high dimensional regression with

corrupted predictors, where all entries of the design matrix are assumed to be noisy

or missing randomly and independently. The missing data problem they considered

can be viewed as a special case of the block-missing multi-modality data where each

modality has only one predictor. To the best of our knowledge, there are no existing

methods using a similar idea to DISCOM tailored for high-dimensional block-missing

multi-modality data. To investigate DISCOM, we have carefully studied its theoret-

ical and numerical performance. For both the sub-Gaussian and heavy-tailed cases,

we establish the consistency of estimation and model selection for the optimal linear

predictor regardless of the underlying true model. Our theoretical studies indicate
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that DISCOM could make use of all available information of the block-missing multi-

modality data effectively. The number of samples that are effectively used by DISCOM

is the minimum number of samples with available observations from two modalities,

which can be much larger than the number of samples with complete observations

from all modalities. The comparison between DISCOM and some existing methods

using simulated data and the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

data (www.loni.ucla.edu/ADNI) further demonstrate the effectiveness of our proposed

method.

The rest of this paper is organized as follows. In Section 2, we motivate and intro-

duce our method. In Section 3, we show some theoretical results about the estimates

of the covariance matrix, the cross-covariance vector and the coefficients in the optimal

linear prediction for both the sub-Gaussian and heavy-tailed cases. The results about

the model selection consistency are also provided. In Sections 4 and 5, we demonstrate

the performance of our method on the simulated data and the ADNI dataset. We

conclude this paper in Section 6 and provide all technical proofs in the Appendix.

2 Motivation and Methodology

We first show the motivation and the outline of our proposed method in Section 2.1.

In Section 2.2, we introduce the proposed estimate of the covariance matrix of the

predictors, and the estimate of the cross-covariance vector between the predictors and

the response variable using the block-missing multi-modality data. In Section 2.3, we

introduce the Huber’s M-estimate for the heavy-tailed case. In Section 2.4, we provide

the estimation procedure for the coefficients in the optimal linear prediction.

The following notation will be used in this paper. For a matrix A ∈ Rm×n, we

use ‖A‖F , ‖A‖max, and ‖A‖∞ to denote the Frobenius norm
√∑

ij a
2
ij, the max norm

maxij |aij|, and the infinity norm maxi
∑n

j=1 |aij|, respectively. For a vector b ∈ Rm×1,

we use ‖b‖2, ‖b‖max, and ‖b‖1 to denote the `2 norm
√∑

i b
2
i , the max norm maxi |bi|,
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and the `1 norm
∑n

i=1 |bi|, respectively. In addition, we use sign(·) to denote the

function that maps a positive entry to 1, a negative entry to −1, and 0 to 0.

2.1 Motivation

Suppose the predictors are collected fromK modalities. For k ∈ {1, 2, . . . , K}, there are

pk predictors from the k-th modality. Let n denote the sample size, Y = (y1, y2, . . . , yn)T

denote the n × 1 response vector centered to have mean 0, and X(k) ∈ Rn×pk de-

note the design matrix of the pk predictors from the k-th modality. In addition, let

X = (X(1),X(2), . . . ,X(K)) = (x1, x2, . . . , xn)T denote the n × p design matrix, where

p = p1 + p2 + · · ·+ pK . We assume that xi’s are i.i.d. generated from some multivari-

ate distribution with mean 0p×1 and covariance matrix Σ. We use C = Cov(xi, yi) =

(c1, c2, . . . , cp)
T ∈ Rp to denote the cross-covariance vector between xi and yi.

To predict the response variable y using all predictors X1, X2, . . . , Xp, we consider

the optimal linear predictor ŷ =
∑p

j=1Xjβ
0
j , where the coefficient vector

β0 = (β0
1 , β

0
2 , . . . , β

0
p)
T = arg min

β
E[(y −

p∑
j=1

Xjβj)
2] = Σ−1C. (1)

The above coefficient vector β0 can be viewed as the solution to the following opti-

mization problem

min
β

1

2
βTΣβ − CTβ.

If we know the true covariance matrix Σ and the true cross-covariance vector C, and

assume that β0 is sparse, we can estimate β0 by solving the following optimization

problem

min
β

1

2
βTΣβ − CTβ + λ‖β‖1, (2)
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where λ is a nonnegative tuning parameter.

Motivated by (2), for the high dimensional block-missing multi-modality data, we

propose a new method with two steps. In the first step, we use all available observations

to estimate the covariance matrix Σ and the cross-covariance vector C. The estimates

of Σ and C are denoted as Σ̂ and Ĉ, respectively. This step is very important to make

full use of the block-missing multi-modality data. In the second step, we estimate β0

by solving the following optimization problem:

min
β

1

2
βT Σ̂β − ĈTβ + λ‖β‖1. (3)

2.2 Standard estimates of Σ and C

Considering block-missing multi-modality data, for each sample, if a certain modality

has missing entries, all the observations from that modality are missing. For each

predictor j, define Sj = {i : xij is not missing}. For each pair of predictors j and t,

define Sjt = {i : xij and xit are not missing}. The number of elements in Sj and Sjt

are denoted as nj and njt, respectively.

For the missing data mechanism, we only need to assume that for each predictor, the

first sample moment and the second sample moment using all available observations are

unbiased estimators of the first theoretical moment and the second theoretical moment

of the distribution, respectively. This assumption is satisfied if we assume that each

modality is missing completely at random. However, different predictors in the same

modality are missing simultaneously. Under this assumption, for each j ∈ {1, 2, . . . , p},

the available observations of the j-th predictor are centered to have mean 0. A natural

initial unbiased estimate of Σ using all available data is the sample covariance matrix

Σ̃ = (σ̃jt)j,t=1,2,...,p, where σ̃jt =
1

njt

∑
i∈Sjt

xijxit.

For the block-missing multi-modality data, the above initial estimate Σ̃ may have
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negative eigenvalues due to the unequal sample sizes njt’s. Therefore, it is not a good

estimate of the covariance matrix Σ and not suitable to be used in (3) directly. It is

important to find an estimator that is both positive semi-definite and more accurate

than the initial estimate Σ̃.

According to the partition of the predictors into K modalities, the initial estimate

of the covariance matrix Σ̃ can be partitioned into K2 blocks, denoted by Σ̃jt’s, where

j, t ∈ {1, 2, . . . , p} and Σ̃jt is a pj × pt matrix. We denote

Σ̃I =


Σ̃11

Σ̃22

. . .

Σ̃KK

 , Σ̃C =


0 Σ̃12 . . . Σ̃1K

Σ̃21 0 . . . Σ̃2K

...
... . . .

...

Σ̃K1 Σ̃K2 . . . 0

 ,

where Σ̃I is called the intra-modality sample covariance matrix which is a p× p block-

diagonal matrix containing K main diagonal blocks of Σ̃, and Σ̃C = Σ̃− Σ̃I is called

the cross-modality sample covariance matrix containing all the off-diagonal blocks of

Σ̃. We also let ΣI and ΣC denote the true intra-modality covariance matrix and cross-

modality covariance matrix, respectively. As shown in Figure 1, since the observations

of some modalities are missing completely for many samples, there are more available

samples to estimate the intra-modality covariance matrix ΣI than the cross-modality

covariance matrix ΣC . Intuitively, it is relatively easier to estimate ΣI than ΣC . In

view of this characteristic of the block-missing multi-modality data and the possible

negative eigenvalues of Σ̃, we propose to use the following estimator

Σ̂ = α1Σ̃I + α2Σ̃C + α3Ip,

where α1, α2 and α3 are three nonrandom weights, and Ip is a p × p identity matrix.

Considering all possible linear combinations, we can find the optimal linear combination

Σ̃∗ = α∗1Σ̃I+α
∗
2Σ̃C+α∗3Ip whose expected quadratic loss E[‖Σ̃∗−Σ‖2F ] is the minimum.
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The optimal weights α∗1, α
∗
2 and α∗3 are shown in the following Proposition 1. As a

remark, Proposition 1 and all the theoretical analysis in Section 3 are conditional on

the given missing pattern of different modalities.

Proposition 1. Consider the following optimization problem:

min
α1,α2,α3

E[‖Σ̂−Σ‖2F ] subject to Σ̂ = α1Σ̃I + α2Σ̃C + α3Ip,

where the weights α1, α2 and α3 are nonrandom. Denote γ∗ = tr(Σ)/p, δ2I = E[‖Σ̃I −

ΣI‖2F ], δ2C = E[‖Σ̃C −ΣC‖2F ], and θ2 = ‖γ∗Ip −ΣI‖2F . The optimal weights are

α∗1 =
θ2

θ2 + δ2I
∈ [0, 1], α∗2 =

‖ΣC‖2F
‖ΣC‖2F + δ2C

∈ [0, 1], α∗3 = γ∗(1− α∗1).

In addition, we have

E[‖Σ̃∗ −Σ‖2F ] =
δ2Iθ

2

δ2I + θ2
+

δ2C‖ΣC‖2F
δ2C + ‖ΣC‖2F

≤ δ2I + δ2C = E[‖Σ̃−Σ‖2F ].

Proposition 1 shows that Σ̃∗ is more accurate than Σ̃. The relative improvement

in the expected quadratic loss over the sample covariance matrix is equal to

E[‖Σ̃−Σ‖2F ]− E[‖Σ̃∗ −Σ‖2F ]

E[‖Σ̃−Σ‖2F ]
=

δ2I
δ2I + δ2C

· (1− α∗1) +
δ2C

δ2I + δ2C
· (1− α∗2).

Therefore, if Σ̃I is relatively accurate (δ2I is small), the optimal weight α∗1 = θ2

θ2+δ2I

should be large and the percentage of the relative improvement tends to be small. We

can also make the same conclusions about Σ̃C . For the block-missing multi-modality

data, due to the unequal sample sizes, the initial estimate Σ̃I can be relatively accurate

while the estimate Σ̃C is relatively inaccurate. It’s reasonable to use different weights

for Σ̃I and Σ̃C . As a remark, Proposition 1 can be viewed as a generalization of

Theorem 2.1 shown in Ledoit and Wolf (2004), where they studied the optimal linear

combination of the sample covariance matrix and the identity matrix to estimate the
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covariance matrix for the complete data.

Regarding the cross-covariance vector C, we can use the following estimate

C̃ = (c̃1, c̃2, · · · , c̃p)T , where c̃j =
1

nj

∑
i∈Sj

yixij.

Note that we use all available information to estimate Σ and C. The theoretical

properties of Σ̃ and C̃ will be discussed in Section 3.

2.3 Robust estimates of Σ and C

When the predictors and the response variable follow a sub-Gaussian distribution with

an exponential tail, Σ̃∗ and C̃ introduced in Section 2.2 generally perform well. How-

ever, when the distributions of the predictors and the response variable are heavy-tailed,

Σ̃∗ and C̃ may have poor performance, and therefore some robust estimates of Σ and

C are required.

In this section, we introduce robust estimates of Σ and C based on the Huber’s

M-estimator (Huber et al. (1964)). In general, suppose Z1, Z2, . . . , Zn are i.i.d. copies

of a random variable Z with mean µ. The Huber’s M-estimator of µ is defined as the

solution to the following equation

n∑
i=1

ψH(Zi − µ) = 0,

where ψH(·) is the Huber function which is given by

ψH(z) =

z if |z| ≤ H,

H · sign(z) otherwise.

Using the Huber’s M-estimator, for the block-missing multi-modality data, we can
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construct a robust initial estimate of Σ denoted by

Σ̆ = (σ̆jt)j,t=1,2,...,p, where σ̆jt = the solution to
∑
i∈Sjt

ψHjt
(xijxit − µ) = 0.

In general, the parameters Hjt used in the Huber function can be chosen to be 1.345

in order to guarantee 95% efficiency relative to the sample mean if the data generating

distribution is Gaussian (Huber et al. (1964)). However, for the block-missing multi-

modality data, considering different numbers of samples available to estimate different

entries of Σ, we propose to use different values of H flexibly. The choice of Hjt

will be discussed in Section 3. Based on the robust initial estimate Σ̆, we can use

a similar idea introduced in Section 2.2 to find the optimal linear combination Σ̆∗ =

α∗1Σ̆I + α∗2Σ̆C + α∗3Ip whose expected quadratic loss E[‖Σ̆∗ − Σ‖2F ] is the minimum.

Similarly, we can use the Huber’s M-estimator to deliver a robust estimate of C which

is defined as

C̆ = (c̆1, c̆2, · · · , c̆p)T , where c̆j = the solution to
∑
i∈Sj

ψHj
(xijyi − µ) = 0.

Here we also propose to use different values of H when estimating different cj’s. The

choice of Hj will be discussed in Section 3. The theoretical properties of Σ̆ and C̆ will

be also shown in that section.

2.4 Estimate of β0 in the optimal linear prediction

After getting an initial estimate of Σ and C, e.g., Σ̃ and C̃ (or Σ̆ and C̆), our proposed

DISCOM method estimates β0 by solving the following optimization problem:

min
β

1

2
βT [α1Σ̃I + α2Σ̃C + (1− α1)

tr(Σ̃)

p
Ip]β − C̃Tβ + λ‖β‖1, (4)
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where α1 ∈ [0, 1], α2 ∈ [0, 1] are two weights and tr(Σ̃)/p is used to estimate γ∗.

In practice, both α1 ∈ [0, 1], α2 ∈ [0, 1], and λ can be chosen by cross validation

or an additional tuning dataset. To guarantee that the estimated covariance matrix

Σ̂ = α1Σ̃I+α2Σ̃C+(1−α1)
tr(Σ̃)
p

Ip is positive semi-definite, we need to choose reasonable

α1 and α2 from the set {(α1, α2) : α1 ∈ [0, 1], α2 ∈ [0, 1], and λmin(Σ̂) ≥ 0}, where

λmin(Σ̂) is the smallest eigenvalue of Σ̂.

Besides the above tuning parameter selection method that searches for the best

values of three parameters, we can use an efficient tuning method incorporating our

theoretical results in Section 3. Our theoretical studies show that the tuning pa-

rameters α1 and α2 should satisfy the conditions 1 − α1 = O(
√

(log p)/minj nj) and

1 − α2 = O(
√

(log p)/minj,t njt), respectively. Denote m1 =
√

(log p)/minj nj and

m2 =
√

(log p)/minj,t njt. We can choose α1 = 1 − k0m1 and α2 = 1 − k0m2, where

k0 ∈ [kmin, kmax] is a tuning parameter. To guarantee that both α1 and α2 are nonneg-

ative, we set kmax = min{1/m1, 1/m2}. In addition, a reasonable value of k0 should

satisfy the following two conditions: (1) α1 = 1−k0m1 ≤ 1 and α2 = 1−k0m2 ≤ 1; (2)

the estimate of the covariance matrix Σ̂ is positive semi-definite. The first condition

requires that k0 ≥ 0. If the smallest eigenvalue of the initial estimate Σ̃, denoted by

λmin(Σ̃), is nonnegative, we can show that Σ̂ is positive semi-definite for any nonneg-

ative k0. If λmin(Σ̃) < 0, since the smallest eigenvalue of Σ̂ satisfies

λmin(Σ̂) ≥ λmin(Σ̃) + k0 · [λmin((m2 −m1)Σ̃I +m1
tr(Σ̃)

p
Ip)−m2λmin(Σ̃)],

to guarantee that Σ̂ is positive semi-definite, we only need to require that

k0 ≥ −λmin(Σ̃)/[−m2 · λmin(Σ̃) + λmin((m2 −m1)Σ̃I +m1
tr(Σ̃)

p
Ip)].

Therefore, if λmin(Σ̃) ≥ 0, we choose kmin = 0. Otherwise, we choose

kmin = −λmin(Σ̃)/[−m2 · λmin(Σ̃) + λmin((m2 −m1)Σ̃I +m1
tr(Σ̃)

p
Ip)].
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For the block-missing multi-modality data, since m2 ≥ m1 > 0, we know that the

matrix (m2 −m1)Σ̃I + m1
tr(Σ̃)
p

Ip is positive definite and therefore kmin is always less

than kmax = min{1/m1, 1/m2} = 1/m2.

By choosing α1 = 1−k0m1 and α2 = 1−k0m2, our proposed fast tuning parameter

selection method searches the best value of k0 ∈ [kmin, kmax] and the parameter λ

rather than searching three parameters α1, α2 and λ. In addition, instead of using

the eigendecomposition for each parameter combination to check whether Σ̂ is positive

semi-definite, this method only requires two eigendecompositions of the matrices Σ̃

and (m2−m1)Σ̃I +m1
tr(Σ̃)
p

Ip before the tuning parameter selection process. For each

k0 ∈ [kmin, kmax], we can incorporate the coordinate descent algorithm (Friedman et al.

(2010)) on a grid of λ values, from the largest one down to the smallest one, using warm

starts. Alternatively, since Σ̂ is positive semi-definite, we can use the LARS algorithm

shown in Jeng and Daye (2011) to compute the solution path.

As many existing high dimensional linear regression studies for the random design,

we use the assumption E(X) = 0 to make our presentation more convenient. Our

proposed DISCOM method can be used for the general case where E(X) 6= 0. In that

case, we first center the available observations of each predictor and use X̄1, X̄2, . . . , X̄p

to denote the sample means of those p predictors. We also center the observed responses

and use Ȳ to denote the sample mean of the response variable. Let β̂ denote the

estimated regression coefficient vector calculated from the centered data. Our final

predictive model is Ȳ +
∑p

j=1(X
∗
j − X̄j)β̂j, where (X∗1 , X

∗
2 , . . . , X

∗
p ) is a test data point.

In practice, if our data are collected at various time points by different laboratories

using multiple platforms, the i.i.d. assumption may be violated due to batch-effects. In

that case, we suggest to use some existing statistical methods (e.g., the exploBATCH

R package) to diagnose, quantify and correct batch effects before using our proposed

DISCOM method.
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3 Theoretical Study

Without loss of generalization, we assume that the true variances of all predictors,

σ11, σ22, . . . , σpp, are equal to 1 in our theoretical studies. For each j ∈ {1, 2, . . . , p},

we assume that the observations of the predictor j are scaled such that
∑

i∈Sj
x2ij = nj.

In that case, we have σ̃jj = 1. For the Huber’s M-estimator Σ̆, we redefine σ̆jj to

be 1 for each j. Let β̃ and β̆ denote the solutions to (4) using the sample covariance

and the Huber’s M-estimator, respectively. We assume that β0 is sparse and denote

J = {j : β0
j 6= 0} as the index set of the important predictors. Denote s = |J | as

the number of important predictors. Let β0
max = maxj∈J |β0

j | and β0
min = minj∈J |β0

j |.

In Sections 3.1 and 3.2, we will discuss the theoretical properties in the sub-Gaussian

case and the heavy-tailed case, respectively. The model selection consistency of our

proposed method will be shown in Section 3.3.

3.1 Sub-Gaussian case

The following conditions are considered in this section:

(A1) Suppose that there exists a constant L > 0 such that

E(exp(tXj)) ≤ exp(
L2t2

2
) for all j ∈ {1, 2, . . . , p} and t ∈ R,

E(exp(ty)) ≤ exp(
L2t2

2
) for all t ∈ R.

(A2) Suppose that the true covariance matrix Σ satisfies the following restricted eigen-

value (RE) condition

min
δ∈{u∈Rp:‖uJc‖1≤7‖uJ‖1}

δTΣδ

δT δ
≥ m > 0.

Under condition (A1), the predictors and the response variable follow sub-Gaussian

distributions with exponentially bounded tails. In this case, we propose to use Σ̃ and

13



C̃ shown in Section 2.2 as the initial estimate of the covariance matrix Σ and the

cross-covariance vector C, respectively. The RE condition (A2) is often used to obtain

bounds of statistical error of the Lasso estimate (Datta et al. (2017)). The following

Theorem 1 shows the large deviation bounds of Σ̃ and C̃.

Theorem 1. Under condition (A1), if minj,t njt ≥ 6 log p, there exists two positive

constants ν1 = 8
√

6(1 + 4L2) and ν2 = 4 such that

max
j,t

P (|σ̃jt − σjt| ≥ ν1

√
log p

njt
) ≤ ν2

p3
, P (‖Σ̃−Σ‖max ≥ ν1

√
log p

minj,t njt
) ≤ ν2

p
.

There exists another two positive constants ν3 = 16(1 + 4 L2

min{var(y),1}) max{var(y), 1}

and ν4 = 4 such that

max
j
P (|c̃j − cj| ≥ ν3

√
log p

nj
) ≤ ν4

p2
, P (‖C̃ − C‖max ≥ ν3

√
log p

minj nj
) ≤ ν4

p
.

Remark 1. In our theoretical studies, we assume that the dimension p goes to infin-

ity as the sample size minj,t njt increases. If we further assume that (log p)/minj,t njt =

o(1), the condition minj,t njt > 6 log p is satisfied if the sample size minj,t njt is suffi-

ciently large. Then, Theorem 1 shows that ‖Σ̃ − Σ‖max = Op(
√

(log p)/minj,t njt).

The performance of Σ̃ depends on the worst case when there are only minj,t njt sam-

ples to estimate some entries in Σ. In addition, the convergence rate of ‖C̃ − C‖max
is Op(

√
(log p)/minj nj)). The performance of C̃ also depends on the worst case when

there are only minj nj samples to estimate the covariance between some predictor and

the response variable. Furthermore, if we only use samples with complete observa-

tions, using a similar proof, we can show that ‖Σ̃ − Σ‖max = Op(
√

(log p)/ncomplete)

and ‖C̃ − C‖max = Op(
√

(log p)/ncomplete), where ncomplete is the number of samples

with complete observations. For the block-missing multi-modality data, since ncomplete

can be much smaller than minj,t njt and minj nj, Theorem 1 indicates that the first step

of our proposed DISCOM method can make full use of all available information. Based
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on the results shown in Theorem 1, we will show the convergence rate of ‖β̃ − β0‖2.

Theorem 2. Under conditions (A1) and (A2), let 1 − α1 = O(
√

(log p)/minj nj)

and 1−α2 = O(
√

(log p)/minj,t njt). If s
√

(log p)/minj,t njt = o(1) and we choose λ =

2‖C̃ − Σ̂β0‖max, then we have ‖β̃−β0‖2 = Op(
√
sλ) = Op(‖β0‖1

√
s(log p)/minj,t njt).

Remark 2. As shown in the above Theorem 2, we have ‖β̃ − β0‖2 = Op(
√
s‖C̃ −

Σ̂β0‖max). If we assume that (a) there is no missing data, (b) the predictors are

generated from a multivariate Gaussian distribution, and (c) the true model is Y =

Xβ0 + ε, where ε ∼ N(0, σ2In). Then we will use Σ̂ = XTX/n and C̃ = XTY/n to

estimate Σ and C, respectively. Therefore, we have ‖C̃ − Σ̂β0‖max = ‖XTε/n‖max =

Op(
√

(log p)/n), and ‖β̃ − β0‖2 = Op(
√

(s log p)/n), which is the minimax `2-norm

rate as shown in Raskutti et al. (2011). Since the complete data generated from

the Gaussian random design can be viewed as a special type of block-missing multi-

modality data, the error bound in Theorem 2 is sharp.

On the other hand, if the true relationship between the conditional expectation

E(y|X1, X2, . . . , Xp) and the predictors is non-linear, we have C̃ − Σ̂β0 6= XTε/n and

‖C̃ − Σ̂β0‖max = Op(‖β0‖1
√

(log p)/n) as shown in the proof. In this case, if we still

use the Lasso method to estimate the regression coefficients β0 in the optimal linear

predictor, we have ‖β̃Lasso − β0‖2 = Op(‖β0‖1
√
s(log p)/n). For the blocking missing

multi-modality data, since the Lasso method can only use the data with complete

observations, we have ‖β̃Lasso − β0‖2 = Op(‖β0‖1
√
s(log p)/ncomplete). However, as

shown in Theorem 2, for our proposed DISCOM estimate β̃, we have ‖β̃ − β0‖2 =

Op(‖β0‖1
√
s(log p)/minj,t njt). In practice, the minimum number of samples with

available observations from two modalities (minj,t njt) can be much larger than the

number of samples with complete observations from all modalities (ncomplete). Theorem

2 indicates that DISCOM could make use of the block-missing multi-modality data

more effectively than the Lasso method using only the complete data.

In Theorem 2, the assumption s
√

(log p)/minj,t njt = o(1) is used to guarantee

that Σ̂ satisfies the RE condition with a high probability if the true covariance matrix
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Σ satisfies the RE condition (A2). Note that many existing sparse linear regression

studies focus on the fixed design where the design matrix X is considered to be fixed and

complete. In that case, Σ̂ = XTX/n is assumed to satisfy the RE condition directly.

For the general random design, Van De Geer et al. (2009) showed that Σ̂ = XTX/n

satisfies the RE condition as long as the true covariance matrix Σ satisfies the RE

condition and s2 log p/n = o(1). For the special Gaussian random design, by a global

analysis of the full random matrix Σ̂ = XTX/n rather than a local analysis looking

at individual entries of Σ̂, Raskutti et al. (2010) shows that the matrix Σ̂ satisfies the

RE condition with a high probability if the true covariance matrix of the multivariate

Gaussian distribution satisfies the RE condition and n > Constant·s log p. In our paper,

since we consider the general random design including both sub-Gaussian distributions

and heavy-tailed distributions, and study the proposed estimated covariance matrix Σ̂

where Σ̂ 6= XTX/n in most cases, we use the condition s
√

(log p)/minj,t njt = o(1) to

guarantee that the RE condition is satisfied with a high probability. This condition is

very similar to the condition s2 log p/n = o(1) used in Van De Geer et al. (2009) for

the complete data.

For the general random design and the block-missing multi-modality data, it is

difficult to develop a weak condition (e.g., s log p/minj,t njt = o(1)) using a similar

global analysis of the full random matrix Σ̂ as shown in Raskutti et al. (2010). Instead

of using the condition s
√

(log p)/minj,t njt = o(1), we can use the following weak

condition

min
j,t

njt > (128ν ′1/m)2(s2 log p),

where ν ′1 > ν1 is a positive constant. This condition is also used in some existing studies

about random designs (Bühlmann and Van De Geer (2011); Zhou et al. (2009)).
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3.2 Heavy-tailed case

In this section, we consider the heavy-tailed case. Instead of assuming that the distri-

butions of the predictors and the response variable have exponential tails, we consider

the following moment condition.

(A3) Suppose that max1≤j≤p E(X4
j ) ≤ Q2

1/48 and E(y4) ≤ Q2
2, where Q1 and Q2 are

two positive constants.

Condition (A3) assumes that the fourth moments of all predictors Xj’s and the re-

sponse variable y are bounded. Under condition (A3), the tails of the distributions

of Xj’s and y may not be exponentially bounded. In the literature on Lasso, most

studies consider the fixed design (Zhao and Yu (2006); Zou (2006); Meinshausen and

Bühlmann (2006)) and the noise is usually assumed to be Gaussian (Meinshausen and

Bühlmann (2006); Zhang et al. (2008)), or admits exponentially bounded tail (Bunea

et al. (2008); Meinshausen and Yu (2009)). In this study, we consider a random design

case and relax the distribution of Xj’s and y to have finite fourth moments.

Next, we discuss the theoretical properties of the Huber’s M-estimators Σ̆ and C̆.

Based on the convergence rates of ‖Σ̆ − Σ‖max and ‖C̆ − C‖max, we will show the

convergence rate of ‖β̆ − β0‖2.

Theorem 3. Under condition (A3), let Hjt = Q1

12

√
njt/ log p for each j, t ∈

{1, 2, . . . , p}, if minj,t njt ≥ 24 log p, we have

max
j,t

P (|σ̆jt − σjt| ≥ Q1

√
log p

njt
) ≤ 2

p3
,

P (‖Σ̆−Σ‖max ≥ Q1

√
log p

minj,t njt
) ≤ 2

p
.
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In addition, let Hj = (Q1 +Q2)
√
nj/ log p for each j ∈ {1, 2, . . . , p}, we have

max
j
P (|c̆j − cj| ≥ 8(Q1 +Q2)

√
log p

nj
) ≤ 2

p2
,

P (‖C̆ − C‖max ≥ 8(Q1 +Q2)

√
log p

minj nj
) ≤ 2

p
.

Remark 3. If we assume that (log p)/minj,t njt = o(1), the condition minj,t njt >

24 log p is satisfied if the sample size minj,t njt is sufficiently large. Therefore, we have

‖Σ̆ − Σ‖max = Op(
√

(log p)/minj,t njt) and ‖C̆ − C‖max = Op(
√

(log p)/minj nj).

This indicates that the Huber’s M-estimators for the heavy-tailed case acquire the

same convergence rate as the sample covariance estimates for the sub-Gaussian case.

However, as shown in the next theorem, if the distributions of the predictors Xj’s and

the response variable y are not assumed to have exponentially bounded tails, the large

deviation bounds of Σ̃ and C̃ can be wider than the bounds of the Huber’s M-estimators

Σ̆ and C̆, respectively.

Theorem 4. Suppose max1≤j≤p E(X4`
j ) ≤ T and E(y4`) ≤ T , where T > 0, ` > 1 are

two constants. Then we have

max
j,t

P (|σ̃jt − σjt| ≥
d1
2T

√
p

njt
) ≤ d2

p2h
, P (‖Σ̃−Σ‖max ≥

d1
2T

√
p

minj,t njt
) ≤ d2

p2h−2
,

where d1 > 0, d2 > 0, h ∈ (1, `) are some constants. Furthermore,

max
j
P (|c̃j − cj| ≥

d3
2T

√
p

nj
) ≤ d4

p2h−1
, P (‖C̃ − C‖max ≥

d3
2T

√
p

minj nj
) ≤ d4

p2h−2
,

where d3 > 0 and d4 > 0 are two constants.

Remark 4. Under the moment condition, Theorem 4 shows that ‖Σ̃ − Σ‖max =

Op(
√
p/minj,t njt) and ‖C̃ −C‖max = Op(

√
p/minj nj). According to the Proposition

6.2 in Catoni (2012), the bounds shown in Theorem 4 are actually tight. If the dimen-
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sion p is very large, the large deviation bounds of ‖Σ̃ − Σ‖max and ‖C̃ − C‖max can

be much larger than the bounds of ‖Σ̆ − Σ‖max and ‖C̆ − C‖max, respectively. This

necessitates the usage of a robust estimator.

In the next theorem, based on the large deviation bounds of ‖Σ̆ − Σ‖max and

‖C̆ − C‖max, we show the convergence rate of ‖β̆ − β0‖2.

Theorem 5. Under conditions (A2) and (A3), let 1 − α1 = O(
√

(log p)/minj nj),

1− α2 = O(
√

(log p)/minj,t njt), Hjt = Q1

12

√
njt/ log p and Hj = (Q1 +Q2)

√
nj/ log p.

If s
√

(log p)/minj,t njt = o(1) and let λ = 2‖C̆ − Σ̂β0‖max, then we have ‖β̆ − β0‖2 =

Op(
√
sλ) = Op(‖β0‖1

√
s(log p)/minj,t njt).

Remark 5. Instead of using the condition s
√

(log p)/minj,t njt = o(1), we can

assume that

min
j,t

njt > (128Q′1/m)2(s2 log p),

where Q′1 > Q1 is a positive constant. Theorem 5 indicates that for the heavy-tailed

case, under (A3), the convergence rate of ‖β̆−β0‖2 is alsoOp(‖β0‖1
√

(s log p)/minj,t njt),

which is the same as the rate shown in Theorem 2 under the sub-Gaussian assumption.

However, as shown in our simulation study, if the response variable and the predictors

follow sub-Gaussian distributions, DISCOM using standard estimates Σ̃ and C̃ gener-

ally has better finite sample performance than the method using robust estimates Σ̆

and C̆.

Remark 6. If we assume that p is fixed, for the sub-Gaussian case considered in

Section 3.1, we can show that ‖Σ̃ −Σ‖max = Op((minj,t njt)
−1/2) and ‖C̃ − C‖max =

Op((minj nj)
−1/2) according to Lemma 1 in Ravikumar et al. (2011) and a very similar

proof of Theorem 1. For the heavy-tailed case considered in Section 3.2, if we assume

that p is fixed, we can also show that ‖Σ̆ − Σ‖max = Op((minj,t njt)
−1/2) and ‖C̆ −

C‖max = Op((minj nj)
−1/2) according to Theorem 5 in Fan et al. (2016) and a very

similar proof of Theorem 3. Then, using the same proof of Theorem 2, we can also

show that ‖β̃ − β0‖2 = Op(
√
sλ) = Op(

√
s‖C̃ − Σ̂β0‖max). Since ‖Σ̃ − Σ‖max =
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Op((minj,t njt)
−1/2), ‖C̃ − C‖max = Op((minj nj)

−1/2), and p is fixed, we can further

show that ‖β̃−β0‖2 = Op(β
0
max(minj,t njt)

−1/2). Similarly, for the heavy-tailed case, we

can also show that ‖β̆ − β0‖2 = Op(β
0
max(minj,t njt)

−1/2). Therefore, the convergence

rate of the estimation error in the classical fixed p setting is faster than the rate in the

high dimensional setting where p grows to infinity.

3.3 Model selection consistency

In this section, we show that our proposed DISCOM method is model selection con-

sistent. The following condition is considered.

(A4) ‖ΣJcJΣ
−1
JJ‖∞ ≤ 1− η, where η ∈ (0, 1) is a constant, ΣJcJ is the sub-matrix of

Σ with row indices in the set J c and column indices in the set J , and ΣJJ is the

sub-matrix of Σ with both row and column indices in the set J .

Condition (A4) can be viewed as a population version of the strong irrepresentable

condition proposed in Zhao and Yu (2006). In the following Theorem 6 and Theorem

7, we will show that our proposed DISCOM method is model selection consistent for

the sub-Gaussian case and the heavy-tailed case, respectively.

Theorem 6. Under conditions (A1) and (A4), let 1 − α1 = O(
√

(log p)/minj nj)

and 1− α2 = O(
√

(log p)/minj,t njt). If ‖(ΣJJ)−1‖∞ ·
√

s2 log p
minj,t njt

−→ 0, and

1 + sβ0
max

λ

√
log p

minj,t njt
−→ 0,

λ · ‖(ΣJJ)−1‖∞
β0
min

−→ 0,

then there exists a solution β̃ to (4) such that P (sign(β̃) = sign(β0)) −→ 1, as

minjt njt →∞ and p→∞.

Remark 7. Note that the condition ‖(ΣJJ)−1‖∞·
√

(s2 log p)/minj,t njt = o(1) is used

to guarantee that (a) ‖(Σ̂JJ)−1‖∞ ≤ Constant · ‖(ΣJJ)−1‖∞ and (b) ‖Σ̂JcJΣ̂
−1
JJ‖∞ ≤

1 − η′ if ‖ΣJcJΣ
−1
JJ‖∞ ≤ 1 − η for the general random design with a high probability,
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where η′ ∈ (0, 1) and η ∈ (0, 1) are two constants. For the fixed design, we do not

need this condition. For the special Gaussian random design, as shown in Wainwright

(2009), using some concentration inequalities about the normal distribution and the

fact that Σ̂ = XTX/n for the complete data, we can obtain model selection consis-

tency with n > Constant · s log(p − s). In our theoretical studies, since we consider

the general random design including both sub-Gaussian distributions and heavy-tailed

distributions, and Σ̂ 6= XTX/n for the block-missing multi-modality data, we use the

condition ‖(ΣJJ)−1‖∞ ·
√

(s2 log p)/minj,t njt = o(1) to guarantee that (a) and (b)

are satisified. Note that this condition was also used in some existing model selection

consistency studies for random designs (Jeng and Daye (2011); Datta et al. (2017)).

As shown in the proof of Theorem 6, to guarantee that (a) and (b) are satisfied,

instead of requiring ‖(ΣJJ)−1‖∞·
√

(s2 log p)/minj,t njt = o(1), we can use the following

weak condition

‖(ΣJJ)−1‖∞ ·

√
s2 log p

minj,t njt
≤ η

ν ′1(4 + η)
,

where ν ′1 > ν1 is a positive constant.

Theorem 7. Under conditions (A3) and (A4), let Hjt = Q1

12

√
njt/ log p, Hj =

(Q1 +Q2)
√
nj/ log p, 1−α1 = O(

√
(log p)/minj nj), 1−α2 = O(

√
(log p)/minj,t njt).

If ‖(ΣJJ)−1‖∞ ·
√

(s2 log p)/minj,t njt −→ 0, and

1 + sβ0
max

λ

√
log p

minj,t njt
−→ 0,

λ · ‖(ΣJJ)−1‖∞
β0
min

−→ 0,

then there exists a solution β̆ to (4) such that P (sign(β̆) = sign(β0)) −→ 1, as

minjt njt →∞ and p→∞.

Remark 8. Instead of requiring ‖(ΣJJ)−1‖∞ ·
√

(s2 log p)/minj,t njt = o(1), we can

use the following weak condition

‖(ΣJJ)−1‖∞ ·

√
s2 log p

minj,t njt
≤ η

Q′1(4 + η)
,
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where Q′1 > Q1 is a positive constant. The proof of Theorem 7 is very similar to the

proof of Theorem 6. We only show the proof of Theorem 7 briefly in the Appendix.

4 Simulation Study

In this section, we perform numerical studies using simulated examples. We use DIS-

COM and DISCOM-Huber to denote our proposed methods using sample covariance

estimates and Huber’s M-estimates, respectively. The proposed methods using the

fast tuning parameter selection method shown in Section 2.4 are called Fast-DISCOM

and Fast-DISCOM-Huber, respectively. For each example, we compare our proposed

methods with 1) Lasso: Lasso method which only uses the samples with complete ob-

servations; 2) Imputed-Lasso: Lasso method which uses all samples with missing data

imputed by the Soft-thresholded SVD method (Mazumder et al. (2010)); 3) Ridge:

Ridge regression method which only uses the samples with complete observations; 4)

Imputed-Ridge: Ridge regression method which uses all samples with missing data

imputed by the Soft-thresholded SVD method; and 5) IMSF (Yuan et al. (2012)):

the IMSF method which uses all available data without imputing the missing data.

We study four simulated examples, where the data are generated from the Gaussian

distribution or some heavy-tailed distributions.

For each example, the data are generated from three modalities and each modality

has 100 predictors. The training data set is composed of 100 samples with complete

observations, 100 samples with observations from the first and the second modalities,

100 samples with observations from the first and the third modalities, and 100 samples

with observations only from the first modality. The tuning data set contains 200

samples with complete observations and the testing data set contains 400 samples with

complete observations. All methods use the tuning data set to choose the best tuning

parameters. For the four simulated examples, samples with complete observations are

generated from the linear model as follows.
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Table 1: Performance comparison for the Gaussian case.

Methods
Example 1 Example 2

‖β̂ − β0‖2 MSE FPR FNR TIME ‖β̂ − β0‖2 MSE FPR FNR TIME

Lasso
0.655 1.431 0.069 0.015 0.016 0.920 1.988 0.133 0.002 0.019

(0.026) (0.045) (0.004) (0.009) (0.000) (0.025) (0.059) (0.007) (0.002) (0.004)

Imputed-
Lasso

0.674 1.338 0.076 0.004 0.802 0.690 1.546 0.122 0.000 1.099
(0.017) (0.018) (0.007) (0.004) (0.006) (0.013) (0.030) (0.007) (0.000) (0.008)

Ridge
1.270 3.962 1.000 0.000 0.025 1.662 5.262 1.000 0.000 0.025

(0.004) (0.062) (0.000) (0.000) (0.000) (0.006) (0.066) (0.000) (0.000) (0.000)

Imputed-
Ridge

1.094 2.304 1.000 0.000 0.780 1.332 3.130 1.000 0.000 1.093
(0.013) (0.035) (0.000) (0.000) (0.006) (0.009) (0.048) (0.000) (0.000) (0.008)

IMSF
0.585 1.358 0.173 0.000 5.554 0.777 1.730 0.291 0.000 5.900

(0.020) (0.037) (0.009) (0.000) (0.068) (0.016) (0.040) (0.012) (0.000) (0.075)

DISCOM
0.416 1.133 0.025 0.000 13.552 0.600 1.378 0.074 0.000 12.391

(0.013) (0.016) (0.003) (0.000) (0.078) (0.020) (0.033) (0.007) (0.000) (0.064)

DISCOM-
Huber

0.434 1.145 0.026 0.000 28.618 0.605 1.380 0.076 0.000 25.907
(0.013) (0.016) (0.003) (0.000) (0.886) (0.021) (0.035) (0.008) (0.000) 0.122

Fast-
DISCOM

0.465 1.160 0.039 0.000 3.600 0.641 1.438 0.109 0.000 3.241
(0.015) (0.016) (0.005) (0.000) (0.027) (0.017) (0.033) (0.006) (0.000) (0.029)

Fast-
DISCOM-
Huber

0.481 1.173 0.036 0.000 16.802 0.655 1.457 0.100 0.000 16.767
(0.015) (0.016) (0.004) (0.000) (0.081) (0.020) (0.037) (0.007) (0.000) (0.096)

[Note that the values in the parentheses are the standard errors of the measures.]

Example 1: The predictors (xi1, xi2, . . . , xip)
T ∼ N(0,Σ) with σjt = 0.6|j−t|. The

true coefficient vector

β0 = (0.5, 0.5, 0.5, 0, · · · , 0︸ ︷︷ ︸
97

, 0.5, 0.5, 0.5, 0, · · · , 0︸ ︷︷ ︸
97

, 0.5, 0.5, 0.5, 0, · · · , 0︸ ︷︷ ︸
97

).

The true model is Y = Xβ0 + ε, where the errors ε1, ε2, . . . , εn
i.i.d∼ N(0, 1).

Example 2: The predictors (xi1, xi2, . . . , xip)
T ∼ N(0,Σ), where Σ is a block diag-

onal matrix with p/5 blocks. Each block is a 5 × 5 square matrix with ones on
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the main diagonal and 0.15 elsewhere. The true coefficient vector

β0 = (0.5, · · · , 0.5︸ ︷︷ ︸
5

, 0, · · · , 0︸ ︷︷ ︸
95

, 0.5, · · · , 0.5︸ ︷︷ ︸
5

, 0, · · · , 0︸ ︷︷ ︸
95

, 0.5, · · · , 0.5︸ ︷︷ ︸
5

, 0, · · · , 0︸ ︷︷ ︸
95

).

The true model is Y = Xβ0 + ε, where the errors ε1, ε2, . . . , εn
i.i.d∼ N(0, 1).

Example 3: The predictors (xi1, xi2, . . . , xip)
T ∼ t5(0, 0.6Σ), where Σ is the same as

the covariance matrix shown in Example 1. For this multivariate t-distribution

with the degrees of freedom 5, the variances of all predictors are equal to 1. The

true coefficient vector β0 is the same as the vector shown in Example 1. The

true model is Y = Xβ0 + ε, where the errors ε1, ε2, . . . , εn follow the Student’s

t-distribution with degrees of freedom 10.

Example 4: The predictors (xi1, . . . , xip)
T ∼ the mixture distribution ρ ·N(0, 10I)+

(1 − ρ) · N(0, 0.5I), where ρ = 0.03 and I is a p × p identity matrix. The true

coefficient vector β0 is the same as the vector shown in Example 1. The true

model is Y = Xβ0+ε, where the errors ε1, ε2, . . . , εn follow the Skew-t distribution

(Azzalini (2013)) with degrees of freedom 4.

For each example, we repeated the simulation 30 times. To evaluate different meth-

ods, we use the following five measures: `2 distance ‖β̂ − β0‖2, mean squared error

(MSE), false positive rate (FPR), false negative rate (FNR), and the elapsed time (in

seconds) using R. Tables 1 and 2 show the performance comparison of different meth-

ods in the Gaussian case and the heavy-tailed case, respectively. The results indicate

that our proposed methods deliver the best performance on all these four examples.

For the Gaussian case shown in Table 1, DISCOM delivers better performance than the

DISCOM-Huber method. For the heavy-tailed case shown in Table 2, DISCOM-Huber

performs better. These numerical results are consistent with our theoretical studies

shown in Section 3.

In addition, as shown in Tables 1 and 2, for the Lasso and ridge regression, using
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Table 2: Performance comparison for the heavy-tailed case.

Methods
Example 3 Example 4

‖β̂ − β0‖2 MSE FPR FNR TIME ‖β̂ − β0‖2 MSE FPR FNR TIME

Lasso
0.751 1.809 0.070 0.056 0.021 1.305 3.331 0.064 0.419 0.020

(0.036) (0.055) (0.006) (0.017) (0.004) (0.029) (0.087) (0.007) (0.054) (0.005)

Imputed-
Lasso

0.751 1.669 0.071 0.026 0.687 0.930 2.699 0.147 0.033 0.530
(0.023) (0.039) (0.008) (0.010) (0.010) (0.030) (0.073) (0.014) (0.016) (0.013)

Ridge
1.294 4.454 1.000 0.000 0.028 1.420 3.548 1.000 0.000 0.039

(0.004) (0.114) (0.000) (0.000) (0.003) (0.006) (0.069) (0.000) (0.000) (0.006)

Imputed-
Ridge

1.143 2.731 1.000 0.000 0.657 1.326 3.342 1.000 0.000 0.527
(0.013) (0.064) (0.000) (0.000) (0.010) (0.011) (0.080) (0.000) (0.000) (0.011)

IMSF
0.622 1.637 0.173 0.004 6.569 1.048 2.878 0.189 0.052 6.989

(0.025) (0.041) (0.013) (0.004) (0.297) (0.028) (0.083) (0.012) (0.017) (0.188)

DISCOM
0.579 1.560 0.037 0.004 12.086 0.871 2.590 0.193 0.011 12.362

(0.022) (0.038) (0.004) (0.004) (0.134) (0.025) (0.067) (0.017) (0.006) (0.153)

DISCOM-
Huber

0.507 1.452 0.027 0.000 26.073 0.780 2.468 0.137 0.004 26.925
(0.017) (0.025) (0.003) (0.000) (0.104) (0.021) (0.054) (0.012) (0.004) (0.228)

Fast-
DISCOM

0.601 1.604 0.040 0.004 3.317 1.151 3.028 0.207 0.085 3.626
(0.022) (0.047) (0.004) (0.004) (0.041) (0.025) (0.079) (0.019) (0.033) (0.050)

Fast-
DISCOM-
Huber

0.561 1.496 0.035 0.000 17.835 0.786 2.482 0.137 0.000 17.042
(0.021) (0.031) (0.004) (0.000) (0.079) (0.022) (0.055) (0.013) (0.000) (0.134)

[Note that the values in the parentheses are the standard errors of the measures.]

the imputed data can improve performance in most cases. However, as shown in

Table 1, the Lasso method using the imputed data may deliver worse estimate of

the true coefficient vector β0, possibly due to the block-missing pattern. Compared

with the Lasso and Ridge regression methods using the imputed data set or only the

samples with complete observations, the IMSF method delivers better estimation and

prediction. On the other hand, IMSF method has high false positive rates for all four

simulated examples. The comparison between IMSF and our proposed DISCOM and

DISCOM-Huber shows that our proposed methods could use all available data more

effectively and therefore acquires better performance.

For each simulation of the four examples, our proposed Fast-DISCOM method
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using the fast tuning parameter selection method uses only 4 seconds while our original

DISCOM method uses about 13 seconds. The Fast-DISCOM method is also faster than

the IMSF method which uses about 7 seconds for each simulation. On the other hand,

we can observe that the computing times of our original DISCOM and DISCOM-

Huber methods are still acceptable. For the examples 1 and 2 generated from the

Gaussian distribution, although the Fast-DISCOM method does not perform as well

as the DISCOM method, it has better estimation, prediction, and model selection

performance than the Lasso, ridge regression and IMSF methods. Similarly, for the

examples 3 and 4 generated from the heavy-tailed distributions, although the Fast-

DISCOM-Huber method does not perform as well as the DISCOM-Huber method, it

also has better performance than the Lasso, ridge regression and IMSF methods. These

simulation results indicate that our proposed new tuning parameter selection method

accelerates the computational speed without sacrificing the estimation, prediction, and

model selection performance too much.

5 Real Data Analysis

In this section, we show the analysis of the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) data as an application example. The main goal of ADNI is to test whether

serial magnetic resonance imaging (MRI), positron emission tomography (PET), and

some other biological markers and neuropsychological assessments can be combined

to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s

disease (AD). In our study, we extracted features from three modalities: structural

MRI, fluorodeoxyglucose PET, and CerebroSpinal Fluid (CSF). Imaging preprocessing

was performed for MRI and PET images. For the MRI, after some correction, spatial

segmentation, and registration steps, we obtained the subject lableled image based on

the Jacob template (Kabani et al. (1998)) with 93 manually labeled regions of interest

(ROI). For each of the 93 ROIs in the labeled MRI, we computed the volume of gray
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matter as a feature. For each PET image, we first aligned the PET image to its

respective MRI using affine registration. Then, we calculated the average intensity of

every ROI in the PET image as a feature. Therefore, for each ROI, we have one MRI

feature and one PET feature. For the CSF modality, five biomarkers were used in this

study, namely amyloid β (Aβ42), CSF total tau (t-tau), tau hyperphosphorylated at

threonine 181 (p-tau), and two tau ratios with respective to Aβ42 (i.e., t-tau/Aβ42

and p-tau/Aβ42).

After data processing, we got 93 features from MRI, 93 features from PET, and

5 features from CSF. There are 805 subjects in total, including 1) 199 subjects with

complete MRI, PET, and CSF features, 2) 197 subjects with only MRI and PET

features, 3) 201 subjects with only MRI and CSF features, and 4) 208 subjects with

only MRI features. The response variable used in our study is the Mini Mental State

Examination (MMSE) score. As a brief 30-point questionnaire test, MMSE can be used

to examine a patient’s arithmetic, memory and orientation (Folstein et al. (1975)). It is

very useful to help evaluate the stage of AD pathology and predict future progression.

We will use all available data from MRI, PET, and CSF to predict the MMSE score.

In our analysis, we divided the data into three parts: training data set, tuning data

set, and testing data set. The training data set consists of all subjects with incom-

plete observations and 40 randomly selected subjects with complete MRI, PET, and

CSF features. The tuning data set consists of another 40 randomly selected subjects

(different from the training data set) with complete observations. The testing data set

contains the other 119 subjects with complete observations. The tuning data set was

used to choose the best tuning parameters for all methods and the testing data set

was used to evaluate different methods. We used all methods shown in the simulation

study to predict the MMSE score. For each method, the analysis was repeated 30

times using different partitions of the data.

The results in Table 3 show that our proposed Fast-DISCOM-Huber method ac-

quires the best prediction performance. All our proposed DISCOM methods deliver
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Table 3: Performance comparison for the ADNI data.

Methods
MSE Number of Features TIME

Mean SE Mean SE Mean SE

Lasso 5.711 0.341 11.733 1.638 0.009 0.002

Imputed-Lasso 4.711 0.082 86.700 8.559 0.559 0.017

Ridge 5.273 0.204 191.000 0.000 0.010 0.000

Imputed-Ridge 4.478 0.055 191.000 0.000 0.177 0.006

IMSF 4.630 0.079 28.400 3.025 2.960 0.073

DISCOM 4.285 0.068 27.933 2.261 4.675 0.028

DISCOM-Huber 4.161 0.059 23.100 0.846 10.348 0.025

Fast-DISCOM 4.146 0.055 28.100 0.809 1.565 0.007

Fast-DISCOM-Huber 4.123 0.069 25.833 1.311 8.012 0.019

better performance than the Lasso, Ridge, and IMSF methods. The IMSF method has

better prediction performance than the Lasso and ridge regression using only samples

with complete observations. However, IMSF does not perform as well as the ridge

regression using the imputed data. Regarding the model selection, since the number of

variables selected by the Lasso is at most the sample size (Zou and Hastie (2005)), as

shown in Table 3, the Lasso method using the imputed data selected many more fea-

tures than the method using only samples with complete observations. Both IMSF and

our proposed methods could deliver a model with relatively small numbers of features.

Figure 2 shows the selection frequency of all the 191 features. The selection fre-

quency of each feature is defined as the times of being selected in the 30 times replica-

tions. As shown in Figure 2, for our proposed DISCOM methods, some features were

always selected and many features were never selected in the 30 times replications. This

means that our method could deliver relatively robust performance on model selection.

However, for some other methods such as the Imputed-Lasso method, they selected

very different features in different replications and therefore many features have posi-

tive and low selection frequencies. For the Imputed-Lasso method, one possible reason
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Figure 2: Selection frequency of 191 features for the prediction of MMSE score.
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for the unstable performance on model selection is due to the randomness involved in

the imputation of a lot of block-missing data.

To further understand our results, since each MRI feature and each PET feature

are corresponding to one ROI, we can examine whether the selected features are mean-

ingful by studying their corresponding brain regions. In our 30 times of experiments

using different random splits, there are 9 MRI features and 2 PET features always

selected by our proposed DISCOM-Huber and Fast-DISCOM-Huber methods. Figure

3 shows the multi-slice view of the brain regions (regions with color) corresponding to

these 11 features. Among these 11 brain regions, some regions such as hippocampal

formation right (30-th region), uncus left (46-th region), middle temporal gyrus left

(48-th region), hippocampus formation left (69-th region) and amygdale right (83-th

region), are known to be highly correlated with AD and MCI by many studies using

group comparison methods (Misra et al. (2009); Zhang and Shen (2012)). It would

be interesting to study whether the other six always selected brain regions are truly

related with AD by some scientific experiments.

In addition, as shown in Table 3, all our proposed DISCOM methods solve this real

data analysis problem with 191 features within 11 seconds. This indicates that the

time cost of our methods is not very expensive. In summary, our real data analysis

indicates that our proposed method can solve practical problems well.

6 Conclusion

In this paper, we propose a new two-step procedure to find the optimal linear prediction

of a continuous response variable using the block-missing multi-modality predictors. In

the first step, we estimate the covariance matrix of the predictors using a linear combi-

nation of the identity matrix, and the estimates of the intra-modality covariance matrix

and the cross-modality covariance matrix. The proposed estimator of the covariance

matrix can be positive semi-definite and more accurate than the sample covariance

30



Figure 3: The multi-slice view of the brain regions always selected by DISCOM-Huber
and Fast-DISCOM-Huber.

matrix. We also use all available information to estimate the cross covariance vector

between the predictors and the response variable. Robust estimate based on the Hu-

ber’s M-estimate is also proposed for the heavy-tailed case. In the second step, based

on the estimated covariance matrix and the cross-covariance vector, a modified Lasso

estimator is used to deliver a sparse estimate of the coefficients in the optimal linear

prediction. The effectiveness of the proposed method is demonstrated by both theoret-

ical and numerical studies. The comparison between our proposed method and several

existing ones also indicates that our method has promising performance on estimation,

prediction, and model selection for the block-missing multi-modality data.
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