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Abstract. Given a countable group G, we say that a metrizable flow Y is
model-universal if by considering the various invariant measures on Y , we can
recover every free measure-preserving G-system up to isomorphism. Weiss
in[Dynamical systems and group actions, American Mathematical Society,
Providence, RI, 2012, pp. 249–264] constructs a minimal model-universal flow.
In this note, we provide a new, streamlined construction, allowing us to show
that a minimal model-universal flow is far from unique.

In this paper, we consider actions of an infinite countable group G on a standard
Borel probability space (X,μ) by Borel, measure-preserving bijections. When an
action a : G × X → X is understood, we will suppress the action notation, and
given g ∈ G and x ∈ X just write gx or g · x for a(g, x). We will refer to (X,μ) as
a G-system. A G-system is free if for μ-almost every x ∈ X, we have Gx = {1G},
where Gx := {g ∈ G : gx = x} is the stabilizer of x ∈ X. By passing to a subset
of measure 1, we will often implicitly assume that every point in a free G-system
has trivial stabilizer. If (X,μ) and (Y, ν) are two G-systems, we say that (Y, ν)
is a factor of (X,μ) if there is a Borel X ′ ⊆ X with μ(X ′) = 1 and a Borel G-
equivariant map f : X ′ → Y with ν = f∗μ. If we can find such an f that is also
injective, then we call (X,μ) and (Y, ν) isomorphic G-systems.

A G-flow is an action of G by homeomorphisms on a compact Hausdorff space.
We similarly suppress the action notation. Given a G-system (X,μ), a model for
(X,μ) is a compact metric G-flow Y and an invariant Borel probability measure
ν so that (X,μ) and (Y, ν) are isomorphic G-systems. We will be most interested
in minimal G-flows, those G-flows in which every orbit is dense. Notice that any
minimal model of a free G-system must be essentially free, where a G-flow Y is
essentially free if for each g ∈ G \ {1G}, the set {y ∈ Y : gy = y} is nowhere dense.

We say that a metrizable G-flow Y is model-universal if by considering the
various invariant measures ν on Y , the G-systems (Y, ν) recover every (standard)
free G-system up to isomorphism. In [5], Weiss constructs for every countable group
G a minimal model-universal flow. It is natural to ask in what sense a minimal
model-universal flow must be unique. Here, we prove a strong negative result.
Given a family {Yi : i ∈ I} of minimal G-flows, we say that {Yi : i ∈ I} is mutually
disjoint if the product

∏
i∈I Yi is minimal. In particular, this implies that the Yi

are pairwise non-isomorphic G-flows.
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1162 ANDY ZUCKER

Theorem 1. For any countable group G, there is a mutually disjoint family {Yi :
i < c} of minimal model-universal flows.

Let us call a G-flow Y weakly model-universal if for every free G-system (X,μ),
there is an invariant measure ν on Y so that (Y, ν) is a factor of (X,μ). In [5],
Weiss first constructs a minimal, essentially free, weakly model-universal flow, then
proves that any flow with these properties admits an almost one-to-one extension
which is model-universal. We instead build our model-universal flows in one step.

A recent result of Elek in [1] shows the existence of a free minimal model-universal
flow. Recall that a G-flow Y is free when for any y ∈ Y and any g ∈ G \ {1G}, we
have gy �= y. In the last section of this paper, we show how one can deduce this
result using rather soft arguments.

Theorem 2. Let Y be a minimal, model-universal, Cantor flow. Then there is
an almost one-to-one extension π : Z → Y so that Z is free, minimal, and model-
universal.

As almost one-to-one extensions always preserve minimality and disjointness, we
can strengthen Theorem 1 as follows.

Theorem 3. For any countable group G, there is a mutually disjoint family {Yi :
i < c} of free, minimal, model-universal flows.

1. Basic examples of model-universal flows

We briefly collect a few simple examples which will be important in what follows.
Let K be a compact space. Then KG is a G-flow with the right shift action, where
given g, h ∈ G and s ∈ KG, we have g · s(h) = s(hg). Mostly we take K = 2n or
2ω.

Proposition 4. The flow (2ω)G is model-universal.

Proof. Let (X,μ) be a free G-system, and fix ϕ : X → 2ω a Borel bijection. Now
define ψ : X → (2ω)G via ψ(x)(g) = ϕ(g · x). Then ψ is injective, and (X,μ) ∼=
((2ω)G, ψ∗μ). �

A subshift of KG is a closed, G-invariant subspace. The following family of
subshifts of 2G will be an important source of weakly model-universal flows. Let
Q ⊆ G be a finite symmetric set. We say that S ⊆ G is Q-spaced if whenever
g, h ∈ S with g �= h, then Qg ∩ Qh = ∅. We say that S is Q-syndetic if we have⋃

g∈Q gS =
⋃

g∈S Qg = G. Notice that maximal Q-spaced sets exist and are Q2-

syndetic. Conversely, any Q2-syndetic Q-spaced set is a maximal Q-spaced set. We
define

YQ = {s ∈ 2G : s−1({1}) is a maximal Q-spaced set}.

Proposition 5. The flow YQ is weakly model-universal.

Remark. This proposition is also one of the key ingredients used by Weiss (see [5,
Lemma 2.2]).

Proof. Let (X,μ) be a free G-system. By freeness, we can find for every Borel
B ⊆ X with μ(B) > 0 a Borel subset A ⊆ B with μ(A) > 0 and with gA ∩ A = ∅
for any g ∈ Q2. Let us call a Borel set A with this property a Q2-disjoint set. Now
if

⋃
g∈Q2 gA doesn’t have full measure, we can find a Q2-disjoint Borel set A′ ⊆ X
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A NOTE ON MINIMAL MODELS FOR PMP ACTIONS 1163

with μ(A′) > 0 and gA ∩ A′ = ∅ for every g ∈ Q2. As Q is assumed symmetric, it
follows that A ∪ A′ is also Q2-disjoint.

Thus using a measure exhaustion argument, we can find A ⊆ X a Q2-disjoint

Borel set so that μ
(⋃

g∈Q2 gA
)
= 1. We now let ϕ : X → 2G be the map given

by ϕ(x)(g) = 1 iff gx ∈ A. Then for almost every x ∈ X, ϕ(x)−1({1}) is both
Q2-syndetic and Q-spaced, so a maximal Q-spaced set. It follows that YQ contains
the closed support of ϕ∗μ, so (YQ, ϕ

∗μ) is a factor of (X,μ). �
We end the section by noting a simple closure property of (weakly) model-

universal flows.

Proposition 6. Let Yn be weakly model-universal G-flows. Then Y :=
∏

n Yn is
weakly model-universal. If at least one of the Yn is model-universal, then so is Y .

Proof. Let (X,μ) be a free G-system, and for each n < ω, let ϕn : Xn → Yn be a
Borel, G-equivariant map, where Xn ⊆ X satisfies μ(Xn) = 1. Set X ′ =

⋂
n Xn.

Then μ(X ′) = 1, and the map ϕ : X ′ →
∏

n Yn given by ϕ(x) = (ϕn(x))n<ω is
Borel and G-equivariant. If for some n < ω, the map ϕn is injective, then ϕ will
also be injective. �

2. Strongly irreducible subshifts

The key technical tool we use here is the notion of a strongly irreducible subshift.
First, we introduce some general terminology. Write Fin(G) for the collection of
finite subsets of G. Given S1, S2 ⊆ G and D ∈ Fin(G), we say that S1 and S2 are
D-apart if DS1 ∩DS2 = ∅. Let A be a finite set. If Y ⊆ AG is a subshift and F ∈
Fin(G), we define the F -patterns of Y to be the set SF (Y ) := {s|F : s ∈ Y } ⊆ AF .
Given α ∈ SF (Y ), we define the basic clopen neighborhood NY (α) := {y ∈ Y :
y|F = α}. If F ∈ Fin(G), S ⊆ G, α ∈ AF , and β ∈ AS , we say that α appears in
β if there is g ∈ G with Fg ⊆ S and β(fg) = α(f) for each f ∈ F . We say in this
case that α appears at g ∈ G.

We say that Y is strongly irreducible if there is D ∈ Fin(G) so that for any
F0, F1 ∈ Fin(G) which are D-apart and any αi ∈ SFi

(Y ), there is y ∈ Y with
y|Fi

= αi. We sometimes say that Y is D-irreducible. We will frequently use the
following facts about strongly irreducible subshifts. Here A and B are finite sets.

(1) If Y ⊆ AG is DY -irreducible and Z ⊆ BG is DZ-irreducible, then Y ×Z ⊆
(A×B)G is (DY ∪DZ)-irreducible.

(2) Suppose Y ⊆ AG is D-irreducible and ϕ : Y → BG is continuous and G-
equivariant. By continuity, there is F ∈ Fin(G) so that ϕ(y)(1G) depends
only on y|F . Then Z := ϕ[Y ] is DF -irreducible.

We will also need a method of making explicit choices of patterns in SF (Y ). To
that end, suppose that A is linearly ordered, and enumerate the group G in some
fashion. This allows us to order SF (Y ) lexicographically. We will use this ordering
in the following two ways. Fix Y ⊆ AG a D-irreducible subshift.

(1) If F0, ..., Fn−1 ∈ Fin(G) are pairwise D-apart, αi ∈ SFi
(Y ), and E ∈

Fin(G) contains each Fi, then we let ConfY (α0, ..., αn−1, E) ∈ SE(Y ) be
the lexicographically least E-pattern β satisfying β|Fi

= αi.
(2) Every strongly irreducible subshift is topologically transitive. In particular,

fix F ∈ Fin(G). Then for any E ∈ Fin(G) containing at least |SF (Y )| many
disjoint right translates of DF , there is β ∈ SE(Y ) so that every α ∈ SF (Y )
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1164 ANDY ZUCKER

appears in β. We let TransY (F,E) be the lexicographically least E-pattern
with this property.

Most of the time, we take A = 2n for some n < ω, and we take the lexicographic
ordering on 2n as the ordering on A.

3. The operator Φ

A subset S ⊆ G is called syndetic if S is Q-syndetic for some Q ∈ Fin(G).
Given F ∈ Fin(G) and Y ⊆ AG a subshift, we say that Y is F -minimal if for
every y ∈ Y , every α ∈ SF (Y ) appears in y. Equivalently, for every y ∈ Y , every
α ∈ SF (Y ) appears syndetically often. The following observation will be useful;
suppose Y ⊆ AG is F -minimal and that every α ∈ SF (Y ) appears E-syndetically
for some E ∈ Fin(G). Then every α ∈ SF (Y ) appears in every β ∈ SFE(Y ).

The following is our main method of producing strongly irreducible, F -minimal
flows. First, recalling the flow YQ from section 1, we note that YQ is Q3-irreducible.
Now let Y ⊆ AG be D-irreducible. Let E ∈ Fin(G) be symmetric, contain D, and
be large enough to contain at least |SF (Y )| ≤ |A||F | many disjoint right translates
of DF . Let C ∈ Fin(G) be symmetric with E5 ⊆ C. We define a continuous,
G-equivariant map ϕ〈Y, F,E,C〉 = ϕ : Y × YC → AG as follows. Suppose (y, s) ∈
Y × YC , and write z = ϕ(y, s). Let g ∈ G.

• If g = kh, where s(h) = 1 and k ∈ E, set z(g) = TransY (F,E)(k).
• If there are not k ∈ E3 and h ∈ G with s(h) = 1 and g = kh, set z(g) = y(g).
• If g = kh, where s(h) = 1 and k ∈ E3 \ E, set

z(g) = ConfY (TransY (F,E), (h · y)|E5\E3 , E5)(k).

The idea behind this definition is to reprint y most of the time, using s to tell us
where to overwrite with the pattern TransY (F,E), and using strong irreducibil-
ity to blend everything together. This construction is a slight modification of a
construction in [2]; see their Figure 3 for a good illustration.

It is routine to verify that ϕ as defined is continuous and G-equivariant. De-
note by Φ(Y, F,E,C) the image of ϕ = ϕ〈Y, F,E,C〉. Then Φ(Y, F,E,C) is C5-
irreducible.

Lemma 7. We have SF (Y ) = SF (Φ(Y, F,E,C)).

Proof. The ⊆ direction is clear. For the ⊇ direction, suppose z ∈ Φ(Y, F,E,C)
with z = ϕ(y, s). It is enough to show that z|F ∈ SF (Y ). If there is h ∈ G with
s(h) = 1 and F ∩E3h �= ∅, then F ⊆ E5h, so we have

z|F = ConfY (TransY (F,E), (h · y)|E5\E3 , E5)|F .
If there is no such h ∈ G, then we have z|F = y|F . �

For any z ∈ Φ(Y, F,E,C), the E-pattern TransY (F,E) appears in z, so in par-
ticular every pattern in SF (Y ) appears in z. Hence Φ(Y, F,E,C) is F -minimal. In-
deed, every F -pattern appears C3-syndetically, since maximal C-spaced sets are C2-
syndetic. So every pattern in SF (Y ) appears in every pattern in SC4(Φ(Y, F,E,C)).

4. A tree of subshifts

We now use the operator Φ to produce a tree of strongly irreducible flows. We
will construct for each s ∈ 2<ω a strongly irreducible flowXs ⊆ (2|s|)G by induction.
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This tree will be controlled by rapidly increasing sequences {Dk : k < ω}, {Ek :
k < ω}, and {Fk : k < ω} of finite symmetric subsets of G. We will continue to
add assumptions about how rapid this needs to be, but for now, we assume that

•
⋃

n Dn =
⋃

n En =
⋃

n Fn = G.

• En contains at least 2|Dn|(n+1)-many pairwise disjoint translates of D2
n.

• Fn ⊇ E5
n.

• Dn+1 ⊇ F 5
n .

Let X∅ be the trivial flow. If s ∈ 2<ω and Xs is defined, and t = s�0, then we set
Xt = Xs × 2G. Suppose we are given k < ω, s ∈ 2k, and t = s�1 ∈ 2k+1. Then we
set Xt = Φ(Xs × 2G, Dk, Ek, Fk).

In order to discuss the key properties of this construction, we think of (2n)G as
embedded into (2ω)G by adding zeros to the end. In this way, we can refer to the
(n × F )-patterns of a subflow Y ⊆ (2N )G ∼= 2N×G, the set Sn×F (Y ) := {y|n×F :
y ∈ Y }, whenever N ≥ n.

(1) Each Xs is D|s|-irreducible.
(2) For any s � t ∈ 2<ω with |s| = n, we have Sn×Dn

(Xs) = Sn×Dn
(Xt).

(3) Suppose s ∈ 2<ω is such that |s| > n and s(n) = 1. Then every pattern in
S(n+1)×Dn

(Xs) appears in every pattern in S(n+1)×Dn+1
(Xs).

(4) Suppose s ∈ 2n. Then S(n+1)×Dn+1
(Xs�0) �= S(n+1)×Dn+1

(Xs�1). This is
because the conclusion of item (3) is true for Xs�1 and false for Xs�0 =
Xs × 2G.

We can now consider taking limits along the branches. It follows from item (2)
above that for any α ∈ 2ω, the flow Xα ⊆ (2ω)G is well defined. We can think of
Xα as a point in the space K((2ω)G) of compact subsets of (2ω)G. The subshifts
form a closed subspace, and given subshifts {Zn : n < ω} ⊆ K((2ω)G) and Z ∈
K((2ω)G), we have Zn → Z iff for each finite F ⊆ G and k < ω, we eventually have
Sk×F (Zn) = Sk×F (Z). With this topology, the map Θ: 2ω → K((2ω)G) given by
Θ(α) = Xα is continuous. Item (4) shows that Θ is injective. Whenever α ∈ 2ω

has α−1({1}) infinite, then item (3) implies that Xα is a minimal flow.

Proposition 8. For any α ∈ 2ω with α−1({0}) and α−1({1}) infinite, the flow Xα

is a minimal, model-universal flow.

Proof. Having already discussed minimality, we focus on model-universality. Write
T = α−1({1}), and form the flow Yα := (2G)ω ×

∏
n∈T YFn

. Then Yα is model-
universal. We have a continuous G-map ψα : Yα →

∏
n Xα|n given inductively as

follows. First let fω : ω → (ω \ T ) and fT : T → T be infinite-to-one surjections.
Let y ∈ Yα, and write y = {(yn)n<ω, (sn)n∈T } with yn ∈ 2G and sn ∈ YFn

. Then
we write ψα(y) = (ψα(y)n)n<ω with each ψα(y)n ∈ Xα|n . We let ψα(y)0 be the
unique member of the trivial flow X∅. If ψα(y)n has been defined and n �∈ T , then
ψα(y)n+1 = (ψα(y)n, yfω(n)). If n ∈ T , then ψα(y)n+1 = ϕn((ψα(y)n, sfT (n)), sn),

where ϕn = ϕ〈X|α|n × 2G, Dn, En, Fn〉.
Notice that if the sequence (ψα(y)n)n<ω converges to some x ∈ (2ω)G, then

x ∈ Xα. Let Y ′
α ⊆ Yα be the subset of those y for which ψα(y)n is convergent.

Then the map η : Y ′
α → Xα with η(y) = limn ψα(y)n is Borel. It suffices to show

that if the Dn grow rapidly enough, then Y ′
α has measure 1 for any G-invariant

measure on Yα. To that end, fix y = ((yn)n<ω, (sn)n∈T ), and consider some g ∈ G.
A sufficient condition for the sequence ψα(y)n(g) to be convergent is that for a
tail of n ∈ T , we have sn(h) = 0 whenever h ∈ E3

ng. This condition ensures that
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1166 ANDY ZUCKER

for suitably large n ∈ T , we have ψα(y)n+1(g) = (ψα(y)n(g), sfT (n)(g)). Define
Y ′′
α ⊆ Y ′

α to be those y for which on a tail of n ∈ T , we have sn(g) = 0 for any
g ∈ E4

n. Notice that Y ′′
α is also Borel and G-invariant.

Fix ν an invariant measure on YFn
. Then letting U = {s ∈ YFn

: s(1G) = 1}, we
have ν(U) ≤ 1/|Fn|. This is because g ·U = {s ∈ YFn

: s(g−1) = 1}, so by definition
of the subshift YFn

, we have that the collection {g ·U : g ∈ Fn} is pairwise disjoint.
Then by invariance and a union bound, we have ν({s ∈ YFn

: s(g) = 1 for some g ∈
E4

n}) ≤ |E4
n|/|Fn|. We now add our last assumption to the growth of the Dn.

• |E4
n|/|Fn| < 1/2n.

From this assumption, it follows from the Borel-Cantelli lemma that for any invari-
ant measure μ on Yα that μ(Y ′′

α ) = 1.
Furthermore, we claim that η is injective on Y ′′

α . To see this, suppose that
y �= y′ ∈ Y ′′

α , with y = {(yn)n<ω, (sn)n∈T } and y′ = {(y′n)n<ω, (s
′
n)n∈T }. First

suppose that yn(g) �= y′n(g) for some n < ω and g ∈ G. Then for some large enough
N < ω and any k, 
 ≥ N , we have ψα(y)k(g) = ψα(y)�(g), and the same for y′.
Now pick some suitably large k ∈ ω \ T with fω(k) = n. Then ψα(y)k+1(g) =
ψα(y)k(g) × yn(g), and similarly for y′. It follows that η(y) �= η(y′). In the case
that sn(g) �= s′n(g) for some n ∈ T , the argument is almost the same. For a suitably
large k ∈ T with fT (k) = n, we use the assumption that y and y′ are in Y ′′

α to see
that ψα(y)k+1(g) = ψα(y)k(g) × sn(g), and similarly for y′. Once more, we have
η(y) �= η(y′). �

To prove Theorem 1, we need to recall some results from [3] (in particular,
see Corollary 6.8). There, it is shown that every minimal flow is disjoint from
every strongly irreducible subshift. From this, it follows that every minimal flow
is disjoint from any Xα where α has a tail of zeros. Since disjointness is a Gδ

condition ([3, Proposition 6.4]), it follows that every minimal flow is disjoint from
Xα for comeagerly many α ∈ 2ω. We are now in a position to apply Mycielski’s
theorem (see [4, 19.1]) to find our mutually disjoint family {Xαi

: i < c} of minimal,
model-universal shifts.

5. From essentially free to free

Recall that if Y is a minimal metrizable flow, then an extension π : Z → Y is
called almost one-to-one if the set {z ∈ Z : |π−1({π(z)})| = 1} is comeager. Notice
that Z must also be minimal. To see this, let z ∈ Z and V ⊆ Z be non-empty
open. Then find z′ ∈ V with |π−1({π(z′)})| = 1. We can find a net gi ∈ G with
gi · π(z) → π(z′). It follows that gi · z → z′. In particular, the orbit of z meets V .

One method of producing almost one-to-one extensions of a given minimal G-flow
is to consider Reg(Y ), the Boolean algebra of regular open subsets of Y . Recall
that A ⊆ Y is regular open if Int(A) = A. We remind the reader that in this
Boolean algebra, we have Ac = Y \ A, A ∨ B = Int(A ∪B), and A ∧ B = A ∩ B.
If B ⊆ Reg(Y ) is a subalgebra, then St(B), the space of ultrafilters on B, is a
compact, zero-dimensional space whose basic clopen neighborhood has the form
{p ∈ St(B) : A ∈ p}, where A ∈ B. If B is also G-invariant, then St(B) is a G-flow.
If B is countable, then St(B) is homeomorphic to Cantor space. Now suppose that
B contains a basis for the topology on Y . Then we have a G-map π : St(B) → Y
given by π(p) = y iff every A ∈ B with A � y satisfies A ∈ p. Furthermore, the
map π is pseudo-open, meaning that images of open sets have non-empty interior.
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For y ∈ Y , we have |π−1({y})| = 1 iff for every A ∈ B, we have y ∈ A or y ∈ Y \A.
So when B is countable, the set {y ∈ Y : |π−1(y)| = 1} is comeager. Since π is
pseudo-open, it follows that {z ∈ Z : |π−1(π(z))| = 1} is also comeager.

In general, an almost one-to-one extension can have very different measure-
theoretic behavior than the base flow. Indeed, this fact is heavily exploited in [5].
For us however, we will seek to build almost one-to-one extensions which preserve
the measure-theoretic properties of the base flow. For the remainder of the section,
fix Y a minimal, model-universal flow whose underlying space is a Cantor set. Re-
call that this implies that Y is essentially free. We will call an invariant measure μ
on Y free if for every g ∈ G, we have μ(Yg) = 0, where Yg = {y ∈ Y : gy = y}.
Definition 9. Given A ⊆ Y , we call A strongly regular open if A is regular open
and for every free invariant measure μ, we have μ(A) + μ(Y \ A) = 1. Denote by
SReg(Y ) the collection of strongly regular open sets.

Proposition 10. SReg(Y ) is a G-invariant subalgebra of Reg(Y ).

Proof. Clearly SReg(Y ) is G-invariant and closed under complements, so it is
enough to check closure under intersection. Given A,B ∈ SReg(Y ), we have

(A ∩B) \ (A ∩B) = (A ∩B) \A ∪ (A ∩B) \B

⊆ (A \A) ∪ (B \B).

Since A and B are both strongly regular open, the last entry must have measure
zero for any free invariant measure μ. �

Of course, we have yet to prove the existence of any interesting strongly regular
open sets. We do this in the next lemma.

Lemma 11. For every g ∈ G \ {1G}, there is a partition of Y \ Yg into three
relatively clopen pieces Ag, Bg, and Cg with the property that gAg ∩ Ag = ∅, and
likewise for Bg and Cg. In particular, Ag, Bg, and Cg are all strongly regular open
sets.

Proof. Write Y \ Yg =
⋃

n Un with each Un compact open. We may assume that
the Un are pairwise disjoint, and by further partitioning each Un into finitely many
clopen pieces if needed, we may assume that gUn ∩Un = ∅ for each n < ω. We will
inductively partition Vn :=

⋃
k<n Un into pieces An, Bn, and Cn with the property

that AN ∩ Vn = An for N ≥ n, likewise for BN and CN . We then set Ag =
⋃

n An,
and likewise for Bg and Cg.

We set A0 = B0 = C0 = ∅. Assume Ak, Bk, and Ck have been defined for some
k < ω. We will form clopen sets A′

k, B
′
k, and C ′

k so that Uk = A′
k ∪ B′

k ∪ C ′
k.

Partition Uk into finitely many clopen sets {Wj : j < m} with the property that
for each j < m and for each h ∈ {g−1, g}, we either have hWj ⊆ Ak, hWj ⊆ Bk,
hWj ⊆ Ck, or hWj ∩ (Ak ∪Bk ∪Ck) = ∅. Add each Wj to the set A′

k, B
′
k, or C

′
k in

such a way so that if hWj ⊆ Ak for some h as above, then Wj is not added to A′
k,

and likewise for B′
k and C ′

k. We then set Ak+1 = Ak ∪ A′
k, and likewise for Bk+1

and Ck+1.
Notice that for each n < ω, we have gAn ∩An = ∅, and likewise for Bn and Cn.

Hence Ag will also satisfy gAg ∩Ag = ∅ as desired, and likewise for Bg and Cg. �
The last lemma we will need shows that metrizable, almost one-to-one extensions

of Y using strongly regular open sets preserve the measure-theoretic properties of Y .
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Lemma 12. Let B be a countable G-invariant subalgebra of SReg(Y ) extending
the clopen algebra of Y . Let Z = St(B), and let π : Z → Y be the associated
almost one-to-one extension. Then for any free invariant measure μ on Y , we have
μ({y : |π−1({y})| = 1}) = 1.

Proof. By the discussion at the beginning of the section, we have

{y ∈ Y : |π−1({y})| = 1} =
⋂
A∈B

A ∪ (Y \A).

Since B is a countable collection of strongly regular open sets, this set must have
measure 1 for any free μ. �
Proof of Theorem 2. Let B ⊆ SReg(Y ) be a countable, G-invariant subalgebra con-
taining all of the sets Ag, Bg, Cg from Lemma 11. Then St(B) will be the desired
flow. To see that St(B) is free, let p ∈ St(B) and g ∈ G \ {1G}. Then p con-
tains one of Ag, Bg, or Cg, WLOG say Ag ∈ p. Then since gAg ∩ Ag = ∅, we
must have gp �= p. To see that St(B) is model-universal, we note that on the
set Y0 := {y ∈ Y : |π−1({y})| = 1}, the map π−1 : Y0 → Z is well defined. By
Lemma 12, this set has measure 1 for all free invariant measures on Y . �
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