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ABSTRACT. Given a countable group G, we say that a metrizable flow Y is
model-universal if by considering the various invariant measures on Y, we can
recover every free measure-preserving G-system up to isomorphism. Weiss
in[Dynamical systems and group actions, American Mathematical Society,
Providence, RI, 2012, pp. 249-264] constructs a minimal model-universal flow.
In this note, we provide a new, streamlined construction, allowing us to show
that a minimal model-universal flow is far from unique.

In this paper, we consider actions of an infinite countable group G on a standard
Borel probability space (X, ) by Borel, measure-preserving bijections. When an
action a: G x X — X is understood, we will suppress the action notation, and
given g € G and x € X just write gz or g -z for a(g, z). We will refer to (X, u) as
a G-system. A G-system is free if for py-almost every x € X, we have G, = {1g},
where G, := {g € G : gr = x} is the stabilizer of x € X. By passing to a subset
of measure 1, we will often implicitly assume that every point in a free G-system
has trivial stabilizer. If (X, u) and (Y,v) are two G-systems, we say that (Y,v)
is a factor of (X, u) if there is a Borel X’ C X with pu(X’) = 1 and a Borel G-
equivariant map f: X’ — Y with v = f*u. If we can find such an f that is also
injective, then we call (X, ) and (Y,v) isomorphic G-systems.

A G-flow is an action of G by homeomorphisms on a compact Hausdorff space.
We similarly suppress the action notation. Given a G-system (X, u), a model for
(X, ) is a compact metric G-flow Y and an invariant Borel probability measure
v so that (X, ) and (Y, v) are isomorphic G-systems. We will be most interested
in minimal G-flows, those G-flows in which every orbit is dense. Notice that any
minimal model of a free G-system must be essentially free, where a G-flow Y is
essentially free if for each g € G\ {1}, the set {y € Y : gy = y} is nowhere dense.

We say that a metrizable G-flow Y is model-universal if by considering the
various invariant measures v on Y, the G-systems (Y, v) recover every (standard)
free G-system up to isomorphism. In [5], Weiss constructs for every countable group
G a minimal model-universal flow. It is natural to ask in what sense a minimal
model-universal flow must be unique. Here, we prove a strong negative result.
Given a family {Y; : ¢ € I'} of minimal G-flows, we say that {Y; : i € I'} is mutually
disjoint if the product [],.;Y; is minimal. In particular, this implies that the Y;
are pairwise non-isomorphic G-flows.
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Theorem 1. For any countable group G, there is a mutually disjoint family {Y; :
i < ¢} of minimal model-universal flows.

Let us call a G-flow Y weakly model-universal if for every free G-system (X, u),
there is an invariant measure v on Y so that (Y,v) is a factor of (X, ). In [5],
Weiss first constructs a minimal, essentially free, weakly model-universal flow, then
proves that any flow with these properties admits an almost one-to-one extension
which is model-universal. We instead build our model-universal flows in one step.

A recent result of Elek in [1] shows the existence of a free minimal model-universal
flow. Recall that a G-flow Y is free when for any y € Y and any g € G\ {1g}, we
have gy # y. In the last section of this paper, we show how one can deduce this
result using rather soft arguments.

Theorem 2. Let Y be a minimal, model-universal, Cantor flow. Then there is
an almost one-to-one extension w: Z — Y so that Z is free, minimal, and model-
universal.

As almost one-to-one extensions always preserve minimality and disjointness, we
can strengthen Theorem 1 as follows.

Theorem 3. For any countable group G, there is a mutually disjoint family {Y; :
i < c} of free, minimal, model-universal flows.

1. BASIC EXAMPLES OF MODEL-UNIVERSAL FLOWS

We briefly collect a few simple examples which will be important in what follows.
Let K be a compact space. Then K is a G-flow with the right shift action, where
given g,h € G and s € K%, we have g - s(h) = s(hg). Mostly we take K = 2" or
2%,

Proposition 4. The flow (2*)€ is model-universal.

Proof. Let (X, ) be a free G-system, and fix ¢: X — 2% a Borel bijection. Now
define 1: X — (2¢)€ via ¥ (2)(g) = ¢(g-z). Then ¢ is injective, and (X, p) =
((2)%, 4" p). 0

A subshift of K€ is a closed, G-invariant subspace. The following family of
subshifts of 2¢ will be an important source of weakly model-universal flows. Let
@ C G be a finite symmetric set. We say that S C G is Q-spaced if whenever
g,h € S with g # h, then Qg N Qh = (. We say that S is Q-syndetic if we have
Ugeg 95 = U,es Q9 = G. Notice that maximal @Q-spaced sets exist and are Q-
syndetic. Conversely, any Q?-syndetic Q-spaced set is a maximal Q-spaced set. We
define

Yo = {5 €29 : 571 ({1}) is a maximal Q-spaced set}.

Proposition 5. The flow Yy is weakly model-universal.

Remark. This proposition is also one of the key ingredients used by Weiss (see [5,
Lemma 2.2]).

Proof. Let (X, u) be a free G-system. By freeness, we can find for every Borel
B C X with p(B) > 0 a Borel subset A C B with u(A) > 0 and with gAN A =0
for any g € Q2. Let us call a Borel set A with this property a Q2-disjoint set. Now
if U,ecq2 9A doesn’t have full measure, we can find a Q?-disjoint Borel set A’ C X
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with p(A’) > 0 and gAN A’ = ) for every g € Q2. As Q is assumed symmetric, it
follows that AU A’ is also Q2-disjoint.
Thus using a measure exhaustion argument, we can find A C X a Q?-disjoint

Borel set so that u (Ug€Q2 gA) = 1. We now let ¢: X — 2% be the map given

by ¢(z)(g) = 1 iff gv € A. Then for almost every z € X, ¢(z)"1({1}) is both
Q*-syndetic and Q-spaced, so a maximal Q-spaced set. It follows that Yy contains
the closed support of ¢*p, so (Yo, ¢*p) is a factor of (X, p). O

We end the section by noting a simple closure property of (weakly) model-
universal flows.

Proposition 6. Let Y,, be weakly model-universal G-flows. Then'Y =[], Y, is
weakly model-universal. If at least one of the Y, is model-universal, then so is'Y.

Proof. Let (X, u) be a free G-system, and for each n < w, let ¢,: X, = Y, be a
Borel, G-equivariant map, where X,, C X satisfies u(X,) = 1. Set X' =, X,,.
Then p(X’) = 1, and the map ¢: X’ — [[ Y, given by ¢(z) = (¢n(2))n<w is
Borel and G-equivariant. If for some n < w, the map ¢, is injective, then ¢ will
also be injective. O

2. STRONGLY IRREDUCIBLE SUBSHIFTS

The key technical tool we use here is the notion of a strongly irreducible subshift.
First, we introduce some general terminology. Write Fin(G) for the collection of
finite subsets of G. Given 57,52 C G and D € Fin(G), we say that S; and S, are
D-apart if DS; N DSy = 0. Let A be a finite set. If Y C A% is a subshift and F €
Fin(G), we define the F-patterns of Y to be the set Sp(Y) := {s|p:s € Y} C A
Given a € Sp(Y), we define the basic clopen neighborhood Ny (a) := {y € Y :
y|r = a}. If F € Fin(G), S C G, a € AF and 8 € A%, we say that a appears in
B if there is g € G with Fg C S and S(fg) = a(f) for each f € F. We say in this
case that « appears at g € G.

We say that Y is strongly irreducible if there is D € Fin(G) so that for any
Fy, F1 € Fin(G) which are D-apart and any «; € Sg,(Y), there is y € Y with
y|r, = a;. We sometimes say that Y is D-irreducible. We will frequently use the
following facts about strongly irreducible subshifts. Here A and B are finite sets.

(1) If Y € A% is Dy-irreducible and Z C B¢ is D g-irreducible, then Y x Z C
(A x B)Y is (Dy U Dgz)-irreducible.

(2) Suppose Y C A% is D-irreducible and ¢: Y — B¢ is continuous and G-
equivariant. By continuity, there is F' € Fin(G) so that ¢(y)(1g) depends
only on y|p. Then Z := [Y] is DF-irreducible.

We will also need a method of making explicit choices of patterns in Sp(Y). To
that end, suppose that A is linearly ordered, and enumerate the group G in some
fashion. This allows us to order Sp(Y) lexicographically. We will use this ordering
in the following two ways. Fix Y C AY a D-irreducible subshift.

(1) If Fy,...,F—1 € Fin(G) are pairwise D-apart, o; € Sg,(Y), and E €
Fin(G) contains each Fj, then we let Confy (ag,...,an—1,FE) € Sg(Y) be
the lexicographically least E-pattern § satisfying f|p, = «;.

(2) Every strongly irreducible subshift is topologically transitive. In particular,
fix F' € Fin(G). Then for any F € Fin(G) containing at least |Sr(Y")| many
disjoint right translates of DF, there is 8 € Sg(Y’) so that every a € Sp(Y)
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appears in 5. We let Transy (F, E) be the lexicographically least E-pattern
with this property.
Most of the time, we take A = 2" for some n < w, and we take the lexicographic
ordering on 2" as the ordering on A.

3. THE OPERATOR ¢

A subset S C G is called syndetic if S is Q-syndetic for some @ € Fin(G).
Given F € Fin(G) and Y C A% a subshift, we say that Y is F-minimal if for
every y € Y, every a € Sp(Y) appears in y. Equivalently, for every y € Y, every
a € Sp(Y) appears syndetically often. The following observation will be useful;
suppose Y C A% is F-minimal and that every o € Sp(Y) appears E-syndetically
for some E € Fin(G). Then every o € Sp(Y') appears in every 8 € Spr(Y).

The following is our main method of producing strongly irreducible, F-minimal
flows. First, recalling the flow Yg from section 1, we note that Y is Q3-irreducible.
Now let Y C A% be D-irreducible. Let E € Fin(G) be symmetric, contain D, and
be large enough to contain at least |Sr(Y)| < |A|Fl many disjoint right translates
of DF. Let C € Fin(G) be symmetric with E5 C C. We define a continuous,
G-equivariant map @(Y, F,E,C) = ¢: Y x Yo — A% as follows. Suppose (y,s) €
Y X Yo, and write z = p(y, s). Let g € G.

o If g = kh, where s(h) =1 and k € E, set z(g) = Transy (F, E)(k).
e Iftherearenot k € E3 and h € G with s(h) = 1 and g = kh, set z(g) = y(g).
o If g = kh, where s(h) =1 and k € E3\ E, set

z(g) = Confy (Transy (F, E), (h-y)|ps\ g2, E°)(k).

The idea behind this definition is to reprint y most of the time, using s to tell us
where to overwrite with the pattern Transy (F, E), and using strong irreducibil-
ity to blend everything together. This construction is a slight modification of a
construction in [2]; see their Figure 3 for a good illustration.

It is routine to verify that ¢ as defined is continuous and G-equivariant. De-
note by ®(Y, F, E,C) the image of ¢ = p(Y,F,E,C). Then ®(Y,F,E,C) is C®-
irreducible.

Lemma 7. We have Sp(Y) = Sp(®(Y, F,E,C)).

Proof. The C direction is clear. For the O direction, suppose z € ®(Y, F, E,C)
with z = ¢(y, s). It is enough to show that z|p € Sp(Y). If there is h € G with
s(h) =1 and F N E3h # (), then F C E5h, so we have

z|p = Confy (Transy (F, E), (h - )| gs\ g, E°)| p.
If there is no such h € G, then we have z|p = y|p. O

For any z € ®(Y, F, E,C), the E-pattern Transy (F, E) appears in z, so in par-
ticular every pattern in Sp(Y') appears in z. Hence ®(Y, F, E, C) is F-minimal. In-
deed, every F-pattern appears C>-syndetically, since maximal C-spaced sets are C-
syndetic. So every pattern in Sr(Y") appears in every pattern in Sca (®(Y, F, E, C)).

4. A TREE OF SUBSHIFTS

We now use the operator ® to produce a tree of strongly irreducible flows. We
will construct for each s € 2<% a strongly irreducible flow X, C (2'5‘)G by induction.
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This tree will be controlled by rapidly increasing sequences {Dy : k < w}, {Ey :
k < w}, and {F} : k < w} of finite symmetric subsets of G. We will continue to
add assumptions about how rapid this needs to be, but for now, we assume that

e U,Dn=U,E.=U, F.=G.
E,, contains at least 2!/P»1("+1)_many pairwise disjoint translates of D2,
F, D E3.
Dyy1 D F.
Let Xy be the trivial flow. If s € 2<% and X is defined, and ¢t = s70, then we set
X; = X, x 29. Suppose we are given k < w, s € 2¥, and t = s~ 1 € 2¥*1. Then we
set Xt = (I)(XS X QG,Dk,Ek,Fk).

In order to discuss the key properties of this construction, we think of (2")¢ as
embedded into (2¢)¢ by adding zeros to the end. In this way, we can refer to the
(n x F)-patterns of a subflow Y C (2V)¢ =2 2N%C "the set Spxr(Y) = {y|nxr :
y € Y}, whenever N > n.

(1) Each X, is Dy -irreducible.

(2) For any s C t € 2<% with |s| = n, we have S, xp, (Xs) = Snxb,, (Xt).

(3) Suppose s € 2<¢ is such that |s| > n and s(n) = 1. Then every pattern in
Sm+1)x D, (Xs) appears in every pattern in S, 1yxp,,, (Xs)-

(4) Suppose s € 2". Then S(n41)x D, ., (Xs—0) # Sn+1)xDysy (Xs—1). This is
because the conclusion of item (3) is true for Xs~; and false for Xs~g =
X, x 26,

We can now consider taking limits along the branches. It follows from item (2)
above that for any o € 2¢; the flow X, C (2¥)¢ is well defined. We can think of
X, as a point in the space K((2*)%) of compact subsets of (2¥)¢. The subshifts
form a closed subspace, and given subshifts {Z, : n < w} C K((2¥)%) and Z ¢
K((2¢)%), we have Z,, — Z iff for each finite ' C G and k < w, we eventually have
Skxr(Zn) = Spxr(Z). With this topology, the map ©: 2¢ — K((2¥)%) given by
O(a) = X, is continuous. Item (4) shows that © is injective. Whenever o € 2¢
has a~!({1}) infinite, then item (3) implies that X, is a minimal flow.

Proposition 8. For any o € 2% with o= 1({0}) and a=*({1}) infinite, the flow X,
18 a minimal, model-universal flow.

Proof. Having already discussed minimality, we focus on model-universality. Write
T = o~ '({1}), and form the flow Y, := (2¢)* x [[,cr Yr,. Then Y, is model-
universal. We have a continuous G-map 1o : Yo — [], X, given inductively as
follows. First let f,: w = (w\T) and fr: T — T be infinite-to-one surjections.
Let y € Yy, and write ¥ = {(Yn)n<w; (Sn)ner} With y,, € 2¢ and s, € Yg,. Then
we write Yo (y) = (Ya(Y)n)n<w with each Yo (y)n € Xqf,. We let 9 (y)o be the
unique member of the trivial flow Xg. If ¥, (y), has been defined and n ¢ T, then
¢a(y)n+1 = (7/}a(y)nayfw(n))- If n €T, then 1/’a(y)n+1 = @n((¢a(y)n75h(n))a Sn)v
where @, = (X4, X 2¢. Dy, E,, F,).

Notice that if the sequence (o (y)n)n<w converges to some x € (2¢)¢, then
x € X,. Let Y. C Y, be the subset of those y for which 1 (y), is convergent.
Then the map 7: Y, — X, with n(y) = lim, ¥, (y), is Borel. It suffices to show
that if the D,, grow rapidly enough, then Y. has measure 1 for any G-invariant
measure on Y,. To that end, fix y = ((Yn)n<w, (Sn)ner), and consider some g € G.
A sufficient condition for the sequence 1, (y)n(g) to be convergent is that for a
tail of n € T, we have s, (h) = 0 whenever h € E3g. This condition ensures that
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1166 ANDY ZUCKER

for suitably large n € T, we have G (9)ns1(9) = (Ya(y)n(9): 57y (9)). Define
Y C Y. to be those y for which on a tail of n € T, we have s,(g) = 0 for any
g € E*. Notice that Y is also Borel and G-invariant.

Fix v an invariant measure on Yz . Then letting U = {s € Yr, : s(1g) = 1}, we
have v(U) < 1/|F,|. This is because g-U = {s € YE, : s(¢g~!) = 1}, so by definition
of the subshift Yz , we have that the collection {g-U : g € F,,} is pairwise disjoint.
Then by invariance and a union bound, we have v({s € Yr, : s(¢g) = 1 for some g €
EXY) < |E%|/|F.|. We now add our last assumption to the growth of the D,,.

o |EX/|F,] < 1/2m.
From this assumption, it follows from the Borel-Cantelli lemma that for any invari-
ant measure u on Y, that p(Y)) = 1.

Furthermore, we claim that 7 is injective on Y. To see this, suppose that
y #y €Yy, with y = {(yn)n<w, (Sn)ner} and y' = {(yp)n<w, (5p)ner}. First
suppose that y,(g) # v, (g) for some n < w and g € G. Then for some large enough
N < w and any k,2 > N, we have ¢, (y)r(9) = ¥a(y)e(g), and the same for /.
Now pick some suitably large k € w \ T with f,(k) = n. Then ¥, (y)k+1(g) =
Ya(Y)k(9) X yn(g), and similarly for y'. It follows that n(y) # n(y’). In the case
that s,(g) # s),(g) for some n € T, the argument is almost the same. For a suitably
large k € T with fr(k) = n, we use the assumption that y and y’ are in Y to see
that Yo (¥)k+1(9) = Ya(y)k(g) X sn(g), and similarly for y’. Once more, we have
n(y) #n(y'). O

To prove Theorem 1, we need to recall some results from [3] (in particular,
see Corollary 6.8). There, it is shown that every minimal flow is disjoint from
every strongly irreducible subshift. From this, it follows that every minimal flow
is disjoint from any X, where « has a tail of zeros. Since disjointness is a Gy
condition ([3, Proposition 6.4]), it follows that every minimal flow is disjoint from
X, for comeagerly many o € 2“. We are now in a position to apply Mycielski’s
theorem (see [4, 19.1]) to find our mutually disjoint family {X,, : ¢ < ¢} of minimal,
model-universal shifts.

5. FROM ESSENTIALLY FREE TO FREE

Recall that if Y is a minimal metrizable flow, then an extension 7: Z — Y is
called almost one-to-one if the set {z € Z : |7~ *({m(2)})| = 1} is comeager. Notice
that Z must also be minimal. To see this, let z € Z and V C Z be non-empty
open. Then find 2’ € V with |7~ 1({n(2')})| = 1. We can find a net g; € G with
gi - m(z) = w(2’). It follows that g; - = — 2’. In particular, the orbit of z meets V.

One method of producing almost one-to-one extensions of a given minimal G-flow
is to consider Reg(Y'), the Boolean algebra of regular open subsets of Y. Recall
that A C Y is regular open if Int(A) = A. We remind the reader that in this
Boolean algebra, we have A=Y \ A, AV B =Int(AUB), and AAB = AN B.
If B C Reg(Y) is a subalgebra, then St(B), the space of ultrafilters on B, is a
compact, zero-dimensional space whose basic clopen neighborhood has the form
{p € St(B) : A € p}, where A € B. If B is also G-invariant, then St(B) is a G-flow.
If B is countable, then St(B) is homeomorphic to Cantor space. Now suppose that
B contains a basis for the topology on Y. Then we have a G-map m: St(B) — Y
given by w(p) = y iff every A € B with A > y satisfies A € p. Furthermore, the
map 7 is pseudo-open, meaning that images of open sets have non-empty interior.
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For y € Y, we have |7~ 1({y})| = 1 iff for every A € B, we have y € Aory € Y \ A.
So when B is countable, the set {y € Y : |[r71(y)| = 1} is comeager. Since 7 is
pseudo-open, it follows that {z € Z : |7~ 1(n(2))| = 1} is also comeager.

In general, an almost one-to-one extension can have very different measure-
theoretic behavior than the base flow. Indeed, this fact is heavily exploited in [5].
For us however, we will seek to build almost one-to-one extensions which preserve
the measure-theoretic properties of the base flow. For the remainder of the section,
fix Y a minimal, model-universal flow whose underlying space is a Cantor set. Re-
call that this implies that Y is essentially free. We will call an invariant measure u
onY free if for every g € G, we have u(Y,) =0, where Y, = {y € Y : gy = y}.

Definition 9. Given A C Y, we call A strongly reqular open if A is regular open
and for every free invariant measure p, we have p(A) + u(Y \ A) = 1. Denote by
SReg(Y") the collection of strongly regular open sets.

Proposition 10. SReg(Y) is a G-invariant subalgebra of Reg(Y).

Proof. Clearly SReg(Y) is G-invariant and closed under complements, so it is
enough to check closure under intersection. Given A, B € SReg(Y'), we have

(ANB)\(ANB)=(ANB)\AU(ANDB)\ B
C(A\A)U(B\B).

Since A and B are both strongly regular open, the last entry must have measure
zero for any free invariant measure pu. (]

Of course, we have yet to prove the existence of any interesting strongly regular
open sets. We do this in the next lemma.

Lemma 11. For every g € G\ {1¢}, there is a partition of Y \ 'Yy into three
relatively clopen pieces Ay, By, and Cy with the property that gA, N Ay = 0, and
likewise for By and Cy. In particular, Ay, By, and Cy are all strongly regular open
sets.

Proof. Write Y \ Yy = U,, Un with each U,, compact open. We may assume that
the U, are pairwise disjoint, and by further partitioning each U,, into finitely many
clopen pieces if needed, we may assume that gU, NU,, = 0 for each n < w. We will
inductively partition V;, := (J,,,, U, into pieces A,, By, and C,, with the property
that Ay NV, = A, for N > n, likewise for By and Cy. We then set A, = J,, An,
and likewise for B, and Cy.

We set Ag = By = Cy = (. Assume Ay, By, and Cj, have been defined for some
k < w. We will form clopen sets A}, By, and C}, so that U, = A}, U B}, UCj.
Partition Uy into finitely many clopen sets {W; : j < m} with the property that
for each j < m and for each h € {g7!, g}, we either have hW; C Ay, hW; C By,
hW; C Cy, or hW; N (A UB UC) = 0. Add each W; to the set A}, By, or C}, in
such a way so that if hW; C Ay, for some h as above, then W; is not added to A},
and likewise for B; and Cj. We then set A1 = Ar U A}, and likewise for By
and Ci1.

Notice that for each n < w, we have gA, N A, = 0, and likewise for B,, and C,,.
Hence A, will also satisfy gA, N Ay = 0 as desired, and likewise for B, and C,. O

The last lemma we will need shows that metrizable, almost one-to-one extensions
of Y using strongly regular open sets preserve the measure-theoretic properties of Y.

Licensed to Univ of Calif, San Diego. Prepared on Thu Aug 13 16:28:47 EDT 2020 for download from IP 137.110.42.7.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1168 ANDY ZUCKER

Lemma 12. Let B be a countable G-invariant subalgebra of SReg(Y) extending
the clopen algebra of Y. Let Z = St(B), and let w: Z — Y be the associated
almost one-to-one extension. Then for any free invariant measure  on'Y , we have

p{y - ImH({yhl=1}) = L.

Proof. By the discussion at the beginning of the section, we have

ey :lr ({yh) =1} = () AU \ D).
AeB
Since B is a countable collection of strongly regular open sets, this set must have
measure 1 for any free p. O

Proof of Theorem 2. Let B C SReg(Y) be a countable, G-invariant subalgebra con-
taining all of the sets Ay, By, Cy from Lemma 11. Then St(B) will be the desired
flow. To see that St(B) is free, let p € St(B) and g € G \ {1g}. Then p con-
tains one of A4, By, or Cy, WLOG say A, € p. Then since gA; N Ay = 0, we
must have gp # p. To see that St(B) is model-universal, we note that on the
set Yo :={y € Y : |77 *({y})| = 1}, the map 7=': ¥y — Z is well defined. By
Lemma 12, this set has measure 1 for all free invariant measures on Y. O
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