

Contaminants in Aquatic and Terrestrial Environments

Exploring the specificity of extracellular wastewater peptidases to inform the design of sustainable peptide-based antibiotics

Michael Thomas Zumstein, Jeffrey J. Werner, and Damian E. Helbling

Environ. Sci. Technol., Just Accepted Manuscript • DOI: 10.1021/acs.est.0c02564 • Publication Date (Web): 13 Aug 2020Downloaded from pubs.acs.org on August 13, 2020**Just Accepted**

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

1 **Manuscript**2 **Exploring the specificity of extracellular wastewater peptidases to inform the**
3 **design of sustainable peptide-based antibiotics**

4

5

6 Michael T. Zumstein^{1,2*}, Jeffrey J. Werner³, and Damian E. Helbling¹

7

8 ¹School of Civil and Environmental Engineering, Cornell University, Ithaca, NY,
9 14853, USA10 ²Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600
11 Dübendorf, Switzerland12 ³Chemistry Department, SUNY-Cortland, Cortland, NY, 13045, USA

13

14 *To whom correspondence should be addressed:

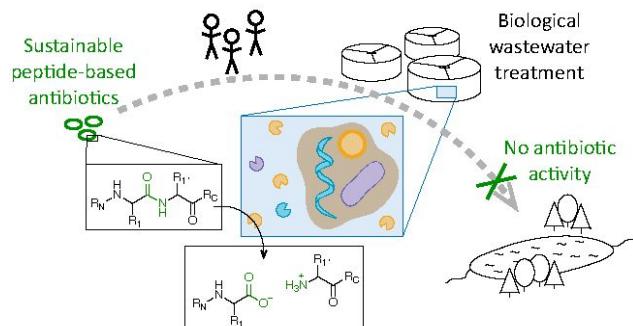
15 E-mail: mtz27@cornell.edu, mtzumstein@gmail.com

16

17 **Abstract**

18 New antimicrobial peptides are emerging as promising alternatives to
19 conventional antibiotics because of their specificity for target pathogens and their
20 potential to be rapidly hydrolyzed (i.e., inactivated) by extracellular peptidases during
21 biological wastewater treatment, thereby limiting the emergence and propagation of
22 antibiotic resistance in the environment. However, little is known about the specificity
23 of extracellular peptidases derived from wastewater microbial communities, which is a
24 major impediment for the design of sustainable peptide-based antibiotics that can be
25 hydrolyzed by wastewater peptidases. We used a set of natural peptides to explore the
26 specificity of dissolved extracellular wastewater peptidases. We found that enzyme-
27 catalyzed hydrolysis occurred at specific sites and that a subset of the these hydrolyses
28 were conserved across enzyme pools derived from three independent wastewater
29 microbial communities. An analysis of the amino-acid residues flanking the hydrolyzed
30 bonds revealed a set of residue motifs that were linked to enzyme-catalyzed hydrolysis
31 and are therefore candidates for incorporation into new and sustainable peptide-based
32 antibiotics.

33


34

35 **Keywords**

36 Biological wastewater treatment, peptide-based antibiotics, antibiotic resistance,
37 extracellular enzymes, biotransformation, green chemistry

38 TOC graphic

39

40

41

42 **Introduction**

43 Due to the increasing number of infections caused by antibiotic-resistant
44 bacteria, the development of potent and sustainable antibiotics is one of the greatest
45 challenges of the 21st century.¹⁻³ Most antibiotics are only partially metabolized in the
46 human body and, consequently, a fraction of them is excreted and conveyed to
47 centralized wastewater treatment facilities.⁴⁻⁶ As a result, wastewater microbial
48 communities utilized in the biological processes within centralized wastewater
49 treatment facilities are chronically exposed to antibiotics and contribute to the
50 emergence and propagation of antibiotic resistance.⁷⁻¹⁰ Additionally, antibiotics that
51 persist during wastewater treatment can have profound effects on the ecosystem
52 services provided by microbial communities in natural systems downstream from
53 wastewater treatment facilities and lead to further emergence and propagation of
54 antibiotic resistance in these downstream systems.¹⁰⁻¹²

55 To enable the development of sustainable antibiotics for the benefit of
56 environmental and public health, we believe that new antibiotics should be evaluated
57 for their fate during biological wastewater treatment, along with conventional metrics
58 such as their efficacy, specificity, toxicity, and stability in the human body.¹³ Complete
59 inactivation of antibiotics during biological wastewater treatment would protect
60 downstream microbial communities from the selective pressures and stresses caused by
61 antibiotics in the environment. Further, we expect that the rapid inactivation of
62 antibiotics by dissolved extracellular enzymes secreted by wastewater microbial
63 communities would protect the wastewater microbial communities themselves from the
64 selective pressures and stresses caused by antibiotics.¹⁴ In fact, it has been recently
65 demonstrated in controlled experiments with structured microbial communities that

66 extracellular processes that inactivate antibiotics reduce the selective pressures that lead
67 to the emergence and propagation of antibiotic resistance.¹⁵

68 Antimicrobial peptides, such as the recently characterized teixobactin,¹⁶
69 thanatin,^{17,18} streptocidin D,¹⁹ albomycin,²⁰ malacidin,²¹ tachyplesin II,²² and
70 murepavadin²³ are promising not only because of their specificity for target
71 pathogens,^{13,16,24,25} but also for their potential to be rapidly hydrolyzed (i.e., inactivated)
72 by extracellular peptidases during biological wastewater treatment.^{14,26,27} However,
73 previous studies on the biotransformation of antibiotics that contain peptide bonds
74 showed that not all peptide bonds are rapidly hydrolyzed by wastewater peptidases. For
75 example, one study reported only 50% removal of vancomycin during biological
76 wastewater treatment,²⁸ and only a fraction of that removal can be attributed to enzyme-
77 catalyzed peptide hydrolysis. Similarly, we found in our previous study that the
78 hydrolysis of daptomycin by extracellular enzymes derived from wastewater microbial
79 communities was slow.¹⁴

80 Besides the limited amount of available data on the hydrolysis of peptide-based
81 antibiotics during wastewater treatment, the specificity of extracellular wastewater
82 peptidases has never been systematically explored. This knowledge gap limits our
83 ability to predict the biodegradability of existing peptide-based antibiotics or to design
84 peptide-based antibiotics to be rapidly hydrolyzed by extracellular wastewater
85 peptidases. Previous research on wastewater peptidases has solely been conducted with
86 probe molecules that target a small number of peptidases capable of hydrolyzing the
87 bond between a particular amino-acid residue and a fluorescent moiety.^{29,30} Whereas
88 methods that provide detailed information on peptidase specificity have also been
89 established,³¹ the potential of these methods to assess the peptidase specificity of
90 wastewater enzymes has yet to be assessed.

91 In this study, we explored the specificity of dissolved, extracellular, *endo*-
92 cleaving peptidases (i.e., enzymes that hydrolyze peptide bonds other than the terminal
93 bonds in a peptide) derived from wastewater microbial communities by incubating a
94 set of natural peptides with enzymes extracted from aerobic bioreactors within
95 centralized wastewater treatment facilities. We measured the biotransformation of the
96 parent peptides, identified product peptides for hydrolyzed parent peptides, and
97 compared the resulting peptidase specificity patterns among extracts from three
98 independent wastewater microbial communities. The identification of peptide bonds
99 that are hydrolyzed by extracellular peptidases across independent wastewater
100 microbial communities is an essential and significant step towards understanding the
101 fate of peptide-based antibiotics during biological wastewater treatment and creating
102 opportunities for the design of more rapidly hydrolyzed and more sustainable
103 antibiotics.

104

105 **Materials and Methods**106 *Chemicals*

107 A list containing all chemicals used in this study along with their suppliers is provided
108 in the Supplementary Information (SI).

109

110 *Preparation of the parent peptide library*

111 We digested bovine serum albumin (BSA) according to a protocol that was slightly
112 adapted from the supplier of trypsin. In brief, we dissolved 2.4 mg of BSA in 500 μ L
113 LC-MS grade water containing ammonium bicarbonate (100 mM), calcium chloride
114 (1 mM), and sodium dodecyl sulfate (0.1% w/w). Then, we added dithiothreitol (DTT,
115 20 μ L of a 500 mM aqueous solution) and incubated the solution at 60 °C for 1 h. After
116 cooling the solution to room temperature, we added iodoacetamide (IAA, 20 μ L of a
117 1 M aqueous solution), incubated the solution at 37 °C in the dark for 30 min, and added
118 DTT (10 μ L of a 500 mM aqueous solution). Subsequently, we added a freshly
119 prepared solution of trypsin (1 μ g/ μ L in aqueous acetic acid (50 mM)) and incubated
120 the resulting solution for 24 h at 37 °C. To clean up peptides, we added trifluoroacetic
121 acid to a final concentration of 0.1% v/v and used a peptide desalting column (Thermo
122 Fisher, article number: 89852) according to the supplier's protocol. To elute the
123 peptides from the column, we used an aqueous solution of acetonitrile (50% v/v)
124 containing trifluoroacetic acid (0.1% v/v). Subsequently, we evaporated the solvent
125 using a Speed Vac Concentrator (Savant, SVC-100H), resolubilized the peptides in
126 1.2 mL of an aqueous solution of acetonitrile (50% v/v) containing formic acid (0.1%
127 v/v), and stored the solutions at -20 °C. In addition to the BSA:trypsin ratio suggested
128 in the supplier's protocol (i.e., 100:1 w/w), we tested BSA:trypsin ratios of 300:1 and
129 1000:1 and analyzed the resulting solutions by HPLC-HRMS/MS (**Figure S1**). Because
130 this analysis revealed no consistent trend of peptide abundance with respect to the

131 BSA:trypsin ratio, we pooled the purified peptides that resulted from the three
132 digestions and used the resulting solution for all incubation experiments.

133

134 *Wastewater microbial community sampling, enzyme extraction, and protease activity*
135 *measurements*

136 We sampled wastewater microbial communities from the aeration tanks of three
137 municipal wastewater treatment facilities in New York State (Ithaca, Dryden,
138 Trumansburg). Microbial community sampling and enzyme extraction were performed
139 as previously described.¹⁴ In brief, we collected microbial communities by taking a 1 L
140 grab sample from each treatment facility, transported them to the lab in a glass bottle,
141 aliquoted them into 50 mL plastic centrifuge tubes, and extracted dissolved
142 extracellular enzymes by centrifugation (4000 x g, 5 min, Legend XTR centrifuge,
143 Thermo Scientific) and subsequent filter-sterilization (0.22 μ m, PVDF syringe filters,
144 Restek). For each microbial community, we performed triplicate extractions and we
145 used the three resulting extracts for incubation experiments. This level of experimental
146 replication was chosen to capture differences with respect to enzyme activity between
147 the 50 mL aliquots, extraction efficiency, incubation experiments, and peptide analysis.
148 Prior to centrifugation, we added potassium phosphate (final concentration: 20 mM) to
149 stabilize the pH at 7.4. To determine the general protease activity of the enzyme
150 extracts, we used the EnzChek Protease Assay kit (Thermo Fisher, E6638) and a
151 microplate reader (Tecan, Infinite M200-pro; excitation wavelength: 485 nm, emission
152 wavelength: 530 nm) with black, flat bottom 96-well plates (Corning, 3991). On each
153 plate, we ran incubations with Milli-Q water in addition to wastewater enzyme extracts.
154 These control incubations were used to correct for run-to-run variations of fluorescence
155 measurements and for non-enzymatic probe hydrolysis.

156

157 *Peptide hydrolysis experiments*

158 Incubation experiments of parent peptides with wastewater enzymes were conducted
159 immediately after enzyme extraction (i.e., < 3 h after sampling at the wastewater
160 treatment facilities). Therefore, we spiked 15 μ L of a solution containing the purified
161 parent peptides to a 2 mL centrifuge tube containing 1.5 mL of either the enzyme
162 extract or LCMS-grade water that was pH-stabilized (pH 7.4) using potassium
163 phosphate (20 mM). We additionally performed an incubation of enzyme extracts to
164 which we added 15 μ L of a mock digest (i.e., a solution that was treated the same way
165 as digestions, but did not contain BSA). These controls showed that none of the parent
166 peptides was present at a substantial concentration in any of the wastewater extracts
167 (i.e., peak area before peptide spiking < 0.4% of peak area after peptide spiking).

168 Immediately after spiking, we mixed the solution by vortexing and incubated it at room
169 temperature under horizontal shaking (180 rpm). At the sampling time points, we
170 transferred 150 μ L of the incubation solution into a new plastic centrifuge tube and
171 incubated the tube at 75 °C for 10 min in a Dry Bath Incubator (Fisher Scientific, 11-
172 718-2) to inactivate the enzymes and to stop enzymatic hydrolysis.³² We performed a
173 control experiment to confirm that the parent peptides persisted during this heat
174 treatment (**Figure S2**). Immediately after the heat treatment, we incubated the tube on
175 ice for 1 min, centrifuged the tube at 15'800 x g, for 1 min, and transferred the
176 supernatant into a plastic HPLC vial (SUN SRI, 501-354) for storage at -20 °C until
177 analysis.

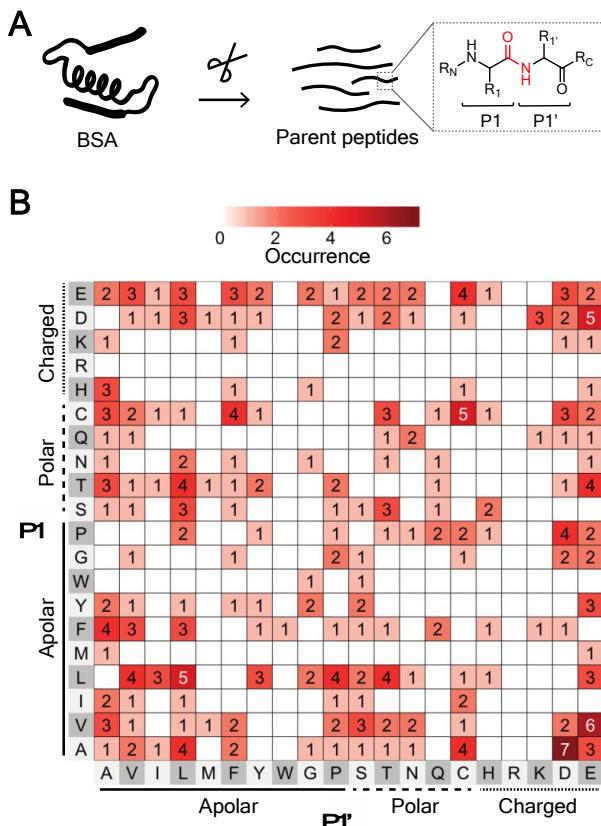
178

179 *Identification and relative quantitation of parent and product peptides*

180 We used high-performance liquid chromatography (HPLC, Ultimate 3000, Thermo
181 Scientific) coupled to high-resolution tandem mass spectrometry (HRMS/MS,
182 QExactive, Thermo Scientific) for peptide identification and relative quantification.

183 Briefly, we injected 20 μ L of peptide solution and separated the peptides with an
184 Acclaim PepMap 100 C18 column (Thermo Scientific, catalog number: 164572, length:
185 150 mm, inner diameter: 1 mm, particle size: 3 μ m) at a flow rate of 40 μ L /min and
186 with the following mobile phase composition (A: LC-grade water; B: LC-grade
187 methanol – both contained 0.1% v/v formic acid): 0-2 min: 0 % B, 2-80 min: 0% B –
188 55% B (linear increase), 80-90 min: 55% B – 90% B (linear increase), 90-94 min:
189 90 % B, 94-95 min: 90% B – 0% B, 95-100 min: 0% B). For detection, we performed
190 full-scan MS acquisitions (scan range: 160 – 1800 m/z, resolution: 70'000, AGC target:
191 1E6, Maximum IT: 200 ms) in positive electrospray ionization (ESI) mode and Top10
192 MS² acquisitions (resolution: 17'500, AGC target: 1e5, Maximum IT: 100 ms, isolation
193 window: 1.0 m/z, NCE (stepped): 20, 25, 30, dynamic exclusion time: 6 s)³³. ESI
194 parameters were as follows: sheath gas: 15, aux gas: 5, S-lens: 70.

195 We used the open-source software Skyline (version 4.2.0) for data analysis.³⁴ For parent
196 peptide identification, we first predicted peptides by applying the *in silico* digestion tool
197 within Skyline on the amino-acid sequence of BSA (UniProt-ID: P02769) and screened
198 the collected HPLC-HRMS/MS data for these peptides (Skyline settings: trypsin
199 specificity: KR/P, missed cleavages: 1, modifications: cysteine acylation, lengths:
200 \geq 5 amino acids, precursor charges: +2 and +3, fragment ion type: y, fragment charges
201 +1 and +2). For product peptide identification, we first predicted all products that result
202 from the hydrolysis of one peptide bond in the parent peptide of interest and screened
203 the collected HPLC-HRMS/MS data for these products (Skyline settings: lengths: \geq 3
204 amino acids, precursor charges: +1, +2 and +3, fragment ion type: y, fragment charges
205 +1 and +2). We applied the following additional criteria to both parent and product
206 peptides: precursor mass deviation $<$ 2 ppm, at least one fragment with a mass deviation
207 $<$ 5 ppm, matching isotope pattern of the precursor (isotope distribution dot-product


208 > 0.9), and a reasonable chromatographic peak shape. For relative peptide quantitation,
209 we integrated peak areas using the automated algorithm included in Skyline and
210 manually verified the integration boundaries.

211 **Results**212 *Preparation and characterization of parent peptides*

213 To prepare a set of natural parent peptides, we digested bovine serum albumin
214 (BSA) with trypsin – a peptidase that specifically hydrolyzes peptide bonds C-terminal
215 of lysine and arginine (**Figure 1A**). Using high-performance liquid chromatography
216 coupled to high-resolution tandem mass spectrometry (HPLC-HRMS/MS), we detected
217 42 parent peptides that were predicted by an *in silico* digestion of BSA with trypsin (we
218 later refer to them as T1 – T42). Amino-acid sequences and acquisition parameters of
219 these peptides are provided in **Table S1** and in **Figure S3**. Control experiments, in
220 which the peptides were incubated in pH-buffered Milli-Q water for 48 h, demonstrated
221 that the peak areas of all 42 peptides remained constant during the incubation and that
222 non-enzymatic hydrolysis can therefore likely be neglected in experiments with
223 wastewater enzyme extracts (**Figure S4**).

224 Because the specificity of many peptidases is governed by specific pairs of
225 amino-acid residues,³¹ we characterized the parent peptides based on the residue pairs
226 they contain. We found that more than 40% of all possible residue pairs (i.e., 169 out
227 of 400) occurred in our set of parent peptides (**Figure 1B**). While many of the residue
228 pairs occurred once, some occurred more frequently (e.g., the residue pair alanine-
229 aspartic acid occurred seven times). We note that we excluded the residues located at
230 the amino- and the carboxyl-terminus of each parent peptide from this analysis because
231 the focus of this study is on *endo*-cleaving peptidases. We also note that, because the
232 parent peptides contained only ~ 4% of all possible three-residue motifs (i.e., 318 out
233 of 8000), we restricted the analyses of this study to focus on residue pairs.

234

235

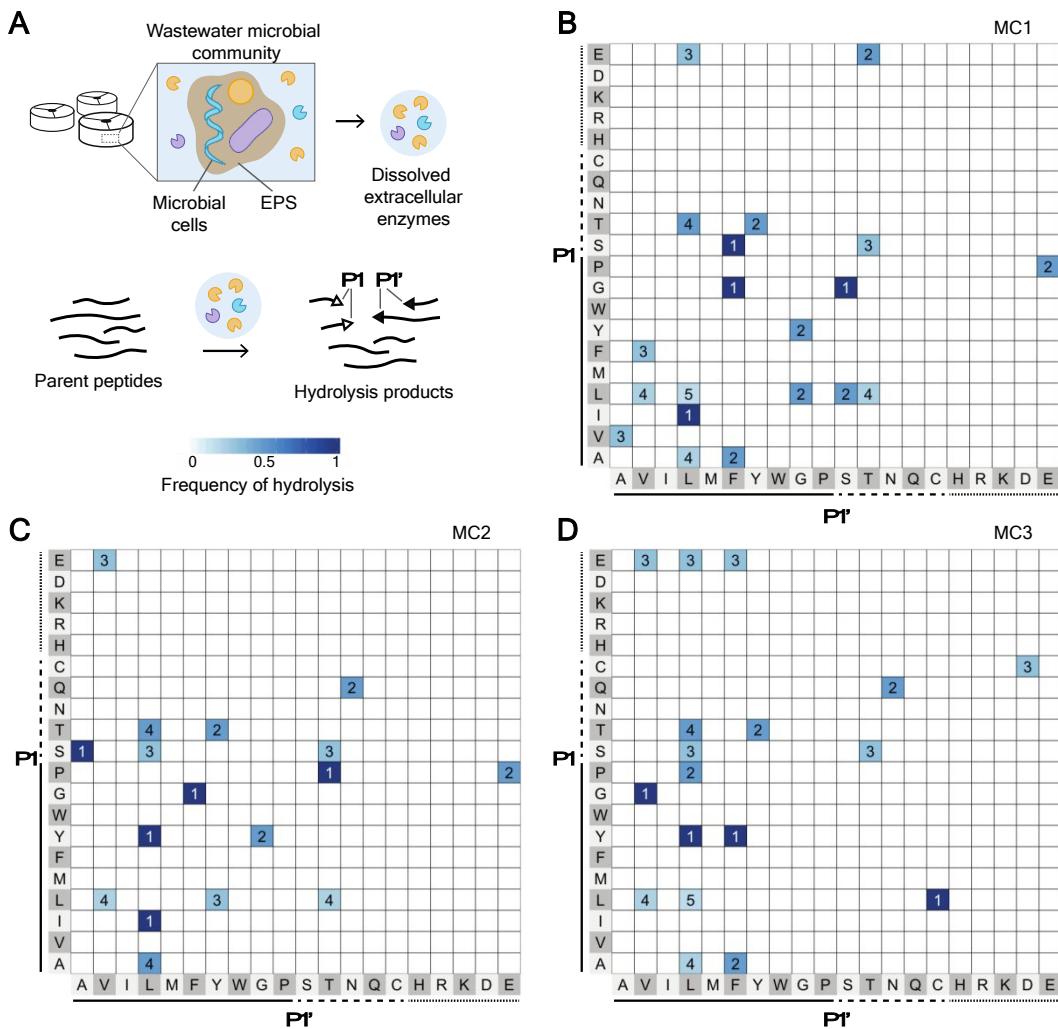
236 **Figure 1. Preparation and assessment of parent peptides.** (A) Parent peptides resulted from
 237 the digestion of bovine serum albumin (BSA) with trypsin. Every peptide bond links two
 238 amino-acid residues – one at the prime site (P1') and one at the nonprime site (P1). R_N: residues
 239 located towards the N-terminus, R_C: residues located towards the C-terminus. (B) Occurrence
 240 of non-terminal residue pairs (i.e., P1P1') in the parent peptides. Residue pairs that occurred on
 241 multiple parent peptides that shared sequences due to missed cleavages during the trypsin
 242 digestion were only counted once. Amino-acid residues are represented by their single-letter
 243 abbreviation and grouped based on the chemistry of their side chain (i.e., apolar: solid line,
 244 polar: dashed line, and charged: dotted line). Cell color and number in cell both represent the
 245 occurrence of the respective amino-acid-residue pair

246

247

248

249


Hydrolysis of parent peptides by dissolved extracellular wastewater peptidases

250 To assess the susceptibility of the peptide bonds in the parent peptides to
 251 hydrolysis by dissolved extracellular wastewater enzymes, we used a previously
 252 described method to extract enzymes from three wastewater microbial communities and
 253 incubated the parent peptides with the resulting enzyme extracts (**Figure 2A**).¹⁴ We
 254 selected these wastewater microbial communities because of the different operational
 255 parameters of the wastewater treatment facilities. Key operational parameters of the

256 wastewater treatment facilities (i.e., hydraulic retention time, solids retention time, and
257 total suspended solids content) and key characteristics of the enzyme extracts (i.e.,
258 protein concentration and general protease activity measured with an assay based on
259 fluorogenic casein) are provided in **Table S2**.

260 In a preliminary experiment, we estimated the rate of enzymatic peptide
261 biotransformation by quantifying the decrease of parent-peptide peak areas during their
262 incubation with enzymes extracted from MC1 (**Figure S5**). Data from this experiment
263 show that biotransformation rates varied across parent peptides. For example, the peak
264 area of peptide T33 decreased by more than 3 orders of magnitude during an 18 h
265 incubation, while the peak areas of peptides T18 and T19 remained constant. Incubation
266 times for triplicate experiments with enzymes derived from each of the three microbial
267 communities were chosen based on the results of this preliminary experiment and the
268 protease activities provided in **Table S2**.

269

270 **Figure 2. Identification of peptide bonds hydrolyzed by dissolved extracellular**
 271 **wastewater enzymes.** (A) Enzymes were extracted from the microbial communities (MC) of
 272 three wastewater treatment facilities and incubated with the parent peptides. (B) – (D) Amino-
 273 acid-residue pairs (i.e., P1P1') flanking peptide bonds hydrolyzed by enzymes extracted from
 274 MC1 – 3, respectively. Number in cell represents the occurrence of the respective residue pair
 275 in the parent peptides; cell color represents the relative hydrolysis frequency. Residues are
 276 represented by their single-letter abbreviation and grouped based on the chemistry of their side
 277 chain (i.e., apolar: solid line, polar: dashed line, and charged: dotted line). We note that the
 278 absence of a residue pair in this depiction does not necessarily mean that the respective bond
 279 was not hydrolyzed, but that we did not find products as evidence for hydrolysis.
 280

283 Our next step towards deciphering the specificity of wastewater peptidases was
284 to select parent peptides that were biotransformed during their incubation with each of
285 the enzyme extracts. Our criterion for defining biotransformation was that the mean
286 peak area of the parent peptide at the end of the incubation was <50% and significantly
287 smaller (t-test, $p < 0.05$, $n=3$) than the mean peak area of the peptide at the beginning of
288 the incubation (**Figure S6**). Applying this criterion resulted in the identification of nine,

289 seven, and twelve parent peptides that were biotransformed by extracellular peptidases
290 derived from MC1, MC2, and MC3, respectively. Five of the parent peptides (i.e., T12,
291 T30, T31, T33, and T36) were biotransformed by enzymes extracted from all three
292 wastewater microbial communities. Because the above criterion is based on peak areas,
293 we analyzed a dilution series of the parent-peptide solution to assess the relationship
294 between peak area and peptide concentration (**Figure S7**). This analysis showed that
295 the relationship was linear ($R^2 > 0.95$) for 35 of the 42 peptides. For the remaining 7
296 peptides, our results indicate that the actual extent of biotransformation during
297 experiments with wastewater enzymes might have been less than the extent of
298 biotransformation determined based on peak area.³⁵ Nevertheless, because the above
299 selection of biotransformed parent peptides was mainly conducted to reduce the number
300 of parent peptides for product screening (see below), we did not exclude parent peptides
301 based on the relationship between peak area and peptide concentration.

302

303 *Identification of hydrolysis products and cleaved peptide bonds*

304 To gain insights into the sites of peptide hydrolysis, we screened the collected
305 HPLC-HRMS/MS data for all possible product peptides that contain at least three
306 amino acids and result from the hydrolysis of one peptide bond in the parent peptides
307 that were selected as described above. We applied the following criteria for the
308 identification of an enzymatic hydrolysis product: the mean peak area of a product at
309 the end of the enzyme incubation is >100 -fold and significantly larger (t-test, $p < 0.05$,
310 $n=3$) than the mean peak area of the product at the end of water control incubations and
311 >2 -fold and significantly larger (t-test, $p < 0.05$, $n=3$) than the mean peak area of the
312 product in the beginning of the enzyme incubation. Additionally, we verified that none
313 of the products originated from the wastewater by confirming that the mean peak area

314 of the product at the end of the incubation was >100-fold larger than the peak area of
315 the product in an enzyme extract to which no parent peptides were spiked. This analysis
316 resulted in the identification of 26, 23, and 22 products for the experiments with
317 enzymes derived from MC1, MC2, and MC3, respectively (**Tables S3-S5**). We note
318 that we excluded products that resulted from the hydrolytic removal of one amino acid
319 from the amino- or the carbonyl-terminus as the focus of this study is on *endo*-cleaving
320 peptidases. However, we cannot rule out that some of the identified products resulted
321 from multiple consecutive *exo*-type hydrolyses.

322 The number of identified peptide bonds that were hydrolyzed by enzymes
323 derived from MC1, MC2, and MC3, respectively was 21, 19, and 19 (this number is
324 lower than the number of products because we sometimes detected two products of the
325 same hydrolysis). The residue pairs flanking the hydrolyzed peptide bonds (i.e., residue
326 pairs that occupy sites P1 and P1') are shown in **Figure 2B-D**. Examining the results
327 from each wastewater microbial community separately, we found that: (i) peptidases
328 from each community hydrolyzed two different bonds surrounded by the residue pair
329 threonine-leucine; and, (ii) peptidases from MC2 additionally hydrolyzed two different
330 bonds surrounded by the residue pair alanine-leucine. For the remaining residue pairs
331 flanking hydrolyzed peptide bonds, we detected only one incident of hydrolysis.

332

333 *Comparison of peptide hydrolysis among wastewater microbial communities*

334 We next examined the dataset to assess how the observed peptide hydrolyses
335 compared among the three tested wastewater microbial communities. We found that six
336 peptide bonds were hydrolyzed by peptidases derived from all three communities,
337 twelve bonds were hydrolyzed by peptidases derived from two communities, and nine,
338 six, and six bonds were only hydrolyzed by peptidases derived from MC1, MC2, and

339 MC3, respectively (**Figure 3A**). A closer examination of the amino-acid-residue pairs
340 flanking the 18 peptide bonds that were hydrolyzed by peptidases from at least two
341 microbial communities revealed that leucine is highly abundant at the P1' site of these
342 bonds (**Figure 3B**). While leucine makes up less than 11% of the potential P1' positions
343 in the parent peptides (**Figure 1B**), it makes up more than 44% of the P1' positions of
344 peptide bonds that were hydrolyzed by peptidases from at least two wastewater
345 microbial communities. In other words, 24% of the peptide bonds that have leucine at
346 the P1' site were hydrolyzed by peptidases from at least two communities (**Figure 3B**).
347 Additional information on the 18 peptide bonds that were hydrolyzed by peptidases
348 from at least two communities (i.e., sequences of parent and product peptides and peak
349 areas of product peptides) are provided in **Table S6**.

350
 351 **Figure 3. Overlap in hydrolyzed peptide bonds across microbial communities (MCs).** (A)
 352 Venn diagram representing the overlap of hydrolyzed peptide bonds across the three wastewater
 353 microbial communities. (B) Amino-acid-residue pairs (i.e., P1P1') flanking peptide bonds that
 354 were hydrolyzed by enzymes extracted from two and three microbial communities are
 355 represented by light green cells and dark green cells, respectively. Bar plots at top and right
 356 represent the fraction of peptide bonds with the respective residue at the P1' and P1 site,
 357 respectively, that was hydrolyzed by enzymes derived from at least two microbial communities.
 358 Residues are represented by their single-letter abbreviations and grouped based on the
 359 chemistry of their side chain (i.e., apolar: solid line, polar: dashed line, and charged:
 360 dotted line). (C) Peak area reduction of parent peptides that contain residue pairs flanking peptide
 361 bonds that were hydrolyzed by enzymes extracted from at least two microbial communities.
 362 Points and error bars represent means and ranges, respectively, of the peak area reductions
 363 measured for the three microbial communities. Parent peptide IDs are provided next to the
 364 respective points. Black points represent parent peptides for which we detected the hydrolysis
 365 of the respective peptide bond by enzymes extracted from at least two microbial communities.
 366

367 To test if the residue pairs flanking these 18 peptide bonds are generally linked
368 to enzyme-catalyzed hydrolysis, we compared the peak area reduction of the parent
369 peptides that contain at least one of these residue pairs (**Figure 3C**). While the mean
370 peak area reduction across the enzyme pools derived from three wastewater
371 communities was > 50% for some of the selected parent peptides, others showed
372 moderate to low peak area reduction. For example, the residue pairs leucine-leucine,
373 and leucine-threonine occurred in parent peptides for which we observed almost
374 complete peak area reduction by enzymes from all wastewater microbial communities
375 (i.e., T12 and T36), as well as in parent peptides with peak area reductions <10% in
376 some enzyme extracts (i.e., T22 and T19). The observation that these three residue pairs
377 have a leucine at the P1 site and an uncharged amino acid at the P1' site suggests that
378 they might be substrates for similar peptidases. Therefore, we examined the residues
379 adjacent to P1 and P1' and found that the parent peptides that were biotransformed
380 contained uncharged residues at P2' (i.e., tyrosine C-terminal to leucine-leucine on T12
381 and proline C-terminal to leucine-threonine on T36), while the parent peptides that were
382 more stable contained a charged residue at P2' (i.e., glutamic acid C-terminal to leucine-
383 leucine on T22 and lysine C-terminal to leucine-threonine on T19).

384 As these findings suggest that amino-acid residues adjacent to P1 and P1' also
385 affect hydrolysis by wastewater peptidases, we examined the residue pairs at the P2P1
386 and at the P1'P2' sites around the 18 bonds that were hydrolyzed by peptidases from at
387 least two wastewater microbial communities and compared the peak area removal of
388 the parent peptides that contain these residue pairs (**Figures S8 and S9**). Similar to the
389 results for P1P1' described above, the results of this analysis suggested varying degrees
390 of biotransformation. However, we identified a set of residue pairs for which all of the
391 parent peptides showed a mean peak area reduction >50% across the three communities.

392 By screening the acquired HPLC-HRMS/MS data for product peptides of the respective
393 hydrolyses, we found that the two peptide bonds that feature the residue pair valine-
394 serine at the P2P1 site and the four peptide bonds that feature either phenylalanine-
395 glutamine or threonine-proline at the P1'P2' site were hydrolyzed by peptidases derived
396 from at least two microbial communities (**Figures S8 and S9**). Examining the residues
397 adjacent to these three residue pairs showed that the residues C-terminal of valine-
398 serine and N-terminal of phenylalanine-glutamine and threonine-proline were all
399 uncharged.

400

401 **Discussion**

402 The suitability of the set of parent peptides for this first study on wastewater
403 peptidase specificity was demonstrated by the good coverage of amino-acid-residue
404 pairs (i.e., 40% of all possible residue pairs occurred at least once) and by the variation
405 in the estimated extent of biotransformation among the parent peptides. For some
406 peptides, we found a peak area reduction >80% during incubations with dissolved
407 extracellular wastewater peptidases. The duration of these incubations (i.e., 6 h, 3.8 h,
408 and 3.5 h for enzymes derived from MC 1, MC 2, and MC 3, respectively) was in the
409 range of typical hydraulic retention times (HRTs) of conventional activated sludge-
410 based wastewater treatment processes and shorter than HRTs of other types of
411 biological wastewater treatment processes such as sequencing batch reactors. This
412 finding is promising with respect to the inactivation of peptide-based antibiotics during
413 biological wastewater treatment. However, we note that future research will need to
414 validate the activity and specificity of extracellular peptidases from other types of
415 biological wastewater treatment processes and to assess a potential temporal variability.
416 Furthermore, biotransformation rates need to be obtained by absolute quantitation using
417 synthetic peptides. The slow biotransformation of some parent peptides is in agreement
418 with the observed recalcitrance of existing antibiotics containing peptide bonds during
419 biological wastewater treatment (i.e., daptomycin and vancomycin).^{14,28}

420 The variation in the extent of biotransformation among parent peptides, together
421 with the relatively small number of observed hydrolyses, suggests that the investigated
422 peptidases exhibited substrate specificity and that the pool of dissolved extracellular
423 wastewater peptidases is of a relatively narrow complexity. We expect that both
424 peptidases with a broad specificity, as well as a highly complex pool of specific
425 peptidases, would have resulted in a larger number of hydrolyzed peptide bonds and in

426 more similar extents of biotransformation across different peptides. Defining the
427 specificity of dissolved extracellular wastewater peptidases is an important prerequisite
428 for the identification of peptide bonds that can be rapidly hydrolyzed during biological
429 wastewater treatment. Future work is needed to assess the hydrolyzability of amino-
430 acid-residue pairs not covered in this work, motifs consisting of more than two amino-
431 acid residues, and motifs containing D-amino acids or non-native amino acids.^{31,36}

432 The finding that a substantial fraction of the hydrolysis sites overlapped across
433 the peptidases derived from three independent wastewater microbial communities
434 suggests that some peptidase specificity is conserved across wastewater microbial
435 communities. This overlap in specificity might be linked to the core wastewater
436 microbial community that was recently characterized from 269 wastewater treatment
437 facilities on six continents.³⁷ It could also be expected, however, that taxonomically
438 unique communities exhibit conserved functional redundancy in the target substrates of
439 their peptidases, assuming the microorganisms are growing on similar substrates in a
440 similar environment. Irrespective of the underlying reason, the overlap in peptidase
441 specificity among wastewater microbial communities is a promising result for the
442 design of peptide-based antibiotics that are rapidly biodegraded during biological
443 wastewater treatment.

444 Among the peptide bonds that were hydrolyzed across more than one
445 wastewater microbial community, we identified amino-acid-residue motifs that were
446 linked to hydrolysis. The identification of these motifs will enable predictions of the
447 biotransformation of peptide-based compounds during biological wastewater
448 treatment.³⁸⁻⁴⁰ For example, the frequent occurrence of leucine at the P1' site of
449 hydrolyzed peptide bonds is particularly noteworthy. We searched the Merops database
450 for peptidases that preferentially hydrolyze peptide bonds with leucine at the P1' site

451 and found that a substantial number of the deposited peptidases belong to the M4 family
452 of bacterial metalloproteases, which are secreted to extracellularly hydrolyze proteins
453 and peptides for bacterial nutrition (e.g., griselysin, vimelysin, bacillolysin, and
454 pseudolysin).³⁶ The fact that gene transcripts that encode for two of these peptidases
455 (i.e., bacillolysin (EC 3.4.23.28) and pseudolysin (EC 3.4.24.26)) were detected in a
456 previous study on wastewater metatranscriptomes suggests that these peptidases might
457 indeed be key players in the pool of extracellular wastewater enzymes.⁴¹

458 Complementary experimental work will need to assess the pharmacokinetics
459 and *in vivo* stability of wastewater-labile peptide-based antibiotic drug candidates. For
460 example, an intravenously-administered antimicrobial peptide would not be an
461 effective drug if it were susceptible to rapid hydrolysis by human blood peptidases.
462 Previous research showed that human blood peptidases preferentially hydrolyze peptide
463 bonds flanked by arginine/lysine (P1) and alanine/serine (P1'),⁴² which suggests that
464 some of the peptide bonds we found to be hydrolyzed by wastewater peptidases might
465 be stable in human blood.

466 The identification of motifs associated with rapid hydrolysis by dissolved
467 extracellular wastewater peptidases will create opportunities for the (re-)design of
468 promising antimicrobial peptides such as streptocidin D, malacidin A, thanatin, and
469 teixobactin (**Figure S10**).^{13,43} On the way towards sustainable peptide-based
470 antibiotics, we see great potential in future studies that apply omics-based approaches
471 to seek links between the peptidase specificities described herein and the identity of
472 extracellular wastewater peptidases.⁴⁴⁻⁴⁷ Ideally, such studies will identify peptidases
473 that are abundant and active across wastewater microbial communities, but absent from
474 the specific part of the human body to which the respective antibiotics would be applied.
475 The motifs targeted by such wastewater peptidases could then be incorporated into

476 peptide-based antibiotics to render the latter rapidly biodegradable in wastewater and
477 therefore benign with respect to the emergence and propagation of antibiotic resistance
478 in wastewater.

479

480 **Acknowledgements.** This work was supported by the Swiss National Science
481 Foundation (SNF) (Early Postdoc.Mobility fellowship P2EZP2_178472 to M.T.Z.), the
482 United States National Science Foundation (CBET-1748982 to D.E.H.), and the Swiss
483 Federal Institute of Aquatic Science and Technology (Eawag). We thank Jose Lozano
484 and David Coish (Camden Group, USA) for information on and access to wastewater
485 treatment plants. We thank Kathrin Fenner and Thomas Hofstetter for fruitful
486 discussions. The authors declare no competing interest. The experimental raw data
487 underlying this study are available from the corresponding author upon request.

488

489

490 **Supporting Information.** Additional information on parent peptides, product peptides,
491 and wastewater treatment processes. Supplementary visualizations of experimental
492 data. Supplementary Materials and Methods. This material is available free of charge
493 via the Internet at <http://pubs.acs.org>.

494

495 **References**

496 (1) Vikesland, P.; Garner, E.; Gupta, S.; Kang, S.; Maile-Moskowitz, A.; Zhu, N.
497 Differential Drivers of Antimicrobial Resistance across the World. *Acc. Chem. Res.*
498 **2018**, *52* (4), 916–924.

499 (2) Lam, S. J.; O'Brien-Simpson, N. M.; Pantarat, N.; Sulistio, A.; Wong, E. H. H.;
500 Chen, Y.-Y.; Lenzo, J. C.; Holden, J. A.; Blencowe, A.; Reynolds, E. C.; Qiao, G. G.
501 Combating Multidrug-Resistant Gram-Negative Bacteria with Structurally
502 Nanoengineered Antimicrobial Peptide Polymers. *Nat. Microbiol.* **2016**, *1*, 1–
503 11.

504 (3) Aminov, R. I. A Brief History of the Antibiotic Era: Lessons Learned and
505 Challenges for the Future. *Front. Microbiol.* **2010**, *1*, 1–7.

506 (4) Watkinson, A. J.; Murby, E. J.; Kolpin, D. W.; Costanzo, S. D. The Occurrence of
507 Antibiotics in an Urban Watershed: From Wastewater to Drinking Water. *Sci. Total
508 Environ.*, **2009**, *407* (8), 2711–2723.

509 (5) Oberoi, A. S.; Jia, Y.; Zhang, H.; Khanal, S. K.; Lu, H. Insights into the Fate and
510 Removal of Antibiotics in Engineered Biological Treatment Systems: A Critical
511 Review. *Environ. Sci. Technol.* **2019**, *53* (13), 7234–7264.

512 (6) Michael, I.; Rizzo, L.; McArdell, C. S.; Manaia, C. M.; Merlin, C.; Schwartz, T.;
513 Dagot, C.; Fatta-Kassinos, D. Urban Wastewater Treatment Plants as Hotspots for the
514 Release of Antibiotics in the Environment: A Review. *Water Res.* **2013**, *47* (3), 957–
515 995

516 (7) Bengtsson-Palme, J.; Milakovic, M.; Švecová, H.; Ganjo, M.; Jonsson, V.;
517 Grbic, R.; Udikovic-Kolic, N. Industrial Wastewater Treatment Plant Enriches
518 Antibiotic Resistance Genes and Alters the Structure of Microbial Communities.
519 *Water Res.* **2019**, *162*, 437–445.

520 (8) Ju, F.; Beck, K.; Yin, X.; Maccagnan, A.; McArdell, C. S.; Singer, H. P.; Johnson,
521 D. R.; Zhang, T.; Bürgmann, H. Wastewater Treatment Plant Resistomes Are Shaped
522 by Bacterial Composition, Genetic Exchange, and Upregulated Expression in the
523 Effluent Microbiomes. *ISME J* **2018**, *13* (2), 346–360.

524 (9) Czekalski, N.; Berthold, T.; Caucci, S.; Egli, A.; Bürgmann, H. Increased Levels
525 of Multiresistant Bacteria and Resistance Genes after Wastewater Treatment and
526 Their Dissemination into Lake Geneva, Switzerland. *Front. Microbiol.* **2012**, *3*, 106.

527 (10) Baquero, F.; Martínez, J.-L.; Cantón, R. Antibiotics and Antibiotic Resistance in
528 Water Environments. *Curr. Opin. Biotech.* **2008**, *19* (3), 260–265.

529 (11) Kümmerer, K. Antibiotics in the Aquatic Environment – A Review – Part I.
530 *Chemosphere* **2009**, *75* (4), 417–434.

531 (12) Sandegren, L. Low Sub-Minimal Inhibitory Concentrations of Antibiotics
532 Generate New Types of Resistance. *Sustain. Chem. Pharm.* **2019**, *11*, 46–48.

533 (13) Andrä, J.; Beyer, F.; Cornelissen, G.; Einfeldt, J.; Heseding, J.; Kümmerer, K.;
534 Oelkers, K.; Floeter, C. PharmCycle: A Holistic Approach to Reduce the
535 Contamination of the Aquatic Environment with Antibiotics by Developing
536 Sustainable Antibiotics, Improving the Environmental Risk Assessment of
537 Antibiotics, and Reducing the Discharges of Antibiotics in the Wastewater Outlet.
538 *Environ. Sci. Eur.* **2018**, *30* (24), 1–7.

539 (14) Zumstein, M. T.; Helbling, D. E. Biotransformation of Antibiotics: Exploring the
540 Activity of Extracellular and Intracellular Enzymes Derived from Wastewater
541 Microbial Communities. *Water Res.* **2019**, *155*, 115–123.

542 (15) Frost, I.; Smith, W. P. J.; Mitri, S.; Millan, A. S.; Davit, Y.; Osborne, J. M.; Pitt-
543 Francis, J. M.; MacLean, R. C.; Foster, K. R. Cooperation, Competition and
544 Antibiotic Resistance in Bacterial Colonies. *ISME J* **2018**, *12* (6), 1582–1593.

545 (16) Ling, L. L.; Schneider, T.; Peoples, A. J.; Spoering, A. L.; Engels, I.; Conlon, B.
546 P.; Mueller, A.; Schäberle, T. F.; Hughes, D. E.; Epstein, S.; Jones, M.; Lazarides, L.;
547 Steadman, V. A.; Cohen, D. R.; Felix, C. R.; Fetterman, K. A.; Millett, W. P.; Nitti,

548 A. G.; Zullo, A. M.; Chen, C.; Lewis, K. A New Antibiotic Kills Pathogens without
549 Detectable Resistance. *Nature* **2015**, *517* (7535), 455–459.

550 (17) Vetterli, S. U.; Zerbe, K.; Müller, M.; Urfer, M.; Mondal, M.; Wang, S.-Y.;
551 Moehle, K.; Zerbe, O.; Vitale, A.; Pessi, G.; Eberl, L.; Wollscheid, B.; Robinson, J.
552 A. Thanatin Targets the Intermembrane Protein Complex Required for
553 Lipopolysaccharide Transport in Escherichia Coli. *Sci. Adv.* **2018**, *4* (11), eaau2634.

554 (18) Ma, B.; Fang, C.; Lu, L.; Wang, M.; Xue, X.; Zhou, Y.; Li, M.; Hu, Y.; Luo, X.;
555 Hou, Z. The Antimicrobial Peptide Thanatin Disrupts the Bacterial Outer Membrane
556 and Inactivates the NDM-1 Metallo-B-Lactamase. *Nat. Commun.* **2019**, *3517* (10), 1–
557 11.

558 (19) Helfrich, E. J. N.; Vogel, C. M.; Ueoka, R.; Schäfer, M.; Ryffel, F.; Müller, D.
559 B.; Probst, S.; Kreuzer, M.; Piel, J.; Vorholt, J. A. Bipartite Interactions, Antibiotic
560 Production and Biosynthetic Potential of the *Arabidopsis* Leaf Microbiome. *Nature
561 Microbiology* **2018**, *3* (8), 909–919.

562 (20) Lin, Z.; Xu, X.; Zhao, S.; Yang, X.; Guo, J.; Zhang, Q.; Jing, C.; Chen, S.; He,
563 Y. Total Synthesis and Antimicrobial Evaluation of Natural Albomycins against
564 Clinical Pathogens. *Nat. Commun.* **2018**, *9* (1), 1–8.

565 (21) Hover, B. M.; Kim, S.-H.; Katz, M.; Charlop-Powers, Z.; Owen, J. G.; Ternei,
566 M. A.; Maniko, J.; Estrela, A. B.; Molina, H.; Park, S.; Perlin, D. S.; Brady, S. F.
567 Culture-Independent Discovery of the Malacidins as Calcium-Dependent Antibiotics
568 with Activity against Multidrug-Resistant Gram-Positive Pathogens. *Nat. Microbiol.*
569 **2018**, *3* (4), 415–422.

570 (22) Spohn, R.; Daruka, L.; Lázár, V.; Martins, A.; Vidovics, F.; Grézal, G.; Méhi, O.;
571 Kintses, B.; Számel, M.; Jangir, P. K.; Csörgő, B.; Györkei, Á.; Bódi, Z.; Faragó, A.;
572 Bodai, L.; Földesi, I.; Kata, D.; Maróti, G.; Pap, B.; Wirth, R.; Papp, B.; Pál, C.
573 Integrated Evolutionary Analysis Reveals Antimicrobial Peptides with Limited
574 Resistance. *Nat. Commun.* **2019**, *4538* (10).

575 (23) Luther, A.; Urfer, M.; Zahn, M.; Müller, M.; Wang, S.-Y.; Mondal, M.; Vitale,
576 A.; Hartmann, J.-B.; Sharpe, T.; Monte, F. L.; Kocherla, H.; Cline, E.; Pessi, G.; Rath,
577 P.; Modaresi, S. M.; Chiquet, P.; Stiegeler, S.; Verbree, C.; Remus, T.; Schmitt, M.;
578 Kolopp, C.; Westwood, M.-A.; Desjonquieres, N.; Brabet, E.; Hell, S.; LePoupon, K.;
579 Vermeulen, A.; Jaisson, R. x000E9 gis; Rithie, V.; Upert, G.; Lederer, A.; Zbinden,
580 P.; Wach, A.; Moehle, K.; Zerbe, K.; Locher, H. H.; Bernardini, F.; Dale, G. E.;
581 Eberl, L.; Wollscheid, B.; Hiller, S.; Robinson, J. A.; Obrecht, D. Chimeric
582 Peptidomimetic Antibiotics against Gram-Negative Bacteria. *Nature* **2019**, No. 576,
583 452–458.

584 (24) Hancock, R. E. Peptide Antibiotics. *Lancet* **1997**, *349* (9049), 418–422.

585 (25) Otvos, L.; Wade, J. D. Current Challenges in Peptide-Based Drug Discovery.
586 *Front. Chem.* **2014**, *2* (62), 1–4.

587 (26) Frølund, B.; Griebel, T.; Nielsen, P. H. Enzymatic Activity in the Activated-
588 Sludge Floc Matrix. *Appl. Microbiol. Biotech.* **1995**, *43* (4), 755–761.

589 (27) Burgess, J. E.; Pletschke, B. I. Hydrolytic Enzymes in Sewage Sludge Treatment:
590 A Mini-Review. *Water Sa* **2008**, *34* (3), 343–350.

591 (28) Li, B.; Zhang, T. Mass Flows and Removal of Antibiotics in Two Municipal
592 Wastewater Treatment Plants. *Chemosphere* **2011**, *83* (9), 1284–1289.

593 (29) Gessesse, A.; Dueholm, T.; Petersen, S. B.; Nielsen, P. H. Lipase and Protease
594 Extraction from Activated Sludge. *Water Res.* **2003**, *37* (15), 3652–3657.

595 (30) Li, Y.; Chrost, R. J. Microbial Enzymatic Activities in Aerobic Activated Sludge
596 Model Reactors. *Enzyme Microb. Technol.* **2006**, *39* (4), 568–572.

597 (31) O'Donoghue, A. J.; Eroy-Reveles, A. A.; Knudsen, G. M.; Ingram, J.; Zhou, M.;
598 Statnekov, J. B.; Greninger, A. L.; Hostetter, D. R.; Qu, G.; Maltby, D. A.; Anderson,
599 M. O.; DeRisi, J. L.; McKerrow, J. H.; Burlingame, A. L.; Craik, C. S. Global
600 Identification of Peptidase Specificity by Multiplex Substrate Profiling. *Nat. Methods*
601 **2012**, *9* (11), 1095–1100.

602 (32) Ahnoff, M.; Cazares, L. H.; Skld, K. Thermal Inactivation of Enzymes and
603 Pathogens in Biosamples for MS Analysis. *Bioanalysis* **2015**, *7* (15), 1885–1899.

604 (33) Diedrich, J. K.; Pinto, A. F. M.; Yates, J. R. Energy Dependence of HCD on
605 Peptide Fragmentation: Stepped Collisional Energy Finds the Sweet Spot. *J. Am. Soc.*
606 *Mass Spectrom.* **2013**, *24* (11), 1690–1699.

607 (34) MacLean, B.; Tomazela, D. M.; Shulman, N.; Chambers, M.; Finney, G. L.;
608 Frewen, B.; Kern, R.; Tabb, D. L.; Liebler, D. C.; MacCoss, M. J. Skyline: An Open
609 Source Document Editor for Creating and Analyzing Targeted Proteomics
610 Experiments. *Bioinformatics* **2010**, *26* (7), 966–968.

611 (35) Warwood, S.; Byron, A.; Humphries, M. J.; Knight, D. The Effect of Peptide
612 Adsorption on Signal Linearity and a Simple Approach to Improve Reliability of
613 Quantification. *J Proteomics* **2013**, *85*, 160–164.

614 (36) Rawlings, N. D.; Barrett, A. J.; Thomas, P. D.; Huang, X.; Bateman, A.; Finn, R.
615 D. The MEROPS Database of Proteolytic Enzymes, Their Substrates and Inhibitors in
616 2017 and a Comparison with Peptidases in the PANTHER Database. *Nucleic Acids*
617 *Res.* **2017**, *46* (D1), D624–D632.

618 (37) Wu, L.; Ning, D.; Li, Y.; Zhang, P.; Shan, X.; Zhang, Q.; Brown, M.; Li, Z.;
619 Nostrand, J. D.; Ling, F.; Xiao, N.; Zhang, Y.; Wells, G. F.; Yang, Y.; Deng, Y.; Tu,
620 Q.; Wang, A.; Acevedo, D.; Agullo-Barcelo, M.; Alvarez-Cohen, L.; Andersen, G. L.;
621 Araujo, J. C. de; Boehnke, K.; Bond, P.; Bott, C. B.; Bovio, P.; Brewster, R. K.; Bux,
622 F.; Cabezas, A.; Cabrol, L.; Chen, S.; Criddle, C. S.; Deng, Y.; Etchebehere, C.; Ford,
623 A.; Frigon, D.; Gómez, J. S.; Griffin, J. S.; Gu, A. Z.; Habagil, M.; Hale, L.;
624 Hardeman, S. D.; Harmon, M.; Horn, H.; Hu, Z.; Jauffur, S.; Johnson, D. R.; Keller,
625 J.; Keucken, A.; Kumari, S.; Leal, C. D.; Lebrun, L. A.; Lee, J.; Lee, M.; Lee, Z. M.

626 P.; Li, Y.; Li, Z.; Li, M.; Li, X.; Ling, F.; Liu, Y.; Luthy, R. G.; Mendonça-Hagler, L.
627 C.; Menezes, F. G. R. de; Meyers, A. J.; Mohebbi, A.; Nielsen, P. H.; Ning, D.;
628 Oehmen, A.; Palmer, A.; Parameswaran, P.; Park, J.; Patsch, D.; Reginatto, V.; Reyes,
629 F. L. de los; Robles, A. N.; Rossetti, S.; Shan, X.; Sidhu, J.; Sloan, W. T.; Smith, K.;
630 Sousa, O. V. de; Stahl, D. A.; Stephens, K.; Tian, R.; Tiedje, J. M.; Tooker, N. B.; Tu,
631 Q.; Nostrand, J. D. van; Vasconcelos, D. D. los C.; Vierheilig, J.; Wakelin, S.; Wang,
632 A.; Wang, B.; Weaver, J. E.; Wells, G. F.; West, S.; Wilmes, P.; Woo, S.-G.; Wu, L.;
633 Wu, J.-H.; Wu, L.; Xi, C.; Xiao, N.; Xu, M.; Yan, T.; Yang, Y.; Yang, M.; Young,
634 M.; Yue, H.; Zhang, B.; Zhang, P.; Zhang, Q.; Zhang, Y.; Zhang, T.; Zhang, Q.;
635 Zhang, W.; Zhang, Y.; Zhou, H.; Wen, X.; Curtis, T. P.; He, Q.; Brown, M.; He, Z.;
636 Keller, J.; Alvarez, P. J. J.; Criddle, C. S.; Wagner, M.; He, Q.; Curtis, T. P.; Stahl, D.
637 A.; Alvarez-Cohen, L.; Rittmann, B. E.; Wen, X.; Zhou, J. Global Diversity and
638 Biogeography of Bacterial Communities in Wastewater Treatment Plants. *Nat.*
639 *Microbiol.* **2019**, *4*, 1183–1195.

640 (38) Djoumbou-Feunang, Y.; Fiamoncini, J.; Gil-de-la-Fuente, A.; Greiner, R.;
641 Manach, C.; Wishart, D. S. BioTransformer: A Comprehensive Computational Tool
642 for Small Molecule Metabolism Prediction and Metabolite Identification. *J.*
643 *Cheminformatics* **2019**, *11* (1), 1–25.

644 (39) Wicker, J.; Lorsbach, T.; Gütlein, M.; Schmid, E.; Latino, D.; Kramer, S.;
645 Fenner, K. EnviPath – The Environmental Contaminant Biotransformation Pathway
646 Resource. *Nucleic Acids Res.* **2016**, *44* (D1), D502–D508.

647 (40) Gao, J.; Ellis, L. B. M.; Wackett, L. P. The University of Minnesota
648 Biocatalysis/Biodegradation Database: Improving Public Access. *Nucleic Acids Res.*
649 **2009**, *38*, 488–491.

650 (41) Johnson, D. R.; Lee, T. K.; Park, J.; Fenner, K.; Helbling, D. E. The Functional
651 and Taxonomic Richness of Wastewater Treatment Plant Microbial Communities Are
652 Associated with Each Other and with Ambient Nitrogen and Carbon Availability.
653 *Environ. Microbiol.* **2014**, *17* (12), 4851–4860.

654 (42) Wildes, D.; Wells, J. A. Sampling the N-Terminal Proteome of Human Blood.
655 *Proc. National. Acad. Sci.* **2010**, *107* (10), 4561–4566.

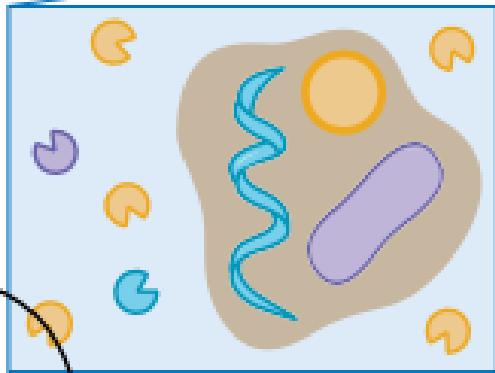
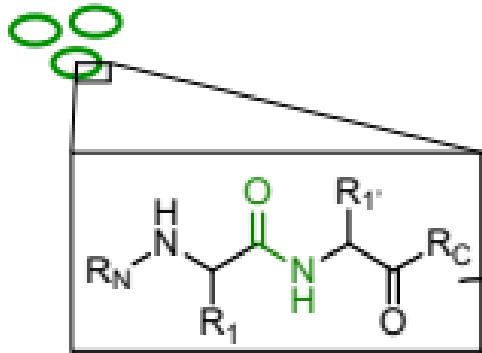
656 (43) Boethling, R. S.; Sommer, E.; DiFiore, D. Designing Small Molecules for
657 Biodegradability. *Chem. Rev.* **2007**, *107* (6), 2207–2227.

658 (44) Helbling, D. E.; Johnson, D. R.; Lee, T. K.; Scheidegger, A.; Fenner, K. A
659 Framework for Establishing Predictive Relationships between Specific Bacterial 16S
660 RRNA Sequence Abundances and Biotransformation Rates. *Water Res.* **2015**, *70* (C),
661 471–484.

662 (45) Krah, D.; Ghattas, A.-K.; Wick, A.; Bröder, K.; Ternes, T. A. Micropollutant
663 Degradation via Extracted Native Enzymes from Activated Sludge. *Water Res.* **2016**,
664 *95* (C), 348–360.

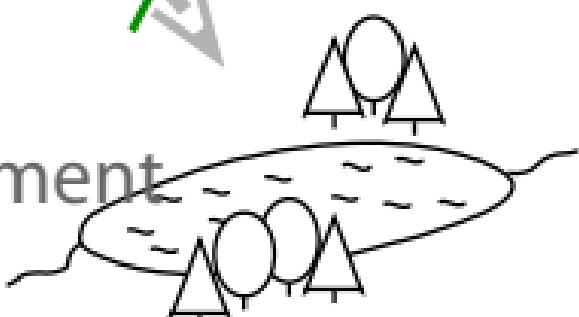
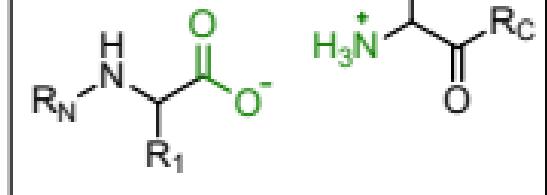
665 (46) Barglow, K. T.; Cravatt, B. F. Activity-Based Protein Profiling for the Functional
666 Annotation of Enzymes. *Nat. Methods* **2007**, *4* (10), 822–827.

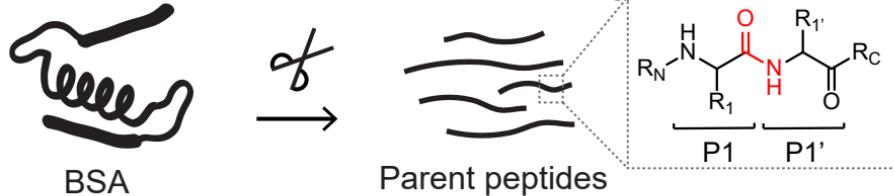
667 (47) Saghatelian, A.; Jessani, N.; Joseph, A.; Humphrey, M.; Cravatt, B. F. Activity-
668 Based Probes for the Proteomic Profiling of Metalloproteases. *Proc. National. Acad.*
669 *Sci.* **2004**, *101* (27), 10000–10005.

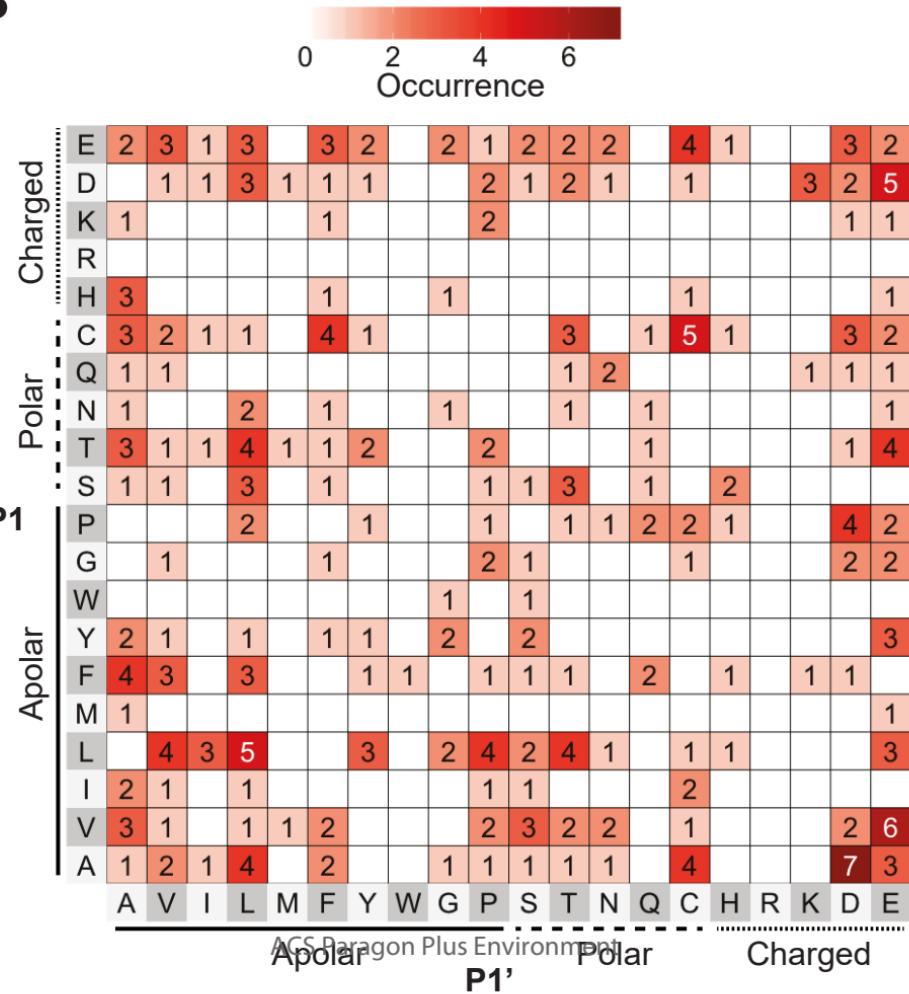


670

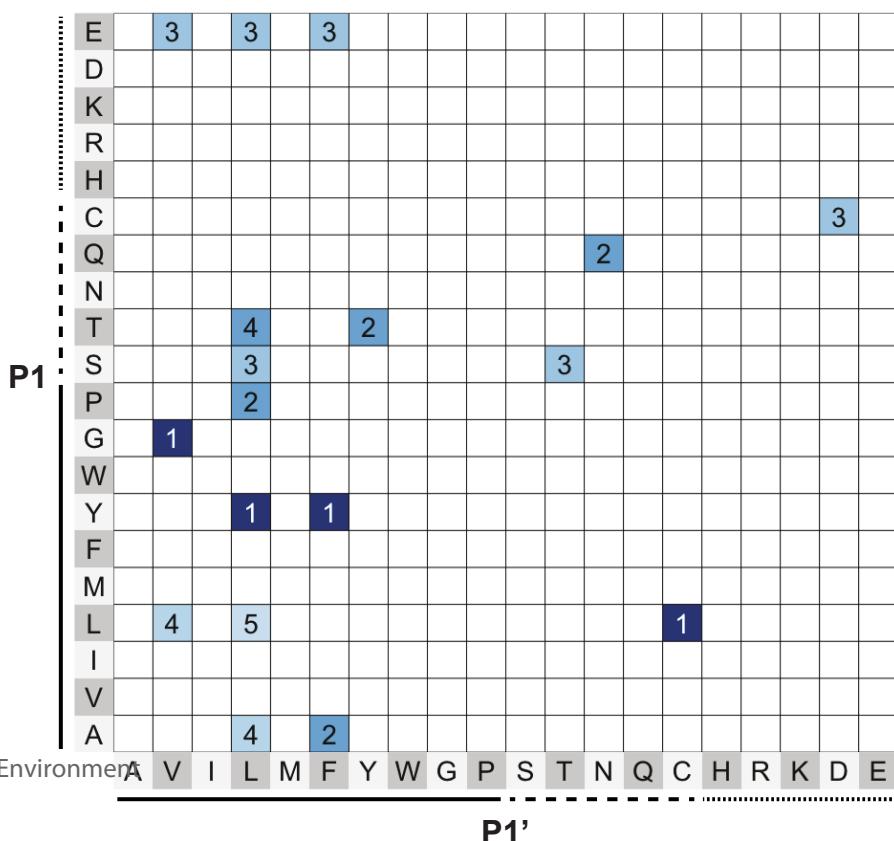
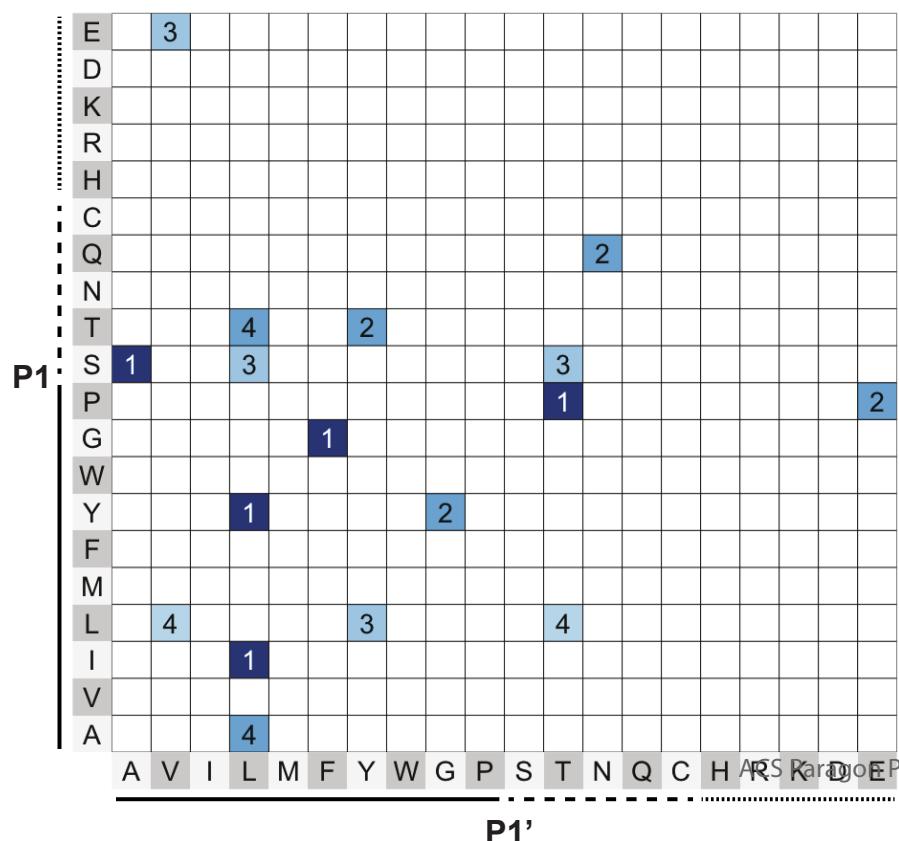
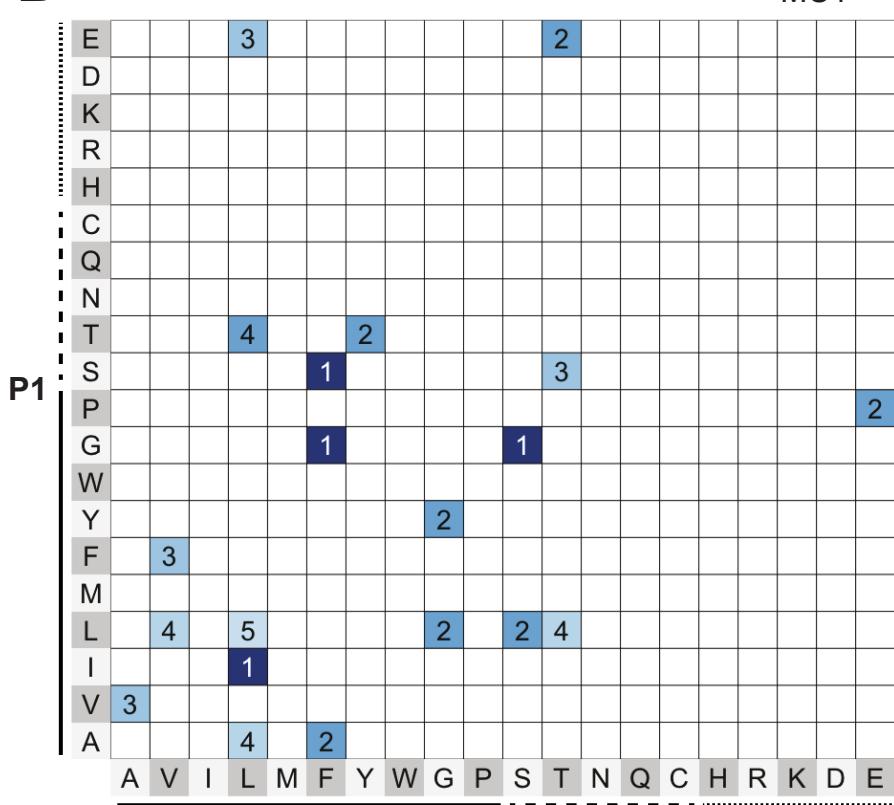
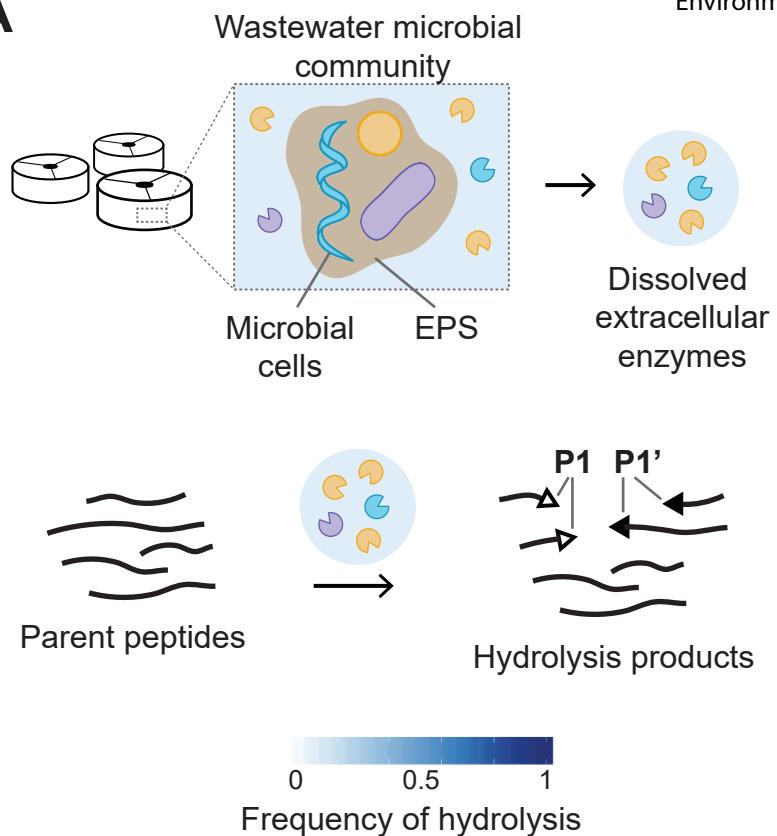
Sustainable peptide-based antibiotics

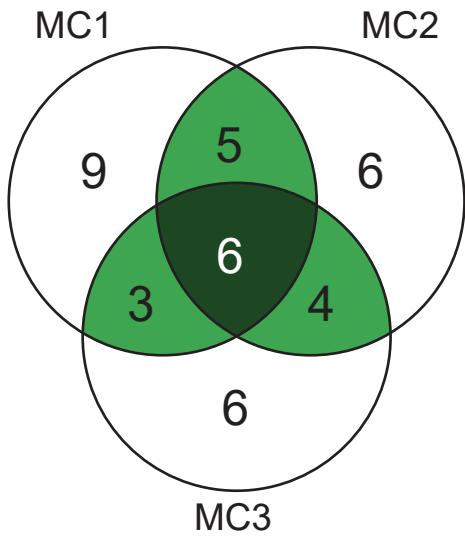
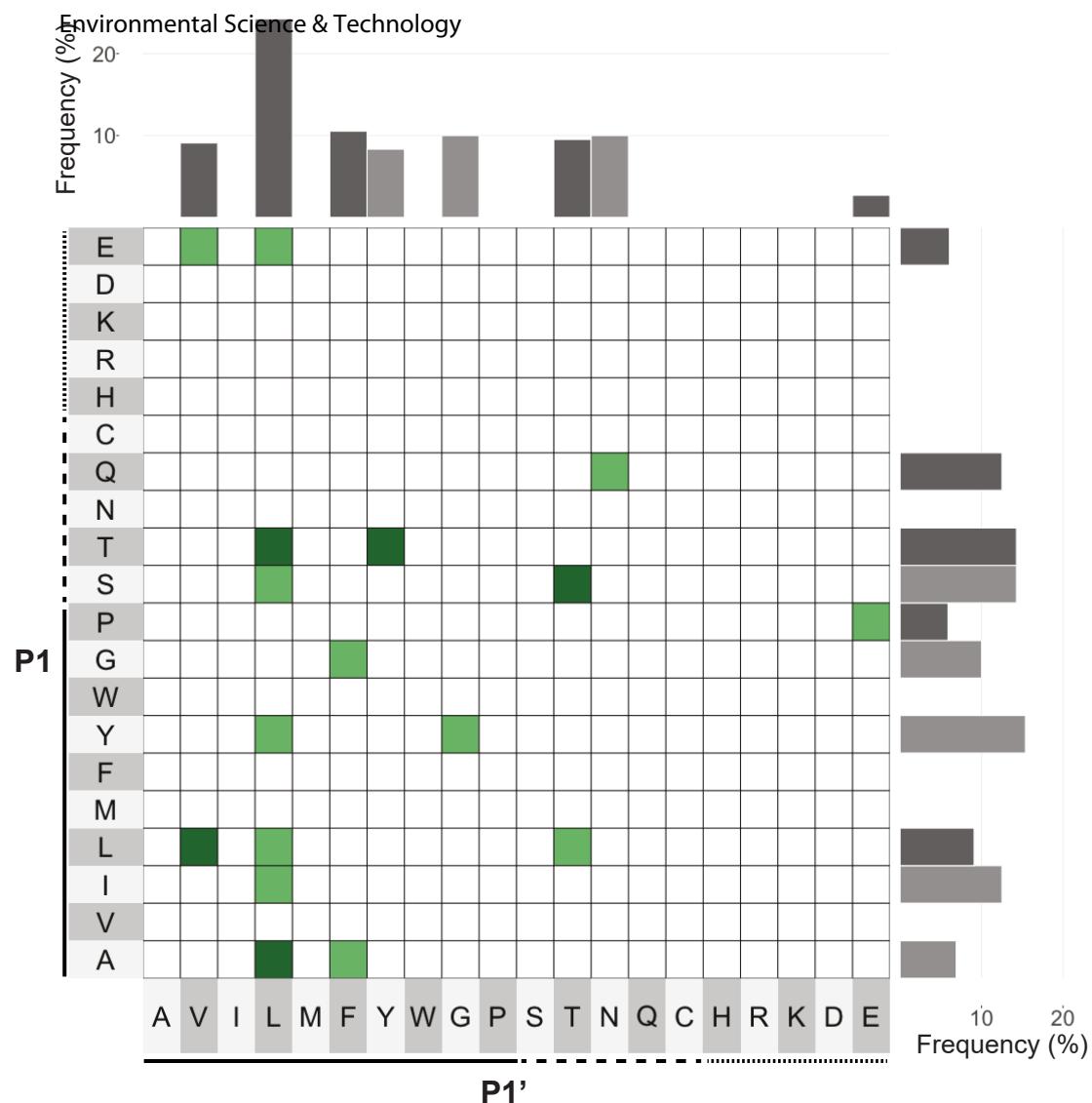
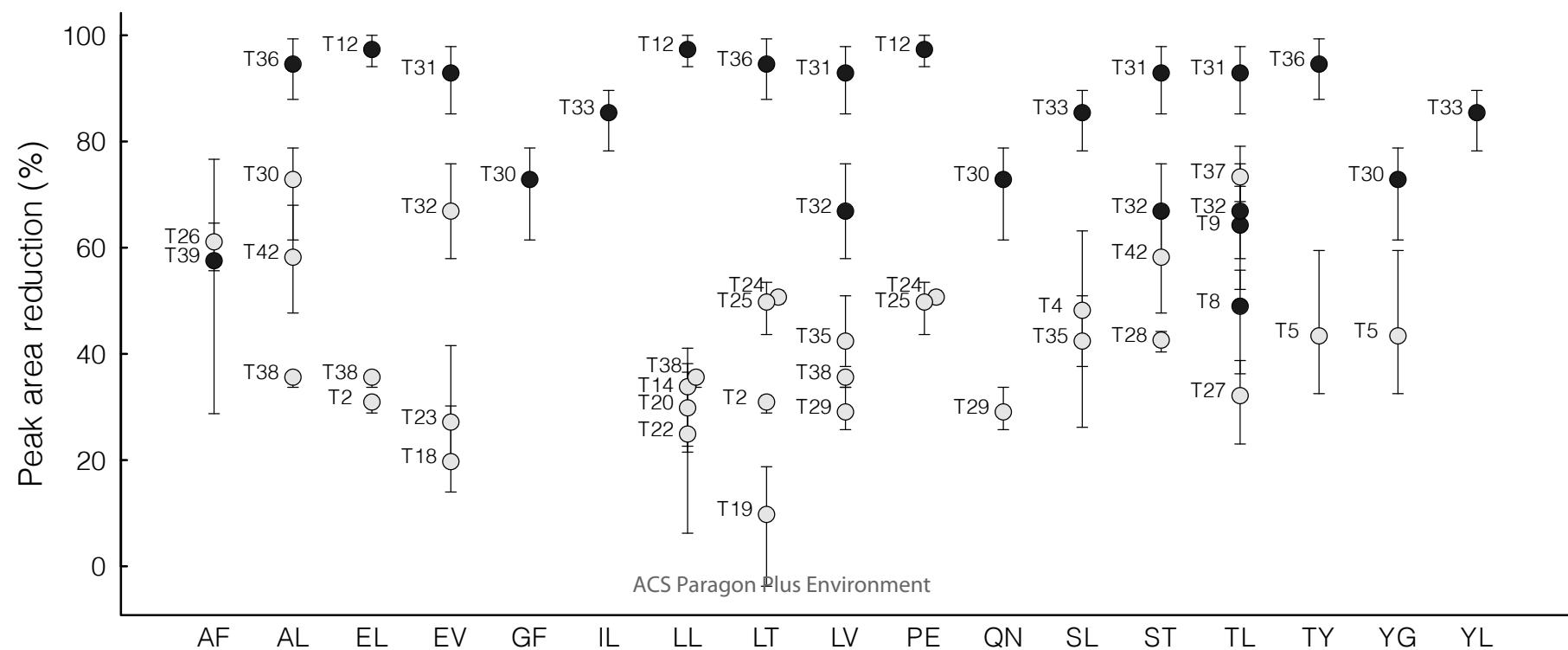
Environmental Science & Technology



Biological
treatment


Page 32 of 35


No antibiotic
activity





ACS Paragon Plus Environment

B

A**B****C**