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Abstract

Kinetic Ising models on the square lattice with both nearest-neighbor interactions and self-interaction are

— studied for the cases of random sequential updating and parallel updating. The equilibrium phase diagrams and
N critical dynamics are studied using Monte Carlo simulations and analytic approximations. The Hamiltonians
é appearing in the Gibbs distribution describing the equilibrium properties differs for sequential and parallel
updating but in both cases feature multispin and non-nearest-neighbor couplings. For parallel updating the
system is a probabilistic cellular automaton and the equilibrium distribution satisfies detailed balance with
% respect to the dynamics [E. N. M. Cirillo, P. Y. Louis, W. M. Ruszel and C. Spitoni, Chaos, Solitons and
qé Fractals, 64:36(2014)]. In the limit of weak self-interaction for parallel dynamics, odd and even sublattices are

1

"5 nearly decoupled and checkerboard patterns are present in the critical and low temperature regimes, leading to

st

. singular behavior in the shape of the critical line. For sequential updating the equilibrium Gibbs distribution

at

E satisfies global balance but not detailed balance and the Hamiltonian is obtained perturbatively in the limit of
v-é weak nearest-neighbor dynamical interactions. In the limit of strong self-interaction the equilibrium properties

g for both parallel and sequential updating are described by a nearest-neighbor Hamiltonian with twice the

C

—linteraction strength of the dynamical model.
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I. INTRODUCTION

Kinetic Ising models, broadly defined, are systems of Ising spins equipped with a dynamical rule for
updating the spin configuration. Kinetic Ising models have been investigated in many settings and
play a fundamental role in understanding non-equilibrium processes, in modelling the dynamics of
more complex systems and as computational tools for studying equilibrium systems through the use of
Markov chain Monte Carlo. The most commonly used kinetic Ising models update spins sequentially
and determine the new spin state probabilistically from the current state of the neighboring spins using
update rules such as heat bath dynamics or Metropolis dynamics. In this paper we study kinetic Ising
models with a self-interaction or memory term so that the new state of the spin also depends on the
current state of the spin itself. We consider this kinetic Ising model both with random sequential and
parallel updating. The parallel version of the model is an example of a probabilistic cellular automata
and many of its properties are understood [1, 2]. The sequential version of the model violates detailed

balance when the self-interaction term is finite but non-vanishing and has received less attention.

Dynamical Ising-like systems with self-interaction have been proposed to model a variety of systems
including neural networks [3|, financial markets [4] and opinion dynamics [5]. The addition of a memory
term has also be proposed as a method to accelerate Monte Carlo simulations [6]. We were motivated to
study the kinetic Ising model with memory as a reduced description of synchronous ecological popula-
tions described by coupled, noisy oscillators. When each oscillator is individually in a two-cycle regime,
the phase of the two-cycle can be represented by an Ising spin. As a function of noise and coupling
strength, these systems undergo a phase transition to synchronous oscillation, which can be mapped to
an ordering transition in the Ising universality class [7]. However, to model dynamic and non-universal
properties of the coupled oscillator system it is necessary to include memory in the Ising representation
since each oscillator remembers its own phase for an extended period, even in the absence of coupling

to its neighbors.

The paper is organized as follows. In Sec. II, we introduce the sequential and parallel kinetic Ising
models with self-interaction and describe our numerical methods. In Sec. III we present numerical
results for the equilibrium phase diagram of both models and the dynamic properties along the critical
lines. In Sec. IV we analyze the equilibrium states of the parallel and sequential models and derive
associated Hamiltonians. In the case of parallel dynamics we focus on the weak self-interaction regime
where the critical line displays singular behavior. For the sequential case, we derive the equilibrium
Hamiltonian from the global balance equations in a weak coupling expansion. We also study the
nontrivial case of parallel updating in standard Ising model with no memory. In Sec. V we develop a
mean field approximation to the kinetic Ising model with self-interaction. The paper concludes with a

discussion.



II. MODEL AND NUMERICAL METHODS

We consider kinetic Ising models with both nearest-neighbor interactions and self-interaction or, equiva-
lently, memory. The system consists of N Ising spins, S; = +1andi=1,2,..., N, on a two-dimensional
square lattice of even size with periodic boundary conditions. The dynamics of the system is defined
by the transition probability, A(cw — ) between successive configurations of the system « and v. We
consider two types of heat bath dynamics, parallel and sequential. In both cases the transition prob-
abilities are controlled by the single-spin marginal probability p(S;|«) for finding spin at site 7 in the
new configuration vy, S}, given the initial configuration «,

exp[(Jhe + KS&)S]]

~y _
p(S]la) = 2cosh(Jhe + KS&) - N

Here J is the dimensionless nearest-neighbor interaction and K is the dimensionless self-interaction.

The local field, A is the sum over spins 5S¢ where j is a neighboring site of i,

Z Se. (2)
(35%)

The notation (j;4)1 indicates that the summation variable j is a nearest neighbor of i. In what follows

we omit the superscripts specifying the configuration where no confusion results.

Sequential dynamics For random sequential dynamics the transition probability As(a — ) for v # «

is given by,

Ayfa =) = lea% p(57 ), 3)

where 1 (a, 7, 1) is an indicator function that forces a and + to differ only on S;, that is x1(«,,4) = 1 if
S} = =S¢ and S} = S¢ for all j # 4, while x1(a,v,7) = 0 otherwise. The probability for no transition,
As(a — «) is obtained, as usual, from normalization. For K = 0, sequential dynamics is standard heat

bath dynamics.

In simulations, a single step of the sequential dynamics consists of choosing a site ¢ at random and then

choosing the spin state S; according to the probability p(S;|«). The result is the new state ~.

Parallel dynamics For parallel dynamics all spins are updated at the same time and the transition

probability A,(a — ) is given by
o7 =TTp(stle), ()

For K = 0, parallel dynamics on a bipartite graph permits period-two oscillatory states. For example, if
J is sufficiently large, the system may oscillate between the two “checkerboard” states (i.e. ground states
of the Ising antiferromagnet). The Ising model with parallel dynamics is an example of a probabilistic

cellular automata [2, 8, 9].



We carried out extensive simulations of both parallel and sequential dynamics with the primary goal of
understanding the static and dynamic critical properties of the models. To identify the critical points
of the models for various values of K we used the Binder cumulant method. The fourth-order Binder

cumulant for the magnetization is given by [10],

(M*)

Uzl—gaﬁp, (5)

where M = % >;Si is the magnetization per spin. At low temperatures, in the ferromagnetic phase,
the Binder cumulant takes the value 2/3 whereas it goes to zero in paramagnetic phase. At the phase
transition, the critical Binder cumulant for the standard Ising model on the 2D square lattice with
periodic boundary conditions is U* ~ 0.61069 [11|. The value of the critical coupling is obtained from
crossing of the Binder cumulant curves for different system sizes. For parallel dynamics and small values

of K we also make use of a sublattice Binder cumulant to find critical points for reasons discussed in

Sec. IVA 1.

The dynamics of the sequential model are studied using the magnetization integrated autocorrelation
time defined from the magnetization autocorrelation function, I"y;(¢). Here time is measured in Monte

Carlo sweeps and the integrated autocorrelation time, 7 is defined as,
LS T ©)
T== )
2 o "

Care must be taken in estimating 7 from numerical data for I"y;(¢) since an upper cut-off is required on
the sum. If the cut-off is too small the estimate will have large systematic errors and if it is too large it

will have large statistical errors. We follow the procedure described in Ref. [12] for choosing the cut-off.

We have carried out simulations of both the parallel and sequential models for multiple values of K > 0
for lattice sizes varying from L = 10 to 120. The critical dynamic couplings, J&* )(K ) and Jc(s)(K )
for the parallel and sequential cases, respectively, are estimated from the crossing points of the Binder
cumulant curves for two lattice sizes. The crossing point were found for sizes L = 30 and 60, except
for the data presented in Sec. IV A 1, where two sizes were L = 100 and 120. Each Binder cumulant
data point is averaged over 40 independent runs for the sequential results and 20 independent runs for
parallel results. Fach run consists S Monte Carlo sweeps including an initial Sy sweeps for equilibration.
Observables are averaged over the remaining S — Sj, sweeps. For the sequential model, S = 7 x 10" and
S, = 5 x 107 while, for the parallel model, S =4 x 10" and S, = 2 x 107 except for the data presented
in Sec. IVA 1 where S =8 x 10" and S, = 5 x 107.

4



III. STATIC AND DYNAMIC CRITICAL BEHAVIOR
A. Phase diagrams

The phase diagrams for sequential and parallel dynamics are plotted in Fig. 1. Critical values of
the dynamic couplings, Jc(s)(K ) and J )(K ), for sequential and parallel dynamics, respectively, and
for various values of K are obtained from crossings of the Binder cumulant as discussed above. The
ferromagnetic phase lies above the points and the paramagnetic phase below the points. As expected,
as K — 0, the critical lines both approach J.(0) = 0.4407, the critical value of the standard nearest-
neighbor square-lattice Ising model. Furthermore, as discussed in Sec. IV, for K large, both lines
approach J.(0)/2. The numerical result J )(K = 0.31) =~ 0.31 agrees well with the value J& )(K =
0.31) =~ 0.32 obtained from Monte Carlo simulations in Ref. [9].

The solid curves in Fig. 1 are approximations to the critical lines for the two dynamics. For parallel
dynamics, the approximation is a fit with two hyperbolic tangent functions that represent crossovers
from power-law behavior expected for small K and the asymptotic values J.(0)/2 for large K. The fit
takes the form,

JP(K) = J.(0)[1 - %tanh(aK)} — dK°[1 — tanh(bK)], (7)

with the best fit parameters a = 1.17, b = 1.46, ¢ = 0.45, and d = 0.15. A more detailed analysis of the

power-law behavior in K is presented in Sec. IV A 1.

The solid curve in Fig. 1 for sequential dynamics is obtained from an approximation to the Hamiltonian

for sequential dynamics that is obtained in Sec. IVB 1 and is defined in Eq. (64).

We have not investigated the static critical properties along the critical lines however we find that the
Binder cumulant takes the universal Ising value (except near K = 0 for the parallel case, as discussed
in Sec. IV A1), supporting general arguments [1| that kinetic models with self-interaction are in the

Ising universality class.

B. Autocorrelation time for sequential dynamics

Along the critical line for lattice size L, T is expected to behave asymptotically in L as a power law,
T(K, L) ~ A(K) L") (8)
where the amplitude A and dynamic exponent z could, in principle, both be functions of K.

We obtained values of 7 for lattice sizes from L = 10 to 100 and for different values of K. The results
for 7 as a function of L for K = 1.23 are shown in Fig. 2. The solid line is a fit to 7 = AL? with fitted
values z = 2.15 and A = 0.16 (x?/ d.o.f = 1.38).
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Figure 1. The phase diagram in the J-K plane shows the critical dynamical couplings, J(gs) (K) and Jc(p )(K ),
for sequential (blue points,upper) and parallel (red points,lower) dynamics, respectively. The red solid line
represents a fit for the critical line for parallel dynamics (see Eq. (7)). The blue solid line represents an

approximation to the sequential critical line that is described in Sec. IV B 1.
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Figure 2. The magnetization integrated autocorrelation time for sequential dynamics, 7 as function of lattice

size L for K = 1.23. The solid line is a fit to 7 = AL? with fitted values A = 0.16 and z = 2.15.

Figure 3 shows z(K) as a function of K obtained from fits of the form 7 = AL*. The values of z(K)
are all reasonably close to the accepted dynamic exponent of the 2D Ising model with non-conserved
order parameter, z = 2.16 [13-15|, with no discernable trends in K. We believe that the kinetic
Ising model with self-interaction is in the dynamic Ising universality class with a non-conserved order
parameter (Model A of [16]) and that the deviations in the measurements from z(K') = z(0) result from
a combination of finite-size corrections and statistical errors. This conclusion is in agreement with the
result that systems with local dynamics and a non-conserved order parameter are in universality class

of Ising models [1, 17].
We now assume z takes the universal value, 2.16 and investigate the prefactor, A(K’). The autocorre-
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Figure 3.  Dynamic exponent z for the autocorrelation time (see Eq. (8)) is obtained as function of self-
interaction K. The dashed horizontal line denotes the non-conserved order parameter Ising universal dynamic

exponent, z = 2.16.

lation time 7 is fitted to the form,
7(K, L) = A(K)L*'® + B(K), (9)

where the constant B(K) is included to improve the quality of the fit. The numerical results for the
amplitude function A(K) are obtained for various values of K and are shown for sequential updating

in Fig. 4. The data can be fit to the form,
A(K) = a[l + bexp(2K))], (10)

with the best fit parameters, a = 0.09 and b = 0.64 (x?/d.o.f = 0.99). The fit is shown as a solid
line in the figure. The factor exp(2K) is the time scale between spin flips for an isolated spin with
self-interaction and this time scale apparently controls the asymptotic behavior of A(K'). Although the
above results are for sequential dynamics, in the limit of large K, when the time scale for spin flips is
much larger than the number of spins, parallel and sequential dynamics are expected to have the same

dynamical properties.

IV. EQUILIBRIUM STATES

The kinetic Ising models with self-interaction ultimately reach an equilibrium state, which can be
written in the form of a Gibbs distribution with a dimensionless Hamiltonian, H so that the probability
of a configuration « is given by P(«) = exp[—H(«)]/Z with Z the partition function. This probability
and its associated Hamiltonian must satisfy global balance with respect to the transition probabilities,

> [P(MA(y = a) = P(a)A(a = )] =0, (11)

v
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Figure 4. The amplitude A(K) of the autocorrelation time divergence at criticality (see Eq. (9)) is plotted as
function of K for sequential updating. The solid line is the fit A(K) = 0.09[1 + 0.64 exp(2K)].

for all . For the case of parallel dynamics, the Hamiltonian satisfies detailed balance and was obtained
in Ref. |2]. The derivation and resulting Hamiltonian is presented in Sec. IV A. The Hamiltonian for the
sequential case is discussed in Sec. [V B. It does not satisfy detailed balance and we have only been able
to obtain it as an expansion in powers of J. For both parallel and sequential cases, the Hamiltonians

contain more than nearest-neighbor, two-spin interactions.

A. Parallel dynamics

From Egs. (1) and (4), the transition probability for parallel dynamics can be written as,

exp(Jh$S] + KS¢S])
A — 1 1 1 3 12
(@ =) H 2 cosh(Jhe + KS8) (12)
so that to satisfy detailed balance we required that,
h(Jh! il
P(7) :Hcos (th—i-KSz)’ (13)
P(a) & cosh(Jh + KS7)
and the Hamiltonian # can be written as [§],
—H = _loglcosh(Jh; + KS;)]. (14)
From Eq. (13), we should note that in the limit of K — oo,
P(7) _ H cosh(Jh]S] + K) . H exp(Jh?S?)’
P(a) 2 cosh(JAFSE + K) 2 exp(JhiSE)
which implies that,
—H =T hSi=2])_ SiS;, (15)
i (i,4)1



where the notation ) 01 indicates a sum over all nearest-neighbor pairs. Thus, in this limit the Hamil-
tonian reduces to the standard Ising model with interaction strength twice that of the original kinetic

model. This fact has been proved in Ref. [18]. In case of K — —oo we have that,
é (i,g)1

showing that the system behaves as an antiferromagnetic Ising model, again with twice the strength of

the interaction in original dynamical model.

The expression for the Hamiltonian, Eq. (14), can be expanded as a sum of all products of each spin
and its four nearest neighbors with various couplings,

~H=DY S5+ hY SiSi+> SS+Ti Y SSSS R Y SSSSs+C (17)
(4,)1 (6.)2 (i,5)3 ( (

Z'7j7k7l>J_ i7j9k7l>o

The definitions of the three two-spin couplings and two four-spin coupling allowed by symmetry are
illustrated in the Fig. 5. The sum 201 is over all pairs of nearest-neighbor spins, whereas Z<>2
and > ()3 &re sums over second- and third- nearest-neighbor spins with coupling constants J, and J3,
respectively. Z() | and Z()o are sums over four spins as shown in Fig. 5. The expressions for the
dimensionless couplings {.J1, Jo, J3, T4, F4} can be obtained as function of the dynamical interactions J
and K by comparing Eqs. (14) and (17) and are given below [2]:

1. cosh(2J+K) 1. cosh(4J+ K)
Ty = S log BN TR) | 2 COSNEITA) 18
T8 cosh(2J — K) TRle cosh(4J — K)’ (18)

1 cosh(4J + K) 1, cosh(2J+ K)
Ty = —log ENEIT ) 2 O8Nl TR 19
17168 cosh(4J — K) 8 o8 cosh(2J — K)’ (19)
1 1
Jy = 3 log[cosh(4.J + K) cosh(4J — K)] — 1 log cosh(K), (20)
1 1
J3 = T log[cosh(4J + K) cosh(4J — K)] — 3 log cosh(K), (21)

Fy = glog cosh(K) — %log[cosh(&] + K)cosh(2J — K)] + % log[cosh(4.J + K) cosh(4J — K)]. (22)

The couplings are plotted for J = 1 as a function of K in Fig. 6. The couplings {Js, J3, F4} given
in Egs. (20)-(22) are even in K whereas the couplings {Ji,7,} given in Egs. (18) and (19) are odd

revealing antiferromagnetic behavior for negative values of K.

The couplings are non-trivial even when the self-interaction is zero and are discussed in the Sec. IV A 1.
As K increases, the first nearest neighbor coupling .J; increases to twice the value of J whereas the

other couplings decrease to zero.

1. Weak self-interaction regime

When the self-interaction is zero (K = 0), the couplings J; and T} given in Egs. (18) and (19) are zero.

The non-zero couplings J,, J3 and Fy given in Egs. (20)-(22) produce interactions only within a single

9



Figure 5. The two-spin couplings, J;, J2 and J3 couple nearest-neighbor, second-nearest-neighbor and third-
nearest-neighbor spins, respectively. The four-spin coupling, T couples a spin with three of its four neighboring
spins. The four-spin coupling, Fj couples the four neighbors of a central spin. All interactions include all

rotations and translations of the pictured couplings.
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Figure 6. The couplings for parallel dynamics are plotted for J = 1 as a function of self-interaction, K as
given in Eqs. (18)—(22). For large K, J; — 2J while the other couplings vanish. Note that .J; and Ty are odd

functions of K while the other couplings are even.

sublattice. Hence, for K = 0 the entire system can be viewed as two independent systems, each on one

of the sublattices and with two-spin and four-spin couplings |2, 9].

It is interesting to note that the values of these two- and four-spin couplings given in Eqgs. (20)-(22) at
K = 0 are identical to the expressions for the couplings generated when the real space renormalization
group decimation scheme [19, 20| is applied once to the nearest-neighbor Ising model with nearest-
neighbor interaction strength JJ. This observation explains why the parallel update Ising model with
K = 0 has a critical point at J )(0) = J.(0), the critical point of the standard Ising model. A rigorous

proof of this fact is given in [9].
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Figure 7. Snapshot of a 100 x 100 lattice in equilibrium with parallel updating for K = 4 x 10~ at the critical
coupling Jc(p ) (K) = 0.4360. The presence of large antiferromagnetic clusters result from weak nearest-neighbor

interactions (set by J1) and strong next-nearest-neighbor interactions (set by J3).

The behavior of the parallel update model for K = 0 differs from the standard Ising model because of the
presence of two “checkerboard” ground states and, at finite but low temperature, both ferromagnetic and
checkerboard ordered phases. The two checkerboard phases each display period-two oscillations between
the two antiferromagnetically ordered states and differ in the phase of this oscillation. Furthermore,
the four ordered phases each have fluctuations of all four kinds. For example, the ferromagnetic phases

will contain checkerboard domains.

As the value of K increases, the couplings that are responsible for interactions between sublattices,
J1 and T}, increase. Hence, the sublattices are positively correlated and only the two ferromagnetic
ground states survive |2, 8]. However, at finite temperature and K small, checkerboard domains remain
common. Figure 7 shows a snapshot of the equilibrium state for K = 4 x 10™* at the critical coupling,
which displays large checkerboard domains. Similarly, for K small and negative, and J near its critical

value one finds large ferromagnetic domains.

As can be seen in Fig. 1 and the associated fit, Eq. (7), the critical curve, J )(K ) appears to approach
the K = 0 critical point, (J.(0),0) with infinite slope. The phase diagram is even in K so there
is a corresponding critical curve approaching (J.(0),0) from negative K. We now give a heuristic
argument based on finite-size scaling considerations for the singular behavior of these critical curves
near (J.(0),0). Near the critical point (J.(0),0) there are large fluctuations in both the ordinary
(ferromagnetic) magnetization and the staggered (antiferromagnetic) magnetization. These fluctuations
are quantified, respectively, by the ordinary susceptibility, x, and the staggered susceptibility, y;, both
of which diverge at (J.(0),0). Along the critical curve, J&(K) for K > 0, the ordinary susceptibility

diverges while along the corresponding critical curve for negative K the staggered susceptibility diverges.

Consider a geometric mean susceptibility, x,, defined as x,, = /xXs- This mean susceptibility for

systems of size L with periodic boundary conditions and with L even is expected to diverge as L/¥

11



at (J.(0),0). For K # 0 along the two critical curves, x,, is expected to have a weaker finite-size
divergence, L/?. We now hypothesize that the finite-size scaling behavior of ,, as a function of L, J
and K takes the form,

Xom(J, K) = LYY F((J = J(0) L%, K L). (23)

The qualitative behavior of the finite-size scaling function f(x,y) is that it has a maximum along the
line y = K = 0 near x = 0. Furthermore, f will decrease in all directions away from the maximum
but with two ridge lines near the two critical curves. These ridge lines are expected to take the form
x ~ —(£y)°¢ near maximum for the K > 0 critical curves, respectively. Given this picture, we must
have,

(P (K) = Je(0) L ~ —(|K|L")), (24)
so that ¢ = a/b.

What are the scaling exponents a and b? Since near J.(0), J controls the strength of the relevant
interactions linearly along the K = 0 line, it is reasonable to assume the usual finite-size scaling

exponent, a = 1/v, so, in the present case, a = 1.

The exponent b determines the rate of decrease of f for a fixed K as L increases. We hypothesize
that this decrease is dominated by the suppression of the “wrong” kinds of fluctuations. For K > 0
these are staggered magnetization fluctuations and for K < 0 ordinary magnetization fluctuations.
For small K the coupling J; between sublattices increases linearly in K, specifically (see Eq. (18)),
J1 = 2JK + O(K?). Thus the energetic cost of the wrong kind of fluctuation of length scale ¢ is
given by 2JK¢? and the wrong kind of fluctuation is suppressed when this energy exceeds kg7T.. The
maximum size of these fluctuations is, therefore, \/W and the associated finite-size scaling
exponent for K is b = 2. This estimate ignores the presence of ferromagnetic fluctuations embedded in

larger checkerboard regions so that b is expected to be somewhat less than two.

The conclusion of these arguments is that the critical lines approach the K = 0 critical point with a
singularity,

JPK) = Je(0) ~ | K[, (25)
and that ¢ Z 1/2.

We obtain numerical results for the critical line for small K using the Binder cumulant method. Care
must be taken in using Binder cumulants for small K because the sublattices are nearly uncoupled.
Indeed, for K = 0 we now show that the Binder cumulant is half its usual value. Let M;, Ms be the
magnetization of the even and odd sublattices, respectively. The sublattice binder cumulant is defined
by, ,

Us=1- 3<<]\]\i[[—112>>2 (26)
At the (J.(0),0) critical point each sublattice behaves as an independent critical Ising model so Uy will

take the Ising critical value for a square lattice with periodic boundary conditions, U* ~ 0.61 [11]. The

12



full lattice magnetization, M is given by the sum of the two sublattice magnetizations, M = M; + M,.

Expanding the moments of the full magnetization in terms of the sublattice magnetizations yields,

(M?) = (M7) + (M5) + (2M M) (27)
(M) = (M) + (M) + (4M7 M) + (AM7My) + (6M7 M3). (28)

Since M, M, are identically distributed, independent random variables we have,

(M?) = 2(M) (29)
(M*) =2(M) + 6(M7)*. (30)

Hence, using the definition of the full lattice Binder cumulant, Eq. (5), we have,

e VA (31)

We see that the Binder cumulant of the full lattice for the parallel dynamics, U is half the sublattice
Binder cumulant Ug and thus, at criticality it is (1/2)U*. On the other hand, for any K > 0 and
for sufficiently large L we expect the full lattice Binder cumulant to take the usual Ising value, U*.
Thus, large finite-size corrections are expected for both the full lattice Binder cumulant and also the
sublattice Binder cumulants when K is small. The reason for these corrections is the weak coupling
between sublattices and the associated presence of large checkerboard domains. We previously estimated
that the maximum domain size scales as \/W . For example, if K = 4 x 10~ this size is about

20, which is comparable to our system sizes.

We have investigated the singular behavior of the critical curve through numerical simulation of five
values of K less than 0.1. Here we determine the critical couplings from both the sublattice Binder
cumulant and the full lattice Binder cumulant. We use a pair of large system sizes, L = 100 and 120,
(L = 30 and 60 are used elsewhere) to obtain the crossing of the Binder cumulant curves. The reported
values of J* )(K ) are obtained by averaging the full lattice and sublattice results in the hope that
this procedure will reduce finite-size corrections. Figure 8 shows the numerical results for the critical
dynamic coupling (J.(0) — @ )(K )) as a function of K. The error bars shown in the figure are either the
difference of the sublattice and full lattice values or the maximum of the statistical errors, whichever is
larger. The larger error bars for the three smallest K data points are the result of the large difference

between results from the two Binder cumulants and reflect an estimate of the size of systematic errors.

A fit of the data to the form,
Jc<0) - Jc(p)(K) = dKC? (32)

yields ¢ = 0.555 4 0.001 and d = 0.26 and (x?/ d.o.f = 0.83). This fit is shown as the solid line in
Fig. 8. The numerical result for c are consistent with the theoretical arguments presented above. We

note that the small error bar on ¢ may be misleading because it is set by the data points with small

13
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Figure 8. Numerical results for the deviation of the critical dynamic coupling from the Ising critical value,

Je(0) — Jc(p)(K) as a function of K for parallel updating. The solid line is a fit to a power law, by Eq. (32),

with exponent ¢ = 0.555.

error bars but relatively large values of K, which may hide corrections to scaling in the simple fit, Eq.
(32). Independent fits of the sublattice and full lattice results using their respective statistical errors
also yield ¢ ~ 0.55 but the quality of these fits is poor. It would be interesting to carry out a thorough
study of the exponent ¢ and, more generally, the finite-size scaling behavior near the K = 0 critical

point.

B. Sequential dynamics

From Egs. (1) and (3), the transition probability when « and ~ differ by a single spin flip at site i

(xa(a,7,7) = 1) is given by,
exp(Jh3S] + KS¢S))

2N cosh(Jhy + KS&)

Al = ) = (33)

First consider the three limiting cases, K = 0 and K — Zoo (holding J fixed), for which detailed
balance holds. Note that for sequential dynamics, the neighborhood of S; is the same for states a and

v so h¢ = h] = h;. The detailed balance condition is,

P(y)  exp(JhS])  cosh(Jh; + KS])

= 34
P(a)  cosh(Jh; + KS*)  exp(Jh;S?) (34)
For K = 0 we have standard heat-bath dynamics,
P
PO) _ explaha(s7 — 5], (35)

P(a)
and the equilibrium distribution is that of the standard nearest-neighbor Ising model, P(«a) o

exp[(J/2) Y , hiSi]. In the limit K — +o00, the ratio of probabilities becomes,

P(f}/) Y «
Plo) — exp[2Jh;(S] — SP)] (36)
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showing that the equilibrium distribution is that of the standard Ising model with twice the nearest-
neighbor coupling (J — 2J). Note, however, that when K — 400 the time scale for a spin flips
diverges so that if the limit is taken with the number of sweeps (and system size) held fixed then the
spin configuration is fixed. Finally, when K — —oo, we have that P(vy)/P(a) — 1 showing that the

model behaves as non-interacting (infinite temperature) system.

For 0 < K < oo the equilibrium distribution does not satisfy detailed balance with respect to the
dynamics and one must solve the global balance equations,
> [P(MA(y = a) — P(a)A(a = )] =0,
N

which can be rewritten as,

Z {%A(v —a)— Ala — 7)] =0. (37)

Let o be an arbitrary initial, @ = {S§'} and let a(i) = v refers to the state obtained from « by flipping
spin S;. From Eq. (33), global balance takes the form,

P(a(i)) exp(Jh$SH — K exp(—Jhe*S* — K
Z{(()) p(Jh{ S ) p(—Jh{'S; )}:07

- P(a) 2cosh(Jhe — KS®)  2cosh(Jhe + KS9)
which can be simplified to,

P(a(i))  exp(Jh;S;) exp(—JhS;) |
Z { P(a) cosh(Jh; — KS;)  cosh(Jh; + KSZ»)} =0

(38)

i
Superscripts are dropped in the above equation and what follows since all spins belong to configuration

Q.

The transition probability factors in Eq. (38) can be expanded in terms of spin couplings involving the

flipped spin, 5;, and its four nearest neighbors,

exp(iJhZSZ)
= exXp + JlSZ Z Sj — J2 Z SJSk — J3 Z SjSk + T4Sz Z SjSkSl
cosh(Jhy F K5i) ( (GiirA (ki) E (i) F (i Lii) B
S 5SkSiSm + C) (39)
(4, k,l,m;1)G

where Z sy 1s summation among the neighbors of spin 7 of type X as shown in Fig. 9. To simplify
the notatlon, spin couplings are denoted with bracketed, boldface letters as shown in Fig. 9 and written

explicitly here:

Al =S, Z S; B =S Y SiS%S [Cl=8 > S D=5 >  SS%S
(j;i)A (j,k,L;i)B (4. k,L;i)C (4,k,l;3) D
= >SS = > S5 Gl= > S%SS. [H=5 )5
(J, ki) E (j, ki) F (4, k,l,m;1) G (jsi)H

0=5>5; (40)
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Note that these couplings are implicitly functions of i.

In terms of this compact notation,

exp(j:JhZSZ)
cosh(Jh; F KS;)

— exp (i Ti[A] — J[E] — J3[F] + T1[B] — Fi[G] + C), (41)
where C' is a constant.

Expanding both sides of the above equation and comparing like terms yields expressions for the coupling
coefficients in terms of J and K,

cosh(2J+ K) 1 cosh(4J + K)
—1 — 4+ —log ——= 42
=T+ 8 Cosh(2J — K) * 16 % cosh(4J — K)’ (42)

1 cosh(4J+ K) 1. cosh(2J+ K)
Ty =—log——FF — —log ————= 43
17168 cosh(4J — K) 8 °8 cosh(2J — K)’ (43)
1 1
Jy = 3 log[cosh(4J + K) cosh(4J — K)| — 1 log cosh(K), (44)
1 1
J3 = T log[cosh(4.J + K) cosh(4J — K)] — 3 log cosh(K), (45)

1 1
F, = glog cosh(K) — 2 log[cosh(2J + K) cosh(2J — K)| + 16 log[cosh(4.J + K) cosh(4J — K)|. (46)

Except for J; these couplings are identical to the couplings appearing in the Hamiltonian for the
equilibrium state of parallel dynamics, Eqs. (18)-(22). However, it is important to note that these
dynamical coupling coefficients for sequential dynamics are not the same as the coupling coefficients
appearing in the sequential Hamiltonian, which we now derive perturbatively in J. We begin by

expanding the dynamical coupling coefficients to fourth order in J,

Ji = [tanh(K +—1}J7+»%?[tanh§(ff)——tanh(l()}J3—+(?[J5L (47)
Ty = [2tanh®(K) — 2tanh(K)] J® + O[J°], (48)
Jo = [2 — 2tanh®(K)]J? + [—-16tanh4(ﬁf)+-§éjfggfxzi2-— %?}J4—+(9[J6] (49)
Jy = S _ [1 — tanh*(K)]J? + [ — 8tanh*(K) + w — 2} J'+0[J%, (50)
Fy = [ — 6tanh*(K) + 8 tanh®(K) — 2] J* 4+ O[J9). (51)

Inserting the expansion of the transition probability, Eq. (41), in the global balance equation, Eq. (38),
yields,

Z [% exp (J1[A] — L[E] — J5[F] + Tu[B] — F4[G])

—exp (= J[A] - L[E] - K[F] - T3[B] - F[G])| =o0. (52)

We now make the ansatz that P(a) can be written in Gibbsian form with a Hamiltonian potentially

containing all even order spin couplings,

~H=J)_ SiSi+ Y SS+Js Y SiS+Ti Y SiSiSkSi+ ... (53)

(i,4)1 (i,4)2 (i,4)3 (i,3,k,0) L
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Figure 9. The dynamical interactions in the expansion of the transition probabilities are shown on the left while
additional interaction appearing in the Hamiltonian are shown on the right. All interaction types are labelled
with boldface letters. The grey lattice site represents the flipped spin ¢. All the interactions include all distinct
rotations around the grey site and, in the case of [C]|, reflection around the vertical axis. There are 4 equivalent

interactions for type [A], 4 for [B], 8 for [C], 4 for D], 4 for [E], 2 for [F|, 1 for |G|, 4 for [H| and 4 for [I].

The summations in the terms that are explicitly written are defined above in Sec. IV A (see Eq. (17)
and Fig. 5) and couplings in the sequential Hamiltonian are written with tildes. Given this ansatz, the
ratio of probabilities is,

Plad) _ exp [ — 2(/i[A] + Tu[B] + T4[C] + T4[D] + J,[H] + J[1])]. (54)

Inserting this expression in the global balance equation, (52), yields,

> [exp[(—?jl + J)[A] + (=2T4 + Ty)[B] — 2T4[C] — 2T4[D] — 2.J5[H] — 2J5[1] — Jo[E] — J5[F] — F4[G]]

%

— exp(—A[A] = T4[B] - L[E] — A[F] - F[G])| =0 (55)

We now explicitly expand all the couplings as series in the dynamic coupling, .J. The coefficients of each
series are represented by lower case letters and subscripts corresponding to the name of the coupling
while the power in J is indicated with a superscript. Thus, for example, the nearest-neighbor coupling
in the dynamical rule is,

I(J) =gy + T2+ T (56)
where, from Eq. (47), ji = [tanh(K)+1], j7 = 0, and j} = 2 [tanh®(K) — tanh(K)]. The corresponding

coefficients of the couplings in the Hamiltonian, j7, 7%, }gl, t? are the quantities we wish to solve for.

Expanding Eq. (55) to first order in J yields,

> 231 - 2])IA] + 20([B] + [C] + [D]) + 273 [H] + 273 (1] = 0 (57)

The sums over the four distinct interaction terms, [A], ([B] + [C] + [D]), [H], and [I] must vanish
independently, thus to first order in J,

ji = ji = [tanh(K) + 1], (58)
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while the coefficients 521, 5; and t} are all zero. Using the solutions of order J and expanding Eq. (55)
to second order in J yields,
>~ [2731A] + 2B(B] + [C] + [D]) + 2j3[H] + 273[1]| = 0, (59)

so that 57, 72, 72 and #3 all vanish.

Note that 23, [B] = >_,[C] = 2)_.[D] because of the extra reflection symmetry of [C], which allows
us to eliminate [C] and [D] from the equations in favor of [B]. The relations between these terms holds
due to the summation over ¢ and marks the first appearance where global balance, rather than detailed

balance, must be invoked. Using the solutions at order J and J?, the global balance condition at order

J3 s,

> (25 - 25 [A] + (87 - 263)[B] + 273 [H] + 273[1]| = 0. (60)
Thus, we find j3 = 0, 53 = 0, and j? = j3, and £3 = 3/4. At this order products of interactions also

appear. For example, one finds terms of the form [A]-[A]-[A] = 10[A] + 6[B], however, all such terms

have coefficients that vanish at this order.

Thus, to order J3 there are only two terms in the sequential Hamiltonian,

~H=JY SiS+Ti Y SiS;SS +0[JY, (61)
(4,5)1 (6,3,k,0) L
where
Ji = Gl + 1T + O] (62)

= [tanh(K) +1]J + % [ tanh®(K) — tanh(K)]J* + O[J"]
and
T, = %JB + O[JY (63)

[tanh®(K) — tanh(K)]J* + O[J"].

N —

We now consider additional couplings beyond those explicitly written in the Hamiltonian, Eq. (53).
It is straightforward though tedious to show that no additional terms appear up to third order in J.
Consider an additional distinct coupling term in the Hamiltonian with coupling J,. The ratio of the
stationary probabilities before and after flipping spin S;, Eq. (54), will include a new set of terms,
distinct from the previous terms, all rooted at site i, and all having coupling coefficients .J,. As before,
we expand J, in a power series in J, J, = jLJ + j2J% 4+ 73J3 + ..., and then supplement the global
balance equation (55) with the new terms. Finally, one must carry out the expansion in powers of J
and see that the coefficients 5; j,f and jg all vanish. The intuitive reason why this is the case is that

there are no dynamical couplings at order .J? to balance an added term in the Hamiltonian.
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Figure 10. The difference, AJ.(K) between the numerical data for the critical curve for sequential dynamics

and the approximation, Eq. (64), as a function of K.

On the other hand, at fourth and higher order in J, new types of interactions that are not present in the
set shown in Fig. 9 appear as a result of products of couplings such as [A] - [C] and these interactions
can couple spins not included in the five spin “cross”. Both long range and multi-spin couplings are
expected to appear at higher order in J but as the range or number of spins increases, the leading
order in J of the associated coupling constant will increase. The higher order terms in the sequential

Hamiltonian are left for future research.

1. Approximation to the sequential critical curve

Here we present an approximation to the critical dynamical coupling JC(S)(K ) for sequential dynamics.
Assume that the Ty term and all higher order couplings can be neglected and that the nearest-neighbor
coupling, .J; is best approximated by the full expression J;(J, K) in Eq. (42) rather than the third order
truncation, Eq. (62). Then our approximation for the critical curve, Jés)(K ) is given by the implicit

equation,

where J.(0) ~ 0.4407 is the critial coupling of the ordinary Ising model. The critical curve was obtained

from this equation numerically and is shown in blue (upper curve) in Fig. 1.

This approximation is surprisingly good. It is exact for both K — 0 and K — oo. Figure 10 shows the
difference, AJ.(K') between the numerical result for the critical coupling g (K') and the approximation,
Jl(Jc(S)(K ), K) = J.(0). Finite-size effects are not taken into account in the numerical results and may

be responsible for some of this difference, which never exceeds 4 parts in 10%.
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V. MEAN FIELD THEORY

In this section, the phase diagram for the kinetic Ising model with self-interaction is obtained within a
mean field approximation. Mean field theory (MFT) for the equilibrium, nearest-neighbor Ising model
with no self-interaction or magnetic field yields a self-consistent equation for the magnetization per spin
m,

m = tanh(Jzm) (65)

where z is the coordination number. The critical coupling J. marking the onset of spontaneous mag-

netization (|m| > 0) occurs when J.z = 1.

One can interpret the mean field equation, (65), as a dynamical equation with the magnetization on
the left hand side being one time step later than the magnetization on the right hand side. Equilibrium
states are obtained by setting the magnetization on the two sides of the equation equal. We can
generalize the mean field dynamical equation to include self-interaction by replacing h; in Eq. (1) by

zm. The mean field dynamical equation for spin, S; is,
(S!y = tanh(Jzm + K S;), (66)

where (S!) is the expected value of spin S; at the subsequent time step. We now average over sites i to

obtain the equilibrium equation for m,

1—m

m = <1Zm) tanh(Jzm + K) + ( >tanh(sz—K), (67)

where the first and second terms on the right hand side correspond to the the contributions from plus

and minus spins, respectively.

Close to the critical point, an expansion in m yields an equation for the critical curve, J.(K),
Jo(K)z[1 4+ tanh(K)] — 1 = 0. (68)

The phase diagram obtained from Eq. (68) is plotted as the solid magenta line in Fig. 11. The value
of z is adjusted so that J.(K = 0) is the exact value for the two-dimensional Ising model. We see that
MFT agrees qualitatively with the numerical results. Mean field theory does not distinguish between
sequential and parallel dynamics so it is perhaps not surprising that the critical curve lies between
the parallel and sequential critical curves. Our mean field theory captures the exact result for both
dynamics that J.(K) — J.(0)/2 as K — oo. Finally, the mean field equation (68) is the same as
the mean field equation for the standard Ising model except for the factor of [1 + tanh(K)], which is
precisely the first order in J correction to the nearest-neighbor coupling in the sequential Hamiltonian

(see Eq. (58)).

An alternative mean field theory was obtained in [2] and is also shown in Fig. 11 as the solid green curve.

These results were calculated from a mean field approximation applied to the Hamiltonian obtained
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Figure 11.  The phase diagram in the J-K plane showing the critical dynamical coupling obtained from
mean field theories. Critical lines for parallel (red, lower) and sequential dynamics (blue, upper) are shown for
comparison(see Fig. 1 for details). The magenta curve that lies between the data for sequential and parallel
dynamics is the mean field theory, MFT1, obtained here (see Eq. (68)) and the green solid line that falls below
the data points is mean field theory, MFT2, of Ref. [2].

for parallel dynamics (see Eq. (14)). The MFT phase plot for the parallel dynamics is adjusted so that
J.(K = 0) is the exact value for the two-dimensional Ising model. The qualitative behavior agrees with

the other phase plots but it does not capture J.(K) — J.(0)/2 as K — 0.

VI. DISCUSSIONS

We have studied kinetic Ising models with nearest-neighbor dynamical interaction J and self-interaction,
K, and for both random sequential updating and parallel updating. These models were studied with
Monte Carlo simulation and analytic methods. The equilibrium phase diagram and critical lines of both
models were obtained numerically and approximated by several methods. One of these approximations
is a simple mean field theory that predicts a critical line that falls between the parallel and sequential
critical lines. In addition, the critical dynamics of the sequential model was studied and the prefactor

of the critical divergence of the magnetization autocorrelation time was found to increase as e*¥.

We have studied the Gibbs distributions describing the equilibrium states of the two models. For
the parallel model, this distribution satisfies detailed balance with respect to the dynamics. The
associated Hamiltonian was previously obtained [2], and involves three two-spin couplings and two
four-spin couplings. The equilibrium distribution for the random sequential model does not satisfy
detailed balance with respect to the dynamics and must be obtained from the global balance equation.
We developed a perturbative expansion of the sequential Hamiltonian in the dynamical coupling, J

and carried it out to order J3. At this order the Hamiltonian features a nearest-neighbor coupling and
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a four-spin coupling. It is clear that at higher order, other smaller couplings, perhaps infinitely many
other couplings, will appear. The nearest-neighbor coupling obtained from the perturbative expansion
yields a very accurate approximation to the critical line. It would be interesting to understand the
equilibrium Gibbs distribution for sequential updating more completely. Does the Hamiltonian in fact
have infinitely many coupling and, if so, how do they fall off as a function of the range of interaction

and the number of coupled spins?

For the parallel case we focused attention on the region near the K = 0 critical point, which is described
by two uncoupled critical Ising models on the two sublattices of the square lattice. When the full lattice
is viewed, large checkerboard regions are apparent at and near this critical point. For small, but non-
vanishing K two critical lines emerge from the K = 0 critical point for positive and negative K,
respectively. Numerical results show that these critical lines approach the K = 0 critical point as a
power law with an exponent slightly larger than 1/2. We proposed a finite-size scaling theory for the
region near the K = 0 critical point that includes a new critical exponent that controls the scaling
behavior in the K direction and the power-law behavior of the critical lines. We presented a heuristic
argument based on the length scale for checkerboard regions as a function of K, which predicts that
the exponent describing the shape of the critical lines is 1/2. It would be interesting to understand the
scaling behavior near the K = 0 critical point more fully. Is the finite-size scaling theory correct? If

so, what is the actual scaling exponent and can it be related to known Ising critical exponents.

When self-interaction is large and positive, the equilibrium states of the sequential and parallel models
both reduce to a nearest-neighbor Ising model with twice the dynamical coupling strength [18]. The
equivalence of the two updating schemes can be understood intuitively from the fact that spin-flips
occur exponentially rarely so that a parallel update becomes equivalent to a single sweep of sequential

updates—in both cases almost no spin flips occur.
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