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ABSTRACT
Deep learning has gained substantial popularity in recent years.
Developers mainly rely on libraries and tools to add deep learning
capabilities to their software. What kinds of bugs are frequently
found in such software? What are the root causes of such bugs?
What impacts do such bugs have? Which stages of deep learning
pipeline are more bug prone? Are there any antipatterns? Under-
standing such characteristics of bugs in deep learning software
has the potential to foster the development of better deep learning
platforms, debugging mechanisms, development practices, and en-
courage the development of analysis and verification frameworks.
Therefore, we study 2716 high-quality posts from Stack Overflow
and 500 bug fix commits from Github about five popular deep
learning libraries Caffe, Keras, Tensorflow, Theano, and Torch to
understand the types of bugs, root causes of bugs, impacts of bugs,
bug-prone stage of deep learning pipeline as well as whether there
are some common antipatterns found in this buggy software. The
key findings of our study include: data bug and logic bug are the
most severe bug types in deep learning software appearing more
than 48% of the times, major root causes of these bugs are Incorrect
Model Parameter (IPS) and Structural Inefficiency (SI) showing up
more than 43% of the times. We have also found that the bugs in the
usage of deep learning libraries have some common antipatterns.
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1 INTRODUCTION
A class of machine learning algorithms known as deep learning
has received much attention in both academia and industry. These
algorithms use multiple layers of transformation functions to con-
vert input to output, each layer learning successively higher-level
of abstractions in the data. The availability of large datasets has
made it feasible to train (adjust the weights of) these multiple lay-
ers. While the jury is still out on the impact of deep learning on
overall understanding of software’s behavior, a significant uptick
in its usage and applications in wide ranging areas combine to
warrant research on software engineering practices in the presence
of deep learning. This work focuses on the characteristics of bugs
in software that makes use of deep learning libraries.

Previous work on this topic generally fall under two categories:
those that have studied bugs in the implementation of machine
learning libraries themselves, and those that have studied bugs
in the usage of a specific deep learning library. A key work in
the first category is Thung et al. [24] who studied bugs in the
implementation of three machine learning systemsMahout, Lucene,
and OpenNLP. In the second category, Zhang et al. [27] have studied
bugs in software that make use of the Tensorflow library. While
both categories of approaches have advanced our knowledge of
ML systems, we do not yet have a comprehensive understanding
of bugs encountered by the class of deep learning libraries.

This work presents a comprehensive study of bugs in the usage
of deep learning libraries. We have selected top five popular deep
learning libraries Caffe [15], Keras [7], Tensorflow [1], Theano [23],
and Torch [8] based on the user counts from developers Q&A forum
Stack Overflow. While each of these libraries are for deep learning
they have different design goals. For example, Tensorflow focuses
on providing low-level, highly configurable facilities whereas Keras
aims to provide high-level abstractions hiding the low-level details.
Theano and Torch are focused on easing the use of GPU computing
to make deep learning more scalable. Thus, studying them simul-
taneously allows us to compare and contrast their design goals
vis-à-vis bugs in their usage.
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Table 1: Summary of the dataset used in the Study

Library Stack Overflow Github
# Posts # Bugs # Commits # Bugs

Caffe 183 35 100 26
Keras 567 162 100 348
Tensorflow 1558 166 100 100
Theano 231 27 100 35
Torch 177 25 100 46
Total 2716 415 500 555

We have used two sources of data in our study: posts about these
libraries on Stack Overflow and also Github bug fix commits. The
first dataset gives us insights into bugs that developers encounter
when building software with deep learning libraries. A number of
these bugs would, hopefully, be fixed based on the discussion in
Q&A forum. The second dataset gives us insights into bugs that
were found and fixed in open source software. Our study focuses
on following research questions and compares our findings across
the five subject libraries.
RQ1: (Bug Type)What type of bugs are more frequent?
RQ2: (Root cause)What are the root causes of bugs?
RQ3: (Bug Impact) What are the frequent impacts of bugs?
RQ4: (Bug prone stages)Which deep learning pipeline stages are
more vulnerable to bugs?
RQ5: (Commonality) Do the bugs follow a common pattern?
RQ6: (Bug evolution) How did the bug pattern change over time?

Findings-at-a-glance. Our study show that most of the deep
learning bugs are Data Bugs and Logic Bugs [5], the primary root
causes that cause the bugs are Structural Inefficiency (SI) and In-
correct Model Parameter (IPS) [27], most of the bugs happen in the
Data Preparation stage of the deep learning pipeline. Our study also
confirms some of the findings of Tensorflow conducted by Zhang et
al. [27]. We have also studied some antipatterns in the bugs to find
whether there is any commonality in the code patterns that results
in bugs. Our findings show that there is strong correlation among
the distribution of bugs as well as in the antipatterns. Finally, we
conclude with a discussion on our findings suggesting immediate
actions and future research directions based on these findings.

2 METHODOLOGY
2.1 Data Collection
We have used two different data sources for studying the bugs in
deep learning software: Stack Overflow posts and Github bug fix
commits. A summary of these datasets is shown in Table 1.

2.1.1 Stack Overflow Data Collection. To study bugs in deep learn-
ing software, we have collected data from Stack Overflow, a well-
known Q&A site for developers to discuss software development
problems. The data collection process consists of two steps.

In the first step, we select candidate posts discussing deep learn-
ing libraries. We focus on five deep learning libraries: Caffe, Keras,
Tensorflow, Theano, and Torch. These are the five most discussed
deep learning libraries on Stack Overflow. We did that by searching
for posts tagged with Caffe, Keras, Tensorflow, Theano, and Torch.
When posts are about specific libraries, they are more likely to talk
about bugs in using deep learning libraries. Using these criteria,
we selected all posts about these five libraries. We further filtered

the posts that did not contain any source code because posts about
bugs usually contain code snippets. Moreover, we reduced the num-
ber of posts by selecting the posts whose scores, computed as the
difference between the number of its upvotes and the number of
its downvotes, were greater than 5 to focus on the high-quality
posts and keep the manual effort manageable. After this step, in
total, we retrieved 183, 567, 1558, 231, and 177 posts for Caffe, Keras,
Tensorflow, Theano, and Torch, respectively for further study.

In the second step, we manually read these candidates to iden-
tify the ones about bugs. After that, the second and the third au-
thors manually reviewed the candidates. For each post, we read the
question and all answers focusing on the best-accepted one. If the
best-accepted answer was to fix the usages of the deep learning
API(s) in the question, we considered that post as talking about
deep learning bugs. After this step, we found 35, 162, 166, 27, and
25 bugs for Caffe, Keras, Tensorflow, Theano, and Torch respectively.

2.1.2 Github Data Collection. We mine the Github commits to
study the change in the commits and to check and confirm the bug
patterns that we studied from Stack Overflow. The data collection
process consists of two steps.

First, we collect all the repositories of Caffe, Keras, Tensorflow,
Theano, and Torch. For collecting the repositories that use these
libraries, we first find the repositories that contain the keywords
related to the libraries. After that, we mine all the commits whose
title contains theword "fix". Then, we check the import statements
in the program to identify if those repositories truely use deep
learning libraries. Next, we randomly select 100 commits for each
library from mined commits and classify them.

Secondly, we use the same process that we used for Stack Over-
flow. Specifically, the second and the third authors manually studied
the 500 commits and separately label them. After that, these two
authors compare their results to fix the conflict in the labeling pro-
cess. We study each line of change in the commits. Note that some
commits may have more than one bugs and some commit may
not have bug. Overall, we got 26, 348, 100, 35, and, 46 bugs for the
commits of Caffe, Keras, Tensorflow, Theano, and Torch, respectively.

2.2 Classification
In our classification, we focus on three criteria which are bug types,
root causes and effects of bug. The classification scheme used for
labeling of the bugs in each of these three criteria discussed in §2.4,
§2.5, and §2.6. We have also classified the bugs into different deep
learning stages [26].

To label the bug types we followed the classification from an
already existing well vetted taxonomy [5] and appended on top
of that. The added types were based on the data that we studied
following an open coding scheme.

The bugsmay have different root causes and effects. A supervised
pilot study and open coding schemes were used to identify the
effects that are possible through these bugs. We have adapted the
classification scheme of root causes and bug effects from [27] and
added on top of that as found from the study of the posts. One
of the authors with expertise in these libraries studied the posts
initially to come up with the classification scheme for bug types,
root causes and effects. We followed the open coding scheme and a
pilot study was conducted to get agreement on the classification.
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We also classified the bugs into different stages of the pipeline
to understand which stages are more vulnerable to bugs. Deep
learning process can be divided into seven stage pipeline [26]. The
stages are data collection, data preparation, choice of model, train-
ing, evaluation, hyper parameter tuning and prediction. Among the
seven stages, the first one is not related to software development.
The other stages are related to software development, and are sup-
ported by the deep learning libraries through their APIs. We use
these stages to label the bugs into different stages.

2.3 Labeling the Bugs
Once we have all the classification criteria, we used those criteria
to label the posts. The second and the third authors independently
studied the posts. We measured the inter rater aggrement among
the labellers using Cohen’s Kappa coefficient [25] when 5%, 10%,
20% , 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of the posts were
labeled. After 5% labeling, the Cohen’s Kappa coefficient was close
to 0. Then we conducted a training session among the raters to
clarify the labeling and what they mean. After the training session,
we conducted another pilot study at 10% including the first 5%. This
time the Cohen’s Kappa coefficient was 82%. We again discussed
the results and find out the reasons for major disagreements. We
then discussed those cases further through examples and continued
labeling. The Cohen’s Kappa coefficient was more than 90% in
subsequent pilot studies.

The labeling effort was continuously being monitored with the
help of Kappa coefficient to understand the agreement. We con-
ducted reconciling efforts ideally at every 10% interval of the label-
ing. The posts where there was disagreement between the raters
were further discussed in the presence of a supervisor. After dis-
cussion and arguments a common label was given. Finally, all the
bugs were given a common label.

2.4 Types of Bugs in Deep Learning Software
Developers often encounter different types of bugs while trying to
write deep learning software. To understand those bugs and their
root causes, we have classified them into different categories. The
classification is inspired from [5] and adapted based on all the Stack
Overflow posts that we have analyzed.

2.4.1 API Bug. This group of bugs is caused by deep learning APIs.
Generally, when a developer uses a deep learning API, different
bugs associated with that API are inherited automatically with-
out the knowledge of the user. The prime causes for triggering
of deep learning API bugs can be because of the change of API
definition with different versions, lack of inter-API compatibility
and sometimes wrong or confusing documentation.

2.4.2 Coding Bug. These kind of bugs originate due to program-
ming mistakes. This in turn, introduces other types of bugs in the
software which lead to either runtime error or incorrect results.
A big percentage of the deep learning bugs that we have checked
arises from syntactic mistakes that cannot be fixed by changing
only some lines of code. This type of bugs are not identified by the
programming language compiler resulting in wrong output.

2.4.3 Data Bug. This bug may arise if an input to the deep learning
software is not properly formatted or cleaned well before supplying

it to the deep learning model. This type of bug occurs before data is
fed to the deep learning model. It is not because of the wrong deep
learning model, rather it is purely based on the type and structure
of training or test data. Similar to coding bugs, data bugs are usually
flagged by the compiler, but in some scenarios it can pass unchecked
through the compilation process and generate erroneous results.

2.4.4 Structural Bug (SB). A vast majority of the deep learning
bugs are occurring due to incorrect definitions of the deep learning
model’s structure. These include mismatch of dimensions between
different layers of deep learning models, the presence of anomaly
between the training and test datasets, use of incorrect data struc-
tures in implementing a particular function, etc. These type of bugs
can be further classified into four subcategories.

Control and Sequence Bug. This subclass of the bug is caused
by the wrong structure of control flow. In many scenarios, due
to wrong if-else or loop guarding condition, the model does not
perform as expected. This type of bug either leads to a crash when
a part of deep learning model does not work or, leads to incorrect
functionality due to mishandling of data through the layers.

Data Flow Bug. The main difference between the Data Flow Bug
and the Data Bug is the place of origin. If a bug occurs due to the
type or shape mismatch of input data after it has been fed to the
deep learning model, we label it as Data Flow Bug. It includes those
scenarios where model layers are not consistent because of different
data shape used in consecutive layers. To fix these bugs, developers
need to modify the model or reshape the data.

Initialization Bug. In deep learning, Initialization Bug means the
parameters or the functions are not initialized properly before they
are used. This type of bugs would not necessarily produce runtime
error but it will simply make the model perform worse. Here, the
definition of functions includes both user-defined and API defined.
We also categorize a bug into this category when the API has not
been initialized properly.

Logic Bug. In deep learning, the logical understanding of each
stage of the pipeline is an integral part of the coding process. With
an incorrect logical structure of the deep learning model, the out-
put of a program may result in either a runtime error or a faulty
outcome. These bugs are often generated in the absence of proper
guarding conditions in the code.

Processing Bug. One of the most important decisions in the deep
learning model structure is to choose the correct algorithm for the
learning process. In fact, different deep learning algorithms can lead
to different performance and output [14]. Also, to make different
layers be compatible with each other, the data types of each layer
need to follow a contract between them. Processing Bugs happen
due to the violation of these contracts.

2.4.5 Non Model Structural Bug (NMSB). Unlike SB, NMSB occur
outside the modeling stage. In other words, this bug can happen
in any deep learning stage except the modeling stage such as the
training stage or the prediction stage. NMSB has similar subcate-
gories as SB. The subcategories of NMSB are Control and Sequence
Bug, Logic Bug, Processing Bug, and Initialization Bug. We do not
define Non Model Structural Data Flow Bug like Structural Data
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Flow Bug because Data Bug already covers the meaning of Non
Model Structural Data Flow Bug.

Control and Sequence Bug. This subclass is similar to Control and
Sequence Bug in SB. The bug is caused by an incorrect structure of
control flow like wrong if-else condition; however, this kind of bug
happens outside modeling stage.

Initialization Bug. This subclass is similar to Initialization Bug
in SB. The bug is caused by incorrect initialization of a parameter
or a function prior to its use.

Logic Bug. This subclass is similar to Logic Bug in SB. The bug
is caused by misunderstanding the behavior of case statements and
logical operators.

Processing Bug. This subclass is similar to Processing Bug in SB.
The bug is caused by an incorrect choice of algorithm.

2.5 Classification of Root Causes of Bugs
2.5.1 Absence of Inter API Compatibility. Themain reason for these
bugs is the inconsistency of the combination of two different kinds
of libraries. For example, a user cannot directly use Numpy function
in Keras because neither Tensorflow backend nor Theano backend
of Keras has the implementation of Numpy functions.

2.5.2 Absence of Type Checking. This kind of bugs involves a type
mismatch problem when calling API methods. These bugs are usu-
ally mistakes related to the use of wrong type of parameters in an
API.

2.5.3 API Change. The reason for these bugs is the release of the
new versions of deep learning libraries with incompatible APIs. In
other words, the bug happens when the new API version is not
backward compatible with its previous version. For example, a user
updates the new version of a deep learning library which has new
API syntax; however, the user does not modify his/her code to fit
with the new version, which leads to the API change bug.

2.5.4 API Misuse. This kind of bugs often arises when users use a
deep learning API without fully understanding. Missing conditions
can be one kind of API misuse, and this bug occurs when a usage
does not follow the API usage constraints to ensure certain required
conditions. Crash is the main effect of these bugs.

2.5.5 Confusion with Computation Model. These bugs happen
when a user gets confused about the function of deep learning
API, which leads to the misuse of the computation model assumed
by the deep learning library. For instance, a user gets confused
between the graph construction and the evaluation phase.

2.5.6 Incorrect Model Parameter or Structure (IPS). IPS causes prob-
lems with constructing the deep learning model, e.g. incorrect
model structures or using inappropriate parameters. IPS is a com-
mon bug in the deep learning software because of both the lack
of deep learning knowledge among the users and the incompre-
hensibilty of deep learning models. This kind of bugs causes the
functional incorrectness; thus, the effect of this bug is a crash.

2.5.7 Others. These bugs are not related to deep learninng soft-
ware. In other words, these bugs are mostly related to mistakes in
the development process like incorrect syntax.

2.5.8 Structure Inefficiency (SI). SI causes problems related to mod-
eling stage in deep learning software like IPS; however, SI leads to
bad performance of the deep learning software while IPS leads to a
crash.

2.5.9 Unaligned Tensor (UT). These bugs often occur in the com-
putation graph construction phase. When a user builds the compu-
tation graph in deep learning process, they have to provide correct
input data that satisfies input specifications of the deep learning
API; however, many users do not know the API specifications, or
they misunderstand API signature leading to UT bugs.

2.5.10 Wrong Documentation. Incorrect information in library doc-
umentation leads to these bugs. Deep learning library users may
face this kind of bugs when they read an incorrect definition or an
incorrect usage of a deep learning API from documentation.

2.6 Classification of Effects of Bugs
2.6.1 Bad Performance. Bad performance or poor performance is
one of common kind of effect in deep learning software. Further-
more, the major root causes of this effect are SI or CCM that are
related to the model construction. Even though developers can use
deep learning libraries correctly, they still face model construction
problems because APIs in these libraries are abstract.

2.6.2 Crash. Crash is the most frequent effect in deep learning. In
fact, any kind of bugs can lead to Crash. A symptom of crash is that
the software stops running and prints out an error message.

2.6.3 Data Corruption. This bug happens when the data is cor-
rupted as it flows through the network. This effect is a consequence
of misunderstanding the deep learning algorithms or APIs. When
Data Corruption occurs, a user will receive unexpected outputs.

2.6.4 Hang. Hang effect is caused when a deep learning software
ceases to respond to inputs. Either slow hardware or inappropriate
deep learning algorithm can lead to Hang. A symptom of Hang is
that the software runs for a long period of time without providing
the desired output.

2.6.5 Incorrect Functionality. This effect occurs when the software
behaves in an unexpeced way without any runtime or compile-time
error/warning. This includes the incorrect output format, model
layers not working desirably, etc.

2.6.6 Memory Out of Bound. Deep learning software often halts
due to unavailability of the memory resources. This can be caused
by, either the wrong model structure or, not having enough com-
puting resources to train a particular model.

3 FREQUENT BUG TYPES
In this section, we explore the answer to RQ1 through a statistical
analysis of the labeled data. The normalized distribution of bug
types in Stack Overflow data is shown in Figure 1. The distribution
of bugs shown in Figure 1 and the Stack Overflow and Github data
in Table 2 shows the presence of different kinds of bugs in both
Stack Overflow and Github for the deep learning libraries we have
studied. We present some of the key findings related to bug types
in the following subsections.
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Figure 1: Distribution of Bug Types in Stack Overflow

3.1 Data Bugs
Finding 1: Data Bugs appear more than 26% of the times

From Figure 1 we see that among the bug types the Data Bugs
frequently appear (26%) in all the libraries. In the studied Stack
Overflow data, we have seen 30% of the posts in Tensorflow, 24%
posts in Keras, 36% posts in Torch, 35% posts in Theano, and 9%
posts in Caffe have Data Bugs. Data bugs mostly appear due to the
absence of data pre-processing facilities like feature engineering,
data validation, data shuffling, etc. For example, a developer is
trying to read some image files using the following method1.

1 de f _ read32 ( by t e s t r e am ) :
2 d t = numpy . d type ( numpy . u i n t 3 2 ) . newbyteorder ( ' > ' )
3 r e t u r n numpy . f r ombu f f e r ( by t e s t r e am . read ( 4 ) , d type=d t )

The developer eventually got stuck with the following error while
trying to train the model using the data returned by the previous
library call.

1 TypeError : on ly i n t e g e r s c a l a r a r r a y s can be conve r t ed to a s c a l a r
index

An expert suggested an answer to change the last return statement
with the following, which solved the problem and was accepted.

1 r e t u r n numpy . f r ombu f f e r ( by t e s t r e am . read ( 4 ) , d type=d t ) [ 0 ]

The bug is hard to fix by just looking at the error message. It is
difficult to identify the exact reason of bug which led the developer
to post a question on Stack Overflow and the question was upvoted
by other fellow developers as a qualified post.

The large percentage of Data Bugs indicate data pre-processing
related difficulties are quite common in deep learning software.
These bugs could be addressed by development and refinement of
data verification tools. Support for modern abstract data types like
DataFrame and the properties of the model in data verification tool
would help the deep learning community.

3.2 Structural Logic Bugs
Finding 2: Caffe has 43% Structural Logic Bugs

The secondmajor bug type is Structural Logic Bug in Stack Overflow
that was expected from our initial hypothesis based on a pilot study.
Caffe has more Structural Logic Bugs in Stack Overflow compared

1https://tinyurl.com/y3v9o7pu

Table 2: Statistics of Bug Types in Stack Overflow andGithub

Caffe Keras TF Theano Torch P value

SO

G
itH

ub

SO

G
itH

ub

SO

G
itH

ub

SO

G
itH

ub

SO

G
itH

ub

API Bug 6% 0% 11% 57% 11% 72% 7% 3% 16% 2% 0.3207
Data Bug 9% 49% 24% 8% 30% 0% 35% 17% 36% 15% 0.3901
NMSB.Control and Sequence
Bug

0% 8% 0% 0% 0% 0% 4% 0% 0% 7% 0.3056

NMSB.Initialization Bug 0% 0% 1% 0% 1% 0% 0% 3% 0% 0% 0.7655
NMSB.Logic Bugs 11% 0% 13% 2% 8% 0% 25% 6% 12% 7% 0.0109
NMSB.Processing Bug 0% 0% 0% 0% 1% 0% 0% 3% 0% 7% 0.2323
SB.Control and Sequence Bug 6% 12% 2% 0% 4% 0% 4% 3% 8 % 9% 1.0000
SB.Data flow Bug 3% 8% 13% 26% 15% 0% 0% 14% 4% 16% 0.2873
SB.Initialization Bug 0% 0% 1% 0% 8% 1% 0% 23% 20% 11% 0.8446
SB.Logic Bugs 42% 15% 27% 3% 18% 23% 18% 14% 0% 13% 0.3442
SB.Processing Bug 23% 8% 8% 4% 4% 4% 7% 14% 4% 13% 0.8535

to other libraries. Other libraries also have significant portion of
Structural Logic Bugs ranging from 0% - 27%.

3.3 API Bugs
Finding 3: Torch, Keras, Tensorflow have 16%, 11% and 11% API
bugs respectively

In deep learning libraries API changes sometimes break the entire
production code. The implicit dependencies between libraries cause
problems when one library has some major changes. For example,
when Numpy is updated Tensorflow, Keras software may fail. Keras
often uses Tensorflow or Theano as backend and hence update of
Tensorflow or Theano can cause the software developed using Keras
to crash. API bugs arise more often in Keras and Tensorflow as
shown in Figure 1. More than 81% of the API bugs are from Keras
and Tensorflow. An example of such bug is shown in the code snippet
below. The bug in the code below arises because the keyword names
in the API signature of Keras has changed.

1 model . f i t ( tX , tY , epochs =100 , b a t c h _ s i z e =1 , v e rbo se =2 )

The developer will get the error because epochs keyword does not
exist in version 2+ of Keras.

1 model . f i t ( tX , tY , b a t c h _ s i z e =1 , v e rbo se =2 , epochs = 1 0 0 ) F i l e
2 " k e r a s / models . py " , l i n e 612 , i n f i t s t r ( kwargs ) )
3 Excep t i on : Rece i ved unknown keyword arguments : { ' epochs ' : 1 0 0 }

To fix this error, the developer needs to change the keyword pa-
rameter from epochs to nb_epoch.

1 model . f i t ( tX , tY , nb_epoch =100 , b a t c h _ s i z e =1 , v e rbo se =2 )

3.4 Bugs in Github Projects
We have also analyzed the distributions of bugs in some Github bug
fix commits. The distribution of bugs across different libraries in
Github data is shown in Table 2. We computed the P value using t-
test where one distribution is bug type in Github for all the libraries
and the other distribution is bug type for all the libraries in Stack
Overflow.
Finding 4: All the bug types have a similar pattern in Github and
Stack Overflow for all the libraries

We analyze the Stack Overflow and Github result using the t-test
to find whether the distributions differ significantly. We use 95%
significant level to find the difference beween Stack Overflow and
Github results for each of the bug type In our analysis the null
hypothesis is: H0: The distributions are same. If we fail to reject

514

https://tinyurl.com/y3v9o7pu


ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Caffe Keras TF Theano Torch

Absence of type checking API Change

API Misuse Confusion with Computation Model

Incorrect Model Parameter or Structure Structure Ineffciency

Unaligned Tensor Absense of inter API compatibility

Others

Figure 2: Stack Overflow Root Cause Classification

this null hypothesis using the t-test then we can say the distribu-
tions follow the same pattern in both Stack Overflow and Github
data.

We see that for all the bug types except Non Model Structural
Logic Bug the P value is greater than 5% indicating they have a
similar pattern as we fail to reject the null hypothesis.

4 ROOT CAUSE
In this section, we present the analyses and findings to answerRQ2
identifying major root causes of bugs in deep learning software.
The normalized distribution of root causes in Stack Overflow code
snippets is shown in Figure 2. The data in Table 3 shows the presence
of different categories of root causes in both Stack Overflow and
Github for the deep learning libraries and presents P value showing
the similarity of distributions using t-test. We discuss the significant
root causes in the following subsections.

4.1 Incorrect Model Parameter (IPS)
Finding 5: IPS is the most common root cause resulting in average
24% of the bugs across the libraries

IPS results in bugs that causes the program to crash at runtime and
the execution does not succeed. In Tensorflow and Theano IPS leads
other root causes in causing bugs having 26% and 26% of the total
share of root causes, respectively.

4.2 Structural Inefficiency (SI)
Finding 6: Keras, Caffe have 25% and 37% bugs that arise from SI

SI bugs do not cause the program to crash. These bugs often yield
suboptimal performance of the deep learning model. These bugs
have more relation to QoS or non-functional requirements. For
example, a programmer is trying to train a model to recognize
handwritten digits but the accuracy does not improve and stays
constant from epochs 2 - 10.2

1 Epoch 1 / 1 0
2 2394 / 2 394 [==============================] − 0 s − l o s s : 0 . 6 8 9 8 −

acc : 0 . 5 4 5 5 − v a l _ l o s s : 0 . 6 8 3 5 − v a l _ a c c : 0 . 5 7 1 6
3 Epoch 2 / 1 0
4 2394 / 2 394 [==============================] − 0 s − l o s s : 0 . 6 8 7 9 −

acc : 0 . 5 5 2 2 − v a l _ l o s s : 0 . 6 9 0 1 − v a l _ a c c : 0 . 5 7 1 6
5 . . . . . . . . .

2https://stackoverflow.com/questions/37213388/keras-accuracy-does-not-change

Table 3: Statistics of the Root Causes of Bugs

Caffe Keras TF Theano Torch P value
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Absense of inter API compati-
bility

0% 0% 1% 0% 1% 0% 0% 0% 0% 0% 0.1411

Absence of type checking 3% 12% 8% 3% 15%15%30%20% 8% 13% 0.9717
API Change 0% 0% 7% 51% 9% 58% 4% 0% 8% 2% 0.2485
API Misuse 11% 0% 15% 4% 14% 0% 7% 3% 12% 2% 0.0003
Confusion with Computation
Model

14%28% 9% 1% 6% 10%11% 3% 12% 4% 0.7839

Incorrect Model Parameter or
Structure

26%31%21%30%26%16%30%14%20%19% 0.5040

Others 0% 0% 0% 0% 0% 0% 0% 0% 0% 2% 0.3466
Structure Ineffciency 37%12%26% 5% 13% 1% 11%26%12%38% 0.7170
Unaligned Tensor 3% 19%12% 5% 16% 0% 7% 34%28%20% 0.7541
Wrong Documentation 6% 0% 1% 1% 0% 0% 0% 0% 0% 0% 0.3402

6 Epoch 10 / 1 0
7 2394 / 2 394 [==============================] − 0 s − l o s s : 0 . 6 8 7 7 −

acc : 0 . 5 5 2 2 − v a l _ l o s s : 0 . 6 8 4 9 − v a l _ a c c : 0 . 5 7 1 6
8 1027 / 1 027 [==============================] − 0 s

The problem that was pointed out by an expert, which solved
the performance degradation bug is following:

1 # In summary , r e p l a c e t h i s l i n e :
2 model . compi l e ( l o s s = " c a t e g o r i c a l _ c r o s s e n t r o p y " , o p t im i z e r = " adam

" )
3 #with t h i s :
4 from ke r a s . o p t im i z e r s impor t SGD
5 opt = SGD( l r = 0 . 0 1 )
6 model . compi l e ( l o s s = " c a t e g o r i c a l _ c r o s s e n t r o p y " , o p t im i z e r = opt )

The answer suggested to change optimizer for enhancing the
performance.

4.3 Unaligned Tensor (UT)
Finding 7: Torch has 28% of the bugs due to UT

In deep learning, tensor dimensions are important for successful
construction of the model. Tensorflow, Keras, Torch, Theano, Caffe
have 16%, 12%, 28%, 7% and 3% of bugs due to UT respectively. In
Torch UT is the leading root cause of bugs.

4.4 Absence of Type Checking
Finding 8: Theano has 30% of the bugs due to the absence of type
checking

Most of the deep learning libraries are written in Python. Due to
the dynamic nature of Python, the problem of the absence of type
checking is felt strongly in these libraries. The absence of type
checking leads to 30% of the bugs in Theano, 8% of the bugs in Keras
and 15% of the bugs in Tensorflow.

4.5 API Change
Finding 9: Tensorflow and Keras have 9% and 7% bugs due to API
change

In deep learning libraries, API change tends to have a drastic effect.
These libraries are interdependent. So, API change in one library
breaks other libraries.
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Absence of type checking Absense of inter API compatibility
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Confusion with Computation Model(CCM) Incorrect Model Parameter or Structure (IPS)
Others Structure Ineffciency (SI)
Unaligned Tensor (UT)

Figure 3: Relation between Root Causes and Types of Bugs

4.6 Root Causes in Github Data
Finding 10: Except API Misuse all other root causes have simi-
lar patterns in bothGithub and Stack Overflow root causes of bugs

We computed the P value at 95% significant level for both the Stack
Overflow and Github data for all the root causes in the five libraries.
We see that, P value for API Misuse root cause is much less than 5%
indicating API Misuse in Stack Overflow and Github has different
distribution compared to other root causes as we reject the null
hypothesis. The other root causes are similar for both Stack Overflow
and Github data as their P value is greater than 5%.

4.7 Relation of Root Cause with Bug Type
Finding 11: SI contributes 3% - 53% and IPS contributes 24% - 62%
of the bugs related to model

We have seen from Figure 3 that most of the non model related
bugs are caused by API Misuse (6% - 100%). Non Model Structural
Initialization Bugs and Non Model Structural Processing Bugs are
caused by API Misuse in 100% of the time in our studied data.
Interestingly in API Bug API Change plays the vital role (68%)
compared to API Misuse (20%); however, the model related bugs
are more vulnerable to IPS and SI root causes. We see from Figure 3
that Structural Control and Sequence Bug, Structaral Data Flow
Bug, Structural Initialization Bug, Structural Logic Bug, Structural
Processing Bug which are related to model are caused by SI 31%,
3%, 10%, 33% and 53% of the times respectively and caused by IPS
62%, 59%, 40%, 36%, 24% of the times respectively.

5 IMPACTS FROM BUGS
In this section, we explore the answer to RQ3 to understand the
major effects of bugs in deep learning software. The normalized
distribution of effects of Stack Overflow is shown in Fig. 4. The
data in Table 4 shows the presence of different kinds of effects in
both Stack Overflow and Github for the deep learning libraries. We
discuss some of the major effects of bugs in deep learning software
in the rest of this section.
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Figure 4: Distribution of Bug Effects in Stack Overflow

5.1 Crash
Finding 12: More than 66% of the bugs cause crash.

Our analysis reveals that, the most severe effect of bugs is Crash. In
deep learning, the bugs mostly cause total failure of the program.
In all the libraries Crash is the top impact ranging from 40% - 77%
as shown in Figure 4.

5.2 Bad Performance
Finding 13: In Caffe, Keras, Tensorflow, Theano, Torch 31%, 16%,
8%, 11%, and 8% bugs lead to bad performance respectively

Bad performance is often a concern for deep learning software
developers. Even though the model trains successfully, during the
evaluation or prediction phase the model may give very poor accu-
racy in classifying the target classes.

For example, in the following code snippet the user had low
accuracy after traning because of the use of incorrect value of
parameter nb_words that is the value of the maximum size of the
vocabulary of the dataset. The developer should use nb_words +
1 instead of nb_words as answered by an expert 3. If the developer
uses nb_words instead of nb_words + 1, the model will not train
on the last word, which can lead to the bad performance effect.

1 embedded = Embedding ( nb_words , output_dim=hidden , i n pu t _ l e n g t h =
maxlen ) ( sequence )

5.3 Incorrect Functionality
Finding 14: 12% of the bugs cause Incorrect Functionality

Incorrect functionality happens when the runtime behavior of the
software leads to some unexplainable outcome that is not expected
from the logical organization of the model or from previous experi-
ence of the developer.

For example, in the following code snippet the user wants to
convert the image to a 28 ∗ 28 Numpy array; however, the output is
a black image.4

1 with t f . S e s s i o n ( ) as s e s s :
2 f i r s t _ im a g e = mnis t . t r a i n . images [ 0 ]
3 f i r s t _ im a g e = np . a r r ay ( f i r s t _ ima g e , d type = ' u in t8 ' )
4 p i x e l s = f i r s t _ im a g e . r e shape ( ( 2 8 , 2 8 ) )
5 p l t . imshow ( p i x e l s , cmap= ' gray ' )

3https://stackoverflow.com/questions/37817588/masking-for-keras-blstm
4https://stackoverflow.com/questions/42353676/display-mnist-image-using-
matplotlib
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Table 4: Effects of Bugs in Stack Overflow and Github

Caffe Keras TF Theano Torch P value
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ub
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ub
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itH

ub

SO
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itH

ub

Bad Performance 31% 19% 16% 14% 8% 8% 11% 6% 8% 24% 0.9152
Crash 40% 69% 61% 86% 77% 92% 70% 20% 60% 16% 0.7812
Data Corruption 6% 4% 5% 0% 6% 0% 4% 6% 4% 16% 0.948
Hang 0% 0% 0% 0% 1% 0% 0% 0% 0% 0% 0.3466
Incorrect Functionality 23% 8% 13% 0% 7% 0% 11% 59% 16% 42% 0.5418
Memory Out of bound 0% 0% 3% 0% 1% 0% 4% 0% 0% 0% 0.0844
Unknown 0% 0% 2% 0% 0% 0% 0% 9% 12% 2% 0.8419

Data Preparation

Choice of Model
Training

Evaluation

Hyperparameter tuning
Prediction

Stages…in…the…pipeline

0

5

10

15

20

25

30

35

B
ug

s 
(%

)

Figure 5: Bugs across stages of the Deep Learning pipeline

The user got incorrect output because of casting a float array to
uint8, which will convert all the pixels to 0 if they are less than 1.
To fix the problem, the user can multiply the array with 255 as sug-
gested by an answer. Theano has a higher percentage of posts about
incorrect functionality problems compared to bad performance.

5.4 Effects of Bugs in Github
Finding 15: For all the libraries the P value for Stack Overflow and
Github bug effects reject the null hypothesis to confirm that the
bugs have similar effects from Stack Overflow as well as Github
bugs

The P value is shown in Table 4 shows that Bad Performance in
Stack Overflow and Github have 79% of P value which indicates that
they are very similar. Crash has P value of 50% in Stack Overflow and
Github indicating they also can not reject the null hypothesis with
strong confidence. None of the impacts reject the null hypothesis
at 95% significance level.

6 DIFFICULT DEEP LEARNING STAGES
In this section, we answer RQ4 by studying the bugs arising at the
different stage of the deep learning pipeline. We use the catego-
rization of the posts about deep learning stages to analyze RQ4.

6.1 Data Preparation
Finding 16: 32% of the bugs are in the data preparation stage
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Figure 6: Correlation of Bug Types among the libraries

From Figure 5 we see, most of the bugs in deep learning pro-
gramming happen at the data preparation stage.

6.2 Training Stage
Finding 17: 27% of the bugs are seen during the training stage

The next bug prone stage is the Training stage which is as ex-
pected. Most bugs related to IPS and SI arise in the training stage.

6.3 Choice of Model
Finding 18: Choice of model stage shows 23% of the bugs

Choice of model is the third bug prone stage. In choice of model
stage, we construct the model and chose the right algorithm. Major
root causes of bugs in this stage are IPS, SI, and UT.

7 COMMONALITY OF BUG
In this section, we explore the answer to RQ5 to identify whether
there is any relationship among the bugs in different deep learning
libraries. Our primary hypothesis was that the libraries will be
strongly correlated based on the distribution of bugs as they are
performing similar tasks.

Our analysis confirms that hypothesis as shown in Figure 6. We
see that the libraries have a strong correlation coefficient close to
1. Surprisingly Caffe has shown very weak correlation with other
libraries in terms of bug type. We then randomly studied 30 Stack
Overflow posts for each of the libraries to see whether we notice
any common antipatterns that can lead to this strong correlation
of bug type.
Finding 19: Tensorflow and Keras have a similar distribution of
antipatterns while Torch has different distributions of antipatterns

We have identified the antipatterns through deeper analysis of the
Stack Overflow buggy codes for further investigating the strong
correlation of Tensorflow and Keras as well as the weak correlation
of Torch and Caffe. The antipatterns found are Continuous Obso-
lescence, Cut-and-Paste Programming, Dead Code, Golden
Hammer, Input Kludge, MushroomManagement, Spaghetti
Code. This classification is taken from [2]. The distribution of dif-
ferent antipatterns across the libraries is shown in Figure 7. We
see that in Tensorflow and Keras 40% of the antipatterns are Input
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Figure 7: Distribution of different antipatterns

Kludge. On the other hand, in Torch 40% of the bugs arise due to
the Cut-and-Paste Programming antipattern. Tensorflow and Keras
have almost same distribution in Continuous Obsolescence and
Dead Code as well. This shows that the strong correlation between
the distribution of bugs in Tensorflow and Keras can be explained
from the similarity of common antipatterns for these two libraries.
The weak correlation between the distribution of Torch and Caffe
bugs can be the result of a dissimilar distribution of antipatterns
between these two libraries. For example, we see Stack Overflow
code snippets of Input Kludge antipatterns from Tensorflow and
Keras in the example shown in Figure 8. Both of these programs can
be easily broken by user input and the program does not perform
sanity check on the inputs.

8 EVOLUTION OF BUGS
In this section, we explore the answer to RQ6 to understand how
the bug patterns have changed over time.

8.1 Structural Logic Bugs Are Increasing
Finding 20: In Keras, Caffe, Tensorflow Structural logic bugs are
showing increasing trend

From 2015 - 2018 Structural logic bugs in Caffe are respectively 30%,
32%, 67%, 100% indicating structural logic bugs are being discussed
more by the developers since 2015. It is expected as deep learning
started gaining increasing attention since 2015 and more developers
started to use deep learning libraries to write software.

8.2 Data Bugs Are Decreasing
Finding 21: Data Bugs slowly decreased since 2015 except Torch

In Torch Data Bugs stayed almost consistent maintaining close
to 50% of the bugs in discussed in 2016-2018. In Keras Data Bugs
slowly decreased from 27% - 15% since 2015. In Tensorflow Data
Bugs slowly decreased from 30% - 10% since 2015 - 2018. In the other
two libraries also, the Data Bugs slowly decreased reaching close to
0. The possible reason for this trend is the development of popular
specialized data libraries like pandas that enable exploratory data
analysis to understand the properties of data better. Besides, the

use of Tensor data type having type and shape information helps
to get rid of some of the Data Bugs. Still more verification support
in these libraries will help to get rid of these bugs.

9 THREATS TO VALIDITY
Internal threat. One internal threat to the validity of our results
could be our classification of the bugs. We used the classification
scheme from a vetted taxonomy [5, 27] to classify the bugs. We also
followed open coding scheme to add more types if needed. One
PhD student was initially dedicated to go over all the posts to come
up with additional classification scheme, if necessary. This whole
process was monitored using pilot study. Another possible source of
the threat is that the labeling of the data can be biased. To mitigate
this threat two trained Ph.D. students independently studied the
misuse posts to label them. The inter-rater agreements was mea-
sured using Cohen’s Kappa coefficient and the disagreements were
reconciled under the monitoring of an expert. We conducted pilot
study to continuously monitor the labeling process and conducted
further training at 5% and 10% of the labeling where the Kappa
coefficient was close to 0% and 80%.

External threat. An external threat can be the trustworthiness
of the dataset we collected. To avoid low-quality posts we only
collected the posts that have score of at least 5. A score of 5 can be
a good metric to trust the post as a good discussion topic among
the programmer community that cannot merely be solved using
some Google search. The reputation of the users asking question
about deep learning can be another reason to question the quality
of the posts. To alleviate this threat we have only studied top scored
posts which are from users with different range of reputations
(1 - 150K+). This indicates that the posts are from users ranging
from newbie to experts. The dataset is unbalanced in terms of
frequency of bugs studied for each library; however, to confirm
the distribution of the bugs, we have performed ANOVA test on
the bug types, root causes, and impacts for each library. We have
found that F (0.99) < F -critical(2.55). This implies that the means
of the five libraries population are not significantly different. This
suggests that even though the dataset seems unbalanced in term of
frequency, the bug distribution is not.

10 DISCUSSION
We have seen in the analysis of RQ1 that most of the bugs in deep
learning programming are Data Bugs. These type of Bugs can have
drastic effect causing the program to crash as well as leading to
bad performance. In general, we see the programmers have very
limited or no access to data verification tools. It is often confusing
whether the data is in right format needed by the model, whether
the variables are properly encoded or not, whether there aremissing
data that can cause the model to fail, whether the train test split
is good enough, whether the data is shuffled properly to avoid
training bias etc. This finding suggests that development of data
verification tools can help programmers solve a large number
of data bugs. As deep learning models are strongly coupled with
data,model analysis tool to explore whether a particular model
is the right fit for the data in hand can help to resolve these strong
coupling of data and model related problems.

518



ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan

(a) Tensorflow Example of Input Kludge (b) Keras Example of Input Kludge

Figure 8: Example of similar antipattern in Tensorflow and Keras

Figure 9: Timeline of Evolution of Bugs

We have also seen while exploring RQ1 that structural logic
bugs are the second major type of bugs. This happens due to wrong
logical organization of the model, hidden layers, using wrong codes,
etc. These kind of problems can be solved by some automated
model and parameter recommendation tools. How to develop
these kind of tools need further research. A methodology could be
to mine large scale open source code repositories [10–12] using
Python dataset [6] and identify the common code patterns and
suggest examples from common code patterns.

11 RELATEDWORKS
The closest related work is by Zhang et al. [27] who have inves-
tigated bugs from deep learning applications built on top of Ten-
sorflow. They collected 500 Stack Overflow posts and filtered them
to study 87 posts and selected 11 Github projects to include 82
commits with 88 bugs using keywords e.g., bug, fix, wrong, etc. In
contrast, we studied a cross-section of five deep learning libraries
with different design constraints, using 555 bugs from GitHub and
415 Stack Overflow posts, that allowed us to draw interlibrary ob-
servations. Zhang et al. have studied the bugs and have categorized
them into 7 types of bug/root causes and 4 types of impacts/symp-
toms. Our work expanded the study to include bug types from
literature and categorizes the bugs into 11 bug types, 10 root causes
and, 7 impacts. In term of results, our study both confirms what
was known as a small scale and produces new knowledge e.g.,
correlating antipatterns with bugs [22].

Thung et al. [24] studied threemachine learning systems, Apache
Mahout, Lucene, and OpenNLP and manually categorize the bugs
into different categories. They focused on bug frequencies, bug
types, severity of the bug, bug-fixing duration, bug-fixing effort,
and bug impact. Different from them, we focus on bug types, bug
root causes, and bug impact of five deep learning libraries which
are Tensorflow, Keras, Torch, Caffe, and Theano.

There are some empirical studies focused on specific types of
bugs. Lu et. al. [20] studied real-world concurrency bug character-
istics. Gao et. al. [13] conducted an empirical study on recovery
bugs in large-scale distributed systems. API changes problems was
studied by [4, 9, 17, 18]. Our work focuses on the bugs in the usage
of deep learning libraries.

Other prior work that have studied Stack Overflow posts, e.g. [3,
16, 19, 21], have not focused on deep learning software.

12 CONCLUSION AND FUTUREWORK
Although deep learning has gained much popularity and strong
developer community in recent years, developing software using
existing deep learning libraries can be error-prone. In this paper, we
have presented an empirical study to explore the bugs in software
using deep learning libraries. In our study we have studied 2716
qualified Stack Overflow posts and 500 Github bug fix commits to
identify the bug types, root causes of bugs, effects of bugs in usage
of deep learning. We have also performed an inter-stage analysis
to identify the stages of deep learning pipeline that are more vul-
nerable to bugs. We have also studied the buggy codes in Stack
Overflow to find antipatterns leading to bugs to understand the
strong correlation of the bug types in deep learning libraries. Our
study found that data bug and logic bug are the most severe bug
types in deep learning software appearing more than 50% of the
times. Major root causes of these bugs are Incorrect Model Parame-
ter (IPS) and Structural Inefficiency (SI). Last but not least, bugs in
the usage of deep learning libraries are strongly correlated. This
work opens multiple avenues for exploration. For instance, while
we have studied bugs, we haven’t yet examined the fix strategies
that programmers use. This study is also on a relatively modest
dataset and could be repeated on a much larger dataset. Finally,
repair strategies could be developed for deep learning programs.
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