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ABSTRACT: We describe an open-source and widely adaptable Python library that recognizes 

morphological features and domains in images collected via scanning probe microscopy. π-

Conjugated polymers (CPs) are ideal for evaluating the Materials Morphology Python (m2py) 

library, because of their wide range of morphologies and feature sizes. Using thin films of 

nanostructured CPs, we demonstrate the functionality of a general m2py workflow. We apply 

numerical methods to enhance the signals collected by the scanning probe, followed by Principal 

Component Analysis (PCA) to reduce the dimensionality of the data. Then, a Gaussian Mixture 

Model segments every pixel in the image into phases, which have similar material-property 

signals. Finally, the phase labeled pixels are grouped and labeled as morphological domains using 

either connected components labeling or persistence watershed segmentation. These tools are 

adaptable to any scanning probe measurement, so the labels that m2py generates will allow 

researchers to individually address and analyze the identified domains in the image. Thus, allowing 

to describe the morphology of the system using quantitative and statistical descriptors such as the 

size, distribution, and shape of the domains. Such descriptors will enable researchers to 

quantitatively track and compare differences within and between samples. 
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Introduction 

Thin-film and flexible electronic technologies, including devices such as photovoltaic cells, field 

effect transistors, and thermoelectric devices are enabled by materials such as π-conjugated 

polymers (CPs).1–15 There are many promising candidate materials for active layer materials in 

these devices, which have highly tunable properties. All of these materials share a similar 

bottleneck: their device performance and stability are strongly dependent on their morphology at 

the micro- and nanometer- scale.3,16–23 For any candidate material to achieve commercialization, it 

is necessary to predictably link parameters such as chemical structures, intermolecular interactions, 

processing conditions, and composition to final device performance, without the need to take an 

Edisonian approach to synthesis and optimization. The thin film morphology of a device active 

layer is a critical piece in this connection, so it is important to establish reproducible and 

quantitative descriptors of such morphology. 

Devices made from thin-film electronic materials have greatly improved over the past decades, 

and CP-based devices have their electronic performance in some applications, such as organic 

electrochemical transistors (OECTs), conjugated polymers can outperform inorganic 

materials.16,24,25 Due to the intrinsic connections between their device properties and their chemical 

structures, molecular weight, and intermolecular interactions, CP-based devices can be 

exceedingly complex. Compounding this, CP morphologies often have dimensions that range from 

nanometers to micrometers. Such domains are difficult to interpret in single component films and 

become even more complex in blends of two or more components.26–32 Though this frustrates the 

analysis of polymers, it also contributes to their tunability and responsivity and allows researchers 
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to access specific performances, structures, and properties. This versatility also makes CPs well-

suited for developing tools that quantify morphology.  

Despite its importance, it has been difficult to quantitatively describe morphologies and 

nanometer-scale structure of thin films and interfaces. Imaging techniques, such as scanning probe 

microscopy (SPM), have been extensively developed and deployed to observe surfaces at this 

length scale for a wide variety of materials through the imaging of properties, such as conductivity 

or viscoelasticity, which are used in the present work.24,33–36 The set of material properties that can 

be investigated by SPM techniques is rapidly expanding, and probe samples on length-scales 

ranging from Angstroms to millimeters.37–41 These observations have enabled significant progress 

in understanding morphologies, but are traditionally constrained to qualitative or semi-quantitative 

sampling, as a result of the difficulty of hand-measuring features in microscopy images. 

Fortunately, the modularity and sensitivity of these instruments allow for a wide range of material 

properties to be simultaneously measured with topography. The resulting data have similarly 

formatted outputs, simplifying the comparison of different properties across a single scan. 

There has been compelling research from various groups on utilizing computer vision and 

machine learning approaches to automatically identify features in micrographs and SPM 

measurements.11,42-52  These approaches often use supervised models, which inherently restrict their 

application to materials or morphologies that are similar to the samples used in training the model. 

Moreover, the performance of supervised models is connected to the number of samples in the 

training dataset. This limits their applications further, as it is first necessary to analyze and 

manually label a significant amount of data to build a large training set in order to improve the 

accuracy of these supervised learning approaches. In contrast, the data agnostic nature of 

unsupervised classification is particularly useful in building base models for the characterization 
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of materials; such models can be easily extended to different materials, instruments, and techniques 

because they do not require training data.53  

In this study, we present an open-source and adaptable Python toolkit, m2py, which is capable 

of interpreting and labeling morphological domains and features in images that have widely varied 

morphologies. Moreover, the m2py toolkit contains modular classes and functions that can be 

assembled into a customizable workflow to extract meaningful information from the domains and 

features in the SPM data. The m2py library simplifies the application of computer vision 

techniques; in particular, the workflow used herein enhances feature signals prior to applying a 

series of unsupervised methods. Once identified, m2py generates label maps of the identified 

features, so that they can be individually addressed and analyzed. These label maps can then be 

used to generate quantitative descriptions of the morphological information that has always been 

present in the SPM data. In this work, we have shown that domain size and major axis length are 

calculatable from m2py labels. Future work will also extract further morphological descriptions, 

such as aspect ratio, orientation, and perimeter length, so that the connection between such 

descriptors and device performance can be evaluated. In this work we demonstrate m2py’s 

versatility in morphological classification by applying a generic m2py workflow to thin films of 

semicrystalline poly(3-hexylthiophene) (P3HT) in organic field-effect transistors (OFET) active 

layers, blended binary thin films of P3HT: phenyl-C61-butyric acid methyl ester (PC61BM) and 

poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl][3-fluoro-2-[(2-

ethylhexyl)carbonyl] thieno[3,4-b]thiophenediyl]] (PTB7):PC71BM in organic photovoltaic 

(OPV) active layers, and self-assembled nanostructures of P3HT spin-coated onto inorganic SiO2 

or ITO substrates. The m2py toolkit is compatible with any SPM technique, which we demonstrate 

by applying the same m2py workflow to measurements from force-distance mapping AFM 
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(FDM), amplitude-modulated frequency-modulated bi-modal AFM (AMFM), and conductive 

AFM (C-AFM), three techniques that each have different degrees of spatial resolution and data 

dimensionality. 

 

Results and Discussion 

SPM data is structured as a stack of 2-dimensional matrices with each layer in the stack 

(commonly referred to as a channel), representing a different aspect of the material’s response. 54,55 

The methodology primarily used in this investigation, FDM, has six channels of signals: adhesion, 

deformation, dissipation, modulus, height, and stiffness. By comparing the values from each 

channel for each pixel, pixels can be sorted, filtered, or clustered by their similarity. A summary 

of the m2py workflow is shown in Figure 1. 
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Fig. 1 A generalized m2py workflow. Raw or pre-cleaned data is fed in by the user. Next, outlier 

removal and fast Fourier transforms are applied to increase the sensitivity of m2py’s segmentation 

modules. Feature selection finds the most descriptive features from the data while reducing data 

dimensionality to distill the material-property signals. This is followed by semantic segmentation 

(pixel classification) and then instance segmentation (pixel clustering). Statistical information can 

be extracted at any point in the workflow.  

2.1 Data Intake and Pre-Processing 

The SPM community has developed robust toolkits for viewing SPM data and converting 

between file formats. Packages such as Gwyddion can parse instrument specific and open-source 

file formats and perform automated routines that handle SPM data in a tensor fashion. However, 

these tools primarily accelerate data processing and improve interpretation of the image by the 

microscopist.54–56 They do not seek to identify and label segmented domains for algorithmic 

analysis, nor do they enable any automation of the identification. By relying on these familiar tools 

for data cleaning and translation into NumPy-readable file types, m2py is able to process data from 

virtually any source. 

Once the SPM data is converted to a NumPy format, the material-property signals need to be 

enhanced. Outlier detection and image denoising are essential at improving the signal to noise ratio 

of the raw SPM data. These outliers need to be removed early, as they can overpower material-

property signals during later clustering methods. Examples of outliers includes pixels associated 

with surface aggregates, pin-holes, or tip-scars. The m2py method 

pre_processing.extract_outliers() recognizes these pixels and generates a Boolean matrix of outlier 

labels so that the corresponding pixels are ignored by the subsequent classification models, 

improving their results. This method has adjustable windows and thresholds and is typically 
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applied to the height channel. The output of outlier detection is illustrated in Figure S1. For further 

noise reduction, the method pre_processing.frequency_removal() applies image compression via 

fast Fourier transform to each layer using an adjustable band-pass filter to remove noise signals at 

high or low frequencies.57 An example of this method being used to remove low-frequency 

background noise is shown in Figure S2. Additionally, the Fourier-space signal data can be 

accessed and used to analyze the orientation, alignment, and signals within images.52  

 

2.2 Feature Selection and Semantic Segmentation 

Following outlier removal and signal processing, pixels are analyzed and classified into a user-

specified number of phases using a combination of Principal Component Analysis (PCA) and the 

Gaussian Mixture Model (GMM). PCA serves as the feature selector combining all data channels 

into fewer but more informative features, while retaining most of the information / variance of the 

system.42,58 Even though the generated principal components are linear combinations of the input 

channels, they represent a complex vector-space relationship to the original data. Through the 

retention of only the most informative features, PCA speeds up the computationally expensive 

process of classification by minimizing the number of channels to examine. So, incorporating PCA 

into the m2py workflow is often beneficial to further enhance materials response signals prior to 

classification.42,59 An example of PCA selection of material response information for FDM 

measurement of an annealed P3HT:PC61BM thin film is shown in Figure 2. Once PCA has been 

applied, the principal components can also be accessed and analyzed through the 

SegmenterGMM() class. A principal component of the OPV film from Figures 2a and b is shown 

in Figure 2c and an example of cross-correlation of those principal components is plotted in Figure 

2d. In Figures 2b, c, and d, the red and blue colors indicate the final GMM phase classification of 
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each pixel. Even though the number of channels is reduced by half in this example, the cross-

correlation in Figure 2d confirm that the principle components retain the signal clusters visible in 

the input channel cross-correlations of Figure 2b. 

 

Fig. 2 Signal distributions and cross-correlations are easily extracted throughout the workflow. a. 

Four input material-property distributions from an annealed P3HT:PC61BM thin film. Input 

channel units are relative. b. Cross-correlations from the same sample after GMM segmentation, 

with red and blue representing the two GMM labeled phases. c. (left) An example principal 

component from PCA of the same sample. Principle component units are arbitrary. (right) The 

property distributions for each of the two GMM phase for the principal component. d. Cross-

correlation between principal component 1 and 3, color-coded by their GMM phase labeling. Scale 

bar is 200 nm, images are 256 × 256 pixels.   
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Once the material response signals have been selected by applying PCA, GMM is used as a 

semantic segmenter to classify pixels by their clustered material response signals. Afterwards, 

m2py assigns each pixel a phase label corresponding to its GMM classification. The number of 

phases is easily tuned by a user; for instance, if a user is expecting a binary blend to have two 

phase-pure regions, and one blended region, the GMM can be made to deconvolute the SPM data 

into three distinct phases. A more detailed discussion of the GMM implementation is presented in 

the Supporting Information on page S8. 

PCA and GMM are combined and implemented through the SegmenterGMM() class. Which 

features are used to segment and classify individual pixels has a significant impact on the overall 

performance. To clarify both the use of the SegmenterGMM() class and the impact of user choices 

on overall classification, several examples are presented below. 

One common consideration is whether or not the height channel should be included during 

GMM phase label assignment. Depending on the magnitude of the differences in the material-

response signals that the GMM segmenter uses to classify the pixels, height information can be 

either advantageous or disruptive when included. Omission of height data tends to be useful if the 

topographical features are not reflective of the underlying morphological domains, and thereby 

misrepresent the true morphology of the film, or when the material-response signals show only 

small fluctuations. This is the case with  P3HT thin films, where surface features are often dictated 

by drying kinetics and surface-air interactions, rather than phase separation into crystalline and 

amorphous domains.60–62 This is demonstrated in Figure 3, where the modulus and adhesion 

channels show small domains (Figure 3a.), as expected of P3HT skin-layers.63  
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Fig. 3 Input data and the GMM label maps from FDM measurements of a P3HT OFET active 

layer. a. The input data channels after outlier and noise removal. Colorbar units are relative. b. 

GMM labeling when the height channel is included. c. GMM labeling when the height channel is 

excluded. All scale bars are 500 nm, imaged at 512 × 512 pixels.  

When height information is included, GMM results show large domains (Figure 3b) that do not 

reflect the small, isotropic domains that are seen in the five material-property channels. Exclusion 

of the height channel is accomplished with the ‘heightless’ flag during the SegmenterGMM() class 

instantiation, and the corresponding results of this heightless classification, Figure 3c, are far more 

representative of the morphological domains visible in Figure 3a. 

In cases where differences in material properties are significantly large, such as with 

PTB7:PC71BM binary blends (Figure 4), the topographical features can actually improve GMM 

interpretation by correcting edge-induced tip-surface interactions. Figure 4b and c show this 
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improvement in GMM labeling of a PTB7:PC71BM thin film with and without height, respectively. 

The spherical domains seen in the height channel of Figure 4a appear symmetric, despite being 

scanned left-to-right. This is not the case in the stiffness channel, where the left edges of the 

aggregates appear far softer than the right edges. This is caused by the probe-scanning direction– 

significant changes in sample thickness change the amount of the tip surface-area contacting the 

surface and artificially increases or reduces the measured adhesive forces as a result of the 

measurement’s dependence on the probe tip’s contact-radius.64 This effect is graphically explained 

in Figure 4d. 
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Fig. 4 Input data and GMM label maps from FDM measurements of a PTB7:PC71BM thin film 

OPV active layer. a. The input data channels after outlier and noise removal. Colorbar units are 

relative. b. GMM labels when the height channel is included. c. GMM labels when the height 

channel is excluded. d. Graphical explanation of how large features can artificially alter measured 

material response signals by varying the amount of surface-area contact between the probe-tip and 

sample surface. The scale bars are 200 nm, images are 256 × 256 pixels.  

Therefore, in this example, excluding the height channel from classification eliminates edge-

induced distortions from the GMM labels. Analogous effects follow for other SPM techniques, 

where inclusion of topography data can see similar improvements. Judicious selection of which 

channels to use or remove can make a significant improvement in the quality of data produced 

through m2py.  
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Fig. 5 Results of GMM segmentation on two different samples. a. 2 component classification of a 

P3HT:PC61BM thin film, where red and blue corresponds to the different components. The input 

channels are shown in the top two rows alongside their material-property signal distributions that 

are color coded by GMM component. Scale bars are 200 nm, images are 256 × 256 pixels. b. 

Results of 2 component classification of P3HT nanowires (blue) spin-coated onto a passivated 

SiO2	 substrate (red). The input channels are shown in the bottom two rows, alongside their 
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corresponding material-property signal distributions color coded by GMM phase components. 

Scale bars are 500 nm, images are 512 × 512 pixels.  

Thus far, we have examined isotropic domains, but CP often exhibit highly anisotropic 

morphologies; nevertheless, the efficacy of GMM classification is not dependent on the size or 

shape of domains. This is because GMM classification depends on materials property signals, 

rather than strictly edge detection, as most supervised techniques do. An exploration of the use of 

m2py’s GMM tool in classifying anisotropic morphologies is visible in Figure 5. A GMM label 

map for annealed P3HT:PC61BM is shown in Figure 5a, below its input channels and GMM labeled 

property distributions. As seen in these results, even though the bulk heterojunction (BHJ) 

morphology is markedly different from the morphologies in previous figures, the same workflow 

and GMM segmenter was able to cluster material response signals into highly anisotropic and 

asymmetric domains, closely matching the input data’s morphology.  

As an examination of a case of significant anisotropy, P3HT nanowires were also examined 

with the same m2py workflow. The results of the GMM classification are shown in Figure 5b, 

above their input channels and GMM labeled property distributions. Even though these P3HT 

nanowires are even more anisotropic than the BHJ domains, m2py is still able to accurately parse 

between the nanowires, the SiO2 substrate, and scanning defects, such as tip-scars. This is a useful 

result because tip-scars occur commonly with sharply featured samples, such as nanowires, and 

can visually resemble the material domains. Regardless, of this effect m2py is able to distinguish 

nanowires from tip-scars by using differences in their material response signals. Despite the 

complex and varied morphologies of CP thin films, m2py’s workflow has no problem interpreting 

both highly anisotropic CP morphologies and simpler or axisymmetric morphologies.  
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2.3 Instance Segmentation 

The identification of each pixel’s GMM phase within a scan allows a great deal of insight into 

SPM images, but much of the salient information lies in the size and distribution of pixel clusters, 

which construct the morphological domains and features. Unlike semantic segmentation, instance 

segmentation (pixel clustering) requires different techniques to handle different morphologies. The 

m2py toolkit currently implements two different instance segmentation methods: connected 

components labeling and persistence watershed segmentation (PWS), although additional instance 

segmentation methods could be easily integrated into m2py workflows. 

The connected component labeling mechanism takes in the label map from GMM segmentation 

and applies a graphical algorithm that clusters tangential pixels that have the same GMM phase 

label.65 Those connected pixels that have the same GMM label are assigned a unique domain label. 

The level of connectivity can be adjusted to include either only the four pixels that share an edge 

with the pixel in question, or to also include the four corner pixels. The total number of unique 

labels denotes the total number of domains present in the sample. Domains are sorted by size 

before receiving a label, meaning that domain 1 has the most pixels, and the domain with the 

fewest pixels is listed last. Adjustable thresholding is used as needed to combine domains that may 

be too small to be physically valid. 

The other instance segmentation method, PWS, applies a watershed approach to identify 

domains. Watershed segmentation is commonly used in greyscale morphology description.66 In 

m2py, we use a single channel – the height channel is used as default – to act as the magnitude 

values that form watershed-derived segments, which represent morphological domains. Other 

channels or labels, such as a principal component, can be used for PWS segmentation instead of 

height, as desired. Standard watershed approaches tend to over-segment images. To address this 
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issue, the PWS model employs persistent homology to merge watershed-derived segments 

incrementally to form larger domains.67 Initially, too many segments arise due to noise, which 

indicates that a low merging threshold will result in too many identified domains. As the threshold 

is increased, these over-segmented regions merge and fewer domains remain. At the critical point 

where the most noise is eliminated and the most domains are preserved as segments, there is a 

sharp decrease in the number of domains, as shown in Figure 6. A rigorous discussion on selecting 

the appropriate instance segmenter, based on morphological structures, is given in the Supporting 

Information on page S10. Figure S3 shows a comparison of instance segmenters on 4 different 

morphologies. In short, we find that PWS is better for more isotropic morphologies and systems 

where tangential domains may be separate, whereas connected components labeling is ideal for 

highly anisotropic and irregularly shaped morphologies. Figure 6 shows the analysis of a 

PTB7:PC71BM sample and throughout the m2py workflow. The clearly visible spherical 

aggregates in the input height channel resembles the same information observed in the rest of the 

channels. GMM identifies these aggregates as a different phase than the matrix constituent, and 

labels them accordingly. Next, the height channel is used for instance segmentation with PWS. 

The individual aggregates, as well as different domain boundaries in the matrix, are identified and 

labeled according to their size. Finally, the PWS domains corresponding to the GMM phase 1 

pixels are shown. By comparing these PWS labels against those from the initial GMM 

segmentation, we can see that the PWS slightly underestimates the size of these domains, as 

represented by the residual yellow coloration. In this case, the labelling error is less than 7% of the 

total image area. This error may reflect the dilation of GMM labels from tip-effects, as a learning 

from multiple channels, some more highly influenced by tip-radius, while PWS is based on a single 

channel. Erosion operations have been implemented to successfully reduce tip distortions, however 



 18 

tip-deconvolution during pre-processing would more accurately reflect the surface morphology in 

GMM labeling. Future work will include expanding m2py’s pre-processing and segmentation 

modules with such functions. 

 

Fig. 6. A representative channel from a FDM image of PTB7:PC71BM is shown, followed by the 

results throughout m2py analysis of the image. First undergoing semantic segmentation, the 

resulting GMM phase labels show the spherical aggregates to be a distinct phase from the matrix. 

Phase 1 is shown in yellow, phases 2 and 3 are combined in purple. Next, the height channel is 

used in instance segmentation by the PWS method, producing individually indexed morphological 

domains. The color of each individual domain is selected according to its size. Finally, PWS labels 

that correspond to GMM phase 1 are plotted in green and the mislabeled phase 1 pixels plotted in 

yellow for contrast. Scale bars are 1 µm, images are 512 × 512 pixels. 
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Regardless of the instance segmenter that is used, a major consideration of instance segmentation 

is to establish a threshold for what comprises a morphological domain. Molecular and crystal 

structure information is useful for establishing a minimum number of pixels required to be labeled 

as an individual domain. In m2py, this instance segmentation threshold, label_thresh, is easily 

altered in the post_processing.py module to suit the parameters of the material and measurement. 

In our FDM experiments, the probe tips had radii of ∼7 nm, which correspond to ∼19 monomer 

units of P3HT or ∼5 monomer units of PTB7. Given the community understanding of the 

crystallographic dimensions of these materials, the amount of polymer that interacts with the 

surface area of the probe tip is similar in size to a domain and could reasonably be considered an 

entire domain or aggregate. Therefore, a single pixel could be the optimal threshold, although 

higher resolution measurements would certainly provide a more detailed insight into the exact 

morphological structure.68–70 The P3HT nanowires shown in Figure S1 have been measured in 

previous work to be 20 nm wide, or approximately 2 pixels, with lengths of up to a micron.30,32 A 

threshold of 4 pixels, therefore, can provide detailed morphological insight for our imaged 

nanowires and P3HT thin films. Lastly, phase-separated, binary thin films may have dimensions 

of domains on a similar length scale, but these morphologies tend to require larger thresholds 

because the total area of the domain is larger. For example, the domains shown in the third row of 

Figure S1 contain at least 100 pixels each, with the background domain containing tens-of-

thousands of pixels. These results emphasize the need for material-specific information to correctly 

interpret morphologies, although only minimal prior knowledge is needed for m2py to correctly 

identify morphologies. 

 

2.4 Final output and transferability 
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As m2py classifies and clusters each pixel, it creates new label maps that can be analyzed 

separately or collected and appended to the original 3D image matrix for further analysis. Because 

these label maps correspond to the pixels in the original image, the properties of each pixel within 

any given phase or domain can be easily accessed. For example, histograms of the materials-

property signals in each phase is easily determined from the GMM labeling. Further, by using the 

unique domain labels from instance segmentation each domain can be quantitatively examined. 

These domains can then be sorted by their corresponding GMM label, as shown in Figure 7b. 

Then, domain metrics are readily extracted, such as length, width, perimeter, and orientation.65 

Because the domains are uniquely labeled, these domain measurement methods can be iteratively 

applied to all of the domains in an image, as shown in Figures 7c-e. When sorted by GMM label, 

the size of the domains in each phase can also be determined, as presented in Figure 7c.  In the 

example shown, an annealed P3HT:PC61BM thin film’s height channel is shown (Figure 7a) and 

GMM segmenting labels for 2 distinct phases are created (Figure 7b). After semantic 

segmentation, it is clear that phase 1 domains comprise the matrix, which is colored red in the 

domain label map. However, it is visible that the matrix phase is not entirely co-continuous, so 

non-contiguous phase 1 domains are considered separate from the large matrix domain by the 

instance segmenter and therefore receive unique domain labels (Figure 7b, left). The matrix 

domain is the largest in the sample and is visible as the ‘outlying’ data point in the major-axis 

length and area plots, as shown in Figures 7c-7e. 
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Fig. 7 Throughout the m2py workflow, labels can be used to calculate and analyze relative ratios, 

property distributions, and domain descriptors. Simple examples are presented for a 

P3HT:PC61BM thin film. a. The height channel from FDM analysis of a P3HT:PC61BM thin films 

is shown. Colorbar units are relative. b. Domain labels are determined by connected components 

labeling and then sorted by their GMM label. The color of each individual domain is selected 

according to its size. (left) Phase 1 domains, with black domains being phase 2. The co-continuous 

matrix domain is remapped to the lightest color for visibility. (right) Phase 2 domains, with black 

domains being phase 1. c. The major-axis length, in pixels, of connected components labeled 

domains, sorted by GMM label. d. The major-axis length, in pixels, of connected components 

labeled domains. e. The log of connected components labeled domain areas in pixels. The scale 

bars are 1 µm and the images are 500 × 500 nm and are 256 × 256 pixels.  

These results illustrate m2py’s ability to identify and quantify morphological domains in SPM 

FDM data. In order to ensure the compatibility of this toolkit with other SPM techniques, m2py 
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includes a config.py module where users can define the channels and dimensions of their unique 

SPM measurement. The specific parameters of each technique are defined in a python dictionary 

within the config.py module, where users can enter the number of channels, the type of information 

the channels contain (e.g. "Young’s Modulus" or "Phase"), and the dimensions of their scans. As 

shown in Figure 8, m2py is already adapted to C-AFM and AMFM images. In Figure 8a, the 

results of AMFM imaging of P3HT nanowires on passivated ITO glass are shown next to their 

m2py label maps. On the far right, the domains corresponding to the nanowire phase (phase 1) are 

plotted in yellow. Figure 8b shows a similar sample of P3HT nanowires imaged through C-AFM 

next to the corresponding m2py label maps, Because the probe-tip used in C-AFM is far larger 

than that of AMFM, ~50 nm and ~11 nm respectively, the nanowires appear distorted in Figure 

8b. However, we observe in Figures 8a and 8b that the recognized nanowire domains closely 

resemble the input data. By applying a morphological dilation and subsequent erosion,65 the m2py 

toolkit’s interpretation is not hindered by these varied probe-tip resolutions, nor by the reduced 

number of input data channels. To use, expand, or contribute to the m2py toolkit, readers are 

directed to the open-source Github repository github.com/ponl/m2py. We hope the community 

will aid in suggesting additions, developing modules, and optimizing the toolkit. We believe that 

our customizable workflow can augment and expound upon any existing SPM interpretative 

software and incorporate into any Python-based tools. 
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Fig. 8 Input data channels and m2py labeling results for P3HT nanowires spin-coated onto 

passivated ITO glass. a. Property channels of AMFM measurements of P3HT nanowires on ITO 

glass. Colorbar units are relative. b. GMM labels with coloring corresponding to GMM phase 

labels. c. Connected components labels. The color of each individual domain is selected according 

to its. d. Property channels for C-AFM measurements of P3HT nanowires on ITO glass. Colorbar 

units are relative. e.  GMM labels with coloring corresponding to GMM phase labels. f. Connected 

components labels. Scale bars are 200 nm, images are 256 × 256 pixels.  

 

Conclusions 

The m2py library is a set of modular and adaptable tools for the quantitative description of 

morphologies from SPM images. By implementing a combination of numerical and unsupervised 

methods, m2py enhances and isolates material-property signals, which are then used to classify 

each pixel and cluster them into their corresponding domains. This study has highlighted m2py’s 
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capacity to interpret and identify morphological domains across a wide range of samples of π-

conjugated polymers. The resulting labels maps can be used to quantitatively describe the labeled 

morphologies. Our general workflow is easily modified and allows users to quantitatively evaluate 

and compare morphological features, domains, and phase distributions in an automated fashion. 

Finally, additional preprocessing, subsampling, and segmentation methods will be added to 

improve and expand m2py’s morphological interpretations, handle RGB or electron microscopy 

images, and facilitate their labeling. Future work will report on these additions and seek to 

understand the connection of such morphological descriptions to device performance will use the 

m2py framework to quantitatively describe and optimize the morphologies of thin film electronic 

materials.  
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