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Abstract

We present a method to learn a joint multimodal repre-
sentation space that enables recognition of unseen activities
in videos. We first compare the effect of placing various con-
straints on the embedding space using paired text and video
data. We also propose a method to improve the joint embed-
ding space using an adversarial formulation, allowing it to
benefit from unpaired text and video data. By using unpaired
text data, we show the ability to learn a representation that
better captures unseen activities. In addition to testing on
publicly available datasets, we introduce a new, large-scale
text/video dataset. We experimentally confirm that using
paired and unpaired data to learn a shared embedding space
benefits three difficult tasks (i) zero-shot activity classifica-
tion, (ii) unsupervised activity discovery, and (iii) unseen
activity captioning, outperforming the state-of-the-arts.

1. Introduction

Videos contain multiple data sources, such as visual, au-
dio and text/caption data. Each data modality has distinct
statistical properties capturing different aspects of the event.
Current state-of-the-art activity recognition models [4, 42]
only take visual data and class labels as input, which lim-
its the information the model can learn from. For example,
the sentence ‘a group of men play basketball outdoors’ con-
tains rich information, such as ‘outdoors’ and ‘group of
men’ compared to just the activity class label of ‘basketball.’
We desire to use such additional information to learn better
representations and by doing so, we show that the learned
representations are able to generalize to unseen activities
(i.e., zero-shot learning).

We explore multimodal learning from video and language
data, each starting with its own representation. Video data is
represented as a sequence of images (spatio-temporal pixel
data) while text is represented as a sequence of word em-
beddings (temporal data). Learning a shared representation
allows for modeling the highly non-linear relationships be-
tween these modalities, capturing structure present in both
video and textual data. Further, using a shared representation
enables capturing similarities between concepts (e.g., bas-
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Figure 1. Taking advantage of both text and video data allows for
learning of a shared representation. By utilizing unpaired text and
video data, the representation naturally captures the relationships
between different activities, based on the underlying relationships in
word embeddings and video representations. The colors represent
different activity classes of the video or sentence (e.g., various
sports, pool activities, and exercises).

ketball and volleyball both being sports with a ball) within
its space by relying on either modality, even when the data
is unpaired. This allows the representation to benefit from
concepts not seen in both modalities during training. For
example, we show taking advantage of relationships between
words in pre-trained word embeddings [26] help recognize
activities with no video examples. By learning a shared rep-
resentation space, we transfer such relationships to video
representations of potentially unseen activities. An concep-
tual overview of the approach is shown in Fig. 1.

Many existing approaches to both zero-shot and embed-
ding space learning require paired data examples (e.g., ex-
amples and labeled attributes), which can be expensive to
obtain. By taking advantage of adversarial learning [10],
we are able effectively augment our method with unpaired
data (i.e., random sentences and random videos without any
labels or correspondence) to further improve our learned
representation. By introducing many random videos and
text data, we show that we are able learn representations
that better capture unseen activities, without requiring any
further annotations.

In this paper, we design a method capable of learning
joint video/language representation using both paired and
unpaired data. We experimentally confirm its benefit to



three challenging tasks: (i) zero-shot activity recognition, (ii)
unsupervised activity discovery, and (iii) unseen activity cap-
tioning. We show that the use of unpaired, multimodal data
allows learning a shared embedding space that generalizes
to unseen data.

2. Related works

Multimodal learning Previous approaches to multimodal
learning have used Restricted Boltzmann Machines [41] or
log-bilinear models [19] to learn distributions over sentences
and images. Ngiam et al. [28] designed an autoencoder that
learns joint audio-video representations, however relied on
greedy, layer-by-layer training instead of training the model
end-to-end. Similarly, Chandar et al. [5] proposed an auto-
encoder able to learn correlations between different view
of images. Frome et al. [9] describe a model that maps
images and words to a shared embedding. However, these
works either learn a joint embedding by concatenating the
different features or require a triplet consisting of positive
and negative pairs; they have not explored the use/effect of
unpaired data.

Text and vision Using both text and visual data has been
studied for many tasks, such as image captioning [17, 15, 16]
or video captioning [21, 54, 49]. Other works have ex-
plored the use of textual grounding for image/video re-
trieval [12, 36, 25, 14]. We note that using text for video
retrieval/localization (e.g., [14]) is similar in nature to the
zero-shot or unseen recognition tasks. However, in those
works, there is significant overlap between the text/video
examples used in training and testing, while in our work
we explicitly separate the classes used during training and
evaluation; we focus on ‘unseen’.

There have been various models proposed to learn a fixed
text embedding space with mappings from video features
into this embedding space [! 1, 30, 39, 45, 47]. These works
all learn a single directional mapping, without a shared rep-
resentation space (which we find to be important). Further,
most of them only learn with paired text/image samples and
some require data in the form of positive/negative pairs. In
this paper, we find learning a shared representation space and
using unpaired, i.e., random additional data, to be important.

Learning with unpaired data Recently, there have been
many works taking advantage of variational autoencoders
(VAEs) [ 18] or generative adversarial networks (GANs) [10]
to learn mappings between unpaired samples. CycleGan [55]
uses a cycle-consistency loss (i.e., the ability to go from a
sample in one domain to a second domain then back to the
source) to learn unpaired image translation (e.g., image to
sketch). Other works learn many-to-many mappings be-
tween images [2] or use two GANs to map between domains
[52]. An autoencoder with shared weights for both domains
has been used to learn a latent space for image-to-image

translation [24]. However, these works all focus on learning
mappings between unpaired data of the same modalitiy (e.g.
image to image), where the data is from the same underly-
ing distribution. We focus on a more challenging problem:
learning from different modalities with very different distri-
butions, where we find directly using previous approaches
do not perform well as they are.

Zero-shot activity recognition There are works on zero-
shot activity recognition. Common approaches include using
attributes [23, 31, 37] or word embeddings [50, 51, 29, 38,

] or learning a similarity metric [53, 7]. Some works
have explored using adversarial losses on the latent space
[6], used GANs to generate features for unseen classes [48]
or used auto-encoders [46]. Felix et al. [8] proposed a
GAN-based approach to learn embeddings for zero-shot
learning. Different from our approach, they applied the GAN
only on the semantic, hand-crafted attributes of the classes
to generate representations. We formulate a more general
framework generating representations for all modalities, also
taking advantage of more generic and challenging text and
video.

Importantly, our work differs from these previous works
in three key ways: (1) we show the benefit of using addi-
tional unpaired samples, (2) we experimentally compare
the use of the representations for three tasks (i.e., zero-shot
recognition, unseen recognition, and unseen video caption-
ing), and (3) we learn a shared, multimodal representation
with bi-directional mappings in an end-to-end fashion. We
find that directly using the previous methods with unpaired
data do not perform as well.

3. Method

To enable learning of a shared representation, we use
a deep autoencoder architecture. Our model consists of 4
neural networks:

Video Encoder £y : v +— z, Video Decoder Gy : z — v

Text Encoder Er : t — 2z Text Decoder G : z +—> t

where v is a sequence of video data and ¢ is a sentence
(sequence of words). z is the representation in the shared
space that we are learning. The encoders learn a compressed
representation of the video or text while the decoders are
trained to reconstruct the input:

Lrecons(v,1) = |Gy (By (v)) = vllz + [|Gr(Br () — t]]2

1
As both text and video data are sequences, they often have
different lengths. A shared representation requires that the
features from both modalities have the same dimensions.
Given a text representation of length L and a video repre-
sentation of length 7', we need to obtain a fixed-size repre-
sentation. To learn a fixed-dimensional representation, there
are many choices for the encoder/decoder architecture, such
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Figure 2. Illustration of the encoder models used to learn a shared representation. Videos and sentences are mapped into a low-dimensional
space by applying CNNs and temporal attention. Then several fully-connected layers map to the representation. The decoders follow this

same architecture with the weights transposed.

as temporal pooling [27], attention [33] or RNNs [21]. We
chose temporal attention filters [33] as they learn a mapping
from any length input to a N-dimensional vector and have
been shown to outperform temporal pooling and RNNs on
activity recognition tasks.

The attention filters consists of N Gaussians, each learn-
ing 2 parameters: a center g and width o, which are con-
strained to be positive. The filters are determined by:

g =05-T-(gn +1)
1 (t _gn)2
F[n,t] = Eexp(—W)

ne{0,1,...,.N—1}, te{0,1,..., T -1}

2

The weights are applied by matrix multiplication with the
video or text sequence (e.g., the outputs of Ey or Er):
v’ = Fv. This (i.e., v') is then used as the representations
for the joint space. Additionally, we can learn a transposed
version of these filters to reconstruct the input: v = F7v’.
To reconstruct the input, the decoders learn their own param-
eters with the tensors transposed, resulting in the matching
output size. Fig. 2 shows our encoder architecture.

3.1. Learning a joint embedding space

To learn a joint representation space, we minimize the Lo
distance between the embeddings of a pair of text and video
(shown in Fig. 3(a)):

Lijoint(v,t) = || Ev (v) = Er(t)]]2 3

This forces the joint embeddings to be similar and when
combined with the reconstruction loss, ensures that the rep-
resentations can still reconstruct the input.

We can further constrain the networks and learned repre-
sentation by forcing a cross-domain mapping from text to

video and from video to text (shown in Fig. 3(b)):

Leross(v,t) = [|Gr(Ev (v)) — tll2 + |Gy (Er(t)) — v]l2

“)

Additionally, we can use a ‘cycle’ loss to map from video

to text and back to video. Note that while the previous losses
all require paired examples, this loss does not.

Ecycle(vat) = ||GT(EV(GV(ET(t)))) - t||2
+|Gv (Er(Gr(Ev (v)))) — vl|2

To train the model to learn a joint embedding space, we
minimize

®)

[,(U, t) = Lrecons (Ua t) + alﬁjoint (’U, t)

6
+ aQECTOSS(U) t) + a3£cycle (’U, t) ( )

where «; are hyper-parameters weighting the various loss
components.

3.2. Semi-supervised learning with unpaired data

To learn using unpaired data (i.e., unrelated text and
video), we use an adversarial formulation. We treat the
encoders and decoders as generator networks. We then learn
an additional 3 discriminator networks which constrain the
generators and embedding space and force the encoders and
decoders to be consistent:

(1) D, which learns to discriminate between latent text rep-
resentations and latent video representations. Conceptu-
ally, this constrains the learned embeddings to appear to
be from the same distribution.

(2) Dy which learns to discriminate between true video
data and generated video data Gy (Er(t)).

(3) D7 which learns to discriminate between true text data
and generated text data, Gr(Ev (v)).
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Figure 3. Visualization of several constrains on the shared embedding space. Circles are video data, ovals are reconstructed video. Diamonds
are text data, and pentagons are reconstructed text. (a) The reconstruction (Eq. 1) and joint (Eq. 3) losses. (b) Mapping from text to video

using the cross-domain (Eq. 4) loss.
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Figure 4. Visualization of the adversarial formulation to learn with
unpaired data. We create 3 discriminators, (1) D, learns to discrim-
inate examples of text/video in the latent space. (2) Dy learns to
discriminate video generated from text compared to video. (3) Dr
learns to discriminate generated text compared to text.

Algorithm 1 Semi-supervised alignment with adversarial
learning
function TRAIN
for number of initialization iterations do
Sample (V, T') from paired training data
Update encoders/decoders (Eq. 6)
Update discriminators (Eq. 7)
end for
for number of training iterations do
Sample P =(V}, T},) from paired and
U =(V,, T,) from unpaired training data
Update encoders/decoders with P (Eq. 6)
Update encoders/decoders with U (Eq. 8)
Update discriminators based on all (Eq. 7)
end for
end function

Given these discriminators, we minimize the following
losses:

Lp.(v,t) = —log(D.(Er(t))) —log(l — D.(Ev(v)))
Lpy (v,t) = —log(Dy (v) —log(1 — Dy (Gv(Er(t))))
Lpy(v,t) = —log(Dr(t)) —log(l — Dr(Gr(Ev(v))))

)

Using the discriminators, we can train the generators (en-
coders and decoders) to minimize the following loss based

on unpaired data:

La.(v,t) =log(D-(Er(t)))) +1og(1 — D= (Ev (v)))
Lay (v,t) = log(1 — Dy (Gv (Er(t))))
Ly (v,1) = log(1 — Dr(Gr(Ev(v))))

®)

Note that in this formulation, v and ¢ are not paired.

These networks are trained in an adversarial setting.
For example, for the text-to-video generator (i.e., v/ =
Gy (Er(t)) and video discriminator, Dy, we optimize the
following minimax equation:

Join max = Ky, ) log Dy (v)] 0

+ Bty [l0g(1 = Dv (Gv (Er(1))))]

This equation is similarly applied for video-to-text. For
learning the embedding space with the video and text en-
coders, Ey, Er and the discriminator D, we optimize the
following minimax equation:

Elql:l,%lv I%azx - Eumpdm(’u) [log Dz (EV (’U))] (10)

+ Etvpua(vy [l0g(1 = D= (Er(1)))]

As training GANs can be unstable, we developed a
method to allow for more stable training of the joint em-
bedding space, shown in Algorithm 1. We initialize both
the generator and discriminator networks by training only
on paired data. After several iterations of this, we train with
both unpaired and paired data. We found the initial train-
ing of the generators and discriminators was important for
stability, without it the loss often diverges and the learned
embedding did not generalize to unseen activities.

4. Experiments

We compare our various approaches on different tasks
(i) zero-shot activity recognition, (ii) unsupervised activity
discovery and (iii) unseen activity captioning. These tasks
test various combinations of our encoders and decoders and
how well the shared representation generalizes to unseen
data. We experimentally confirm the benefits of our methods
using multiple public datasets: AcitivtyNet [13, 21], HMDB
[22], UCF101 [40], and MLB-YouTube [34]. Implementa-
tion details can be found in the Appendix.



Table 1. Comparison of accuracy of various methods on ActivityNet for 5, 10, 20 or 50 unseen classes. These results are averaged over 10

trials where each trial has a different set of unseen activities.

5Unseen 10 Unseen 20 Unseen 50 Unseen
Paired Data
Fixed Text Representation 41.9 38.4 29.4 15.6
Triplet Loss 56.8 44.9 38.8 23.3
joint 54.3 41.7 36.1 21.2
recons + Cross 21.1 12.6 7.6 2.9
joint + recons 70.1 54.4 42.6 27.5
joint + recons + cycle 70.4 543 42.1 26.8
joint + recons + cross 72.6 55.4 43.2 27.8
joint + recons + cross + cycle 76.4 56.9 45.5 28.8
triplet + recons + cross + cycle 76.7 57.2 46.3 29.1
With Adversarial Losses (triplet + recons + cross + cycle + Adv.)
+D, 78.5 574 45.9 29.3
+ D, + D, 77.4 57.2 45.7 28.9
+D,+ D, + D, 79.8 58.4 46.5 29.8
Paired + Unpaired Data
recons + cycle 22.8 13.6 8.4 4.2
triplet + recons + cycle 72.6 58.4 44.7 29.3
triplet + recons + cross + cycle 73.4 59.1 453 29.2
Without Algorithm 1 23.4 11.7 6.5 3.1
All terms 82.5 60.4 46.2 30.1

Baselines For baselines, we compare to a fixed-text em-
bedding space, were only a mapping from video data into
the text embedding space is learned (e.g., [30]). We also
compare to learning a shared embedding space with the ‘re-
cons’ (Eq. 1) and ‘cross’ (Eq. 4) terms (e.g., [28]). We
additionally compare to methods like CycleGan [55], using
various components without Algorithm 1.

4.1. Zero-shot activity recognition

Zero-shot activity recognition is the problem of classify-
ing a video that belongs to a class not seen during training.
Given training videos of seen classes together with paired
text descriptions, our approach learns a shared embedding
that maps videos/texts from multiple seen classes. The ob-
jective is to classify videos of unseen classes solely based on
the learned embedding space and the text samples.

To enable recognition of unseen activities, we use a sen-
tence of the new, unseen class and obtain its representation
in the shared space. We can then obtain representations of
videos in the same space, using nearest neighbors match-
ing to classify each clip. Such approach takes advantage of
the learned textual relationships (e.g., [26]) and the shared,
multimodal representation space.

We use the ActivityNet captions [21] dataset to learn
the shared representations, as this dataset has both sentence
descriptions for each video as well as activity classes. We
randomly choose a set of K activity classes and withhold all
videos/sentences belonging to those classes during training.
For evaluating on the unseen activities, we take a subset of

sentences for the unseen classes and map the sentences into
the joint embedding space, z; = Ep(t). We then map the
videos into the space, z, = Ey (v) and use nearest neighbors
to match each video (z,) to text (z;), using the class of the
nearest sentence as the classification for the video. We rely
on the similarities between the representations (e.g., word
embeddings) to enable the models ability to generalize to
these unseen classes.

In Table 1, we compare the effect of the various loss
components. For each method, we run 10 trials each with
a different set of unseen activity classes and average the
results. We find that previous methods of learning a fixed
language embedding (e.g., [38, 50, 51]) are significantly
outperformed by learning a joint representation. Previous
methods learning embedding spaces without the ‘joint’ term
(e.g. [28]), we found yield nearly random performance on
these tasks, suggesting that forcing the representations to
match in the embedding space is important. Further, adding
the reconstruction, cross-domain, and cycle losses all im-
prove performance. We also compare to a standard triplet
loss (e.g., [11]) which requires positive/negative samples.
We find that the triplet loss outperforms the ‘joint’ loss, but
is surpassed by adding the ‘cycle’ and ‘cross’ terms, which
use less data. We also compared using the triplet loss when
combined with the other terms, finding a slight improvement
over the joint term. Note using both the joint and triplet
would be redundant, since the triplet loss contains the joint
loss terms.

We also compare the various components of the adver-



Table 2. Results on HMDBS51 and UCF101 (accuracy) compared
to previous state-of-the-art results. We find that learning a shared
representation is beneficial and that augmented with unpaired data
provides the best results.

Feat HMDBSI UCF101
SJE [1] IDT 120+26 93+£1.7
ConSe [29] IDT 15.0+2.7 11.6+2.1
ZSECOC [35] IDT 226+12 151417
SE [50] IDT 212430 18.6+2.2
MRR [51] IDT 24.1+38 221425
SAE [20] 3D 256+£32 254+22
Ours (paired) IDT 26.3+3.2 254434
Ours (paired + unpaired) IDT 29.7+2.2 264+2.1
Ours (paired) 3D 283+£27 27.8+22
Ours (paired + unpaired) 13D 34.7+24 334+£1.8

Table 3. Comparison of various source of unpaired data on Ac-
tivityNet with 10 unseen classes, values reported for both unseen
classes and all (seen+unseen) classes. Results are accuracy, higher
is better.

Unseen All
Paired Data 58.3 69.6
+ Random Wikipedia Sentences 55.8 66.4
+ Random Dictionary Defs. 56.3 68.2
+ Verb Dictionary Defs. 59.2 70.7
+ Random YouTube Videos 58.7 70.1
+ Verbs + Random Videos 60.3 71.2

sarial loss. We compare to having just the adversarial loss
on the representation (D), like [6], and compare just the
adversary on the generated videos/sentences. We find the
use of all terms is important for performance.

While previous works such as [28] can support learning
with unpaired data, we find that the adversarial loss provides
better results than just the ‘cycle’ and ‘recons’ terms, and
further improves over training with just paired data. Further,
we find that CycleGan-style approaches, without Algorithm
1, fail on this task.

In Table 2, we compare our approach to previous zero-
shot learning methods on HMDB and UCF101. The paired
training data for these models is drawn from ActivityNet
with any classes belonging to HMDB or UCF101 with-
held. The unpaired text data is sampled from Charades and
the video data comes from either HMDB (when testing on
UCF101) or UCF101 (when testing on HMDB). As HMDB
and UCF101 have no text descriptions, we created a sentence
description for each activity class (included in Appendix B).
We find that the shared representation outperforms the previ-
ous approaches on these datasets and unpaired adversarial
learning further improves performance.

4.2. Use of Unpaired Data

We explore different strategies for obtaining unpaired
data. Keeping a fixed set of paired text and videos, we
explore adding various sources of unpaired data: (i) 10k
random Wikipedia sentences, (ii) 10k random dictionary def-
initions, and (iii) 10k verb dictionary definitions. We also

Table 4. Comparison of unsupervised activity classification on

MLB-YouTube.

Accuracy mAP

Baseline 13D features 23.4 32.6
Fixed Text Representation 27.9 34.7
joint 34.5 41.6
joint + recons 37.9 43.7
joint + recons + cycle 44.2 48.6
joint + recons + cross 43.7 49.3
triplet + recons + cross 43.9 49.5
All (paired) 48.4 51.2
All (+ unrelated unpaired) 39.7 43.9
All (+ related unpaired) 49.1 54.3

compare adding 10k random videos from YouTube as addi-
tional video data. Ours results using 10 unseen classes are
in Table 3. We find that augmenting with similar unpaired
data improves performance, while irrelevant data harms per-
formance. We find that dictionary verb definitions improve
performance the most, as they capture important semantic
information regarding the activities we are learning. The use
of additional video data is further beneficial.

4.3. Unsupervised activity discovery

To further evaluate the shared representation, we con-
ducted experiments on unsupervised activity discovery. For
this task, we expanded the MLB-YouTube dataset [34] by
densely annotating the videos with a transcription of the an-
nouncers’ commentary, resulting in approximately 50 hours
of aligned text and video. Examples of this data are shown
in Fig. 5. The MLB-YouTube dataset is designed for fine-
grained activity recognition, where the difference between
activities is quite small. Additionally, these captions only
roughly describe what is happening in the video, and often
contain unrelated stories or commentary on a previous event,
making this a challenging task. The dataset will be made
publicly available. To train the shared representation, we
split each baseball video into 30 second intervals and use the
corresponding text as paired data, resulting in 6,089 paired
training samples.

We evaluate the shared representation using the seg-
mented videos from MLB-YouTube. For each video, we
compute the embedded features and apply k-means cluster-
ing (k = 8, the number of classes). Each segmented video
is assigned to a cluster and votes for the cluster label based
on its ground truth label. We use that cluster assignment
for classification on the MLB-YouTube test set. We report
our findings in Table 4. As a baseline, we cluster 13D fea-
tures pre-trained on Kinetics. We find that our methods
improve the representation. However, we note that when
using unpaired data from Charades, the performance drops.
This is likely due to Charades data being very different from
MLB-YouTube data. We collected additional captions and
baseball videos to augment the MLB-YouTube dataset, and
confirmed that unpaired data helps when it is from a similar



Table 5. Unseen activity recognition results (accuracy) on ActivityNet, HMDBS51 and UCF101, evaluated by using both unseen and seen

classes for the testing.

ActNet (10 unseen) ActNet (50 unseen) HMDB51 UCF101

Fixed Text Representation 55.7 46.8 24.5 26.8
Triplet Loss 57.7 48.5 27.6 29.8
joint 62.1 50.2 29.8 30.6
joint + recons 64.4 52.6 30.4 31.3
joint + recons + cross + cycle 69.6 58.5 35.6 36.5
triplet + recons + cross + cycle 69.8 58.6 35.7 36.8
Paired + Unpaired Data

All terms 71.7 65.9 38.9 422
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He got right on top of that pitch, Pederson, and shot
and way out of here. Three-run blast.

They would suspend him at the beginning of next year
as opposed to for a game during this World Series.

That has been a feat in this series for both teams, nobody is hitting
with two strikes. That's how good the pitching has been.

onime it

He is an aggressive third baseman and he can really play over
there you know. He definitely takes pride in his defense as well.

Figure 5. Example video sequences from the MLB-YouTube dataset with the commentary caption. Top: Sentences that describe the
occurring activities. Bottom: Sentences that do not describe the current activities.

Table 6. Comparison of unsupervised activity classification on
HMDB and UCF101.

HMDB UCF101

13D features 26.6 42.5
Joint 324 57.7
Joint + recons 33.5 59.0
All (paired) 34.6 59.5

All (+ unpaired) 34.9 59.9

distribution.

In Table 6 we compare various methods for unsupervised
activity discovery on HMDB and UCF101. Here, we learn a
shared representation using the ActivityNet videos and cap-
tions. We withhold any videos belonging to a class in HMDB
or UCF101. Unlike MLB-YouTube, on these datasets, we
find that using the unpaired training with Charades further
improves performance. This confirms that when the addi-
tional data is similar to the target dataset, using the adversar-
ial learning setting further improves the representations.

4.4. Unseen video captioning

As our model learns a bi-directional mappings, we can
apply our model to generate video captions. Existing video
captioning models are unable to create realistic captions
for unseen activities, as without training data they do not
know the words to describe the video. Given a video, v, we

can generate a caption by mapping the video to text ¢ =
Gr(Ev(v)). For each word, we then use nearest neighbors
matching with the GloVe embeddings to obtain the words to
form a sentence. We find that using our method with paired
and unpaired data improves performance using METEOR
(3.6 to 6.9) [3] and CIDEr [44] (8.9 to 13.9) scores. For
these metrics, higher values are better and are measured with
the unseen classes from the ActivityNet dataset. In Table 8§,
we report the commonly used METEOR [3] and CIDEr [44]
scores of our various models, measured with the unseen
classes from the ActivityNet dataset. We find that learning a
shared representation (4.1) is beneficial and using unpaired
samples further improves the task (5.3 paired only vs 6.9
paired and unpaired). In Fig. 6, we show example captioned
videos. Note that this task is extremely challenging, as it
requires the model to generate captions using activity words
(e.g., basketball) not seen during training.

5. Conclusion

We proposed an approach to learn a joint language/text
representation using various constraints. We further ex-
tended the model to be able to learn with unpaired video and
text data using an adversarial formulation. We experimen-
tally confirmed that learning with unpaired data is beneficial
to three difficult tasks (i) zero-shot activity classification,
(i1) unsupervised activity discovery, and (iii) unseen activity
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Several men are playing basketball

e

People are swimming in the ocean

Figure 6. Example captions for unseen activities. Left: Using a shared representation allows the model to correctly caption this video as
basketball, despite never seeing an example of basketball during training. Right: An example of a caption for the unseen water-ski activity.
Here the model fails to correctly caption the activity.

Table 7. Comparison of several models for unseen activity cap-
tioning using the ActivityNet dataset, using METEOR and CIDEr
scores. This evaluation was done on 10 unseen classes held out
during training. Higher values are better.

METEOR CIDEr

Fixed Text Representation 3.64 8.95
Joint 4.21 9.23
All (paired) 5.31 11.21
All (paired + unpaired) 6.89 13.95

captioning. We find that the use of related unpaired data
is beneficial. We presented several strategies for obtaining
unpaired data and confirmed the benefit of adding additional,
relevant unpaired data.
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Table 8. Comparison of several models for unseen activity cap-
tioning using the ActivityNet dataset, using METEOR and CIDEr
scores. This evaluation was done on 10 unseen classes held out
during training. Higher values are better.

METEOR CIDEr

Fixed Text Representation 3.64 8.95
Joint 4.21 9.23
All (paired) 5.31 11.21
All (paired + unpaired) 6.89 13.95

A. Implementation/training details

We implement our models in PyTorch. For the per-
segment video CNN, we use I3D [4] to obtain a 1024 x T'
video representation. We trained a version of I3D based on
Kinetics-600, but withheld all classes that appear in Activ-
ityNet, HMDB51, or UCF101 so that the classes are truly
unseen. This resulted in a training set with 478 classes and
278k videos. Since generating videos is an extremely chal-
lenging task, the video autoencoders start with and generate
the I3D feature. We use GloVe word embeddings [32] to
obtain a language representation. We set N = 4 for the
temporal attention filters and apply 4 fully connected layers.
These layers are followed by L, normalization so that the
embedding space has unit length [43]. We train the models
for 200 epochs and use stochastic gradient descent with mo-
mentum to minimize the loss function with a learning rate of
0.01. After every 50 epochs, we decay the learning rate by a
factor of 10. When training in the adversarial setting (e.g.,
Algorithm 1 in the main paper), we initialize the network
training for 50 epochs on paired data followed by 200 on the
paired + unpaired data.

A.1. Unseen video captioning

As our model learns a bi-directional mappings, we can
apply our model to generate video captions. Existing video
captioning models are unable to create realistic captions for
unseen activities, as without training data they do not know
the words to describe the video. Given a video, v, we can gen-
erate a caption by mapping the video to textt = G (Ey (v)).
For each word, we then use nearest neighbors matching with
the GloVe embeddings to obtain the words to form a sen-
tence. In Table 8, we report the commonly used METEOR
[3] and CIDEr [44] scores of our various models, measured
with the unseen classes from the ActivityNet dataset. We
find that learning a joint representation is beneficial and us-
ing unpaired samples further improves the task. Note that
this task is extremely challenging, as it requires the model to
generate captions using activity words (e.g., basketball) not
seen during training.

B. Additional Experiments
B.1. Comparison of temporal pooling methods

To confirm that temporal attention is beneficial, we com-
pare different forms of temporal pooling (i) max-pooling,

Table 9. Comparison of temporal pooling methods for 5 unseen
classes in the ActivityNet dataset.

Accuracy
Max Pooling 23.4
Sum Pooling 24.1
LSTM 423

Temporal Attention Filters 55.2

Table 10. Comparison of different ratios of paired and unpaired
data methods for 5 unseen classes in the ActivityNet dataset.

Paired/Unpaired  Accuracy

100% / 0% 74.2
75% 1 25% 73.2
50% / 50% 69.7
25% 1 75% 62.6
0% / 100% 24.5

(i1) sum-pooling, (iii) LSTM, and (iv) temporal attention
filters [33]. In Table 9, we compare these temporal pooling
methods learning the joint embedding space. We confirm
that using the temporal attention filters performs best.

B.2. Comparison of different ratios of paired and
unpaired data

We compare different ratios of paired and unpaired data
to see how much paired data we require and how much
unpaired data is beneficial. For these experiments, we use all
the loss terms (i.e., what provided us the best results). Note
that in these experiments, the total number of samples was
the same for each method (40k examples) so that we can
directly compare the effects of unpaired data vs. paired data.
Thus not all the available data was used.

In Table 10, we show the results. We find that using no
paired data results in nearly random performance, but using
using some paired data greatly improves the embedding
space. The model using 100% paired data performs best, as
all the others are using less overall paired data.

We also compare augmenting our 40k paired training sam-
ples with different amounts of unpaired data. Since UCF101
and HMDB only have 13k and 7k examples, to get up to 60k
samples, we also use videos from the Kinetics dataset [4].
The results, shown in Table 11, show that adding the initial
10k samples is most beneficial, while additional samples do
not seem to meaningfully improve results. However, due
to our training method where each batch consists of 50%
paired data and 50% unpaired data, the additional unpaired
data does not harm results either.

B.3. MLB-Youtube Captions

In Fig. 7, we compare t-SNE embeddings of the fixed
text representation and our joint embedding space. This
visually shows that learning a joint embedding space gives
more distinct class distributions.
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Figure 7. t-SNE mapping of (a) fixed text representation and (b) joint embedding with all paired losses for the MLB-YouTube dataset. The
joint embedding space provides most distinct representations for the activities. Each color represents the activity class of the video (e.g.,

swing, hit, foul ball, etc.).

Table 11. Comparison using 40k paired examples and varying
amounts of unpaired samples for 5 unseen classes in the ActivityNet
dataset.

Unpaired Samples  Accuracy
0 77.1
10k 82.4
20k 83.9
40k 83.6
60k 83.5

Table 12. Comparison of several models for standard, seen video
captioning using the MLB-YouTube dataset, using Bleu, METEOR
and CIDEr scores. Higher values are better.

Bleu METEOR CIDEr

Fixed Text Representation  0.12 0.04 0.12
Joint Representation 0.14 0.08 0.15
Joint + all paired 0.15 0.10 0.18
Joint + paired + unpaired ~ 0.10 0.02 0.08

B.3.1 MLB-YouTube Captions

As a baseline for the MLB-YouTube captions dataset, we
compared several different models for standard video cap-
tioning (i.e., all activity classes are seen). This task is quite
challenging compared to other datasets as the announcers
commentary is not always a direct description of the current
events. Often the announcers tell loosely related stories and
attempt to describe events differently each time to avoid
repetition. Additionally, the descriptions contain on average
150 words for each 30 second interval and current captioning
approaches usually only trained and tested on 10-20 word
sentences. Due to these factors, this task is quite challeng-
ing the standard evaluation metrics do not account for these
factors. In Table 12, we report our results on this task.

Table 13. Comparison of various pronouns on the UCF101 dataset
with 50 unseen classes.

Accuracy
Baseline Sentences 334
All ‘man’ 33.2
All ‘woman’ 333
All ‘person’ 334
Random pronoun 334

C. HMDB and UCF101 Sentences

For the HMBD and UCF101 datasets, we created sen-
tences to describe each activity class. Our sentences descrip-
tions are included in this appendix.

These sentences are written for each activity class (by
randomly selecting a single video per class) and are shared
for all instances of the activity. Depending on what video
was randomly chosen for the class, some sentences describe
the actor as a ‘man’, ‘woman’, or ‘person’ which could
confuse the model. Ideally, the CNN embedding needs to
learn to ignore the impact of such pronoun changes.

We conducted experiments comparing randomly replac-
ing the pronouns to determine if there was any bias intro-
duced by the pronouns. We show the results in Table 13.
We find that the choice of pronouns does not impact perfor-
mance, as our model automatically learns to focus more on
verbs rather than pronouns. When examining the temporal
attention filters on the sentences, we found that they placed
very little ‘attention’ on the start of the sentence, where the
pronoun usually is, suggesting that the pronoun has very
little effect on the embedding space we learned.

HMDB:

1. chew: a woman is chewing on bread
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10.
11.
12.
13.

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

. golf: a man swings a golf club
. sword exercise: a person is playing with a sword
. walk: a person is walking

. jump: a person jumps into the water

. pour: a man pours from a bottle

. laugh: a man is laughing

. shoot gun: a person rapidly fires a gun

. Tun: a person is running

turn: a person turns around
ride bike: a man is riding a bike on the street
swing baseball: a boy hits a baseball

draw sword: a person draws a sword

. sit: a person sits in a char

fencing: two men are fencing

dribble: a boy dribbles a basketball
stand: a person stands up

pushup: a man does pushups

sword: two people are fighting with swords
pullup: a boy does pullups in a doorway
smile: a man smiles

shake hands: two people shake hands
shoot ball: a person shoots a basketball
kick: a person kicks another person
somersault: a person does a somersault
flic flac: a boy does a backflip

hug: two people hug

hit: a boy swings a baseball bat

dive: a person jumps into a lake

drink: a man drinks from a bottle
punch: a woman punches a man

wave: a person waves their hand

talk: a person is talking

kiss: a man and woman kiss

35.
36.
37.
38.
39.
40.
41.
42.
43,
44.
45.
46.
47,
48.
49.
50.
51.

catch: a boy catches a ball

smoking: a woman smokes a cigarette

eat: a man eats pizza

throw: a person throws a ball

climb stairs: a man is running down the stairs
kick ball: a person kicks a soccer ball

ride horse: a girl is riding a horse

fall floor: a man is pushed onto the ground
brush hair: a girl is brushing her hair
situp: a man does situps

cartwheel: a guy runs and jumps and flips
pick: a man picks a book

push: a boy pushes a table

climb: a man is climbing up a wall
handstand: three girls do handstands

clap: a woman claps her hands

shoot bow: a person shows a bow and arrow

UCF101:

1
2

3.
4.

A S

10.
11.
12.
13.
14.
15.

. MilitaryParade: people are marching and waving a flag
. TrampolineJumping: kids are jumping on a trampoline
PlayingDaf: a person moves a circle and hits it
SalsaSpin: poeple are dancing and spinning

CuttingInKitchen: a person is in the kitchen using a
knife

ApplyEyeMakeup: a woman is putting on makeup
PlayingViolin: a person plays the violin

YoYo: a person plays with a yoyo

PlayingCello: a person is playing the cello

Bowling: a person is bowling

UnevenBars: a woman is spinning and flying on bars
BalanceBeam: a woman is on the balance beam
SkyDiving: people are falling out of the sky
SumoWrestling: two fat people are wrestling

PushUps: a man does pushups
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17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.

48.

FloorGymnastics: a girl does gymnastics
ApplyLipstick: a woman is putting on lipstick
BreastStroke: a woman is swimming
GolfSwing: a man swings a golf club
PlayingDohl: a person hits on a drum
HorseRiding: a woman rides a horse
PlayingFlute: a person blow into a flute
PizzaTossing: a man is making a pizza
CleanAndJerk: a person is lifting weights
WritingOnBoard: a person is writing on the wall
CricketShot: a person hits a ball with a bat
FieldHockeyPenalty: a girl in the field shoots a ball
HammerThrow: a person spins and throws an object
BodyWeightSquats: a man is squatting
CliffDiving: a person jumps off a cliff

Typing: a person is typing at a computer
MoppingFloor: a man mops the floor

TaiChi: people are doing tai chi

PlayingPiano: a person plays piano

Punch: someone punches another person
Nunchucks: a person swings nun chucks
RopeClimbing: a person climbs a rope

Swing: a baby is swinging

Knitting: a woman is knitting

Rafting: people are rafting on a river
PlayingGuitar: a person strums a guitar
ShavingBeard: a man shaves his beard
JugglingBalls: a person is juggling balls

Diving: a boy dives into a pool

JumpingJack: a person jumps and swings his arms
VolleyBallSpiking: people hit a volleyball

PoleValut: a person runs with a pole and launches into
the air

SkateBoarding: a man is skateboarding

49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.

60.
61.

62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.

75.
76.
7.
78.
79.

BoxingPunchingBag: a man is punching a bag
IceDancing: people are ice skating

WallPushups: a person does pushups against a wall
FrisbeeCatch: a person jumps and catches a frisbee
Drumming: people are drumming

JumpRope: a girl is jumping rope

HeadMassage: a person gets their head massaged
PlayingTabla: a person plays two drums
TableTennisShot: people are playing table tennis
PommelHorse: a person spins around on their hands

HighJump: a man jumps over a bar and lands on his
back

BasketballDunk: a man jumps and dunks the basketball

BoxingSpeedBag: a man punches a bad in the air
quickly

PullUps: a person does hangs on a bar and pulls up
RockClimbingIndoor: a person is climbing up rocks
BlowingCandles: a boy blows out candles on a cake
Skiing: people are skiing on a mountain
WalkingWithDog: a person walks a dog

Basketball: men are playing basketball
SoccerJuggling: a person is playing with a soccer ball
Fencing: people are fencing

Billiards: a man is playing billiards

BaseballPitch: a man throws a baseball
BlowDryHair: a woman is drying her hair
CricketBowling: a person throws a cricket ball

BandMarching: people are walking down the street
playing music

PlayingSitar: a person plays a funny guitar
ThrowDiscus: a person spins and throws a disk
StillRings: a man holds in the air on rings

Lunges: a person bends to the ground with one knee

Skijet: a person rides a jetski in the ocean



80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.

92.
93.

94.
95.
96.
97.

98
99
100

BabyCrawling: a baby is crawling on the floor
Mixing: a woman is mixing in a bowl

Hammering: a person is hitting nails with a hammer
Shotput: a person spins and launches a ball
Archery: a man shoots a bow and arrow

Surfing: a man is surfing in the ocean

FrontCrawl: a person is swimming freestyle
HulaHoop: a person spins a hoop around their waist
JavelinThrow: a person throws a spear

Rowing: people are in a canoe and rowing
Kayaking: a person is kayaking on a lake

ParallelBars: a man does gymnastics on the parallel
bars

HorseRace: horses are racing around a track

HandstandWalking: a person stands on their hands and
walk

BrushingTeeth: a boy brushes his teeth
LongJump: a person runs and jumps into a sand pit
Biking: people are riding bikes

HandstandPushups: a person does pushups upside
down

. BenchPress: a man is lifting weights
. Haircut: a person is getting a hair cut

. TennisSwing: a woman hits a tennis ball



