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Abstract

We present MixNMatch, a conditional generative model
that learns to disentangle and encode background, ob-
ject pose, shape, and texture from real images with mini-
mal supervision, for mix-and-match image generation. We
build upon FineGAN, an unconditional generative model,
to learn the desired disentanglement and image genera-
tor, and leverage adversarial joint image-code distribu-
tion matching to learn the latent factor encoders. MixN-
Match requires bounding boxes during training to model
background, but requires no other supervision. Through
extensive experiments, we demonstrate MixNMatch’s abil-
ity to accurately disentangle, encode, and combine multi-
ple factors for mix-and-match image generation, including
sketch2color, cartoon2img, and img2gif applications. Our
code/models/demo can be found at https://github.
com/Yuheng-Li/MixNMatch

1. Introduction

Consider the real image of the yellow bird in Figure 1 in
the 1st column. What would the bird look like in a different
background, say that of the duck? How about in a different
texture, perhaps that of the rainbow textured bird in the 2nd
column? What if we wanted to keep its texture, but change
its shape to that of the rainbow bird, and background and
pose to that of the duck, as in the 3rd column? How about
sampling shape, pose, texture, and background from four
different reference images and combining them to create an
entirely new image (last column)?

Problem. While research in conditional image genera-
tion has made tremendous progress [17, 49, 30], no exist-
ing work can simultaneously disentangle background, ob-
ject pose, object shape, and object texture with minimal su-
pervision, so that these factors can be combined from mul-
tiple real images for fine-grained controllable image gen-
eration. Learning disentangled representations with mini-
mal supervision is an extremely challenging problem, since
the underlying factors that give rise to the data are often
highly correlated and intertwined. Work that disentangle
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Figure 1: Conditional mix-and-match image genera-
tion. Our model, MixNMatch, can disentangle and en-
code up to four factors—background, object pose, shape,
and texture—from real reference images, and can arbitrar-
ily combine them to generate new images. The only super-
vision used to train our model is bounding box annotations
to model background.

two such factors, by taking as input two reference images
e.g., one for appearance and the other for pose, do ex-
ist [16, 18, 23, 26, 40]. But they cannot disentangle other
factors such as foreground vs. background appearance or
pose vs. shape. Since only two factors can be controlled,
these approaches cannot arbitrarily change, for example,
the object’s background, shape, and texture, while keep-
ing its pose the same. Others require strong supervision in
the form of keypoint/pose/mask annotations [31, 1, 27, 9],
which limits their scalability, and still fall short of disentan-
gling all of the four factors outlined above.

Our proposed conditional generative model, MixN-
Match, aims to fill this void. MixNMatch learns to disen-
tangle and encode background, object pose, shape, and tex-
ture latent factors from real images, and importantly, does
so with minimal human supervision. This allows, for ex-
ample, each factor to be extracted from a different real im-



age, and then combined together for mix-and-match image
generation; see Fig. 1. During training, MixNMatch only
requires a loose bounding box around the object to model
background, but requires no other supervision for modeling
the object’s pose, shape, and texture.

Main idea. Our goal of mix-and-match image generation
i.e., generating a single synthetic image that combines dif-
ferent factors from multiple real reference images, requires
a framework that can simultaneously learn (1) an encoder
that encodes latent factors from real images into a disentan-
gled latent code space, and (2) a generator that takes latent
factors from the disentangled code space for image gen-
eration. To learn the generator and the disentangled code
space, we build upon FineGAN [36], a generative model
that learns to hierarchically disentangle background, object
pose, shape, and texture with minimal supervision using in-
formation theory. However, FineGAN is conditioned only
on sampled latent codes, and cannot be directly conditioned
on real images for image generation. We therefore need a
way to extract latent codes that control background, object
pose, shape, and texture from real images, while preserving
FineGAN’s hierarchical disentanglement properties. As we
show in the experiments, a naive extension of FineGAN in
which an encoder is trained to map a fake image into the
codes that generated it is insufficient to achieve disentan-
glement in real images due to the domain gap between real
and fake images.

To simultaneously achieve the above dual goals, we in-
stead perform adversarial learning, whereby the joint distri-
bution of real images and their extracted latent codes from
the encoder, and the joint distribution of sampled latent
codes and corresponding generated images from the gener-
ator, are learned to be indistinguishable, similar to ALI [2]
and BiGAN [6]. By enforcing matching joint image-code
distributions, the encoder learns to produce latent codes that
match the distribution of sampled codes with the desired
disentanglement properties, while the generator learns to
produce realistic images. To further encode a reference im-
age’s shape and pose factors with high fidelity, we augment
MixNMatch with a feature mode in which higher dimen-
sional features of the image that preserve pixel-level struc-
ture (rather than low dimensional codes) are mapped to the
learned disentangled feature space.

Contributions. (1) We introduce MixNMatch, a condi-
tional generative model that learns to disentangle and en-
code background, object pose, shape, and texture factors
from real images with minimal human supervision. This
gives MixNMatch fine-grained control in image generation,
where each factor can be uniquely controlled. MixNMatch
can take as input either real reference images, sampled la-
tent codes, or a mix of both. (2) Through various qualitative
and quantitative evaluations, we demonstrate MixNMatch’s

ability to accurately disentangle, encode, and combine mul-
tiple factors for mix-and-match image generation. Further-
more, we show that MixNMatch’s learned disentangled rep-
resentation leads to state-of-the-art fine-grained object cate-
gory clustering results of real images. (3) We demonstrate a
number of interesting applications of MixNMatch including
sketch2color, cartoon2img, and img2gif.

2. Related work

Conditional image generation has various forms, in-
cluding models conditioned on a class label [29, 28, 3]
or text input [33, 48, 42, 47]. A lot of work focuses on
image-to-image translation, where an image from one do-
main is mapped onto another domain e.g., [17, 49, 30].
However, these methods typically lack the ability to explic-
itly disentangle the factors of variation in the data. Those

that do learn disentangled representations focus on specific

categories like faces’/humans [37, 31, 2, 32, 1, 27] or re-
quire clearly defined domains (e.g., pose vs. identity or
style/attribute vs. content) [18, 16, 23, 11, 25, 40]. In con-

trast, MixNMatch is not specific to any object category, and
does not require clearly defined domains as it disentangles
multiple factors of variation within a single domain (e.g.,
natural images of birds). Moreover, unlike most unsuper-
vised methods which can disentangle only two factors like
shape and appearance [24, 35, 26], MixNMatch can disen-
tangle four (background, object shape, pose, and texture).

Disentangled representation learning aims to disentan-
gle the underlying factors that give rise to real world
data [4, 44, 41, 24, 35, 38, 15, 19, 26]. Most unsupervised
methods are limited to disentangling at most two factors
like shape and texture [24, 35]. Others require strong su-
pervision in the form of edge/keypoint/mask annotations or
detectors [31, 1, 27, 9], or rely on video to automatically
acquire identity labels [5, 18, 40]. Our most related work
is FineGAN [36], which leverages information theory [4]
to disentangle background, object pose, shape, and texture
with minimal supervision. However, it is conditioned only
on sampled latent codes, and thus cannot perform image
translation. We build upon this work to enable conditioning
on real images. Importantly, we show that a naive extension
is insufficient to achieve disentanglement in real images.
We also improve the quality of our model’s image gener-
ations to preserve instance specific details from the refer-
ence images. Since MixNMatch is directly conditioned on
images, its learned representation leads to better disentan-
glement and fine-grained clustering of real images.

3. Approach

LetZ = {z;,...,z)} be an unlabeled image collection
of a single object category (e.g., birds). Our goal is to learn
a conditional generative model, MixNMatch, which simul-
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Figure 2: MixNMatch architecture. (a) Four different encoders, one for each factor, take a real image as input to predict
the codes. (b) Four different latent codes are sampled and fed into the FineGAN generator to hierarchically generate images.
(c) Four image-code pair discriminators optimize the encoders and generator, to match their joint image-code distributions.

taneously learns to (1) encode background, object pose,
shape, and texture factors associated with images in Z into
a disentangled latent code space (i.e., where each factor is
uniquely controlled by a code), and (2) generate high qual-
ity images matching the true data distribution Py, () by
combining latent factors from the disentangled code space.

We first briefly review FineGAN [36], from which we
base our generator. We then explain how to train our model
to disentangle and encode background, object pose, shape,
and texture from real images, so that it can combine dif-
ferent factors from different real reference images for mix-
and-match image generation. Lastly, we introduce how to
augment our model to preserve object shape and pose infor-
mation from a reference image with high fidelity (i.e., at the
pixel-level).

3.1. Background: FineGAN

FineGAN [36] takes as input four randomly sampled
latent codes (z, b, ¢, p) to hierarchically generate an im-
age in three stages (see Fig. 2 (b) right): (1) a background
stage where the model only generates the background, con-
ditioned on latent one-hot background code b; (2) a par-
ent stage where the model generates the object’s shape and
pose, conditioned on latent one-hot parent code p as well
as continuous code =z, and stitches it to the existing back-
ground image; and (3) a child stage where the model fills
in the object’s texture, conditioned on latent one-hot child
code c. In both the parent and child stages, FineGAN auto-
matically generates masks (without any mask supervision)
to capture the appropriate shape and texture details.

To disentangle the background, it relies on object bound-
ing boxes (e.g., acquired through an object detector). To
disentangle the remaining factors of variation without any
supervision, FineGAN uses information theory [4], and im-
poses constraints on the relationships between the latent
codes. Specifically, during training, FineGAN (1) con-
strains the sampled child codes into disjoint groups so that
each group shares the same unique parent code, and (2) en-
forces the sampled background and child codes for each
generated image to be the same. The first constraint mod-
els the fact that some object instances from the same cat-

egory share a common shape even if they have different
textures (e.g., different duck species with different texture
details share the same duck shape), and the second con-
straint models the fact that background is often correlated
with specific object types (e.g., ducks typically have water
as background). If we do not follow these constraints, then
the generator could generate e.g. a duck on a tree (back-
ground code b not equal to texture code c) or e.g. a seag-
ull with red texture (texture code ¢ not tied to a specific
shape code p). Then the discriminator would easily clas-
sify these images as fake, as they rarely exist in real images.
As aresult, the desired disentanglement will not be learned.
It is also important to note that the parent code p controls
viewpoint/pose invariant 3D shape of an object (e.g., duck
vs. seagull shape) as the number of unique p codes is typi-
cally set to be much smaller (e.g., 20) than the amount of 2D
shape variations in the data, and this in turn forces the con-
tinuous code z to control viewpoint/pose. Critically, these
factors emerge as a property of the data and the model, and
not through any supervision.

FineGAN is trained with three losses, one for each stage,
which use either adversarial training [12] to make the gener-
ated image look real and/or mutual information maximiza-
tion [4] between the latent code and corresponding image
so that each code gains control over the respective factor
(background, pose, shape, color). We simply denote its full
loss as:

Efinegan = ‘Cb + £p + Ec; (1)

where Ly, £,, and L, denote the losses in the background,
parent, and child stages. For more details on these losses
and the FineGAN architecture, please refer to [36].

3.2. Paired image-code distribution matching

Although FineGAN can disentangle multiple factors to
generate realistic images, it is conditioned on sampled latent
codes, and cannot be conditioned on real images. A naive
post-processing extension in which encoders that learn to
map fake images to the codes that generated them is insuf-
ficient to achieve disentanglement in real images due to the
domain gap between real and fake images [36], as we show



in our experiments.

Thus, to encode disentangled representations from real
images for conditional mix-and-match image generation,
we need to extract the vector z (controlling object pose), b
(controlling background), p (controlling object shape), and
¢ (controlling object texture) codes from real images, while
preserving the hierarchical disentanglement properties of
FineGAN. For this, we propose to train four encoders, each
of which predict the z, b, p, ¢ codes from real images. Since
FineGAN has the ability to disentangle factors and generate
images given latent codes, we naturally resort to using it as
our generator, by keeping all the losses (i.e., Lyinegan) t0
help the encoders learn the desired disentanglement.

Specifically, for each real training image x, we use the
corresponding encoders to extract its z, b, p, ¢ codes. How-
ever, we cannot simply input these codes to the generator to
reconstruct the image, as the model would take a shortcut
and degenerate into a simple autoencoder that does not pre-
serve FineGAN’s disentanglement properties (factorization
into background, pose, shape, texture), as we show in our
experiments. We therefore leverage ideas from ALI [£] and
BiGAN [6, 7] to help the encoders learn the inverse map-
ping; i.e., a projection from real images into the code space,
in a way that maintains the desired disentanglement proper-
ties.

The key idea is to perform adversarial learning [ 12, 6, &],
so that the paired image-code distribution produced by the
encoder (x ~ Pyata, ¥ ~ E(z)) and the paired image-code
distribution produced by the generator (z ~ G(y), y ~
P.ode) are matched. Here E is the encoder, G is the Fine-
GAN generator, and y is a placeholder for the latent codes
z,b,p,c. Pyt is the data (real image) distribution and
P.,4. is the latent code distribution.’ Formally, the input
to the discriminator D is an image-code pair. When train-
ing D, we set the paired real image = and code y extracted
from the encoder E' to be real, and the paired sampled input
code y and generated image & from the generator G to be
fake. Conversely, when training G and E, we try to fool D
so that the paired distributions P(gata, £ (z)) and P(G(y),code)
are indistinguishable, via a paired adversarial loss:

Lbi_adv = ]é?%l mDax ExNPdumEg}NE(x) [log D(z,9)]
+ EyNngEimc(y) [105(1 - D(z, y))]. (2)

This loss will simultaneously enforce the (1) generated im-
ages & ~ G(y) to look real, and (2) extracted real image
codes §y ~ E(zx) to capture the desired factors (i.e., pose,
background, shape, appearance). Fig. 2 (a-c) show our en-
coders, generator, and discriminators.

1Following FineGAN [36]: a continuous noise vector z ~ A (0,1); a
categorical background code b ~ Cat(K = Nj,p = 1/N}): a categorical
parent code p ~ Cat(K = Np,p = 1/Nyp); and a categorical child
code ¢ ~ Cat(K = Ng,p = 1/N;). Ny, Np, N, are the number of
background, parent, and child categories and are set as hyperparameters.

3.3. Relaxing the latent code constraints

There is an important issue that we must address to en-
sure disentanglement in the extracted codes. FineGAN im-
poses strict code relationship constraints, which are key to
inducing the desired disentanglement in an unsupervised
way, but which can be difficult to realize in all real images.

Specifically, recall from Sec. 3.1 that these constraints
impose a group of child codes to share the same unique par-
ent code, and the background and child codes to always be
the same. However, for any arbitrary real image, these strict
relationships may not hold (e.g., a flying bird can have mul-
tiple different backgrounds in real images), and would thus
be difficult to enforce in its extracted codes. In this case,
the discriminator would easily be able to tell whether the
image-code pair is real or fake (based on the code relation-
ships), which will cause issues with learning. Moreover, it
would also confuse the background b and texture ¢ encoders
since the background and child latent codes are always sam-
pled to be the same (b = ¢); i.e., the two encoders will es-
sentially become identical (as they are always being asked
to predict the same output as each other) and won’t be able
to distinguish between background and object texture.

We address this issue in two ways. First, we train four
separate discriminators, one for each code type. This pre-
vents any discriminator from seeing the other codes, and
thus cannot discriminate based on the relationships between
the codes. Second, when training the encoders, we also pro-
vide as input fake images that are generated with randomly
sampled codes with the code constraints removed. In these
images, any foreground texture can be coupled with any ar-
bitrary background (¢ # b) and any arbitrary shape (c not
tied to a particular p). Specifically, we train the encoders
E to predict back the sampled codes y that were used to
generate the corresponding fake image:

Ecode_pred = CE(E(G(y)):y): (3)

where C'E(-) denotes cross-entropy loss, and y is a place-
holder for the latent codes b, p,c. (For continuous z, we
use L1 loss.) This loss helps to guide each encoder, and in
particular the b and ¢ encoders, to learn the corresponding
factor. Note that the above loss is used only to update the
encoders E' (and not the generator ), as these fake images
can have feature combinations that generally do not exist in
the real data distribution (e.g., a duck on top of a tree).

3.4. Feature mode for exact shape and pose

Thus far, MixNMatch’s encoders can take in up to four
different real images and encode them into b, z, p, ¢ codes
which model the background, object pose, shape, and tex-
ture, respectively. These codes can then be used by MixN-
Match’s generator to generate realistic images, which com-
bine the four factors from the respective reference images.
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Figure 3: Comparison between code mode & feature mode. Rows 1-3 are real reference images, in which we extract
background b, texture ¢, and shape+pose p & z, respectively. Rows 4-5 are MixNMatch’s feature mode (which accurately
preserves original shape information) and code mode (which preserves shape information at a semantic level) generations.

We denote this setting as MixNMatch’s code mode. While
the generated images already capture the factors with high
accuracy (see Fig. 3, “code mode™), certain image trans-
lation applications may require exact pixel-level shape and
pose alignment between a reference image and the output.

The main reason that MixNMatch in code mode cannot
preserve exact pixel-level shape and pose details of a ref-
erence image is because the capacity of the latent p code
space, which is responsible for capturing shape, is too small
to model per-instance pixel-level details (typically, tens in
dimension). The reason it must be small is because it must
(roughly) match the number of unique 3D shape variations
in the data (e.g., duck shape, sparrow shape, seagull shape,
etc.). In this section, we introduce MixNMatch’s feature
mode to address this. Rather than encode a reference im-
age into a low-dimensional shape code, the key idea is
to directly learn a mapping from the image to a higher-
dimensional feature space that preserves the reference im-
age’s spatially-aligned shape and pose (pixel-level) details.

Fixed Parent
Generator Gy

Specifically,
we take our
learned parent
stage generator
Gp (see Fig. 2
(b)), and use it
to train a new
shape and pose
feature extractor S, which takes as input a real image =
and outputs feature S(x). G, takes as input codes p and
z to generate the parent stage image, which captures the
object’s shape. Let’s denote its intermediate feature as
@(p, z). We use the standard adversarial loss [12] to train S

Adv_loss

so that the distribution of S(z) matches that of ¢(p, z) (i.e.,
only S is learned and ¢(p, z) is produced from the fixed
pretrained G'p); see figure above. Ultimately, this trains S to
produce features that match those sampled from the ¢(p, z)
distribution, which already has learned to encode shape
and pose. To enforce S to preserve instance-specific shape
and pose details of = (i.e., so that the resulting generated
image using S(x) is spatially-aligned to z), we randomly
sample codes z,b,p, ¢ to generate fake images using the
full generator G, and for each fake image G(z,b,p,c),
we enforce an L1 loss between the feature ¢(p, z) and the
feature S(G(z,b,p, c)).

Once trained, we can use this feature mode to extract the
pixel-aligned pose and shape feature S(x) from an input im-
age x, and combine it with the background b and texture ¢
codes extracted from (up to) two reference images, to per-
form conditional mix-and-match image generation.

4. Experiments

We evaluate MixNMatch’s conditional mix-and-match
image generation results, its ability to disentangle each la-
tent factor, and its learned representation for fine-grained
object clustering of real images. We also showcase
sketch2color, cartoon2img, and img2gif applications.

Datasets. (1) CUB [39]: 11,788 bird images from 200
classes; (2) Stanford Dogs [21]: 12,000 dog images from
120 classes; (3) Stanford Cars [22]: 8,144 car images from
196 classes. We set the prior latent code distributions fol-
lowing FineGAN [36]'. The only supervision we use is
bounding boxes to model background during training.



(a) Varying z (pose)

(b) Varying b (background)

(d) Varying p (shape)

Figure 4: Varying a single factor. Real images are indicated with red boxes. For (a-d), the reference images on the left/top
provide three/one factors. The center 3x3 images are generations. For example, in (a) the top row yellow bird has an
upstanding pose with its head turned to the right, and the resulting images have the same pose.

Baselines. We compare to a number of state-of-the-art
GAN, disentanglement, and clustering methods. For all
methods, we use the authors’ public code. The code for
SC-GAN [20] only has the unconditional version, so we im-
plement its BiIGAN [6] variant following the paper details.

Implementation details. We train and generate 128 x
128 images. In feature mode (2nd stage) training, ¢(y) is
a learned distribution from the code mode (1st stage) and
may not model the entire real feature distribution (e.g., due
to mode collapse). Thus, we assume that patch-level fea-
tures are better modeled, and apply a patch discriminator.
For our feature mode, since the predicted object masks are
often highly accurate, we can optionally directly stitch the
foreground (if only changing background) or background
(if only changing texture) from the corresponding reference
image. When optimizing Eqn. 2, we add noise to D since
the sampled ¢, p, b are one hot, while predicted ¢, p, b will
never be one-hot. Full training details are in the supp.

4.1. Qualitative Results

Conditional mix-and-match image generation. We
show results on CUB, Stanford Cars, and Stanford Dogs;
see Fig. 3. The first three rows show the background, tex-
ture, and shape + pose reference (real) images from which
our model extracts b, ¢, and p & z, respectively, while the
fourth and fifth rows show MixNMatch’s feature mode and
code mode generation results, respectively.

Our feature mode results (4th row) demonstrate how well
MixNMatch preserves shape and pose information from the
reference images (3th rows), while transferring background
and texture information (from Ist and 2nd rows). For ex-
ample, the generated bird in the second column preserves
the exact pose and shape of the bird standing on the pipe
(3rd row) and transfers the brownish bark background and
rainbow object texture from the 1st and 2nd row images,
respectively. Our code mode results (5th row) also cap-
ture the different factors from the reference images well,

though not as well as the feature mode for pose and shape.
Thus, this mode is more useful for applications in which
inexact instance-level pose and shape transfer is acceptable
(e.g., generating a completely new instance which captures
the factors at a high-level). Overall, these results high-
light how well MixNMatch disentangles and encodes fac-
tors from real images, and preserves them in the generation.

Note that here we take both z and p from the same refer-
ence images (row 3) in order to perform a direct comparison
between the code and feature modes. We next show results
of disentangling all four factors, including z and p.

Disentanglement of factors. Here we evaluate how well
MixNMatch disentangles each factor (background b, tex-
ture ¢, pose z, shape p). Fig. 4 shows our disentanglement
of each factor on CUB (results for Dogs and Cars are in
the supp.). For each subfigure, the images in the top row
and leftmost column (with red borders) are real reference
images. The specific factors taken from each image are in-
dicated in the top-left corner; e.g., in (a), pose is taken from
the top row, while background, shape, texture are taken
from the leftmost column. Note how we can make (a) a bird
change poses by varying z, (b) change just the background
by varying b, (c) colorize by varying ¢, and (d) change shape
by varying p (e.g., see the duck example in 3rd column). As
described in Sec. 3.4, our feature mode can preserve pixel-
level shape+pose information from a reference image (i.e.,
both p and z are extracted from it) in the generation. Thus,
for this experiment, (b) and (c) are results of feature mode,
while (a) and (d) are results of code mode.

sketch2color / cartoon2img. We next try adapting MixN-
Match to other domains not seen during training; sketch
(Fig. 5) and cartoon (Fig. 6). Here we use our feature mode
as it can preserve pixel-level shape+pose information. In-
terestingly, the results indicate that MixNMatch learns part
information without supervision. For example, in Fig. 6 col-
umn 2, it can correctly transfer the black, white, and red part
colors to the rubber duck.
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Figure 5: sketch2color. First three rows are real reference
images. Last row shows generation results of adding back-
ground and texture to the sketch images.

Inception Score FID
Birds Dogs Cars Birds Dogs Cars
Simple-GAN JIESE0.0T eT75 X007 209 £0.14 1669 26185 3335
InfoGAN [4] 4732 £077 43164042 2862 £ 044 1320 2934 17.63
LR-GAN [45] 13.50 £0.20 1022 +£021 5254005 | 3491 5491 8880

StackGANv2 [48] | 43.47 £074 37.29 £ 056 33.69 + 0.44 | 13.60 3139 1628
FineGAN [36] 5253 +£045 46924061 326240371125 2566 1603
MixNMatch (Ours) | 50.05 £ 075 46.97 £ 0.51 31124+ 062 | 917 2424 648

Table 1: Image quality & diversity. IS (1 better) and FID
(J better). MixNMatch generates diverse, high-quality im-
ages that compare favorably to state-of-the-art baselines.

img2gif. MixNMatch can also be used to animate a static
image; see Fig. 7 (code mode result) and supp. video.

4.2. Quantitative Results

Image diversity and quality. We compute Inception
Score [34] and FID [14] over 30K randomly generated im-
ages. We condition the generation only on sampled latent
codes (by sampling z, p, ¢, b from their prior distributions;
see Footnote 1), and not on real image inputs, for a fair com-
parison to the baselines. Table 1 shows that MixNMatch
generates diverse and realistic images that are competitive
to state-of-the-art unconditional GAN methods.

Fine-grained object clustering. We next evaluate MixN-
Match’s learned representation for clustering real im-
ages into fine-grained object categories. We compare to
state-of-the-art deep clustering methods: FineGAN [36],
JULE [46], and DEPICT [10], and their stronger vari-
ants [36]: JULE-Res50 and DEPICT-Large. For eval-
uation metrics, we use Normalized Mutual Information
(NMI) [43] and Accuracy [10], which measures the best
mapping between predicted and ground truth labels. All
methods cluster the same bounding box cropped images.
To cluster real images, we use MixNMatch’s p (shape)

S

=
c
>
e
e
5]
2
g
=
8

B

shape+pose
p, z

generation

Figure 6: cartoon2img. MixNMatch automatically learns
part semantics, without supervision; e.g., in the 2nd column,
the colors of the texture reference are accurately transferred.

NMI Accuracy

Birds Dogs Cars | Birds Dogs Cars
JULE [46] 0.204 0.142 0232 | 0.045 0.043 0.046
JULE-ResNet-50 [46] | 0.203  0.148 0.237 | 0.044 0.044 0.050
DEPICT [10] 0.290 0.182 0.329 | 0.061 0.052 0.063
DEPICT-Large [10] 0.297 0.183 0330 | 0.061 0.054 0.062
FineGAN [10] 0.403 0233 0354 | 0126 0.079 0.078
MixNMatch (Ours) 0422 0324 0357 | 0136 0.089 0.079

Table 2: Fine-grained object clustering. Our approach
outperforms state-of-the-art clustering methods.

and ¢ (texture) encoders as fine-grained feature extractors.
For each image, we concatenate its L2-normalized penul-
timate features, and run k-means clustering with k& = # of
ground-truth classes. MixNMatch’s features lead to signif-
icantly more accurate clusters than the baselines; see Ta-
ble 2. JULE and DEPICT focus more on background and
rough shape information instead of fine grained details, and
thus have relatively low performance. FineGAN performs
much better, but it trains the encoders post-hoc on fake im-
ages to repredict their corresponding latent codes (as it can-
not directly condition its generator on real images) [36].
Thus, there is a domain gap to the real image domain. In
contrast, MixNMatch’s encoders are trained to extract fea-
tures from both real and fake images, so it does not suffer
from domain differences.

Shape and texture disentanglement. In order to quan-
titatively evaluate MixNMatch’s disentanglement of shape
and texture, we propose the following evaluation metric:
We randomly sample 5000 image pairs (A, B) and generate
new images C, which take texture and background (codes ¢,
b) from image A, and shape and pose from image B (codes
p, z). If a model disentangles these factors well and pre-
serves them in the generated images, then the spatial posi-



Figure 7: image2gif. MixNMatch can combine the pose
factor z from a reference video (top row), with the other
factors in a static image (1st column) to animate the object.

tion of part keypoints (e.g., beak, tail) in B should be close
to that in C, while the texture around those keypoints in A
should be similar to that in C; see Fig. 8.

To measure how well shape is preserved, we train a key-
pointdetector [ 13] on CUB, and use it to detect 15 keypoints
in generated images C. We then calculate the L2-distance
(in x,y coordinate space) to the corresponding visible key-
points in B. To measure how well texture is preserved, for
each keypoint in A and C, we first crop a 16x16 patch
centered on it. We then compute the x2-distance between
the L1-normalized color histograms of the corresponding
patches in A and C. See supp. for more details.

Table 3 (top) shows the results averaged over all 15 key-
points among all 5000 image triplets. We compare to Fine-
GAN [36], SC-GAN [20], a generative model that disen-
tangles style (texture) and content (geometrical informa-
tion), and Deforming AE [35], a generative autoencoder
that disentangles shape and texture from real images via
unsupervised deformation constraints. Fig. 8 shows qualita-
tive comparisons. Clearly, MixNMatch better disentangles
and preserves shape and texture compared to the baselines.
SC-GAN does not differentiate background and foreground
and uses a condensed code space to model content and style,
so it has difficulty transferring texture and shape accurately.
Deforming AE fails because its assumption that an image
can be factorized into a canonical template and a deforma-
tion field is difficult to realize in complicated shapes such
as birds. FineGAN performs better, but it again is hindered
by the domain gap. Finally, our feature mode has the best
performance for shape disentanglement due to its ability of
preserving instance-specific shape and pose details.

Ablation studies. Finally, we study MixNMatch’s vari-
ous components: 1) no paired image-code adversarial
loss, where we do not have Eqn. 2, instead we directly feed
the predicted code from encoder to the generator, and apply
an L1 loss between the generated and real images; 2) with-
out code reprediction loss, where we do not apply Eqn. 3;
3) with code reprediction loss but with code constraints,
where during generating fake images, we keep FineGAN’s

A B I i
Background  Shape
Texture Pose

MixMMatch

loum’ FineGAN DeformingAE SC-GAN
™, -

Figure 8: Shape & texture disentanglement. Our ap-
proach preserves shape, texture better than strong baselines.

Shape  Texture
Deforming AE [35] 69.97 0.792
SC-GAN [20] 3237 0.641
FineGAN [6] 21.04 0.602
MixNMatch (code mode) 20.57 0.540
MixNMatch (feature mode) 16.29 0.565
Code mode w/o paired adv loss 60.41 0.798
Code mode w/o code reprediction | 47.67 0.724
Code mode w/ code constraint 26.95 0.601
Feature mode w/o L1 loss 61.76 0.575
Feature mode w/o adv loss 17.61 0.572

Table 3: Shape & texture disentanglement. (Top) Com-
parisons to baselines. (Bottom) Ablation studies. We report
keypoint L2-distance and color histogram x2-distance for
measuring shape and texture disentanglement (J better).

code constraints; 4) without feature mode L1 loss, where
we only apply an adversarial loss between S(x) and ¢(y);
5) without feature mode adversarial loss, where we only
have the L1 loss in feature mode training.

Table 3 (bottom) shows that all losses are necessary in
code mode training; otherwise, disentanglement cannot be
learned properly. In feature mode training, both adversarial
and L1 losses are helpful, as they adapt the model to the real
image domain to extract precise shape + pose information.

Discussion. There are some limitations worth discussing.
First, our generated background may miss large structures,
as we use a patch-level discriminator. Second, the feature
mode training, depends on, and is sensitive to, how well the
model is trained in the code mode. Finally, for reference
images whose background and object texture are very sim-
ilar, our model can fail to produce a good object mask, and
thus generate an incomplete object.
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