
Contents lists available at ScienceDirect

Ecological Modelling

journal homepage: www.elsevier.com/locate/ecolmodel

Local management in a regional context: Simulations with process-based
species distribution models

Tim M. Szewczyka,b,⁎, Tom Leea, Mark J. Duceya, Matthew E. Aiello-Lammensc, Hayley Bibauda,
Jenica M. Allena

a Department of Natural Resources and the Environment, University of New Hampshire, United States
bDepartment of Computer Science, University of New Hampshire, United States
c Environmental Studies and Science Department, Pace University, United States

A R T I C L E I N F O

Keywords:
Cellular automata
Grid-based distribution
Spatially explicit
Population model

A B S T R A C T

Ecological models often strive to inform conservation and management decisions. Occurrence-based distribution
models may aid regional management strategies, though many management decisions require information be-
yond the likely presence of a species provided by such models. Process-based distribution models predict geo-
graphic distributions using environmental relationships with biological processes, providing more detailed
predictions and a key opportunity for data-driven management. Here, we develop and characterize a novel
demography-based regional distribution model and illustrate its use by comparing four management strategies
for glossy buckthorn (Frangula alnus), a bird-dispersed shrub invasive throughout the northeastern United States.
On a gridded landscape in southern New Hampshire and Maine, this population-level simulation includes
fruiting, seed dispersal, seed bank dynamics, germination and establishment, and annual survival, with land
cover as the dominant environmental driver. We parameterize the model with field and lab studies, supple-
menting with published data, expert knowledge, and pattern-oriented parameterization with historical records.
In a comprehensive sensitivity analysis, we found that the age at which individuals are capable of reproduction
and the frequency of long distance dispersal had the strongest influence on the distribution. In our management
simulations, we found that immigration prevents total eradication within any property regardless of manage-
ment frequency or coordination, though management impacts are detectable in nearby un-managed cells via
reduced seed deposition. The flexible model structure combines multiple disparate data sources similar to those
available for many species into a synthetic framework of local and regional biological processes, allows the
incorporation of specific management actions targeting particular processes and life stages into the regional
context of a process-based species distribution model, and provides a robust method for evaluating potential
management strategies.

1. Introduction

Ecological models are often constructed with a goal of informing
conservation and management decisions (Buckley et al., 2004; Elith and
Leathwick, 2009; McMahon et al., 2010; Guisan et al., 2013), and en-
compass a wide range of approaches. Models may help guide the
prioritization of efforts by predicting future distributions of many spe-
cies (Allen and Bradley, 2016), or may identify policy effects on critical
life stages for a species of concern (Crowder et al., 1994; Morris and
Doak, 2003). In particular, simulation-based approaches naturally in-
corporate the stochasticity, uncertainty, and complexity of ecologically
detailed models (Morris and Doak, 2003; Merow et al., 2011; McGowan

et al., 2017). Accounting for inherent variability as well as data and
process uncertainty can lead to more informed decisions based on the
range of plausible outcomes, and can highlight key data limitations.
Further, management actions, though often implemented locally, occur
within an interconnected regional landscape that can affect resulting
ecological dynamics (Merow et al., 2011).

Species distribution models (SDMs) predict species’ geographic
distributions based on relationships with the environment, and have
been used in a variety of conservation applications. The majority of
SDMs are occurrence-based, relying on correlations between observed
presences and environmental covariates (Elith et al., 2010; Evans et al.,
2016). Occurrence-based SDMs have many uses, such as predicting
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current or future distributions and informing conservation priorities by
generating maps of potential invasive species risk (Elith and Leathwick,
2009; Guisan et al., 2013; Allen and Bradley, 2016), and are particu-
larly appealing because of the availability of geolocated presence data
in online repositories. The predictions of occurrence-based SDMs can be
improved by incorporating spatial dynamics, including meta-popula-
tion and connectivity processes (Mestre et al., 2017). Alternatively,
process-based SDMs predict distributions by building relationships be-
tween biological processes and environmental covariates, an approach
more directly tied to the biology of the species (Kearney and Porter,
2009; Buckley et al., 2010; Dormann et al., 2012; Cuddington et al.,
2013; Evans et al., 2016). Options for process-based SDMs are varied;
for example, the predictions can be temporally dynamic or static, in-
corporate dispersal, and utilize either individual-level or population-
level relationships (Jongejans et al., 2008; Merow et al., 2011, 2017;
Aiello-Lammens, 2014). Compared to occurrence-based SDMs, process-
based SDMs require additional data to parameterize, hindering their
widespread adoption.

Models for evaluating management strategies are often non-spatial
or involve only a small extent (Rees and Payntert, 1997; Buckley et al.,
2004; Davis et al., 2006; Ramula and Buckley, 2010), mirroring the
local spatial scope of many management actions. As applied models, the
structure is typically tailored to the biology and life history of the focal
species. The inclusion of particular biological processes allows for the
comparison of management actions with differing effects, such as bio-
control agents, cover crops, or manual removal of individuals (Rees and
Payntert, 1997; Buckley et al., 2004). With sufficient data to inform
impacts on life stages, the predicted population-level effects can be
quantified to identify the method most likely to succeed in affecting the
species’ long term abundance (Davis et al., 2006). However, past work
has often made the simplifying assumption that populations occur in
isolation, without regional dynamics driven by dispersal of individuals
within local neighborhoods and rarer long distance dispersal events.

As spatially explicit models that typically encompass broad geo-
graphic areas, SDMs hold great potential for informing the management
of rare or invasive species. Occurrence-based SDMs have been con-
structed to identify locations vulnerable to future invasion (Jiménez-
Valverde et al., 2011; O’Donnell et al., 2012; Allen and Bradley, 2016)
or particularly valuable critical habitats (Heinrichs et al., 2010). While
such products are highly valuable for agencies focused on regional
planning, many management decisions occur at finer spatial resolutions
than SDMs, or must consider information beyond a species’ likely pre-
sence or absence as predicted by many SDMs. For instance, managers
often must assess the abundance and impact of the focal species, while
also balancing logistical constraints (Matzek et al., 2015). Further,

management options are diverse. Possible actions for an invasive spe-
cies may include manual removal, application of herbicide, planting of
a cover crop, or introduction of a biocontrol agent, each of which af-
fects the population differently (Rees and Payntert, 1997; Buckley et al.,
2004; Davis et al., 2006). The evaluation of management decisions
could be greatly aided by models incorporating these differing effects
within a broader landscape.

Here, we develop an approach to construct process-based SDMs to
simulate local management actions with the expanded realism of re-
gional population dynamics. We link previously disparate models of
demographically-driven species abundance, dispersal dynamics, and
management actions on specific life stages into a single cohesive
modeling framework that is flexible and adaptable to many species. We
illustrate with glossy buckthorn (Frangula alnus), a bird-dispersed shrub
native to Eurasia and invasive throughout the northeastern United
States. On a gridded landscape, the model includes mechanistic dis-
persal and seed bank dynamics in addition to spatially varying flow-
ering probability, fruit production, survival, and seedling establish-
ment. We demonstrate the effect of propagule pressure when managing
glossy buckthorn in a regional landscape with heterogeneous manage-
ment strategies and show the level of spatial coordination needed to
achieve local control targets given the species’ biology. The flexible
structure of the model accommodates modification according to the
biology of the focal species, as well as incorporation of biologically
realistic effects of management actions. Spatially explicit, process-based
models such as this provide a key opportunity to ground management
decisions in the species’ biology and the best available data.

2. Methods

2.1. Model structure

The model simulates the mechanistic growth and spread of a species
across a gridded landscape based on spatially varying biological pro-
cesses (Fig. 1 and Table 1). The model structure reflects the life history
of a bird-dispersed perennial shrub, yet is adaptable to other life his-
tories and dispersal agents. Within each occupied cell, population and
life history dynamics are driven by vital rates and demographic para-
meters which can be global (Fig. 1, light purple) or dependent on the
local environment (Fig. 1, dark blue). Populations are connected
through the movement of seeds via mechanistic short distance dispersal
and random long distance dispersal. We define long distance dispersal
as any dispersal event beyond the range of the short distance dispersal
neighborhood, including rare, natural disperser movements in addition
to intentional and unintentional human-mediated dispersal. Density

Fig. 1. Annual simulation structure. Boxes represent life
stages with abundances, and text along arrows represent
parameters. Parameters are either dependent on the cell en-
vironment (dark blue, subscript i) or global (light purple, no
subscript i). Manual management actions (i.e., cutting and
spraying; ovals) remove individuals prior to reproduction.
Fruits are produced according to the number of adults in a
given cell, and seeds from consumed fruits are dispersed
across the landscape following a negative exponential kernel.
Seedlings germinate either directly from seeds produced that
year, or from the seed bank. Finally, abundances are updated
for the next year, subject to survival rates and carrying ca-
pacities. See Table 1 and Appendix A for parameter details.
(For interpretation of the references to color in this figure le-
gend, the reader is referred to the web version of this article.)
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dependence is implemented by directly limiting the abundance within
each cell (Merow et al., 2011). Because of the biological detail, simu-
lated management actions can target particular processes or life stages,
such as by reducing seedling establishment through planted cover crops
or by reducing abundances through manual removal or herbicide ap-
plication (Fig. 1).

2.1.1. Fecundity
At the start of each time step t, individuals flower and produce

fruits. The total number of fruits, F, produced in cell i in year t is cal-
culated as:

=F N f μi iit it (1)

where Nit is the number of adults in cell i in year t, fi is the probability
that an adult in cell i flowers, and μi is the mean number of fruits
produced by a flowering adult in cell i. Both f and μ are dependent on
the cell environment, as indicated by the subscript i.

2.1.2. Dispersal
The fruits produced, Fit, are consumed by animal dispersers or drop

from the plant to remain in the local population. The seeds in consumed
fruits are transported and deposited in the local cell i or in the short
distance dispersal neighborhood of cell i. We assume a single primary
natural dispersal vector, though additional dispersal vectors could be
readily added. The number of seeds, S, in cell i in year t is therefore:

∑
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where Sit is the number of seeds deposited in cell i, ci is the probability
that a fruit in cell i is consumed by a disperser, γ is the mean number of
seeds per fruit, sc is the probability that a consumed seed remains vi-
able, e−0.5r is the probability that a consumed seed remains in cell i
based on an exponential distribution with rate r (Merow et al., 2011), δji
is the probability that an immigrant seed from cell j lands in cell i, and Ji

is the number of cells within the maximum short distance dispersal
radius, sddmax. Consequently, each seed produced in cell i has four
possible fates; a seed may (1) drop in cell i without being consumed, (2)
be consumed and deposited in cell i, (3) be consumed and deposited in a
nearby cell, or (4) perish.

The probability of a seed originating in cell i dispersing to cell j, δji,
is described by an exponential kernel modified by the expected habitat
preferences of the dispersal agents:

∝ − −δ e L η( · )x x r
jji

| |j i (3)

where |xj− xi| is the distance between the centroids of cells i and j, and
the J cells in the dispersal neighborhood for i are weighted by the ex-
pected habitat use of the dispersers (Merow et al., 2011), calculated as
the dot product of the land cover composition in the target cell, Lj, and
the vector of habitat preferences, η. The exponential kernel with decay
rate r represents the distribution of distances a dispersal agent is likely
to travel between consuming a fruit and defecating to deposit the seeds.
However, dispersers will preferentially travel to cells with an abun-
dance of their preferred habitat. Accordingly, the probability for each
cell is multiplied by the dot product of the land cover composition and
the preference for each land cover type. Thus, for a given distance,
dispersal probabilities are higher for cells with a high proportion of
disperser-preferred habitat. For each short distance dispersal neigh-
borhood (i.e., the J cells surrounding i), the probabilities δ1−J,i are
standardized to sum to 1, representing the dispersal probability con-
ditional on first emigrating from the source cell. The calculation of each
δji therefore incorporates the distance between i and j, as well as the
movement patterns, digestion times, and habitat preferences of the
dispersers.

Long distance dispersal is stochastic and inherently difficult to
predict, but can be critical to the range expansion of invasive species
(Trakhtenbrot et al., 2005; Merow et al., 2011). In addition to rare long
distance movements by birds (Merow et al., 2011), which could be
considered as rare occurrences following the same mechanism as short
distance dispersal, we also include human-mediated dispersal in our
definition of long distance dispersal to incorporate unintentional
transportation of fruits or seeds and intentional planting of individuals

Table 1
Parameter definitions. Indexes indicate cells i with neighbor j. Parameters without an i subscript are global, with one value for all cells. Values are for glossy
buckthorn. Ranges of values indicate the span among habitable land cover types (i.e., all but Other) for parameters that vary with land cover. Minimum and maximum
are the limits used in the global sensitivity analysis. Data sources include (a) field studies, (b) lab studies, (c) published literature, (d) pattern-oriented para-
meterization, and (e) expert knowledge. See Appendix A for additional details.

Symbol Quantity Best Minimum Maximum Source

Fecundity parameters
fi Pr(flower|adult) 0.15–0.45 0.11–0.34 0.19–0.56 a
μi Mean fruits per flowering adult 14–1948 10–1461 17–2435 a
γ Mean seeds per fruit 2.48 2.38 2.60 a
mi Age at adulthood [years] 3–7 2–4 4–8 a, e

Dispersal parameters
ci Pr(fruit is consumed by a bird) 0.17–0.30 0.12–0.25 0.23–0.33 a
r Short distance dispersal rate [1/cells] 0.0378 0.03 0.5 c, d
sddmax Maximum short distance dispersal distance [cells] 27 4 36 c, d
η Disperser relative habitat preferences 0.05–0.36 0.037–0.27 0.06–0.451 c
δji Pr(emigrant from j is deposited in i) a a a c
nldd Annual long distance dispersal events 19 1 20 c, d

Survival parameters
sc Pr(seed survival|consumed by bird) 0.59 0.49 0.61 a
sB Pr(seed survival|seed bank) 0.72 0.64 0.77 c
sM,i Pr(juvenile survival) 0.6–0.9 0.45–0.68 0.75–1 a, c
sN,i Pr(adult survival) 1 0.9 1 a, c, e
Ki Adult carrying capacity [density/cell] 4162–28,205 1383–19,533 100–38,714 a, c

Seedling parameters
gD Pr(germination directly in year produced) 0 0 0 c
gB Pr(germination from the seed bank) 0.2 0.18 0.28 a, b
pi Pr(establishment|germination) 0.08–0.42 0.06–0.32 0.10–0.53 a, b

a Note that δji is calculated in each cell based on η, land cover composition, and distance from the source cell.
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(Reichard and White, 2001; Lehan et al., 2013). We therefore include
long distance dispersal as a separate component in the model, which
also reduces computational requirements by limiting the size of short
distance dispersal neighborhoods. Thus, in each year, one successfully
established seedling is placed in each of nldd random cells on the
landscape, regardless of whether the cells are already occupied.

2.1.3. Seed dynamics
The Sit seeds deposited in cell i in year t may germinate, enter the

seed bank, or perish. The number of seeds that establish as seedlings is:

= ++M S g p B g pi t D i B i, 1,1 it it (4)

where Mi,t+1,1 is the number of one-year-olds in cell i in the following
year, gD is the probability that a seed deposited in year t germinates in
year t, pi is the probability that a germinant successfully establishes in
cell i, Bit is the number of seeds in the seed bank at the start of year t,
and gB is the probability that a seed germinates from the seed bank.

Seeds added to cell i in year t that do not germinate may enter into
the seed bank. The seed bank abundance in cell i is:

= − + −+B B g s S g s(1 ) (1 )i t B B D B, 1 it it (5)

where sB is the probability that a seed survives one year in the seed
bank.

2.1.4. Survival
We define adults as individuals that are capable of reproducing

based on age. Plants are considered juveniles until they reach this age,
m, and juveniles survive each year with probability sM,i, where survival
is dependent on the environmental conditions in i. The number of ju-
veniles of each age is stored as Mitk, with ages k=2, …, m− 1, and
calculated as:

=+ −M M si t k i t k M i, 1, , , 1 , (6)

such that individuals advance in age each year, diminished by annual
mortality.

Once individuals reach an age where they may potentially re-
produce, m, they are considered adults. The number of adults in cell i in
each year t, Nit, is limited by a ceiling-type carrying capacity, Ki, based
on the environmental conditions within each cell. The number of adults
is:

= ⎧
⎨⎩ ++

−
N

K
N s M smini t

i

N i i t m M i
, 1

it , , , 1 , (7)

where Ki is the carrying capacity in cell i and sN,i is the annual adult
survival rate. The number of adults in each cell will increase based on
the propagule pressure (i.e., the sum of local and immigrant seeds),
juvenile survival, and adult survival until the carrying capacity is
reached (Morris and Doak, 2003; McGowan et al., 2017).

This process-based model was written in R, and all simulations and
analyses were performed in R 3.5.2 (R Core Team, 2018). The model
and landscape have been made available as the R package gbPopMod
(https://github.com/Sz-Tim/gbPopMod). R code for the simulations
and analyses is provided in the appendixes.

2.2. Model application

2.2.1. System description
We illustrate the model using glossy buckthorn (Frangula alnus), a

shrub native to Eurasia that was introduced in North America by 1879
and has since become invasive in much of the northeastern United
States (Catling and Porebski, 1994; Johnson et al., 2006; Webster et al.,
2006; Aiello-Lammens, 2014). Glossy buckthorn persists in forest un-
derstories, but forms dense thickets in open canopy (Burnham and Lee,
2010). In addition to reducing recreational value, glossy buckthorn
causes particular damage to forestry operations; after trees have been
harvested, buckthorn densities increase dramatically in canopy gaps,
out-competing commercial timber species such as eastern white pine
(Frappier et al., 2003; Lanzer et al., 2017; Lee et al., 2017). Glossy
buckthorn produces fleshy fruits throughout the summer that are con-
sumed and dispersed by a variety of bird species (Craves, 2015). In the
northeastern United States, the most likely dispersers include European
Starlings, American Robins, and Cedar Waxwings (McCay et al., 2009).

We focus on southern New Hampshire and Maine in the north-
eastern United States, an area where glossy buckthorn is abundant and
eastern white pine forests are reasonably common (Fig. 2, black outline
in inset). Within this regional extent, we assume that land cover type is
the dominant factor affecting glossy buckthorn biological rates (Pearson
and Dawson, 2003). The landscape consists of 240,656 grid cells
(4,813,120 acres≈ 19,478 km2) with a resolution of 20 acres
(8.1 ha≈ 285× 285m). We specify biological rates for glossy buck-
thorn in six land cover classes (Open, Deciduous Forest, Mixed Forest,
White Pine Forest, Other Evergreen Forest, and Other) where possible,
using the land cover composition in each cell to calculate aggregate
expected rates across the landscape. We used a land cover map of the
predicted proportion of each land cover class in each 20 acre cell (Ap-
pendix A). The map was created to represent glossy buckthorn habitat
affinities via a modeled synthesis of two land cover datasets: the 2001
National Land Cover database (Homer et al., 2007) and the more de-
tailed New Hampshire land cover map (Justice et al., 2002). We used
environmental, anthropogenic, and topographic data to predict dis-
crepancies between the land cover datasets and to align categorization
differences to produce a single compositional land cover map across the
study extent at the desired resolution (Szewczyk et al., in review).

2.2.2. Parameterization and sensitivity analyses
To parameterize the model, we used a combination of field and lab

experiments, supplemented by published data from the literature, ex-
pert knowledge, and pattern-matching (Table 1 and Appendix A). When
data for glossy buckthorn were unavailable, we used ecologically si-
milar species, namely the woody shrub Lindera benzoin and the fleshy-
fruit producing invasive vine Celastrus orbiculatus. See Appendix A for
extensive parameter-specific details and additional information re-
garding data sources.

The earliest record of glossy buckthorn within the study area (Fig. 2,
black outline in inset) is in southern New Hampshire in 1922 (Aiello-
Lammens, 2014). This record served as the initial introduction site for
the sensitivity analysis and population initialization. We used historical
records to identify the dispersal parameters that best captured the ob-
served spread (Aiello-Lammens, 2014; EDDMap, 2016). Then, we ran
1000 iterations for 96 years (1922–2018) each, using the average
abundances in each cell to represent the predicted abundance of glossy
buckthorn in the study region from initial introduction to the year
2018. This final distribution served as the initial year in simulations
comparing management strategies, such that the management actions

Fig. 2. Map of the study region and properties included in the management
simulations. We compared four strategies for controlling the invasive shrub
glossy buckthorn on each property: none, stated, actual, and aggressive. The
black outline (inset) indicates the region used for the sensitivity analyses and
initialization. Gray lines are town boundaries.
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occur in the present environment as predicted by the model.
We performed a global sensitivity analysis to explore the plausible

parameter space and understand model behavior (Prowse et al., 2016;
Aiello-Lammens and Akçakaya, 2017). Rather than performing sensi-
tivity analyses for each parameter in isolation, a global sensitivity
analysis simultaneously selects values for all parameters. This approach
effectively marginalizes across any interactions between parameters to
provide a holistic estimation of the effect of each parameter on the
model predictions.

We set plausible parameter ranges based on field studies, lab stu-
dies, the literature, and expert opinion (Table A.1). We drew random
values from uniform distributions within these ranges to generate
25,000 parameter sets, running one iteration of the model for each
parameter set (Prowse et al., 2016). Despite the stochastic dispersal in
the model, a single iteration allows for a more efficient exploration of
the parameter space compared to multiple iterations per draw with a
more limited number of draws (Prowse et al., 2016). For each draw, we
simulated the population for 50 years from the initial introduction, and
then calculated the proportion of cells occupied by adults, the propor-
tion of cells with a seed bank, the proportion of occupied cells that had
reached carrying capacity, the mean and median abundance in occu-
pied cells, and the variance in abundance among occupied cells.

To evaluate each parameter's effect on each response metric, we
used boosted regression trees (BRTs) with all parameters included as
predictors (Elith et al., 2008; Prowse et al., 2016). BRTs use the ma-
chine learning technique of boosting to create an ensemble model of
regression trees to optimize predictive performance. Using the weights
of the regression trees included in the ensemble model, the relative
influence of each parameter can then be calculated (Elith et al., 2008).
We compared tree complexities of 1, 3, and 5. To ensure that the
parameter space was adequately explored, each BRT was fit with
bootstrapped subsets of varying size, with cross-validation deviance
and stability of the relative influence estimates calculated across subsets
(Prowse et al., 2016). For parameters that varied by land cover type, we
included the value for each of the six land cover types as predictors to
fit the BRT, and summed the relative influence. For example, we fit
each BRT with fOpen, …, fOther included as separate predictors, then
summed the relative influence to calculate an overall relative influence
for f. See additional detail in Appendix B.

We used pattern-oriented parameterization to identify the best es-
timates for dispersal (Grimm et al., 2005; Merow et al., 2011; Grimm
and Railsback, 2005). We compiled geo-located presences of glossy
buckthorn by combining herbarium records (Aiello-Lammens, 2014)
and occurrences from the EDDMapS database (EDDMap, 2016). For
each cell with an observation, we calculated the earliest observation.
We varied the mean short distance dispersal distance, 1/r, the max-
imum short distance dispersal distance, sddmax, and the number of an-
nual long distance dispersal events, nldd, in the same manner as the
main global sensitivity analysis, with all other parameters set to best
estimates, taking 5000 samples. Each iteration was initialized as above
and run for 96 years, representing the predicted spread through 2018.
Then, we selected the median values for each parameter from the
parameter draws that correctly predicted at least 90% of the historical
spread.

2.2.3. Management simulations
The University of New Hampshire manages woodland properties

throughout the state of New Hampshire. These properties vary in size
from 11 to 334 acres and are centrally managed with goals aimed to-
ward a variety of purposes, including recreation, wildlife habitat, and
academic uses. The abundance of glossy buckthorn and other invasive
plants is variable among properties, and stated management strategies
range from monitoring to regular treatment to no action (https://colsa.
unh.edu/woodlands/managed-properties). In practice, the realized
management actions on each property depend on a combination of
logistical constraints and broader goals.Ta
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We simulated possible strategies for managing glossy buckthorn on
12 of the woodland properties in southeastern New Hampshire (Fig. 2
and Table 2). To initialize the landscape, we ran 1000 simulations for
96 years each (1922–2018), using best estimates for each parameter
(Table A.1) and calculating the mean abundance across simulations of
the seed bank and of each age category within each land cover type in
each cell. For computational efficiency, the landscape and initial dis-
tribution were then truncated to the bounding box enclosing 2× sddmax

around the focal properties (Fig. 2, red outline). Then, we evaluated
four sets of management plans: no management, the stated manage-
ment plan, the actual management actions, and an aggressive plan
(Table 2). Each strategy was implemented for 1000 simulations of 20
years each to assess the effect of management actions on glossy buck-
thorn populations within and around each property.

3. Results

Our model predicts not only the probability of occurrence in each
cell of the landscape, but also the abundance of each life stage and the
spatial distribution of biological processes and rates. In our illustration
with glossy buckthorn, the predicted abundance of adults was highest
in cells with more Open habitat and less Forest (Fig. 3a), reflecting the
affinity of glossy buckthorn for higher light levels (Cunard and Lee,
2009; Burnham and Lee, 2010). In contrast, seedling establishment
rates show less geographic variation, despite varying among land cover
types (Fig. 3b). The total propagule pressure (i.e., the total seeds de-
posited in a cell), is high only near the abundance hotspots (Fig. 3c).
Individuals produce more fruit under open canopies, and the pattern of
per capita seed production thus mirrors that of adult abundance and
propagule pressure (Fig. 3d). Based on the total propagule pressure and
the number of seeds immigrating to each cell (Fig. 3e), the relative

abundance of local and immigrant seeds can be calculated (Fig. 3f).
Thus, process-based SDMs allow the examination of the spatial varia-
tion in each biological rate or process, providing information valuable
for management decisions.

The relative influence of parameters was stable for all metrics across
sample sizes greater than 20,000 (Fig. B.2), and we base our analysis on
25,000 samples of the parameter space. The parameters with greatest
influence varied with the metric of interest (Fig. 4). The number of
annual long distance dispersal events, nldd, and the age of adulthood, m,
primarily drove the proportion of cells occupied, both for adults and for
seeds, with smaller effects of the short distance dispersal rate, r, and
juvenile survival, sM. The proportion of occupied cells reaching carrying
capacity and the mean and median abundance were most strongly af-
fected by the age of adulthood with secondary effects of the juvenile
survival rate and, for mean abundance, carrying capacity, K. In con-
trast, the variance of abundance in occupied cells was driven by car-
rying capacity.

The number of annual long distance dispersal events had a large
impact on the ability to accurately predict the historic spread of glossy
buckthorn, reaffirming the results of the global sensitivity analysis. The
short distance dispersal rate had a moderate influence, while the
maximum short distance dispersal distance had little effect. The accu-
rate prediction of the distribution required abundant long distance
dispersal (nldd=19 annual events) with a short distance dispersal rate
of 0.0378 and a maximum distance of 27 cells (≈7.7 km).

In the management simulations, glossy buckthorn density on each
property approached or reached carrying capacity in the absence of
management actions (Fig. C.16). The stated plan, actual actions, and
aggressive strategy all decreased buckthorn adult and seed density re-
lative to no action on properties that implemented management
(Fig. 5). However, even the aggressive strategy failed to fully eliminate

Fig. 3. Maps of model output. Process-based species distribution models can predict numerous aspects of the species’ biology in addition to simple presence or
absence. As constructed here, the model generates predictions of abundance for (a) adults, juveniles, and the seed bank, in addition to (b) the predicted seedling
establishment rate, (c) total propagule pressure (i.e., the total number of seeds deposited in each cell), (d) per capita seed production, (e) immigrant seeds, and easily
calculable quantities such as (f) the relative influence of immigration on propagule pressure. The modeled extent includes southern New Hampshire and Maine as
indicated by the black outline in Fig. 2 inset.
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glossy buckthorn (Fig. 5, right column), despite repeated cutting,
spraying, and planting of cover crops (minimum density per property:
1.4–101 adults/20 acre). The seed bank was reduced, but maintained at
a lower equilibrium by the remaining adults as well as immigration
from nearby cells (Fig. 5, bottom row). Consequently, the abundance of
glossy buckthorn adults quickly rebounded in the intervening years
between treatments due to the surviving juveniles and the persistent
propagule pressure from surrounding cells.

4. Discussion

The process-based SDM presented here incorporates several biolo-
gical processes in the context of a bird-dispersed shrub. The flexible
structure makes this framework suitable for a wide array of species and
life histories. The added complexity confers several key benefits, in-
cluding insight into the geographic variation in vital rates, and the
ability to simulate specific, targeted effects of management actions,
with local decisions implemented in the broader regional context. We
illustrated such a use by evaluating management strategies for the in-
vasive shrub glossy buckthorn on 12 centrally managed properties in
southeastern New Hampshire, showing persistent spillover effects from
nearby un-managed cells.

Process-based SDMs provide much more detailed predictions than
occurrence-based SDMs (Merow et al., 2011, 2017). By incorporating
biological rates and processes that vary across environmental gradients,
they allow for spatial predictions of processes such as germination or
flowering rates (Merow et al., 2017). Exploration of these predictions
may highlight management methods or locations that are likely to be
most fruitful, whether for reducing the abundance of an invasive spe-
cies or, conversely, increasing the abundance of a threatened species.

For example, a regional strategy for managing glossy buckthorn may
involve targeting populations that produce a large number of emigrant
seeds to efficiently reduce the propagule pressure of the surrounding
area (Fig. C.12). Incorporating mechanistic dispersal in a simulation
framework extends the possibilities further. Temporally dynamic si-
mulations may identify dispersal corridors for species, highlighting
areas to protect or monitor. Compared to SDMs with simple population
growth (Merow et al., 2011), the model presented here includes age
structured populations and reproductive processes. Aggregating and
collecting data to inform these processes across an adequate environ-
mental gradient may be more logistically feasible than estimating in-
trinsic growth rates across a similar gradient. Further, a model built
directly on biological processes may produce more accurate predictions
in the face of a changing climate, particularly if parameterized with
warming or transplant experiments (Jiménez-Valverde et al., 2011;
Evans et al., 2016).

In the global sensitivity analysis, we constrained the range of each
parameter according to available data. The relative influence therefore
reflects a combination of the inherent sensitivity of the output to that
parameter and the breadth of the plausible range. In contrast, using the
full allowable range for each parameter (e.g., [0–1] for a probability)
reveals solely the sensitivity that is structural in the model.
Incorporating data-driven constraints on the ranges highlights para-
meters for which additional data would be most valuable and lead to
the greatest improvements in predictions. If a distinction between the
influence of structural sensitivity and data uncertainty is required, one
could compare a sensitivity analysis performed with data-driven ranges
to one performed with full possible ranges. Our results show that the
number of annual long distance dispersal events, the age of maturity,
and the juvenile survival rate are influential across several grid-wide

Fig. 4. Relative influence of parameters in a
global sensitivity analysis. We varied all para-
meters simultaneously within data-based
ranges (Tables 1 and A.1), and used boosted
regression trees to calculate the relative influ-
ence of each on the number of cells occupied
by adults, the number occupied by seeds, the
proportion of occupied cells at carrying capa-
city, and the mean, median, and variance in
adult abundance for occupied cells.

Fig. 5. Proportion of ‘No action’ abundances under each management regime.
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metrics. While long distance dispersal is inherently difficult to predict
(Higgins and Richardson, 1999; Buchan and Padilla, 1999), future
models of glossy buckthorn would most benefit from additional data
clarifying juvenile mortality and the age at which individuals are cap-
able of producing fruit across a range of environments.

We identified best estimates for each dispersal parameter using a
pattern-oriented approach with historical records of glossy buckthorn.
Compared to Celastrus orbiculatus, a bird-dispersed invasive vine in New
England, our model of glossy buckthorn required broader short distance
dispersal and more annual long distance dispersal events (Merow et al.,
2011). We propose three hypotheses for this difference relative to
previous work. First, our definition of long distance dispersal is broader,
including not only rare long distance bird dispersal, but also uninten-
tional and intentional human-mediated events. Like many invasive
plants, glossy buckthorn was planted in gardens as an ornamental
shrub, particularly early in its introduction history (Catling and
Porebski, 1994; Reichard and White, 2001; Aiello-Lammens, 2014), and
so a high number of ‘dispersal’ events reflects this history. Second, we
modeled a relatively modest regional extent, and glossy buckthorn
occurs beyond our study borders (Catling and Porebski, 1994; Aiello-
Lammens, 2014; Craves, 2015). Increased long distance dispersal could
reflect dispersal from beyond our landscape boundaries, a phenomenon
likely to be less influential in the model of C. orbiculatus across the
entirety of the northeastern United States. Third, we used a high re-
solution grid to evaluate management scenarios, and consequently,
dispersing seeds must cross more grid cells per unit distance. Because
dispersal probability exponentially decreases with distance from the
source cell, dispersal requires more ‘steps’ on a high resolution grid
than on a coarser grid, which is compensated for by a flatter ex-
ponential distribution for short distance dispersal.

Process-based SDMs, which construct distributions based on biolo-
gical processes, are often assumed to be superior to occurrence-based
SDMs, which construct distributions by relating occurrence data to
environmental variables (Jiménez-Valverde et al., 2011; Evans et al.,
2016; Merow et al., 2017). However, the application of grid-based si-
mulations with simple population growth and mechanistic dispersal for
predicting species distributions has been minimal (Merow et al., 2011).
More complex integral projection models incorporate individual-level
data into vital rate regressions, and can be used to predict population
growth rates across a region (Merow et al., 2014, 2017). The data that
are available or feasibly collected constrain the plausible choices for
process-based SDMs. Estimating intrinsic population growth rates ty-
pically requires population estimates across several years and the ac-
curacy is quite sensitive to inter-annual stochastic variation (Morris and
Doak, 2003; McCain et al., 2016; Loehle and Weatherford, 2017). Si-
milarly, integral projection models require multi-year, labor-intensive
studies to measure and track individuals across a sufficiently broad
environmental gradient (Aiello-Lammens, 2014; Merow et al., 2014,
2017). The model presented here represents an alternative that uses
data that may be more readily available in the literature or more
quickly collected in the field, with intermediate model complexity.

Often, SDMs are built at fairly coarse resolutions with pixels on the
order of multiple square kilometers (Elith and Leathwick, 2009; Ibánez
et al., 2009; Merow et al., 2011; Bellard et al., 2013; Allen and Bradley,
2016). At these scales, regional variables such as climate tend to be
most influential (Huston, 1999; Pearson and Dawson, 2003; Keil et al.,
2012; Fraterrigo et al., 2014), and the models are agnostic regarding
sub-pixel variation in the species’ occurrence or abundance. Stake-
holders deciding how to monitor and manage individual properties
require more detailed predictions than coarse-scale models can provide.
These managers would benefit most from high resolution models pre-
dicting the probable abundance or risk within each property (Matzek
et al., 2015). Hyper-local plant distributions are often determined by
variables such as light availability, soil type, or canopy species (Guisan
and Thuiller, 2005; Elith and Leathwick, 2009; Burnham and Lee,
2010), as well as the stochastic placement of individuals (Grimm et al.,

2005). While a model can be parameterized using these local variables,
predictions may then be limited to hypothetical ‘good’ or ‘bad’ local
habitats since the local variables are unknown at a regional extent
(Merow et al., 2017). Thus, there is a critical scale mismatch between
the models ecologists are often able to build and the models that would
be most useful for applied management decisions (Matzek et al., 2015).
Process-based regional models such as the model presented here are a
step toward rectifying this mismatch, and could be combined with
statistical downscaling to predict local distributions on particular
properties (Wu and David, 2002; Keil et al., 2013; Barwell et al., 2014).

The specific model presented here describes a bird-dispersed woody
shrub. However, the structure is easily modified for different life his-
tories or dispersal methods. For example, a biennial plant could be
modeled by setting the age at maturity to 2 and adult survival to 0. To
model a wind-dispersed species, short distance dispersal neighborhoods
could be increased in size and modified by wind patterns if data are
available (Nathan et al., 2011). Importantly, additional variables such
as climate, topography, or even the distribution of competitor species
can be included rather than solely land cover, such that parameters are
calculated in each cell based on regressions (Merow et al., 2017; Carlo
et al., 2018; Fern et al., 2019). In the absence of available data to in-
form these regressions, sensitivity analyses could identify the impact of
data-based uncertainty. Further, simulations could incorporate para-
meter uncertainty by selecting values from a specified distribution in
each iteration, essentially adopting a Bayesian approach to produce a
more robust assessment of the likely distribution (Morris and Doak,
2003; Clark, 2005; Szewczyk and McCain, 2019). Rather than assuming
simplistic dynamics among habitat types, density-dependent habitat
selection could be included, depending on the species’ life history
(Menezes and Kotler, 2019). This model employs average population
values, assuming that individual variation is negligible to the metrics of
interest. A similar grid-based structure could be combined with re-
gression models of individual-based traits and the environmental con-
ditions within each cell to account for individual differences as in in-
tegral projection models (Merow et al., 2014, 2017). However, a key
benefit of a population-level model is the lower data requirement
compared to an individual-level model, where tagged individuals must
be monitored and measured across years.

Dynamic SDMs with mechanistic dispersal and biologically realistic
processes hold great potential for management planning. While we
focused on an established invasive, a newly introduced species could be
projected into the future to identify unoccupied areas highly vulnerable
to invasion, and the local and regional success of management options
weighed. Alternatively, policies for increasing the abundance or dis-
tribution of rare species could be evaluated. For example, populations
of grassland birds such as the Bobolink and Eastern Meadowlark have
seen dramatic declines in the northeastern United States resulting from
changes in land use (Bollinger et al., 1990; Foster, 2002; Foster et al.,
2002). State agencies and non-governmental organizations are cur-
rently attempting to increase their abundance by preserving or creating
suitable grassland habitat (Foster and Motzkin, 2003; Hill et al., 2014).
With the modelling framework presented here, managers could com-
pare the effects of improving habitat in different locations to maximize
the impact of their efforts. Further, conservation organizations advocate
for several strategies to align agricultural practices with nesting habits,
including delaying hay harvests to lower juvenile mortality and redu-
cing grazing to minimize nest destruction (Bollinger et al., 1990; Hill
et al., 2014). The relative effectiveness of these options could be com-
pared, incorporating regional heterogeneity in their effects. Thus, this
model structure provides the ability to identify the most sensitive life
stages and processes, as well as the most critical localities.

The interconnected regional context in our management simulations
includes cells beyond the purview of the focal manager, and we as-
sumed that glossy buckthorn was not controlled in any non-focal cells.
Future work could predict management within each cell of the land-
scape. For example, integration with decision models could allow each

T.M. Szewczyk, et al. Ecological Modelling 413 (2019) 108827

8



simulated land owner to decide how to manage the species (Epanchin-
Niell and Wilen, 2014). Alternatively, coordinated regional strategies
could be evaluated, representing cooperation among land owners or a
large agency such as the U.S. Forest Service centrally managing the
majority of the study region (Sims et al., 2010). Further, we evaluated
just four pre-determined management strategies. Management actions
could instead be optimized across a broad range of possibilities using
machine learning techniques (Adelman and Mersereau, 2008; Boutilier
and Lu, 2016). Lastly, we defined our set of possible management ac-
tions by those that have been evaluated for glossy buckthorn (Fig. 1).
However, the demographic structure of the model provides the valuable
opportunity to assess any actions relevant to the species of interest,
such as the introduction of a biocontrol agent that reduces seed pro-
duction or the strategic application of fire (Buckley et al., 2004; Davis
et al., 2006).

Grid-based population models hold great potential for applications
in conservation and management. By incorporating both local and re-
gional biological processes, simulated management actions can target
particular life stages within a limited spatial extent, while the resultant
effects occur within the context of the full landscape. These models can
help to clarify not only which management actions are likely to be most
effective, but also the locations that are most likely to lead to success.
The flexible nature of process-based SDMs allows for their application
across a wide variety of taxa and management goals. Process-based,
regional models are an opportunity to provide managers with data-
driven, science-based, actionable information to maximize the success
of conservation decisions.
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