®

Check for
updates

Old and New Nearly Optimal Polynomial
Root-Finders

Victor Y. Pan!2(&)

! Department of Computer Science, Lehman College of the City University
of New York, Bronx, NY 10468, USA
victor.pan@lehman.cuny.edu
2 Ph.D. Programs in Mathematics and Computer Science,

The Graduate Center of the City University of New York,
NewYork, NY 10036, USA
http://comet.lehman.cuny.edu/vpan/

Abstract. Univariate polynomial root-finding has been studied for four
millennia and still remains the subject of intensive research. Hundreds
if not thousands of efficient algorithms for this task have been proposed
and analyzed. Two nearly optimal solution algorithms have been devised
in 1995 and 2016, based on recursive factorization of a polynomial and
subdivision iterations, respectively, but both of them are superseded in
practice by Ehrlich’s functional iterations. By combining factorization
techniques with Ehrlich’s and subdivision iterations we devise a vari-
ety of new root-finders. They match or supersede the known algorithms
in terms of their estimated complexity for root-finding on the complex
plane, in a disc, and in a line segment and promise to be practically
competitive.

Keywords: Polynomial root-finding - Deflation -
Polynomial factorization - Functional iterations + Subdivision -
Real root-finding

2000 Math. Subject Classification: 656H05- 26C10- 30C15

1 Introduction

1. The Problem and Three Known Efficient Algorithms. Univariate poly-
nomial root-finding has been the central problem of mathematics since Sumerian
times (see [1,2,33,34]) and still remains the subject of intensive research due
to applications to signal processing, control, financial mathematics, geometric
modeling, and computer algebra (see the books [28,30], a survey [19], the recent
papers [11,12,24,40,45,48], and the bibliography therein).

Hundreds if not thousands of efficient polynomial root-finders have been
proposed. The algorithm of [32] and [37], extending the previous progress in

© Springer Nature Switzerland AG 2019
M. England et al. (Eds.): CASC 2019, LNCS 11661, pp. 393-411, 2019.
https://doi.org/10.1007/978-3-030-26831-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26831-2_26&domain=pdf
https://doi.org/10.1007/978-3-030-26831-2_26

394 V.Y. Pan

[15,31,50], first computes numerical factorization of a polynomial into the prod-
uct of its linear factors and then approximates the roots; it solves both tasks
in nearly optimal Boolean time — almost as fast as one can access the input
coefficients with the precision required for these tasks.!

Since 2000 the root-finder of the user’s choice has been the package MPSolve,?
implementing Ehrlich’s iterations of [18], also known from their rediscovery
by Aberth in 1973. In 2016, a distinct nearly optimal polynomial root-finder
appeared in [11,12], based on subdivision iterations. That algorithm promises
to compete with MPSolve for root-finding in a disc on the complex plain [24],
but less likely for the approximation of all roots of a polynomial unless our
innovations raise practical efficiency of subdivision to a much higher level.

2. New Hybrid Algorithms. We propose new hybrid root-finders seeking
synergistic combination of the known techniques.

We first recall that [32] and [37] factorize a polynomial by splitting it into
the product of two factors of comparable degrees and then recursively splitting
the factors in a similar way as long as their degree exceeds 1. This advanced
recursive construction turned out to be hard to implement, but its basic deflation
algorithm developed by Schonhage in [50], traced back to Delves and Lyness [15],
and hereafter referred to as DLS algorithm or DLS deflation can be handled
quite readily. Presently we devise new hybrid root-finders by incorporating the
DLS algorithm into Ehrlich’s and subdivision iterations. In both cases deflation
enables us to apply root-finding to smaller degree factors, possibly having fewer
root clusters rather than to the input polynomial.

We also enhance the efficiency of subdivision iterations by incorporating a
very fast and robust sub-algorithm of DLS deflation that computes the number
of roots in a disc as the sum of the Oth powers of all roots in that disc. This is
dramatic improvement of root counting in the papers [11,12], which listed root
counting algorithm as their main novelty compared to their predecessors.

We also propose an additional simplification of real root-finding based on
fast estimation of the distances of real roots from the origin.

Our hybrid root-finders are nearly optimal and can become the user’s choice.
Their implementation, testing and refinement are major challenges.

3. Some Extensions. Our hybrid algorithms can be readily extended to var-
ious functional iterations such as Newton’s and Weierstrass’s that approximate
all roots of a polynomial, but we also extend our approach to nearly optimal
root-finding in a disc and a line interval. In both cases non-costly removal of

! Required precision and Boolean time are smaller by a factor of d, the degree of
the input polynomial, at the stage of numerical polynomial factorization, which has
various important applications to modern computations, besides root-finding, e.g., to
time series analysis, Wiener filtering, noise variance estimation, co-variance matrix
computation, and the study of multi-channel systems (see Wilson [59], Box and
Jenkins [7], Barnett [3], Demeure and Mullis [16] and [17], Van Dooren [56]).

2 Some competition came in 2001 from the package EigenSolve of [20], but the latest
version of MPSolve of [10] has combined the benefits of both packages.

Old and New Nearly Optimal Polynomial Root-Finders 395

the external roots by means of deflation promises substantial advantage over
the customary solution of these tasks by means of application of MPSolve and
subdivision to the original polynomial of higher degree.

We hope that our work will motivate further efforts towards synergistic com-
bination of some efficient techniques well- and less- known for polynomial root-
finding (see, e.g., the little explored methods of [40] and [48]).

Devising practical and nearly optimal factorization algorithms is still a
research challenge because for that task both Ehrlich’s and subdivision itera-
tions are slower by at least a factor of d than [32] and [37].

4. Variations of Deflation. With Ehrlich’s iterations we can combine the
DLS deflation, but also two simpler algorithms (see Sect.4.3). One of them only
involves shift and scaling of the variable and forward and inverse FFTs and
allows us to represent an input polynomial with a black box for its evaluation
rather than with coefficients. In [39] and [25] we alternatively combine Ehrlich’s
iterations with implicit deflation, which ensures preserving sparseness of an input
and avoiding coefficient growth.

With subdivision iterations we combine the DLS deflation, which is highly
efficient and relatively simple but has been too little (if at all) used by researchers
since [37]. It has been hidden in the long paper [50], within a realm of intricate
and advanced techniques for the theoretical estimation of asymptotic Boolean
complexity where extremely accurate polynomial factorization is required, but
some of these techniques can help enhance performance of the most popular
root-finders.

Now suppose that the root set of a factor is a strongly isolated cluster of w
roots of p having a small diameter. Such a cluster may appear in subdivision
process and then can be readily detected. In this special case we can perform
deflation at a low cost by means of shifting the origin into the cluster and then
reducing the resulting polynomial ¢(x) modulo z**! (see Sect.5.4).

5. Organization of the Paper. We state four variations of the main root-
finding problem in Sect. 2 and deduce lower bounds on their Boolean complexity
in Sect.3. We cover computation of a factor with root set in a fixed disc in
Sect. 5 and our hybrids of deflation with functional iterations in Sect. 4 and with
subdivision in Sect.6. In Sect.7 we devise a new nearly optimal polynomial
root-finder on a line segment. We refer the reader to [42, Appendix] for concise
exposition of factorization algorithms of [50] by Schénhage and [26] by Kirrinnis
(67 pages) and for some other auxiliary and complementary algorithms and
techniques for polynomial root-finding.

2 Four Fundamental Computational Problems

Problem 1. Univariate Polynomial Root-finding. Given a positive b and the
coefficients pg, p1,...,pq of a univariate polynomial p(z),

d d
p(x) = pix’ =pa [[(@—=;), pa #0. (1)
i=0 j=1

396 V.Y. Pan

approximate all d roots® x1, ..., x4 within the error bound 1/2° provided that
max;lzo |z;] < 1. We can ensure the latter customary assumption at a dominated
computational cost by first approximating the root radius r; = maux?l:1 |z;| and
then scaling the variable x (cf., e.g., [33]).

Before proceeding any further we recall some Basic Definitions.

Hereafter we freely denote polynomials p(z), t(z) = Y, t;x%, u(z) = Y, u;a’
etc. by p, t, u etc. unless this can cause confusion.

~ We use the norm |u| = Y, |u;| for u =Y, u;z’.

— d, = deg(u) denotes the degree of a polynomial u; in particular d, = d.

— e-cluster of roots of p is a root set lying in a disc of radius ¢; in particular a
0-cluster of m roots of p is its root of multiplicity m.

Problem 2. Approzimate Factorization of a Polynomial. Given a positive b’
and the coefficients pg,p1,...,pq of a polynomial p = p(x) of (1), compute 2d

complex numbers u;,v; for j =1,...,d such that
d
p— [[(wjz —v)| <27 |pl. (2)
j=1

Problem 3. Polynomial root-finding in a disc. This is Problem 1 restricted to
root-finding in a disc on the complex plain for a polynomial p that has no roots
lying outside the disc but close to it.

Problem 4. Polynomial root-finding in a line segment. This is Problem 1
restricted to root-finding in a line segment for a polynomial p that has no roots
lying outside the segment but close to it.

The above concept “close” is quantified in Definition 1 in the case of Problem
3 and is extended to Problem 4 via its reduction to Problem 3 in Sect. 1.

Remark 1. Tt is not easy to optimize working precision for the solution of Prob-
lems 1-4 a priori, but we nearly optimize it by action, that is, by applying the
solution algorithms with recursively doubled or halved precision and monitoring
the results (see Sect. 4.2 and recall similar policies in [5,10,12,45]).

Remark 2. Tt is customary to reduce Problems 3 and 4 to root-finding in the
unit disc
D(0,1) :={z: |z| <1}

and unit segment
S-1,1]:={z: —1<z<1}

by means of shifting and scaling the variable. Then the working precision and
Boolean cost grow but within the nearly optimal bounds.

3 We count m times a root of multiplicity m.

Old and New Nearly Optimal Polynomial Root-Finders 397

3 Boolean Complexity: Lower Estimates and Nearly
Optimal Upper Bounds

Proposition 1. The solution of Problem 2 involves at least db' bits of memory
and at least as many Boolean (bit-wise) operations.

Proof. The solution of Problem 2 is given by the 2d coefficients u; and v; of the
d linear factors u;z —vj of pfor j=1,...,d. Let u; =1 and 1/2 < |v;| < 1 for
all j. Then each v; must be represented with b" bits and hence all v; must be
represented with db’ bits in order to satisfy (2). A Boolean operation outputs a
single bit, and so we need at least db’ operations in order to output db’ bits.

Next we bound from below the Boolean complexity of Problems 1, 3 and 4.

Lemma 1. Let p(z) = (z — x1)" f(x) for a polynomial f(x) and a positive
integer m. Fix a positive b. Then the polynomial p;(z) = p(x) + 20=mb (g —
1) f(x) has m — j roots x1 + wfn7j2*b fori=0,....m—j—1and wy,_; =
exp(2mi/(m—j)) denoting a primitive (m — j)th root of unity, such that wz:g =
Lwh, j#1 for0<i<m-—j.

Proof. Observe that p;(z) = ((x —x1)™ 7 + 2078 (z — 21)J f(x) and consider
the roots of the factor (x — x;)™ 7 4 20—m)?,

Corollary 1. Under the assumption of Lemma 1 write [:= [logy | f|] and g :=

Z;’L:_ll [log, |g;j]1. Then one must process at least

Bp:(d—m+1+m7_l>mbfffg (3)

bits of the coefficients of p and must perform at least B,/2 Boolean operations
in order to approzimate the m-multiple root x1 of p within 1/2°.

Proof. By virtue of Lemma 1 the perturbation of the coefficients py,. . . ,pg—m of
p(x) by |f]|/2™° turns the (m — j)-multiple root x; of the factor (z — xq)™J
of p(z) into m — j simple roots p;(x), all lying at the distance 1/2° from ;.
Therefore, one must access at least (d — m 4+ 1)mb — f bits of the coefficients
D0, - - -y Pd—m Of p in order to approximate the root x; within 1/25.

Now represent the same polynomial p(z) as (z—xz1)™ 7/ g;(x) for g;(z) = (x—
x1)/ f(x) and j = 1,...,m — 1. Apply Lemma 1 for m replaced by m — j and for
f(z) replaced by g;(z) and deduce that a perturbation of the coefficient pg—m+;
of p by |g;|/2(™=® turns the j-multiple root 1 of g;(x) = (z — x1)? f(z) into j
simple roots, all lying at the distance 1/2° from x1. Therefore, one must access at
least Z?;l((m—j)b—g = mT_lmb—g bits of the coefficients pg_mt1,. .., pg—1 in
order to approximate the root xy within 1/2° Sum the bounds (d —m+1)mb— f
and mT_lmb — g and arrive at the bound (3) on the overall number B, bits; at
least B,/2 Boolean operations must be used in order to access these bits — at
least one operation per each pair of bits.

398 V.Y. Pan

Let us specify bound (3) in two cases. (i) If m = d, f(z) = 1, and |21| < 0.5/d,
then f =0, |g;] <2 forall j, g <d—1, and

B, > (d+1)db/2 — d + 1. (4)

(ii) If ;1 is a simple root, well-isolated from the other roots of p,then substitute
m =1 and g = 0 into Eq. (3), thus turning it into B, = db — f for f(z) =
p(z)/(x — x1) such that |f| < d|p|. This implies that

B, = (b — [pl)d.

Remark 3. Corollary 1 defines lower bounds on the Boolean complexity of Prob-
lems 1, 3, and 4 as long as an input polynomial p has an m-multiple root in the
complex plain, a disc, and a segment, respectively. One can extend all these
bounds to the case where a polynomial has an e-cluster of m roots for a suffi-
ciently small positive € rather than an m-multiple root.

The algorithm of [32] and [37] solves Problem 2 by using O(db) bits and
Boolean operations. This Boolean cost bound is within a poly-logarithmic factor
from the information-theoretic lower bound db’ of Proposition 1. Based on [52,
Theorem 2.7] one can extend this estimate to the solution of Problems 1, 3 and
4 at a Boolean cost in O(d?b), which is also nearly optimal by virtue of (4), and
to nearly optimal solution of the problem of polynomial root isolation (see [42,
Corollaries D.1 and D.2]).

4 Ehrlich’s Iterations and Deflation

4.1 Ehrlich’s Iterations and Their Super-Linear Convergence

The papers [5] and [10] present two distinct versions of MPSolve based on two
distinct implementations of Ehrlich’s functional iterations.

[5] applies original Ehrlich’s iterations by updating current approximations
z; to all or selected roots x; as follows:

Zi < Z; _Ep,i(zi)u 1=].,...,d7 (5)
1 1 d
E,i(z) =0if p(z) =0; B, (2) =N) — Z . otherwise, (6)
P P j=1,j#i I
Ny(x) = p(z)/p' (2 (7)

* Here and hereafter we write O(s) for O(s) defined up to a poly-logarithmic factor
in s.

Old and New Nearly Optimal Polynomial Root-Finders 399

[10] modifies these iterations by replacing polynomial equation p(x) = 0 by
an equivalent rational secular equation®

.%'—Zj

d
S() ::Z Y 1=0 (8)

where z; ~ x; and v; = % for I(z) = H;l:l(x —zj)and j=1,...,d.

Cubic convergence of these iterations simultaneously to all roots of a poly-
nomial has been proved locally, near the roots, but under some standard choices
of initial approximations very fast global convergence to all roots, right from
the start, has been consistently observed in all decades—long applications of the

iterations worldwide.

4.2 Precision Management

The condition number of a root defines computational precision sufficient in order
to ensure approximation within a fixed relative output error bound (see the rel-
evant estimates in [5] and [10]). The value of the condition is not known a priori,
however, and MPSolve adopts the following policy: at first apply Ehrlich’s iter-
ations with a fixed low precision (e.g., the IEEE double precision of 53 bits) and
then recursively double it until all roots are approximated within a selected error
tolerance. More precisely, MPSolve updates approximations only until they are
close enough in order to satisfy a fixed stopping criterion, verified at a low com-
putational cost. We call such roots tame and the remaining roots wild. MPSolve
stops applying Ehrlich’s iterations to a root when it is tamed but keep applying
them to the wilde roots — with recursive doubling of the working precision. When
a root is tamed this precision is optimal up to at most a factor of two. Recall
from [50] and [52, Section 2.7] that working precision does not need to exceed the
output precision b by more than a factor of d, and so at most O(log(db)) steps
of doubling precision are sufficient. This natural policy has been proposed and
elaborated upon in [5] and [10], greatly improving the efficiency of the previous
implementations of functional iterations for polynomial root-finding.

4.3 Ehrlich’s Iterations with Deflation

Suppose that MPsolve seeks w wild roots z1,...,x, of p and perform ITER,
Ehrlich’s iterations with a working precision b.This involves O(dw ITER,,) arith-
metic operations performed at the Boolean cost O(dwu(b) ITER,).

We propose a modification where we first (a) deflate p by computing its
factor f(z) = [[;Z,(z — ;) and then (b) apply to this factor ITER; Ehrlich’s

iterations, at both stages (a) and (b) using the same working precision b.

5 The paper [10] elaborates upon expression of Ehrlich’s iterations via secular equation,
shows significant numerical benefits of root-finding by using this expression, and
traces the previous study of this approach back to [6].

400 V.Y. Pan

At stage (b) the Boolean cost bound O(dw(b)) decreases by a factor of d/w
at the price of adding the cost of deflation at stage (a).6
Each of the three algorithms of the next subsection performs deflation at

a Boolean cost in O(dwp(b)), favorably compared to the above cost bound
O(dwu(b) ITER,). This comparison suggests that using deflation is competi-
tive in terms of the Boolean cost and becomes more favorable as ITER,, grows.

Subsequent Ehrlich’s iterations may in turn tame part of the roots of the
polynomial f(z), and then we can deflate f(z). We can do this recursively,
computing a sequence of factors f;(z) for i« = 1,2,...,t where f; = f and
fix1 is a smaller degree factor of f; for all .7 The algorithm would stay nearly
optimal overall if we perform deflation poly-logarithmic number of times ¢, e.g.,
if we delay deflation of the current factor until deg(f;+1) < Bdeg(f;) for a fixed
constant® 3 < 1 and for all i. In the following example computational cost
becomes too high if we perform deflation d — 1 times but stays nearly optimal if
we properly delay deflation.

d

Ezxample 1. Let p = szl(x — 1+ 1/29) for a large integer d. In this case the

roots 1 — 1/27 are stronger isolated and better conditioned for smaller j, and so
Ehrlich’s iterations may peel out one such root of p at a time. Then we would
d — 1 times approximate polynomials of the form p; := f;(x) H;Zl(x —1+1/2%)
for some polynomials f;(x), i =1,...,d — 1. For each i the polynomial f;(x) is
a factor of p of degree d — i sharing a cluster of at least d — 7 roots with p, and
so approximation of such a factor involves at least bid/2 bits and at least bd/4
Boolean operations. Now consider just the polynomials f; for i = 1,...,|d/2].
Each of them shares a cluster of at least d/2 roots with the polynomial p, and
so we must choose b, > bd/2 (see Corollary 1). Hence approximation of all these
factors requires at least order of bd® bits and Boolean operations, but we can
decrease this large bound to nearly optimal level if we skip deflation at the ith
step unless deg(f;(z))/ deg(fi+1(x)) > ~ for a fixed v > 1, e.g., v = 2.

4.4 Deflation Algorithms for Ehrlich’s Iterations

Recipe 1. Fix p > 2max}, |z;| and an integer ¢ such that 2071 < < 29,
write z; = pexp(2mi/2?) for j =0,1,...,29 — 1, and compute (i) p(z;) for all j,
(i) f(z;) =p(z) — szw+1(zj — xg) for all j, and (iii) the coefficients of f(z).

5 Furthermore we may have ITER; <ITER, because of the decrease of the maximal
distance between a pair of roots and of the number and sizes of root clusters in the
transition from p to the polynomial f(z) of a smaller degree w.

7 [50] supplies estimates for the working precision in such a recursive process, which
ensure the bound 1/ 2° on the errors of the output approximations to the roots of p.

8 The wild roots are much less numerous than the tame roots in a typical partition of
a root set observed in Ehrlich’s, Weierstrass’s and other functional iterations that
simultaneously approximate all roots of p as well as in Newton’s iteration in [54].
Consequently the coefficient growth and the loss of sparseness are not dramatic in
the transition to the factors defined by the wild roots.

Old and New Nearly Optimal Polynomial Root-Finders 401

Besides scaling the variable x, we perform (d —w)2? arithmetic operations at
stage (ii), [d/w] FFTs on 27 points at stage (i), and a single inverse FFT on 29
points; overall we need O(dwyu(b)) Boolean operations [26,46]. This cost bound
can be verified for the following two recipes as well.

Recipe 2. Compute at first the values of the polynomial f(z) at scaled
roots of unity (as in Recipe 1), then the power sums of its roots, and finally its
coefficients, (cf. [50, Section 12] or [42, Appendices A and B]).

Recipe 3 [53]. Compute the power sums s, = Z;l:l x?, kE=0,1,..., of
the roots of p by applying Newton’s identities (cf., e.g., [36, Equations (2.5.4)
and (2.5.5)]). Then by subtracting the powers of all tame roots compute the
power sums of the roots of the polynomial f(z). Finally recover its coefficients
by applying Newton’s identities.

Recipe 3 involves the coefficients of p, while Recipes 1 and 2 as well as
Ehrlich’s, Weierstrass’s and Newton’s iterations can be applied to a polynomial
p given just by a subroutine for its evaluation, which is an advantage when, say,
the polynomial is presented in a compressed form or in Bernstein basis.

4.5 Extension to Other Functional Iterations

The recipes of doubling the working precision and consequently of partitioning
the roots into tame and wild ones and our recipes for deflation and its analysis
can be extended to Weierstrass’s [57], Werner’s [60], various other functional
iterations for simultaneous approximation of all roots of p [28, Chap.4], and
Newton’s iterations applied to the approximation of all roots of p. E.g., Schleicher
and Stoll in [54] apply Newton’s iterations to the approximation of all roots of
a polynomial of degree d = 2! and arrive at w &~ d/1000 wild roots.

4.6 Boolean Complexity of Problems 1-4 with and Without
MPSolve

Let us compare Boolean complexity of the solution of Problems 1-4 by using
MPSolve versus the algorithms of [11,32,37], and [12].

Empirically Ehrlich’s iterations in MPSolve have simpler structure and
smaller overhead in comparison with the algorithms of the latter papers, but
unlike them have only empirical support for being nearly optimal. Moreover
super-linear convergence of Ehrlich’s iterations has only been observed for simul-
taneous approximation of all roots, and so these iterations solve Problems 3 and
4 of root-finding in a disc and on a line interval about as fast and as slow as
Problem 1 of root-finding on the complex plain, while the nearly optimal cost of
root-finding by the algorithms of [11,32,37], and [12] decreases at least propor-
tionally to the number of roots in the input domain. As we have already said in
the introduction, MPSolve, [11] and [12] can solve Problem 2 of factorization of
p within the same Boolean cost bound as Problem 1, whereas the algorithm of
[32] and [37] solves Problem 2 faster by a factor of d, reaching a nearly optimal
Boolean cost bound.

402 V.Y. Pan

5 Approximation of a Factor of a Polynomial

In Sect.4.4 we approximated a factor f(z) by first computing its values on a
fixed circle or the power sums of its roots. These computations were inexpensive
in applications to Ehrlich’s iterations and were readily combined with them. In
applications to subdivision iterations and to root-finding in the line interval the
power sum techniques of the DLS deflation also work but require more elabora-
tion. We begin that elaboration in this section, complete it in [42, Appendices
A and BJ, and apply it in Sects. 6 and 7.

5.1 Isolation of a Domain and Its Boundary

The following definition covers quite a general class of domains on the complex
plain, although in this paper we only apply it to the unit disc D(0, 1).

Definition 1. Isolation of a domain and its boundary. Let a domain D on the
complez plain allow its dilation from a fived center. Then this domain has an
isolation ratio at least 6 and is O-isolated for a polynomial p and real 0 > 1 if the
root set of p in the domain D is invariant in the 0-dilation of D. The boundary
of such a domain D has an isolation ratio at least 8 and is 0-isolated if the root
set of p in D stays invariant in both - and 1/6-dilation of the domain.

5.2 Approximation of a Factor with Root Set in an Isolated Disc

Problem 5: Approzimation of a factor with the root set in an isolated disc.

INPUT: a polynomial p of (1), a complex number ¢, a positive number 7,
and 0 =1+g/ logh(d)7 a positive constant g and a real constant h such that the
disc D(c,r) ={z: |z —¢| < r} on the complex plain is #-isolated.

OUTPUT: the number w of roots of p in the disc D(¢,r) and a monic factor
f of p whose root set is precisely the set of the roots of p that lie in that disc.

Dual Problem 5a of the approximation of a factor p/f whose root set lies
outside an isolated disc D is equivalent to Problem 5 of the apfroximation of
the factor of the reverse polynomial pye,(z) := 29p(1/x) = Y ico Pa—;x® with
root set in D. [Notice that pyev(x) = po H;l:l(o: —1/x;) if po # 0.] Accordingly
we can re-use the algorithms for Problem 5 in order to solve Problem 5a.

If we are given a factor f of p, we can also solve Problem 5a by means of any
of the algorithms of [4,43,44,51, Section 3|, and [26] for approximate polynomial
division.

Alternatively (cf. Recipe 3 in Section4.4) we can first compute (i) the sums
of the ¢th powers of the roots of p and f for ¢ = 0,1,...,d — w, by applying
Newton’s identities or the algorithm of [50, Section 12], then (ii) the sums of
the ith powers of the roots of the polynomial p/f for i = 0,1,...,d — w, by
subtracting the d — w + 1 power sums of the roots of f from those of p, and
finally (iii) the coefficients of p/f, by applying either Newton’s identities or the
algorithm [50, Section 12].

Old and New Nearly Optimal Polynomial Root-Finders 403

5.3 DLS Deflation: Outline and Complexity

Here is a very brief outline of the DLS algorithm, elaborated upon in [42, Appen-
dices A and B] or [50, Section 12]. Given a polynomial p of degree d the DLS
algorithm approximates its factor having root set in a unit disc #-isolated from
the other roots of p. The algorithm first computes 2¢ values of the factor at the
2¢th roots of unity, ensuring error bound roughly d/09, then the power sums of
its roots, and finally its coefficients.

The algorithm solves Problem 5 within the same asymptotic Boolean cost
bound, O(dlog(d)u(b')), as in the special case of Sect.4.4. [42, Corollary A.2]
enables extension of the solution and its complexity estimates to the approxi-
mation of a factor of p with a root set on the f-isolated unit circle C(0,1) for
0=1+g/ logh(d)7 a positive constant g and a real constant h. At the Boolean
cost bound in O(dlog(d)u(b')) this reduces Problem 3 for a polynomial p of
degree d to Problem 1 for a polynomial f of a degree d; < d.

5.4 Deflation in the Case of an Isolated Cluster of a Small Number
of Roots

Suppose that all d roots of p lie in the unit disc D(0, 1) and that in a subdivision
iteration we observe that w roots of p form a cluster strongly isolated from the
other roots of p. Let a small disc D(c,r) cover the cluster,1 let g(x) = p(z —c¢) =

Z;l:o gjad, let

f(z) = qua:j =gq(x) mod 2! (9)
5=0

be the sum of the w + 1 trailing terms of the polynomial ¢(z), and consider this
sum an approximation of the factor f(z) of ¢(x) whose root set is made up of
the roots of p lying in the cluster, as this was proposed in [27, Section 3.2] for
real root-finding. Such disc D(¢,r) can be found as a cost-free by-product of
subdivision iterations; then we obtain f (z) by means of shifting the variable .

Let w < d, that is, let the cluster size w be small. Let is be also well-isolated
and estimate the norm |f — f|. Write f := > fiz’, g:=q/f = Zf;é” gix’; let
fw = go = 1.Then

f(x) = f(z) = f(2)Y_gja’ mod 2. (10)

j=1

Clearly f(z) = f(x) if ¢ = 0 and f(z) = 2. Consider the special case where all
roots of f lie in a small 7-neighborhood of 0 such that rw < 1/2. Then we readily
verify that | f(z) —z¥| < |(x —r)* —2%| < 2rw and | f(z) — 2%| < 2(d — w)¥rw,
and so |f — f| < 2((d — w)™ + 1)rw. This bound can be sufficient in some
applications where w is a small positive integer, although the bound is by far
not as strong as what we can obtain by applying the algorithms of [42, Part I of
the Appendix].

404 V.Y. Pan

A root-squaring iteration [21] lifts the isolation of the cluster or equivalently
squares the radius of the disc. We can apply such lifting recursively, although
limited number of times, within O(log(log(d))), because of numerical problems.
Having approximated the lifted roots in the cluster, we can recover the associated
roots of p by applying the descending process of [32] and [37], at dominated
overall Boolean cost at both lifting and descending stages.

6 Subdivision Iterations with Deflation

1. Background on Subdivision. Subdivision iterations extend the classical
bisection iterations from root-finding on a line to polynomial root-finding in the
complex plain. Under the name of Quad-tree Construction these iterative algo-
rithms have been studied in [22,23,49], and [35] and extensively used in Com-
putational Geometry. The algorithms have been introduced by Herman Weyl in
[58] and advanced in [22,23,49], and [35]; under the name of subdivision Becker
et al. modified them in [11] and [12].% Let us briefly recall subdivision algorithms
for Problem 1; they are similar for Problem 3.

At the beginning of a subdivision (quad-tree) iteration all the d roots of
p are covered by at most 4d congruent suspect squares on the complex plain
that have horizontal and vertical edges, all of the same length. The iteration
outputs a similar cover of all d roots of p with a new set of at most 4d suspect
squares whose edge length is halved. Hence the centers of the suspect squares
approximate the root set with an error bound linearly converging to 0.

At every iteration suspect squares form connected components. Given s > 1
components, embed them into the minimal discs D; = D(¢;, R;), i = 1,...,s;
they become well-isolated from each other in O(log(d)) iterations. Fori =1,...,s
cover the root sets of p in the discs D; by the minimal discs D} = D(¢}, R;). For
some i the distances |¢; — ¢;| may greatly exceed R., and then linear convergence
of subdivision iterations to roots lying in the disc D} can be too slow in order
to support root-finding in nearly optimal Boolean time.

The algorithms of [11,35,49] and [12] yield super-linear convergence at those
stages. [49] and [35] apply Newton’s iterations, whose convergence to a disc D;
is quadratic right from the start if they begin in its #-dilation D(c},0R}) and
if the disc D} is #-isolated for a sufficiently large 6. Tilli in [55] proves that it
is sufficient if § > 3d — 3, which improves the earlier estimate § > 5d? of [49].
[11] and [12] achieve super-linear convergence to the roots by applying Pellet’s
theorem for root-counting in a disc. This was the main algorithmic innovation
of [11] and [12] versus [49] and [35]; the papers [11] and [12] have also extended
to the complex plain the QIR iterations, proposed by Abbott for a line segment,
and then laboriously estimated the Boolean cost of the resulting algorithm.

2. Our Alternatives: Outline. We deviate from the algorithms of [11] and
[12] in two ways.

9 The algorithms of [11] and [12] are quite similar to one another.

Old and New Nearly Optimal Polynomial Root-Finders 405

(i) We replace the counting algorithm of [11] and [12] with a distinct method,
which is faster, more robust, and can be applied where a polynomial p
is defined by a black box subroutine for its evaluation rather than by its
coefficients.

(ii) If the algorithm of [11] and [12] encounters an isolated component containing
dy roots of p with sufficiently small d; (we either monitor this explicitly or
detect by action), we cover that component with an isolated disc containing
these dy roots and then approximate them by solving Problem 3.

3. Our Alternative Counting. We fix a sufficiently large integer ¢, let w
denote a primitive gth root of unity, and approximate the number s of the roots
of p in the 6-isolated unit disc D(0,1) = {z : |z| = 1} as follows:

wd m, w = exp(2mv/—1/q). (11)
=0

By virtue of [42, Theorem 12], extracted from [50], |s—s*| < 1/2if 2d+1 < 69.
For example, if § = 2, then choosing any ¢ > 11 is sufficient where d = 1,000
and choosing any g > 21 is sufficient where d = 1,000, 000.

We obtain s* of (11) by evaluating both p(z) and p’(z) at the gth roots of
unity (which means performing discrete Fourier transform at ¢ points twice) and
in addition performing discrete Fourier transform at ¢ points once again. We can
perform Fourier transforms by applying FFT if we choose ¢ being the power of 2.

We can extend our recipe to any sufficiently well isolated disc D on com-
plex plain by means of shifting and scaling the variable z (see Remark 2), but
alternatively we can just evaluate p(z) and p’(x) at ¢ equally spaced points on
the boundary circle of the disc D. Instead of two FFTs we can apply the so
called Horner’s algorithm 2¢ times or the algorithms of [29,38], or [41] for fast
multipoint polynomial evaluation.

4. Root-Finding in an Isolated dDisc (Problem 3). As soon as subdivision
defines a well-isolated disc D} containing a positive but reasonably small number
dy of the roots of a polynomial p we approximate its factor f = f(z) having
degree dy and having all its roots in that disc (cf. Sect. 4.3); then we approximate
all the ds roots of the factor by applying the subdivision iterations or MPSolve.

By applying a subdivision algorithm to f rather than p, we approximate the
roots of f at the cost that decreases by at least the factor of d/w, because of the
decrease of the degree, but possibly more than that if we get rid of some root
clusters in the transition from p to f.

Empirically we may additionally benefit from shifting to MPSolve rather
than continuing subdivision iterations unless our simplification of subdivision
makes it competitive with or even superior to MPSolve.

406 V.Y. Pan

By applying the DLS algorithm we approximate the factor f within the same
asymptotic estimates for the Boolean cost as we deduced for deflation algorithms
of Sect. 4.3.10

Then again we can apply deflation of p repeatedly for a number of discs
D} and can recursively extend it to deflation of the computed factors f(z),
together with the policy of delaying the deflation until we decrease the number
of remaining roots below a fixed bound.*! The estimates of [42, Appendices C.2
and D] for the working precision in this deflation ensure the upper bound of 1/2°
on the errors of the output approximation to the roots.

7 Root-Finding on a Line Segment with Deflation

The algorithms of [11,27,32,37,45] and [12] solve Problem 4 in nearly opti-
mal Boolean time. Next we reduce Problem 4 on the unit segment S[—1,1] =
{z: — 1<z <1} to the special case where all roots of p lie in that segment.
In this case the algorithms of [8,13], and [14] are also nearly optimal, but appli-
cation of MPSolve or [27], complemented with the policy of recursive doubling
of working precision, may have even better chances to become the method of
user’s choice, particularly if its efficiency is enhanced by incorporating the initial
approximation of the real roots by means of the simple algorithm of [47], which
we recall at the end of this section.

Next we approximate the factor of p(z) whose root set is precisely the set of
the roots of p restricted to the segment S[—1,1]. The algorithm of [42, Appen-
dices A and B] can be applied for the deflation over any convex domain of the
complex plain (see [42, Remark 15]), but in the case of a disc its output approxi-
mation to the factor is much closer than for general convex domain (at the same
computational cost). Thus we obtain better output approximation by means of
reducing Problem 4 to Problem 3.

Towards this goal we first recall the two-to-one Zhukovsky function z = J(x),
which maps the unit circle C'(0,1) onto the unit segment S[—1,1], and its one-
to-two inverse:

z=J(x) ::%(m—&—%); r=J12) =24+ V22 - 1. (12)

Here x and z are complex variables. Now perform the following steps:

1. Compute the polynomial s(z) := zp(z)p(1/z) of degree 2d by applying [9,
Algorithm 2.1], based on the evaluation of the polynomials p(z) and z%p(1/z)

19 The DLS algorithms (cf. [42, Appendices A and B]) approximates a factor f at
a nearly optimal Boolean cost if the disc D] is #-isolated for isolation ratio § =
1+g/ logh(d)7 a positive constant g and a real constant h. Such an isolation ratio is
smaller than those required in [11,35,49] and [12] and thus can be ensured by means
of performing fewer subdivision steps.

1 Then again with such a delay we bound the overall cost of all deflation steps (cf.
Example 1), avoid coefficient growth and do not lose sparseness.

Old and New Nearly Optimal Polynomial Root-Finders 407

at Chebyshev points and the interpolation to s(z) at roots of unity. Recall
that the set of the roots of p(z) lying in the segment S[—1, 1] is well-isolated
and observe (see Remark 5) that it is mapped in one-to-two mapping (12)
into a well-isolated set of the roots of s(z) lying on the unit circle C(0, 1).

2. Let g(z) denote the monic factor of the polynomial s(z) with the root set
made up of the roots of s(z) lying on the unit circle C(0,1) and such that
deg(g(z)) = deg(f). By applying the algorithm of [50, Section12] (cf. [42,
Corollary A.2]) approximate the power sums of the roots of the polynomial
9(2).

3. By applying Newton’s identities of the algorithm of [50, Section 13] (cf. [42,
Solution 2 of Appendix B]) approximate the coefficients of g(z).

4. Compute the polynomial h(z) := 2%*g(5(x + 1)) of degree 4deg(f) in x. Its
root set is made up of the roots of the polynomial p lying in the segment
S[—1,1] and of their reciprocals; in the transition to h(x) the multiplicity of
the roots of p either grows 4-fold (for the roots 1 and —1 if they are the roots
of p) or is doubled, for all other roots.

5. By applying the algorithm of [14] approximate all roots of the polynomial
h(x).

6. Among them identify and output deg(f) roots that lie in the segment S[—1, 1];
they are precisely the roots of p(z).

Remark 4. We can simplify stage 5 by replacing the polynomial h(z) with its
half-degree square root j(x) := x®f(z)f(1/x) at stage 5, but further study is
needed to find out whether and how much this could decrease the overall com-
putational cost.

Remark 5. Represent complex numbers as z := u + iv. Then Zhukovsky’s map
transforms a circle C(0, p) for p # 1 into the ellipse E(0, p) whose points (u,v)
satisfy the following equation,

u2 2

f-l—vf—lfors—l(—1-1) t—1< —l)
s2 2 ~ o\ p) 2 p p/’
Consequently it transforms the annulus A(0,1/6,) into the domain bounded by
the ellipses E(0,1/6) and E(0,0), so the circle C(0,1) is #-isolated if and only if
no roots of p lie in the latter domain.

We conclude this section with recalling an efficient algorithm of [47] for com-
puting crude initial approximations to real roots. Extensive tests in [47] showed
particular efficiency of this algorithm for the approximation of the real roots of
p that are sufficiently well-isolated from the other roots.

Theorem 1. See [50, Corollary 14.3]. Assume that we are given a polynomial
p = p(x) of (1) and a pair of real constants ¢ > 0 and h. Write = 1 + ¢/d"
and rj = |z;| for j =1,...,d. (r; are said to be the root radii for p.) Then,
within the Boolean cost bound Op(d?log?(d)), one can compute approzimations
7 to all root radit r; such that 1/0 < 7;/r; <6 for j =1,...,d, provided that
lg(747) = O(lg(d)), that is, |7;/r; — 1] < c¢/d".

408 V.Y. Pan

Apply the algorithm supporting this theorem and compute d narrow annuli
covering all roots of p. Their intersection with real line defines at most 2d small
segments that contain all real roots of p. Then we weed out the extraneous empty
segments containing no roots of p and obtain close approximations to all real
roots, in particular to those lying in the segment S[—1,1]. See [47] for further
details.

Acknowledgements. This research has been supported by NSF Grants CCF-
1563942 and CCF-1733834 and PSC CUNY Award 69813 00 48.

References

1. Bell, E.T.: The Development of Mathematics. McGraw-Hill, New York (1940)

2. Boyer, C.A.: A History of Mathematics. Wiley, New York (1968)

3. Barnett, S.: Polynomial and Linear Control Systems. Marcel Dekker, New York
(1983)

4. Bini, D.A.: Parallel solution of certain Toeplitz linear systems. SIAM J. Comput.
13(2), 268-279 (1984)

5. Bini, D.A., Fiorentino, G.: Design, Analysis, and Implementation of a Multipreci-
sion Polynomial Rootfinder. Numer. Algorithms 23, 127-173 (2000)

6. Bini, D.A., Gemignani, L., Pan, V.Y.: Inverse power and Durand/Kerner iteration
for univariate polynomial root-finding. Comput. Math. Appl. 47(2/3), 447-459
(2004)

7. Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting and Control.
Holden-Day, San Francisco (1976)

8. Bini, D., Pan, V.Y.: Computing matrix eigenvalues and polynomial zeros where
the output is real. STAM J. Comput. 27(4), 1099-1115 (1998). Proc. version. In:
SODA 1991, pp. 384-393. ACM Press, NY, and STAM Publ., Philadelphia (1991)

9. Bini, D., Pan, V.Y.: Graeffe’s, Chebyshev, and Cardinal’s processes for splitting a
polynomial into factors. J. Complex. 12, 492-511 (1996)

10. Bini, D.A., Robol, L.: Solving secular and polynomial equations: a multiprecision
algorithm. J. Comput. Appl. Math. 272, 276-292 (2014)

11. Becker, R., Sagraloff, M., Sharma, V., Xu, J., Yap, C.: Complexity analysis of root
clustering for a complex polynomial. In: International Symposium on Symbolic and
Algebraic Computation (ISSAC 2016), pp. 71-78. ACM Press, New York (2016)

12. Becker, R., Sagraloff, M., Sharma, V., Yap, C.: A near-optimal subdivision algo-
rithm for complex root isolation based on the Pellet test and Newton iteration. J.
Symb. Comput. 86, 51-96 (2018)

13. Ben-Or, M., Tiwari, P.: Simple algorithms for approximating all roots of a poly-
nomial with real roots. J. Complex. 6(4), 417-442 (1990)

14. Du, Q., Jin, M., Li, T.Y., Zeng, Z.: The quasi-Laguerre iteration. Math. Comput.
66(217), 345-361 (1997)

15. Delves, L.M., Lyness, J.N.: A numerical method for locating the zeros of an analytic
function. Math. Comput. 21, 543-560 (1967)

16. Demeure, C.J., Mullis, C.T.: The Euclid algorithm and the fast computation of
cross-covariance and autocovariance sequences. IEEE Trans. Acoust. Speech Signal
Process. 37, 545-552 (1989)

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Old and New Nearly Optimal Polynomial Root-Finders 409

Demeure, C.J., Mullis, C.T.: A Newton-Raphson method for moving-average spec-
tral factorization using the Euclid algorithm. IEEE Trans. Acoust. Speech Signal
Process. 38, 1697-1709 (1990)

Ehrlich, L.W.: A modified Newton method for polynomials. Commun. ACM 10,
107-108 (1967)

Emiris, I.Z., Pan, V.Y., Tsigaridas, E.: Algebraic algorithms. In: Tucker, A.B.,
Gonzales, T., Diaz-Herrera, J.L. (eds.) Computing Handbook. Computer Science
and Software Engineering, 3rd edn., vol. I, Chap. 10, pp. 10-1-10-40. Taylor and
Francis Group (2014)

Fortune, S.: J. Symbol. Comput. 33(5), 627-646 (2002). Proc. version in Proc.
Intern. Symp. on Symbolic and Algebraic Computation An Iterated Eigenvalue
Algorithm for Approximating Roots of Univariate Polynomials, (ISSAC 2001),
121-128, ACM Press, New York (2001)

Householder, A.S.: Dandelin, Lobachevskii, or Graeffe? Amer. Math. Mon. 66,
464-466 (1959)

Henrici, P.: Applied and computational complex analysis. In: Power Series, Inte-
gration, Conformal Mapping, Location of Zeros, vol. 1. Wiley, New York (1974)
Henrici, P., Gargantini, I.: Uniformly convergent algorithms for the simultaneous
approximation of all zeros of a polynomial. In: Dejon, B., Henrici, P. (eds.) Con-
structive Aspects of the Fundamental Theorem of Algebra. Wiley, New York (1969)
Imbach, R., Pan, V.Y., Yap, C.: Implementation of a near-optimal complex root
clustering algorithm. In: Davenport, J.H., Kauers, M., Labahn, G., Urban, J. (eds.)
ICMS 2018. LNCS, vol. 10931, pp. 235-244. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96418-8_28

Inbach, R., Pan, V.Y., Yap, C., Kotsireas, 1.S., Zaderman, V.: Root-finding with
implicit deflation. In: Proceedings CASC 2019. arxiv:1606.01396. Accepted 21 May
2019

Kirrinnis, P.: Polynomial factorization and partial fraction decomposition by simul-
taneous Newton’s iteration. J. Complex. 14, 378-444 (1998)

Kobel, A., Rouillier, F., Sagraloff, M.: Computing real roots of real polynomials
... and now for real! In: The International Symposium on Symbolic and Algebraic
Computation (ISSAC 2016), pp. 301-310. ACM Press, New York (2016)
McNamee, J.M.: Numerical Methods for Roots of Polynomials, Part I, p. XIX+354.
Elsevier, Amsterdam (2007)

Moenck, R., Borodin, A.: Fast modular transforms via division., In: Proceedings of
13th Annual Symposium on Switching and Automata Theory (SWAT 1972), pp.
90-96. IEEE Computer Society Press (1972)

McNamee, J.M., Pan, V.Y.: Numerical Methods for Roots of Polynomials, Part II,
p. XXI+728. Elsevier, Amsterdam (2013)

Neff, C.A., Reif, J.H.: An o(n'™) algorithm for the complex root problem. In:
Proceedings 35th Annual Symposium on Foundations of Computer Science (FOCS
1994), pp. 540-547. IEEE Computer Society Press (1994)

Pan, V.Y.: Optimal (up to polylog factors) sequential and parallel algorithms for
approximating complex polynomial zeros. In: Proceedings of 27th Annual ACM
Symposium on Theory of Computing (STOC 1995), pp. 741-750. ACM Press,
New York (1995)

Pan, V.Y.: Solving a polynomial equation: some history and recent progress. SIAM
Rev. 39(2), 187220 (1997)

Pan, V.Y.: Solving polynomials with computers. Am. Sci. 86, 62-69 (1998)

https://doi.org/10.1007/978-3-319-96418-8_28
https://doi.org/10.1007/978-3-319-96418-8_28
http://arxiv.org/abs/1606.01396

410

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.
53.
54.

V.Y. Pan

Pan, V.Y.: Approximation of complex polynomial zeros: modified quadtree
(Weyl’s) construction and improved Newton’s iteration. J. Complex. 16(1), 213-
264 (2000)

Pan, V.Y.: Structured Matrices and Polynomials: Unified Superfast Algorithms.
Birkh&user/Springer, Boston/New York (2001). https://doi.org/10.1007/978-1-
4612-0129-8

Pan, V.Y.: Univariate polynomials: nearly optimal algorithms for factorization and
rootfinding. J. Symb. Comput. 33(5), 701-733 (2002)

Pan, V.Y.: Transformations of matrix structures work again. Linear Algebra Appl.
465, 1-32 (2015)

Pan, V.Y.: Root-finding with Implicit Deflation. arXiv:1606.01396, Accepted 4
June 2016

Pan, V.Y.: Simple and nearly optimal polynomial root-finding by means of root
radii approximation. In: Kotsireas, I., Martinez-Moro, E. (eds.) ACA 2015. SPMS,
vol. 198, pp. 329-340. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56932-1_23

Pan, V.Y.: Fast approximate computations with Cauchy matrices and polynomials.
Math. Comput. 86, 2799-2826 (2017)

Pan, V.Y.: Old and new nearly optimal polynomial root-finders, In: Proceedings
of CASC (2019). Also arxiv: 1805.12042 May 2019

Pan, V.Y., Sadikou, A., Landowne, E.: Univariate polynomial division with a
remainder by means of evaluation and interpolation. In: Proceedings of 3rd IEEE
Symposium on Parallel and Distributed Processing, pp. 212-217. IEEE Computer
Society Press, Los Alamitos (1991)

Pan, V.Y., Sadikou, A., Landowne, E.: Polynomial division with a remainder by
means of evaluation and interpolation. Inform. Process. Lett. 44, 149-153 (1992)
Pan, V.Y., Tsigaridas, E.P.: Nearly optimal refinement of real roots of a univari-
ate polynomial. J. Symb. Comput. 74, 181-204 (2016). Proceedings version. In:
Kauers, M. (ed.) Proc. ISSAC 2013, pp. 299-306. ACM Press, New York (2013)
Pan, V.Y., Tsigaridas, E.P.: Nearly optimal computations with structured matri-
ces. Theor. Comput. Sci. 681, 117-137 (2017)

Pan, V.Y., Zhao, L.: Real root isolation by means of root radii approximation. In:
Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2015. LNCS,
vol. 9301, pp. 349-360. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-319-24021-3_26

Pan, V.Y., Zhao, L.: Real polynomial root-finding by means of matrix and poly-
nomial iterations. Theor. Comput. Sci. 681, 101-116 (2017)

Renegar, J.: On the worst-case arithmetic complexity of approximating zeros of
polynomials. J. Complex. 3(2), 90-113 (1987)

Schénhage, A.: The Fundamental Theorem of Algebra in Terms of Computational
Complexity. Department of Mathematics. University of Tiibingen, Tiibingen, Ger-
many (1982)

Schoénhage, A.: Asymptotically fast algorithms for the numerical muitiplication and
division of polynomials with complex coefficients. In: Calmet, J. (ed.) EUROCAM
1982. LNCS, vol. 144, pp. 3-15. Springer, Heidelberg (1982). https://doi.org/10.
1007/3-540-11607-9_1

Schonhage, A.: Quasi GCD computations. J. Complex. 1, 118-137 (1985)
Schleicher, D.: Private communication (2018)

Schleicher, D., Stoll, R.: Newton’s method in practice: finding all roots of polyno-
mials of degree one million efficiently. Theor. Comput. Sci. 681, 146-166 (2017)

https://doi.org/10.1007/978-1-4612-0129-8
https://doi.org/10.1007/978-1-4612-0129-8
http://arxiv.org/abs/1606.01396
https://doi.org/10.1007/978-3-319-56932-1_23
https://doi.org/10.1007/978-3-319-56932-1_23
http://arxiv.org/abs/1805.12042
https://doi.org/10.1007/978-3-319-24021-3_26
https://doi.org/10.1007/978-3-319-24021-3_26
https://doi.org/10.1007/3-540-11607-9_1
https://doi.org/10.1007/3-540-11607-9_1

55.

56.

57.

58.

59.

60.

Old and New Nearly Optimal Polynomial Root-Finders 411

Tilli, P.: Convergence conditions of some methods for the simultaneous computa-
tion of polynomial zeros. Calcolo 35, 3-15 (1998)

Van Dooren, P.: Some numerical challenges in control theory. In: Van Dooren,
P., Wyman, B. (eds.) Linear Algebra for Control Theory. The IMA Volumes in
Mathematics and its Applications, vol. 62. Springer, New York (1994). https://
doi.org/10.1007/978-1-4613-8419-9_12

Weierstrass, K.: Neuer Beweis des Fundamentalsatzes der Algebra. Mathematische
Werke, Bd, vol. III, pp. 251-269. Mayer und Mueller, Berlin (1903)

Weyl, H.: Randbemerkungen zu Hauptproblemen der Mathematik. II. Fundamen-
talsatz der Algebra und Grundlagen der Mathematik. Math. Z. 20, 131-151 (1924)
Wilson, G.T.: Factorization of the covariance generating function of a pure moving-
average. SIAM J. Numer. Anal. 6, 1-7 (1969)

Werner, W.: Some improvements of classical iterative methods for the solution of
nonlinear equations. In: Allgower, E.L., Glashoff, K., Peitgen, H.-O. (eds.) Numer-
ical Solution of Nonlinear Equations. LNM, vol. 878, pp. 426—440. Springer, Hei-
delberg (1981). https://doi.org/10.1007/BFb0090691

https://doi.org/10.1007/978-1-4613-8419-9_12
https://doi.org/10.1007/978-1-4613-8419-9_12
https://doi.org/10.1007/BFb0090691

	Old and New Nearly Optimal Polynomial Root-Finders
	1 Introduction
	2 Four Fundamental Computational Problems
	3 Boolean Complexity: Lower Estimates and Nearly Optimal Upper Bounds
	4 Ehrlich's Iterations and Deflation
	4.1 Ehrlich's Iterations and Their Super-Linear Convergence
	4.2 Precision Management
	4.3 Ehrlich's Iterations with Deflation
	4.4 Deflation Algorithms for Ehrlich's Iterations
	4.5 Extension to Other Functional Iterations
	4.6 Boolean Complexity of Problems 1–4 with and Without MPSolve

	5 Approximation of a Factor of a Polynomial
	5.1 Isolation of a Domain and Its Boundary
	5.2 Approximation of a Factor with Root Set in an Isolated Disc
	5.3 DLS Deflation: Outline and Complexity
	5.4 Deflation in the Case of an Isolated Cluster of a Small Number of Roots

	6 Subdivision Iterations with Deflation
	7 Root-Finding on a Line Segment with Deflation
	References

