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Abstract. Low Rank Approximation (LRA) of a matrix is a hot
research subject, fundamental for Matrix and Tensor Computations and
Big Data Mining and Analysis. Computations with LRA can be per-
formed at sublinear cost, that is, by using much fewer memory cells and
arithmetic operations than an input matrix has entries. Although every
sublinear cost algorithm for LRA fails to approximate the worst case
inputs, we prove that our sublinear cost variations of a popular subspace
sampling algorithm output accurate LRA of a large class of inputs.

Namely, they do so with a high probability (whp) for a random
input matrix that admits its LRA. In other papers we propose and ana-
lyze other sublinear cost algorithms for LRA and Linear Least Sqaures
Regression. Our numerical tests are in good accordance with our formal
results.
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1 Introduction

LRA Background. Low rank approximation (LRA) of a matrix is a hot
research area of Numerical Linear Algebra (NLA) and Computer Science (CS)
with applications to fundamental matrix and tensor computations and Data
Mining and Analysis (see surveys [HMT11,M11,KS17], and [CLO16]). Matri-
ces from Big Data (e.g., unfolding matrices of multidimensional tensors) are
frequently so immense that realistically one can access only a tiny fraction of
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their entries, although quite typically these matrices admit their LRA (cf. (1)
in Sect. 2). One can operate with such matrices at sublinear computational cost,
that is, by using much fewer memory cells and arithmetic operations than an
input matrix has entries, but can we compute LRA at sublinear cost? Yes and
no. No, because every sublinear cost LRA algorithm fails even on the small input
families of AppendixB. Yes, because our sublinear cost variations of a popular
subspace sampling algorithm output accurate LRA for a large class of input.

Let us provide some details.
Subspace sampling algorithms compute LRA of a matrix M by using auxil-

iary matrices FM , MH or FMH for random multipliers F and H, commonly
called test matrices and having smaller sizes. The output LRA are nearly opti-
mal whp provided that F and H are Gaussian, Rademacher’s, SRHT or SRFT
matrices;1 furthermore the algorithms consistently output accurate LRA in their
worldwide application with these and some other random multipliers F and H,
all of which, however, are multiplied by M at superlinear cost (see [TYUC17,
Section 3.9], [HMT11, Section 7.4], and the bibliography therein).

Our modifications are deterministic. They use fixed sparse orthogonal (e.g.,
subpermutation) multipliers2 F and H, run at sublinear cost, and whp output
reasonably close dual LRA, i.e., LRA of a random input admitting LRA; we
deduce our error estimates under three distinct models of random matrix com-
putations in Sections 4.1 – 4.3. Unlike the customary randomized algorithms
of [HMT11], [M11], [KS17], which perform at superlinear cost and which whp
output close LRA of any matrix that admits LRA, our deterministic algorithms
run at sublinear cost and whp output close LRA of many such matrices and in
a sense most of them. Namely we prove that whp they output close LRA of a
random input matrix that admits LRA.

How meaningful are our results? Our definitions of three classes of random
matrices of low numerical rank are quite natural for various real world applica-
tions of LRA, but are odd for some other ones, as is the case with any definition
of that kind. In spite of such odds, however, our formal study is in good accor-
dance with our numerical tests for both synthetic and real world inputs, some
from [HMT11]. Surely it is not realistic to assume that an input matrix is ran-
dom, but we can randomize it by means of pre-processing of an input with
random multipliers and then apply our results. Moreover, empirically such a
randomized pre-processing and sublinear cost pre-processing with proper sparse
multipliers consistently give similar results.

Our upper bounds on the output error of LRA of an m×n matrix of numerical
rank r exceed the optimal error bound by a factor of

√
min{m,n}r, but if

the optimal bound is small enough we can apply two algorithms for iterative

1 Here and hereafter “Gaussian matrices” stands for “Gaussian random matrices”
(see Definition 1). “SRHT and SRFT” are the acronyms for “Subsample Random
Hadamard and Fourier transforms”. Rademacher’s are the matrices filled with iid
variables, each equal to 1 or −1 with probability 1/2.

2 Subpermutation matrices are full-rank submatrices of permutation matrices.
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refinement of LRA, proposed in [PLa], running at sublinear cost, and reasonably
efficient according to the results of numerical tests in [PLa].

As we discussed earlier, any sublinear cost LRA algorithm (and ours are
no exception) fails on some families of hard inputs, but our analysis and tests
show that the class of such inputs is narrow. We conjecture that it shrinks fast
if we recursively apply the same algorithm with new multipliers; in Sect. 5 we
comment of some heuristic recipes for these recursive processes; our numerical
tests consistently confirm their efficiency.

Impact of Our Study, Its Extensions and By-Products

(i) Our duality approach is efficient for some fundamental matrix computations
besides LRA: [PQY15,PZ17a], and [PZ17b] formally support empirical effi-
ciency of dual Gaussian elimination with no pivoting, while [LPb] proposes
a dual sublinear cost deterministic modification of Sarlós’ randomized algo-
rithm of 2006 and then proves that whp it outputs nearly optimal solution
of the important problem of Linear Least Squares Regression (LLSR) for
random input, and consequently for a large class of inputs – in a sense for
most of them. This formal study turned out to be in very good accordance
with the results of our extensive tests with synthetic and real world inputs.

(ii) In the paper [PLa] we proposed, analyzed, and tested new sublinear cost
algorithms for refinement of a crude but reasonably close LRA.

(iii) In [LPa] and [PLSZa] we proved that popular Cross-Approximation LRA
algorithms running at sublinear cost as well as our simplified sublinear
cost variations of these algorithms output accurate solution of dual LRA
whp, and we also devised a sublinear cost algorithm for transformation of
any LRA into its special form of CUR LRA, which is particularly memory
efficient.

(iv) Our acceleration of LRA can be immediately extended to the acceleration
of Tensor Train Decomposition because it is reduced to recursive compu-
tation of LRA of unfolding matrices. Likewise our results can be readily
extended to Tucker Decomposition of tensors because Tucker Decomposi-
tion is essentially LRA of unfolding matrices of a tensor. Extension to CP
Decomposition of Tensors, however, remains a challenge.

(v) In [LPa] we also extended our progress by devising deterministic and prac-
tically promising algorithm that at sublinear cost computes accurate LRA
for a symmetric positive semidefinite matrix admitting LRA.

Related Works. LRA has huge bibliography; see, e.g., [M11,HMT11,KS17].
The papers [PLSZ16] and [PLSZ17] have provided the first formal support
for dual accurate randomized LRA at sublinear cost (they call sublinear cost
algorithms superfast). The earlier papers [PQY15,PLSZ16,PZ17a], and [PZ17b]
studied duality for other fundamental matrix computations besides LRA, and
we have already cited extension of our progress in [PLa], [LPa] and [LPb].

Organization of the Paper. In Sect. 2 we recall random sampling for LRA.
In Sects. 3 and 4 we estimate output errors of our dual LRA algorithms running
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at sublinear cost. In Sect. 5 we generate multipliers for both pre-processing and
sampling. AppendixA is devoted to background on matrix computations. In
AppendixB we specify some small families of inputs on which any sublinear
cost LRA algorithm fails. Because of size limitation for this paper we leave to
[PLSZb] various details, our historical comments, the test results, and some
proofs, in particular the proofs of Theorems 5 and 6.

Some Definitions. The concepts “large”, “small”, “near”, “close”, “approxi-
mate”, “ill-” and “well-conditioned”, are usually quantified in the context. “�”
and “�” mean “much less than” and “much greater than”, respectively. “Flop”
stands for “floating point arithmetic operation”; “iid” for “independent identi-
cally distributed”. In context a “perturbation of a matrix” can mean a perturba-
tion having a small relative norm. Rp×q denotes the class of p × q real matrices.
We assume dealing with real matrices throughout, and so the Hermitian trans-
pose M∗ of M turns into transpose MT , but our study can be readily extended
to complex matrices; see some relevant results about complex Gaussian matrices
in [E88,CD05,ES05], and [TYUC17].

2 Four Known Subspace Sampling Algorithms

Hereafter || · || and || · ||F denote the spectral and the Frobenius matrix norms,
respectively; | · | can denote either of them. M+ denotes the Moore – Penrose
pseudo inverse of M .

Next we devise a sublinear cost algorithm for LRA XY of matrix M such
that

M = XY + E, ||E||/||M || ≤ ε, (1)

for pairs of matrices X of size m × r and Y of size r × n, a matrix norm || · ||,
and a small tolerance ε.

Algorithm 1. Range Finder (see Remark 1).

Input: An m × n matrix M and a target rank r.
Output: Two matrices X ∈ R

m×l and Y ∈ R
l×m defining an LRA M̃ = XY ..

Initialization: Fix an integer l, r ≤ l ≤ n, and an n×l test matrix (multiplier)
H of rank l.

Computations:
1. Compute the m × l matrix MH.
2. Fix a nonsingular matrix T−1 ∈ R

l×l and output the matrix X :=
MHT−1 ∈ R

m×l.
3. Output an l × n matrix Y := argminV |XV − M | = X+MT .

Remark 1. Let rank(FM) = k. Then XY = MH(MH)+M independently of
the choice of T−1, but a proper choice of a nonsingular matrix T numeri-
cally stabilizes the algorithm. For l > r ≥ nrank(MH) the matrix MH is
ill-conditioned,3 but let Q and R be the factors of the thin QR factorization
3 nrank(W ) denotes numerical rank of W (see AppendixA.1).
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of MH, choose T := R, and observe that X = MHT−1 = Q is an orthogonal
matrix. X = MHT−1 is also an orthogonal matrix if T = RΠ and if R and Π
are factors of a rank-revealing QRΠ factorization of MH.

Column Subspace Sampling turns into Column Subset Selection in the case
of a subpermutation matrix H.

Algorithm 2. Transposed Range Finder (see Remark 2).

Input: As in Algorithm 1.
Output: Two matrices X ∈ R

k×n and Y ∈ R
m×k defining an LRA M̃ = Y X.

Initialization: Fix an integer k, r ≤ k ≤ m, and a k × m test matrix (multi-
plier) F of full numerical rank k.

Computations:

1. Compute the k × m matrix FM .
2. Fix a nonsingular k × k matrix S−1; then output k × n matrix X :=

S−1FM .
3. Output an m × k matrix Y := argminV |V X − M |.

Row Subspace Sampling turns into random Row Subset Selection in the case of
a subpermutation matrix F .

Remark 2. Y = M(S−1FM)+ and Y X = M(FM)+FM independently of the
choice of S−1 if rank(FM) = l, but a proper choice of S numerically stabilizes
the algorithm. For k > r ≥ nrank(FMH) the matrix FMH is ill-conditioned,
but S−1FM is orthogonal if S = L, X := Q = L−1FM , Y := Q∗M , and L and
Q are the factors of the thin LQ factorization of FM .

The following algorithm combines row and column subspace sampling. In the
case of the identity matrix S it turns into the algorithm of [TYUC17, Section 1.4],
whose origin can be traced back to [WLRT08].

Algorithm 3. Row and Column Subspace Sampling (see Remark 3).

Input: As in Algorithm 1.
Output: Two matrices X ∈ R

m×k and Y ∈ R
k×m defining an LRA M̃ = XY .

Initialization: Fix two integers k and l, r ≤ k ≤ m and r ≤ l ≤ n; fix two test
matrices (multipliers) F ∈ R

k×m and H ∈ R
n×l of full numerical ranks and

two nonsingular matrices S ∈ R
k×k and T ∈ R

l×l.
Computations:

1. Output the matrix X = MHT−1 ∈ R
m×l.

2. Compute the matrices U := S−1FM ∈ R
k×n and W := S−1FX ∈ R

m×l.
3. Output the l × n matrix Y := argminV |W+V − U |.

Remark 3. Y X = MH(FMH)+FM independently of the choice of the matrices
S−1 and T−1 if the matrix FMH has full rank min{k, l}, but a proper choice of S
and T numerically stabilizes the computations of the algorithm. For min{k, l} >
r ≥ nrank(FMH) the matrix FMH is ill-conditioned, but we can make it
orthogonal by properly choosing the matrices S−1 and T−1.
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Remark 4. By applying Algorithm 3 to the transpose matrix M∗ we obtain
Algorithm 4, which begins with column subspace sampling followed by row
subspace sampling. Our study of Algorithms 1 and 3 for input M actually covers
Algorithms 2 and 4 as well.

Next we estimate the output errors of Algorithm 1 for any input; then extend
these estimates to the output of Algorithm 3, at first for any input and then for
random inputs.

3 Deterministic Error Bounds for Sampling Algorithms

Suppose that we are given matrices MHT−1 and S−1FM . We can perform Algo-
rithm 3 at arithmetic cost in O(kln), which is sublinear if kl � m. Furthermore
let k2 � m and l2 � n. Then for proper deterministic choice of sparse (e.g.,
subpermutation) matrices S and T we can also compute the matrices MHT−1

and S−1FM at sublinear cost and thus complete computations of entire Algo-
rithm 3 at sublinear cost. In this case we cannot ensure any reasonable accuracy
of the output LRA for a worst case input and even for small input families of
AppendixB, but we are going to prove that the output of that deterministic
algorithm is quite accurate whp for random input and therefore for a large class
of inputs, which is in good accordance with the results of our tests with synthetic
and real world inputs.

We deduce some auxiliary deterministic output error bounds for any fixed
input matrix in this section and refine them for random input under our prob-
abilistic models in the next section. It turned out that the output error bounds
are dominated at the stage of performing Range Finder because in Sect. 3.2 we
rather readily bound additional impact of pre-processing with multipliers F and
S−1F .

3.1 Deterministic Error Bounds for Range Finder

Theorem 1 [HMT11, Theorem 9.1]. Suppose that Algorithm 1 has been applied
to a matrix M with a multiplier H and let

C1 = V ∗
1 H, C2 = V ∗

2 H, (2)

M =
(

U1 Σ1 V ∗
1

U2 Σ2 V ∗
2

)
, Mr = U1Σ1V

∗
1 , and M − Mr = U2Σ2V

∗
2 (3)

be SVDs of the matrices M , its rank-r truncation Mr, and M −Mr, respectively.
[Σ2 = O and XY = M if rank(M) = r. The columns of V ∗

1 span the top right
singular space of M .] Then

|M − XY |2 ≤ |Σ2|2 + |Σ2C2C
+
1 |2. (4)

Notice that |Σ2| = σ̄r+1(M), |C2| ≤ 1, and |Σ2C2C
+
1 | ≤ |Σ2| |C2| |C+

1 | and
obtain

|M − XY | ≤ (1 + |C+
1 |2)1/2σ̄r+1(M) for C1 = V ∗

1 H. (5)
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It follows that the output LRA is optimal up to a factor of (1 + |C+
1 |2)1/2.

Next we deduce an upper bound on the norm |C+
1 | in terms of ||((MH)r)+||,

||M ||, and η := 2σr+1(M) ||((MH)r)+||.
Corollary 1. Under the assumptions of Theorem 1 let the matrix MrH have
full rank r. Then

|(MrH)+|/|M+
r | ≤ |C+

1 | ≤ |(MrH)+| |Mr| ≤ |(MrH)+| |M |.
Proof. Deduce from (2) and (3) that MrH = U1Σ1C1. Hence C1 = Σ−1

1 U∗
1MrH.

Recall that the matrix MrH has full rank r, apply Lemma 2, recall that U1

is an orthogonal matrix, and obtain |(MrH)+|/|Σ−1
1 | ≤ |C+

1 | ≤ |(MrH)+| |Σ1|.
Substitute |Σ1| = |Mr| and |Σ−1

1 | = |M+
r | and obtain the corollary.

Corollary 2. See [PLSZb]. Under the assumptions of Corollary 1 let

η := 2σr+1(M) ||((MH)r)+|| < 1, η′ :=
2σr+1(M)

1 − η
||((MH)r)+|| < 1.

Then
1 − η′

||M+
r || ||((MH)r)+|| ≤ ||C+

1 || ≤ ||M ||
1 − η

||((MH)r)+||.

For a given matrix MH we compute the norm ||((MH)r)+|| at sublinear
cost if l2 � n. If also some reasonable upper bounds on ||M || and σr+1(M) are
known, then Corollary 2 implies a posteriori estimates for the output errors of
Algorithm 1.

3.2 Deterministic Impact of Pre-multiplication on the Errors of
LRA

It turned out that the impact of pre-processing with multipliers S−1F into the
output error bounds is dominated at the stage of Range Finder.

Lemma 1. [The impact of pre-multiplication on LRA errors.] Suppose that
Algorithm 3 outputs a matrix XY for Y = (FX)+FM and that m ≥ k ≥
l = rank(X). Then

M − XY = W (M − XX+M) for W = Im − X(FX)+F, (6)

|M − XY | ≤ |W | |M − XX+M |, |W | ≤ |Im| + |X| |F | |(XF )+|. (7)

Proof. Recall that Y = (FX)+FM and notice that (FX)+FX = Il if k ≥ l =
rank(FX). Therefore Y = X+M + (FX)+F (M − XX+M). Consequently (6)
and (7) hold.

We bounded the norm |M −XX+M | in the previous subsection; next we bound
the norms |(FX)+| and |W | of the matrices FX and W , computed at sublinear
cost for kl � n, a fixed orthogonal X, and proper choice of sparse F .
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Theorem 2. [P00, Algorithm 1] for a real h > 1 applied to an m× l orthogonal
matrix X performs O(ml2) flops and outputs an l×m subpermutation matrix F
such that ||(FX)+|| ≤ √

(m − l)lh2 + 1, and ||W || ≤ 1 +
√

(m − l)lh2 + 1, for
W = Im + X(FX)+F of (6) and any fixed h > 1; ||W || ≈ √

ml for m � l and
h ≈ 1.

[P00, Algorithm 1] outputs l×m matrix F . One can strengthen deterministic
bounds on the norm |W | by computing proper k × m subpermutation matrices
F for k of at least order l2.

Theorem 3. For k of at least order l2 and a fixed orthogonal multiplier X com-
pute a k × m subpermutation multiplier F by means of deterministic algorithms
by Osinsky, running at sublinear cost and supporting [O18, equation (1)]. Then
||W || ≤ 1 + ||(FX)+|| = O(l) for W of (6).

4 Accuracy of Sublinear Cost Dual LRA Algorithms

Next we estimate the output errors of Algorithm 1 for a fixed orthogonal matrix
H and two classes of random inputs of low numerical rank, in particular for
perturbed factor-Gaussian inputs of Definition 2. These estimates formally sup-
port the observed accuracy of Range Finder with various dense multipliers (see
[HMT11, Section 7.4], and the bibliography therein), but also with sparse mul-
tipliers, with which Algorithms 3 and 4 run at sublinear cost.4 We extend these
upper estimates for output accuracy to variations of Algorithm 3 that run at
sublinear cost; then we extend them to Algorithm 4 by means of transposition
of an input matrix. This study involves the norms of a Gaussian matrix and its
pseudo inverse, whose estimates we recall in Appendix A.4.

Hereafter d= denotes equality in probability distribution.

Definition 1. A matrix is Gaussian if its entries are iid Gaussian (normal)
variables. We let Gp×q denote a p × q Gaussian matrices, and define random
variables νp,q

d= |G|, νsp,p,q
d= ||G||, νF,p,q

d= ||G||F , ν+
p,q

d= |G+|, ν+
sp,p,q

d= ||G+||,
and ν+

F,p,q
d= ||G+||F , for a p × q random Gaussian matrix G. [νp,q

d= νq,p and

ν+
p,q

d= ν+
q,p, for all pairs of p and q.]

Theorem 4 [Non-degeneration of a Gaussian Matrix]. Let F
d= Gr×p, H

d=
Gq×r, M ∈ R

p×q and r ≤ rank(M). Then the matrices F , H, FM , and MH
have full rank r with probability 1.

Assumption 1. We simplify the statements of our results by assuming that a
Gaussian matrix has full rank and ignoring the probability 0 of its degeneration.

In Theorems 5 and 6 of the next subsections we state our error estimates,
which we prove in [PLSZb].
4 We defined Algorithm 4 in Remark 4
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4.1 Errors of Range Finder for a Perturbed Factor-Gaussian Input

Assumption 2. Suppose that M̃ = AB is a right m×n factor Gaussian matrix
of rank r, H = UHΣHV ∗

H is a n × l test matrix, and let θ = e
√

l(
√

n+
√

r)
l−r be

a constant. Here and hereafter e := 2.71828182 . . . . Define random variables
ν = ||B|| and μ = ||(BUH)+||, and recall that ν

d= νsp,r,n and μ
d= ν+

sp,r,l.

Theorem 5. [Errors of Range Finder for a perturbed factor-Gaussian matrix.]
Under Assumption 2, let φ =

(
νμ||H+||)−1 − 4α||H||, and let M = M̃ + E be a

right factor Gaussian with perturbation such that

α :=
||E||F

(σr(M) − σr+1(M))
≤ min

(
0.2,

ξ

8κ(H)θ

)
(8)

where 0 < ξ < 2−0.5. Apply Algorithm 1 to M with a test matrix (multiplier) H.
Then

||M − XY ||2 ≤
(
1 + φ−2

)
σ2

r+1(M) and

||M − XY || ≤
(
1 + 2||H+||θ/ξ

)
σr+1(M) (9)

with a probability no less than 1 − 2
√

ξ. If r � l, then θ ≈ e
√

n/l, implying that
the coefficient of σr+1(M) on the right hand side of (9) is close to

1 +
2e||H+||

ξ

√
n/l = O(

√
n/l).

4.2 Output Errors of Range Finder Near a Matrix with a Random
Singular Space

Next we state similar estimates under an alternative randomization model for
dual LRA.

Theorem 6 [Errors of Range Finder for an input with a random singular space].
Let the matrix V1 in Theorem 1 be the n × r Q factor in a QR factorization of
a normalized n × r Gaussian matrix G and let the multiplier H = UHΣHV ∗

H be
any n × l matrix of full rank l ≥ r.

(i) Then for random variables ν = |G| and μ = |GT UH |, it holds that

|M − XY |/σ̄r+1(M) ≤ φr,l,n := (1 + (νμ|H+|)2)1/2.

(ii) For n ≥ l ≥ r + 4 ≥ 6, with a probability at most 1 − 2
√

ξ it holds that

φ2
sp,r,l,n ≤ 1 + ξ−2 e2 ||H+||2(

√
l(

√
n +

√
r)

l − r

)2

and
φ2

F,r,l,n ≤ 1 + ξ−2 r2 ||H+||2F
n

l − r − 1
.

Here ||H+|| = 1 and ||H+||F =
√

l if the matrix H is orthogonal.

Bound the output errors of Algorithms 3 and 4 by combining the estimates
of this section and Sect. 3.2 and by transposing an input matrix M .
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4.3 Impact of Pre-multiplication in the Case of Gaussian Noise

Next deduce randomized estimates for the impact of pre-multiplication in the
case where an input matrix M includes considerable additive white Gaussian
noise,5 which is a classical representation of natural noise in information theory,
is widely adopted in signal and image processing, and in many cases properly
represents the errors of measurement and rounding (cf. [SST06]).

Theorem 7. Suppose that two matrices F ∈ R
k×m and H ∈ R

n×l are orthogo-
nal where k ≥ 2l + 2, l ≥ 2 and k, l < min(m,n), A ∈ R

m×n, λE is a positive
scalar,

M = A + E,
1

λE
E

d= Gm×n, (10)

and W = Im − MH(FMH)+F (cf. (6) for X = MH). Then

E

( ||W ||F − √
m

λE ||M ||F
)

≤
√

l

k − 2l − 1
and E

( ||W || − 1
λE ||M ||

)
≤ e

√
k − l

k − 2l
. (11)

Proof. Assumption (10) and Lemma 5 together imply that FEH is a scaled
Gaussian matrix: 1

λE
FEH

d= Gk×l. Hence FMH = FAH + λEGk,l. Apply
Theorem 10 and obtain

E ||(FMH)+|| ≤ λE
e
√

k − l

k − 2l
and E ||(FMH)+||F ≤ λE

√
l

k − 2l − 1

Recall from (6) that |W | ≤ |Im| + |(FMH)+| |M | since the multipliers F and
H are orthogonal, and thus

E|W | ≤ |Im| + |M | · E |(FMH)+|.

Substitute equations ||Im||F =
√

m and ||Im|| = 1 and claim (iii) of Theorem
12 and obtain (11).

Remark 5. For k = l = ρ, S = T = Ik, subpermutation matrices F and H, and
a nonsingular matrix FMH, Algorithms 3 and 4 output LRA in the form CUR
where C ∈ R

m×ρ and R ∈ R
ρ×n are two submatrices made up of ρ columns and

ρ rows of M and U = (FMH)−1. [PLSZa] extends our current study to devising
and analyzing algorithms for the computation of such CUR LRA in the case
where k and l are arbitrary integers not exceeded by ρ.

5 Additive white Gaussian noise is statistical noise having a probability density func-
tion (PDF) equal to that of the Gaussian (normal) distribution.
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5 Multiplicative Pre-processing for LRA

We proved that sublinear cost variations of Algorithms 3 and 4 whp output
accurate LRA of a random input. In the real world computations input matrices
are not random, but we can randomize them by multiplying them by random
matrices.

Algorithms 1–4 output accurate LRA whp if such multipliers are Gaussian,
SRHT, SRFT or Rademacher’s (cf. [HMT11, Sections 10 and 11], [T11]. Multi-
plication by these matrices runs at a superlinear cost, and our heuristic recipe
is to apply these algorithms with a small variety of sparse multipliers Fi and/or
Hi, i = 1, 2, . . . , with which computational cost becomes sublinear, and then to
monitor the accuracy of the output LRA by applying the criteria of the previous
section, [PLa], and/or [PLSZa].

Various families of sparse multipliers have been proposed, extensively tested
in [PLSZ16] and [PLSZ17], and turned out to be nearly as efficient as Gaussian
multpliers according to these tests. One can readily complement these families
with subpermutation matrices and, say, sparse quasi Rademacher’s multipli-
ers (see [PLSZa]) and then combine these basic multipliers together into their
orthogonalized sums, products or other lower degree polynomials (cf. [HMT11,
Remark 4.6]).
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Appendix

A Background on Matrix Computations

A.1 Some Definitions

– An m × n matrix M is orthogonal if M∗M = In or MM∗ = Im.
– For M = (mi,j)

m,n
i,j=1 and two sets I ⊆ {1, . . . , m} and J ⊆ {1, . . . , n}, define

the submatrices MI,: := (mi,j)i∈I;j=1,...,n,M:,J := (mi,j)i=1,...,m;j∈J , and
MI,J := (mi,j)i∈I;j∈J .

– rank(M) denotes the rank of a matrix M .
– argmin|E|≤ε|M | rank(M +E) is the ε-rank(M) it is numerical rank, nrank(M),

if ε is small in context.
– Write σj(M) = 0 for j > r and obtain Mr, the rank-r truncation of M .
– κ(M) = ||M || ||M+|| is the spectral condition number of M .

A.2 Auxiliary Results

Next we recall some relevant auxiliary results (we omit the proofs of two well-
known lemmas).
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Lemma 2 [The norm of the pseudo inverse of a matrix product]. Suppose that
A ∈ R

k×r, B ∈ R
r×l and the matrices A and B have full rank r ≤ min{k, l}.

Then |(AB)+| ≤ |A+| |B+|.
Lemma 3 (The norm of the pseudo inverse of a perturbed matrix, [B15, The-
orem 2.2.4]). If rank(M + E) = rank(M) = r and η = ||M+|| ||E|| < 1, then

1√
r
||(M + E)+|| ≤ ||(M + E)+|| ≤ 1

1 − η
||M+||.

Lemma 4 (The impact of a perturbation of a matrix on its singular values,
[GL13, Corollary 8.6.2]). For m ≥ n and a pair of m × n matrices M and M +E
it holds that

|σj(M + E) − σj(M)| ≤ ||E|| for j = 1, . . . , n.

Theorem 8 (The impact of a perturbation of a matrix on its top singular
spaces, [GL13, Theorem 8.6.5]). Let g =: σr(M) − σr+1(M) > 0 and ||E||F ≤
0.2g. Then for the left and right singular spaces associated with the r largest sin-
gular values of the matrices M and M + E, there exist orthogonal matrix bases
Br,left(M), Br,right(M), Br,left(M + E), and Br,right(M + E) such that

max{||Br,left(M+E)−Br,left(M)||F , ||Br,right(M+E)−Br,right(M)||F } ≤ 4||E||F
g .

For example, if σr(M) ≥ 2σr+1(M), which implies that g ≥ 0.5 σr(M), and if
||E||F ≤ 0.1 σr(M), then the upper bound on the right-hand side is approxi-
mately 8||E||F /σr(M).

A.3 Gaussian and Factor-Gaussian Matrices of Low Rank and Low
Numerical Rank

Lemma 5 [Orthogonal invariance of a Gaussian matrix]. Suppose that k, m,
and n are three positive integers, k ≤ min{m,n}, Gm,n

d= Gm×n, S ∈ R
k×m,

T ∈ R
n×k, and S and T are orthogonal matrices. Then SG and GT are Gaussian

matrices.

Definition 2 [Factor-Gaussian matrices]. Let r ≤ min{m,n} and let Gm×n
r,B ,

Gm×n
A,r , and Gm×n

r,C denote the classes of matrices Gm,rB, AGr,n, and Gm,rCGr,n,
respectively, which we call left, right, and two-sided factor-Gaussian matrices
of rank r, respectively, provided that Gp,q denotes a p × q Gaussian matrix,
A ∈ R

m×r, B ∈ R
r×n, and C ∈ R

r×r, and A, B and C are well-conditioned
matrices of full rank r.

Theorem 9. The class Gm×n
r,C of two-sided m × n factor-Gaussian matrices

Gm,rΣGr,n does not change if in its definition we replace the factor C by a
well-conditioned diagonal matrix Σ = (σj)r

j=1 such that σ1 ≥ σ2 ≥ · · · ≥ σr > 0.



Sublinear Cost Low Rank Approximation via Subspace Sampling 101

Proof. Let C = UCΣCV ∗
C be SVD. Then A = Gm,rUC

d= Gm×r and B =

V ∗
CGr,n

d= Gr×n by virtue of Lemma 5, and so Gm,rCGr,n = AΣCB for A
d=

Gm×r, B
d= Gr×n, and A independent from B.

Definition 3. The relative norm of a perturbation of a Gaussian matrix is the
ratio of the perturbation norm and the expected value of the norm of the matrix
(estimated in Theorem 11).

We refer to all three matrix classes above as factor-Gaussian matrices of
rank r, to their perturbations within a relative norm bound ε as factor-Gaussian
matrices of ε-rank r, and to their perturbations within a small relative norm as
factor-Gaussian matrices of numerical rank r to which we also refer as pertur-
bations of factor-Gaussian matrices.

Clearly ||(AΣ)+|| ≤ ||Σ−1|| ||A+|| and ||(ΣB)+|| ≤ ||Σ−1|| ||B+|| for a two-
sided factor-Gaussian matrix M = AΣB of rank r of Definition 2, and so whp
such a matrix is both left and right factor-Gaussian of rank r.

Theorem 10. Suppose that λ is a positive scalar, Mk,l ∈ R
k×l and G a k × l

Gaussian matrix for k − l ≥ l + 2 ≥ 4. Then, we have

E ||(Mk,l + λG)+|| ≤ λe
√

k − l

k − 2l
and E ||(Mk,l + λG)+||F ≤ λ

√
l

k − 2l − 1

Proof. Let Mk,l = UΣV ∗ be full SVD such that U ∈ R
k×k, V ∈ R

l×l, U
and V are orthogonal matrices, Σ = (D | Ol,k−l)∗, and D is an l × l diagonal
matrix. Write Wk,l := U∗(Mk,l + λG)V and observe that U∗Mk,lV = Σ and

U∗GV =
[
G1

G2

]
is a k × l Gaussian matrix by virtue of Lemma 5. Hence

σl(Wk,l) = σl

( [
D + λG1

λG2

] )
≥ max{σl(D + λG1), λσl(G2)},

and so |W+
k,l| ≤ min{|(D + λG1)+|, |λG+

2 |}. Recall that G1
d= Gl×l and G2

d=
Gk−l×l are independent, and now Theorem 10 follows because |(Mk,l+λGk,l)+| =
|W+

k,l| and by virtue of claim (iii) and (iv) of Theorem 12.

A.4 Norms of a Gaussian Matrix and Its Pseudo Inverse

Γ (x) =
∫ ∞
0

exp(−t)tx−1dt denotes the Gamma function.

Theorem 11 [Norms of a Gaussian matrix. See [DS01, Theorem II.7] and our
Definition 1].

(i) Probability{νsp,m,n > t+
√

m+
√

n} ≤ exp(−t2/2) for t ≥ 0, E(νsp,m,n) ≤√
m +

√
n.

(ii) νF,m,n is the χ-function, with E(νF,m,n) = mn and probability density
2xn−iexp(−x2/2)

2n/2Γ (n/2)
.
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Theorem 12 [Norms of the pseudo inverse of a Gaussian matrix (see
Definition 1)].

(i) Probability {ν+
sp,m,n ≥ m/x2} < xm−n+1

Γ (m−n+2) for m ≥ n ≥ 2 and all
positive x,

(ii) Probability {ν+
F,m,n ≥ t

√
3n

m−n+1} ≤ tn−m and Probability {ν+
sp,m,n ≥

t e
√

m
m−n+1} ≤ tn−m for all t ≥ 1 provided that m ≥ 4,

(iii) E((ν+
F,m,n)2) = n

m−n−1 and E(ν+
sp,m,n) ≤ e

√
m

m−n provided that m ≥ n+2 ≥ 4,

(iv) Probability {ν+
sp,n,n ≥ x} ≤ 2.35

√
n

x for n ≥ 2 and all positive x, and fur-
thermore ||Mn,n + Gn,n||+ ≤ νn,n for any n × n matrix Mn,n and an n × n
Gaussian matrix Gn,n.

Proof. See [CD05, Proof of Lemma 4.1] for claim (i), [HMT11, Proposition 10.4
and equations (10.3) and (10.4)] for claims (ii) and (iii), and [SST06, Theorem
3.3] for claim (iv).

Theorem 12 implies reasonable probabilistic upper bounds on the norm ν+
m,n

even where the integer |m − n| is close to 0; whp the upper bounds of Theorem
12 on the norm ν+

m,n decrease very fast as the difference |m − n| grows from 1.

B Small Families of Hard Inputs for Sublinear Cost LRA

Any sublinear cost LRA algorithm fails on the following small families of LRA
inputs.

Example 1. Let Δi,j denote an m × n matrix of rank 1 filled with 0s except for
its (i, j)th entry filled with 1. The mn such matrices {Δi,j}m,n

i,j=1 form a family
of δ-matrices. We also include the m × n null matrix Om,n filled with 0s into
this family. Now any fixed sublinear cost algorithm does not access the (i, j)th
entry of its input matrices for some pair of i and j. Therefore it outputs the
same approximation of the matrices Δi,j and Om,n, with an undetected error
at least 1/2. Arrive at the same conclusion by applying the same argument to
the set of mn + 1 small-norm perturbations of the matrices of the above family
and to the mn + 1 sums of the latter matrices with any fixed m × n matrix of
low rank. Finally, the same argument shows that a posteriori estimation of the
output errors of an LRA algorithm applied to the same input families cannot
run at sublinear cost.

The example actually covers randomized LRA algorithms as well. Indeed suppose
that with a positive constant probability an LRA algorithm does not access K
entries of an input matrix with a positive constant probability. Apply this algo-
rithm to two matrices of low rank whose difference at all these K entries is equal
to a large constant C. Then, clearly, with a positive constant probability the algo-
rithm has errors at least C/2 at at least K/2 of these entries. The paper [LPa]
shows, however, that accurate LRA of a matrix that admits sufficiently close
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LRA can be computed at sublinear cost in two successive Cross-Approximation
(C-A) iterations (cf. [GOSTZ10]) provided that we avoid choosing degenerat-
ing initial submatrix, which is precisely the problem with the matrix families of
Example 1. Thus we readily compute close LRA if we recursively perform C-A
iterations and avoid degeneracy at some C-A step.
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