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ABSTRACT

The recent advanced sub-division algorithm is nearly optimal for
the approximation of the roots of a dense polynomial given in mono-
mial basis; moreover, it works locally and slightly outperforms the
user’s choice MPSolve when the initial region of interest contains
a small number of roots. Its basic and bottleneck block is counting
the roots in a given disc on the complex plain based on Pellet’s
theorem, which requires the coefficients of the polynomial and ex-
pensive shift of the variable. We implement a novel method for both
root-counting and exclusion test, which is faster, avoids the above
requirements, and remains efficient for sparse input polynomials.
It relies on approximation of the power sums of the roots lying
in the disc rather than on Pellet’s theorem. Such approximation
was used by Schénhage in 1982 for the different task of deflation of
a factor of a polynomial provided that the boundary circle of the
disc is sufficiently well isolated from the roots. We implement a
faster version of root-counting and exclusion test where we do not
verify isolation and significantly improve performance of subdivi-
sion algorithms, particularly strongly in the case of sparse inputs.
We present our implementation as heuristic and cite some relevant
results on its formal support presented elsewhere.
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1 INTRODUCTION

We seek complex roots of a degree d univariate polynomial p with
real or complex coefficients. For a while the user choice for this
problem has been the package MPsolve based on Erhlich-Aberth
(simultaneous Newton-like) iterations. Their empirical global con-
vergence (right from the start) is very fast, but its formal support is
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a long-known challenge, and the iterations approximate the roots
in a fixed region of interest (ROI) about as slow as all complex roots.

In contrast, for the known algorithms subdividing a RO, e.g., box,
the cost of root-finding in a ROI decreases at least proportionally to
the number of roots in it. Some recent subdivision algorithms have
a proved nearly optimal complexity, are robust in the case of root
clusters and multiple roots, and their implementation in [8] a little
outperforms MPsolve for ROI containing only a small number of
roots, which is an important benefit in many computational areas.

The Root Clustering Problem. Z(S, p) or Z(S) is the root subset
of p in a complex set S; #(S, p) or #(S) denotes the number of roots
of p in S. We always count roots with multiplicity.

We consider boxes (that is, squares with horizontal and vertical
edges, parallel to coordinate axis) and discs D(c, r) = {z s.t. [z —¢|<
r} on the complex plane. For such a box (resp. disc) S and a positive
& we denote by S the concentric §-dilation. A disc A is an isolator
if #(A) > 0; it is a natural isolator if in addition #(A) = #(3A). A set
R of roots of p is a natural cluster or just cluster for short if there
exists a natural isolator A with Z(R) = Z(A). A is an e-isolator and
the set R is an e-cluster if ¢ exceeds the diameter of A.

The Local Clustering Problem (LCP) is the problem of computing
natural e-isolators for natural e-clusters together with the sum of
multiplicities of roots in the clusters in a fixed ROI:

Local Clustering Problem (LCP):

Given: a polynomial p € C[z],aROI By c C, ¢ > 0

Output: a set of pairs {(Al, m?), ..., (AY, m®)} where:
- the AJ’s are pairwise disjoint discs of radius < &,
-m/ = #AJ,p) = #BN,p)and m/ > 0forj=1,...,¢
- Z(Bo.p) € U, Z(N . p) € Z(2B. p).

Root Clustering Problem (RCP) is a global version of LCP:

Root Clustering Problem:

Given: a polynomial p € C[z] of degree d

Output: a set of pairs {(Al, m?), ..., (AY, m®)} where:
- the AJ’s are pairwise disjoint discs,
-m/ = #M,p) = #B3N ,p)andd > m/ > 0forj=1,...,¢
- UL, 2V, p) = Z(C.p).

We can readily transform an algorithm for LCP into that RCP by
using a bound on the norm of the roots of p, e.g., the Fujiwara bound
(see [5]) for the ROL Conversely, an algorithm RCP can initialize
an algorithm for the LCP, followed by refining natural isolators to
a fixed size, e.g., by means of solving the RCP itself. We can achieve
quadratic convergence to the clusters by using Newton’s iterations.

A nearly optimal subdivision algorithm of [1] solves the LCP
by means of subdivision. It combines exclusion and counting tests
based on Pellet’s theorem and Newton iterations. [8] describes high-
level improvements of [1] and a C implementation of its algorithm
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called Ccluster!. Computational cost of application of Pellet’s
theorem to a disc D(c, r) is dominated by the cost of shifting and
scaling the variable z — ¢ + zr and of Dandelin-Gréffe’s root-
squaring iterations.

Our Contributions. The core tool for solving both LCP and RCP
is a test for counting the number sy of roots in a disc A = D(c, r).
If the boundary dA contains no roots, then by virtue of Cauchy’s

theorem
’
sp = L ﬁdz, fori=
27i Jon p(2)

By following [7, 13, 20], we compute approximation s; to so by
means of the evaluation of p’/p on g points of dA. We give an effec-
tive? (i.e. implementable) description of our test, said to be P*-test,
for counting the number of roots in any disc A. This test involves no
coefficients of p and can be applied to a black box polynomial, that
is, a polynomial p given by a black box for its evaluation (and for
implied evaluation of p” [10]). Unlike the counting tests based on
Pellet’s theorem, we do not require shifting and scaling the variable
z and, moreover, replace Dandelin-Graffe’s costly root-squaring it-
erations by recursively doubling the number q of evaluation points.

By restricting our root-counting to decision whether the number
of roots is 0 or not, we arrive at our exclusion test, said to be P0-test;
it decides if a disc contains no roots.

We show how to use our exclusion test in a subdivision algorithm
for solving the RCP. Our algorithm can fail but always terminates.
We provide some heuristic support for its correctness, and in Sec.
6 we point out to the most recent results on the formal support
of the correctness of our approach, which seems to preserve the
nearly optimal Boolean cost bound of the algorithms of [1] and [2].
Our goal, however, is not to compete with but to cooperate with
algorithms of [1] and [2] and possibly to amend them.

We have implemented our algorithm in a procedure called
CclusterF? and showed empirically that it allows significant prac-
tical improvements of root clustering compared to Ccluster. For
sparse polynomials and polynomials defined by recursive process
such as Mandelbrot’s polynomials (see [3, Eq. (16)]), the resulting
acceleration of the clustering algorithm of [1] is particularly strong.
In experiments we carried out, CclusterF never failed.

V-1, (1)

Organization of the Paper. In Sec. 2 we approximate sy and esti-
mate approximation error. Secs. 3 and 4 present our P* and P?-tests,
respectively. In Sec. 5 we present our subdivision algorithm for
solving the RCP using the PO-test. In the rest of the present section,
we recall the related work and the clustering algorithm of [1].

1.1 Previous Works

Univariate polynomial root-finding is a long-standing and still ac-
tual problem; it is intrinsically linked to numerical factorization of
a polynomial into the product of its linear factors. The algorithms
of [12] solved both problems of factorization and root-finding in
record Boolean time, which is nearly optimal, that is, optimal up

Uhttps://github.com/rimbach/Ccluster

by effective, we refer to the pathway proposed in [21] to describe algorithms in three
levels: abstract, interval, effective

3We have done this before deterministic support for correctness of our exclusion test
appeared in [13] and verified correctness by using a test from [8].
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to a polylog factor in the input size and output precision. The al-
gorithms are involved and have never been implemented. User’s
choice has been for a while the package of subroutines MPsolve
(see [3] and [4]), based on simultaneous Newton-like (i.e. Ehrlich-
Aberth) iterations. They converge to all roots simultaneously. As
we said already, empirically they do this very fast right from the
start, albeit with no formal support, and they approximate a small
number of roots in a ROI not much faster than all roots. In contrast
the nearly optimal cost of the algorithms of [12] and [1], already
cited, is roughly proportional to the number of roots in a ROL [1]
extends the method of [2] to root clustering, i.e. it solves the LCP
and is robust in the case of multiple roots; its implementation [8]
is a little more efficient than MPsolve for ROIs containing a small
number of roots; when all the roots are sought, MPsolve remains
the user’s choice. The algorithms of [1] and [2] follow subdivision
algorithms of [17] and [11], presented there under the name of
Quad-tree algorithms (inherited from [6]). [15, 16, 19] achieve a
nearly optimal complexity in the real case; [9] implements the algo-
rithm of [19]. Much more rudimentary variants of our algorithms
and of their implementation appeared in [14] and [7], respectively.
In Remark 8 we comment on a technical link to [20].

1.2 Solving the RCP

The root clustering algorithm in [1] combines two tests, called
exclusion and counting test, with recursive subdivision of an initial
box.

C° and C* tests. The two tests C° and C* exclude boxes with no
roots of p and count the number of roots in a box, respectively. Both
tests have a failure mode, i.e. return —1 when they cannot make
decision. For a given complex disc A, C*(A, p) (resp. CO(A, p)) returns
an integer k > 0 (resp. 0) that indicate that there are precisely k
(resp. no) roots in A. In the following, we frequently write C°(A)
for CO(A, p) and C*(A) for C*(A, p).

In [1, 2, 8], both C? and C* are based on the so called “soft Pellet
test” denoted T*(A, p) or T*(A) which returns an integer k > —1
such that k > 0 only if p has k roots in A:

=

T*(A).

if T*(A) = 0
otherwise

CcO(A) :
@)
C*(A) ==

Boxes, Quadri-section and Connected Components. The box B
centered in ¢ = a +ib with width w is defined as [a — w/2,a+w/2] +
i[b — w/2,b + w/2]. w(B) denotes the width of B. The containing
disc of B is the disc A(B) := D(c, %W(B)) The four children of B are
the four boxes centered in (a + ¥) + i(b + ¥) and having width 3.

Recursive subdivisions of a ROI By amounts to the construction
of a tree rooted in By. Below we refer to boxes that are nodes (and
possibly leafs) of this tree as the boxes of the subdivision tree of By.

A component C is a set of connected boxes. The component box
B¢ of a component C is a smallest square box subject to C € B¢ C
By, where By is the initial ROL We write A(C) for A(B¢) and w(C)
for w(B¢). Below we consider components made up of boxes of the
same width; such a component is compact if w(C) is at most 3 times
the width of its boxes. Finally, a component C is separated from a
set S of components if YVC’ € S,4A(C) N C’ = 0 and 4A(C) C 2By.
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Algorithm 1 Root Clustering Algorithm

Input: A polynomial p € C[z] of degree d.
Output: Set R of components solving the LCP.
1: w « upper bound for the norm of the roots of p
2: By < box centered in 0 with width w
32 R« 0, Q « {By} // Initialization
4: while Q is not empty do // Main loop
5 C «— Q.pop() //C has the widest component box in Q
// Validation
6 if C is compact and C is separated from Q then
7: k « C*(2A(C),p)
8: if d >k >0 then
9 R.push((C, k))
break
// Bisection
S « empty set of boxes
for each box B of C do
for each child B’ of B do
if CO(A(B’), p) returns —1 then
S.push(B’)
Q.push( connected components in S )

17: return R

A Root Clustering Algorithm. We give in Algo. 1 a simple root
clustering algorithm based on subdivision. A ROI containing all the
roots of p is constructed using the so-called Fujiwara bound for the
norm of the roots of p (see [5]). In step 16, an implicit processing
of S groups the boxes in components. The paper [1] proves that
Algo. 1 terminates and outputs a correct solution provided that the
C? and C*-tests are as in Eq. (2).

In the while loop of Algo. 1, components with widest component
box are processed first; together with the definition of a separated
component, this implies the following remarks:

REMARK 1. Let C be a component in Algo. 1 that passes the test in
step 6. Then C satisfies #(A(C)) = #(4A(C)).

REMARK 2. IF#(22A) = #(4A), then T*(A) > 0 (see [1, Lem. 3])
and if C* is defined as in (2), then k in step 7 of Algo. 1 is non-negative.

2 THE POWER SUMS OF THE ROOTS IN THE
UNIT DISC

Let roots {a1, ..., &g, } of p lie in A, roots {ag, 41, - - .
side A, and no roots lie on the boundary dA.

,aq} lie out-

DEFINITION 3 (THE POWER SUMS OF THE ROOTS IN A DISC). The
h-th power sum of the roots of p in A is the complex number

dp A
Sp = Zaj
j=1

Hereafter q is an integer exceeding 1 and { denotes a primitive
g-th root of unity. The h-th power sum of the roots in the unit disc
A = D(0,1) can be approximated by

SZ Z g«g(hﬂ)p

qg()

®)

(&9

2C9) @
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provided that A has no root on its boundary. The following theorem
of [13] explicitly expresses the sums s, through the roots.

THEOREM 4. Let @, ..., ag be all d roots of p(z). Then

unless aj = 1 for some j. (5)

2.1 Proof of Theorem 4

We begin with recalling some auxiliary properties.
(i) Differentiate the equation p(z) = lcf(p) [T }1:1 (z—aj) and obtain

P & ©
p(z) Hz-o ’
(ii) For a primitive g-th root of unity ¢, it holds that
gq-1
{9#1for0<g<gq > {9=0and{?=1. (7)
g=0

) P 1 _
(iif) Newman’s expansion: if |y|< 1 then T = DI
LEMMA 5. For a complex z with |z|# 1, integersh > 0 andq > 1

and a primitive g-th root of unity { it holds that

1Tl gheng ok
Z — = . (8)
9 5=0 {9~z

1-—2z9

Proof of Lem. 5: First let |z|< 1 and obtain
{(h+1)g é«hg s

gg—zzl— ghgz( ) _gg(sz——h)g

where the equation in the middle follows from Newman’s expansion
fory = 55—9 We can apply it because |y| = |z| while |z| < 1.

. zS
Sum the fractions 27~

in g and deduce from (7) that

|

1
1 q- g(h+1)y Lk qul
q g= 0 {g -z

Apply Newman’s expansion for y = zq and deduce (8) provided

that |z|< 1. Now let |z|> 1. Then
[(h+Dg Jhelg [(h+Dg i (gg )s

{9 -z z q_& z
z

1 s z* when s = h + gl for an integer [,

pr] é’(s h)g 0 otherwise.

Therefore

00 év(s+h-¢-1)g

s+1
s=0 * % z

Sum these expressions in g, write s := gl — h — 1, and apply (7):

! - - 1
Qg0 69~z 7t = 27

Apply Newman’s expansion for y = 1/z9 and obtain that

1471 {(h+1)g h-a g
- — =- —=—.
9420892 1-4 1-24
Hence (8) holds in the case where |z|> 1 as well. [
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2.2 Error bounds for the approximation of the
power sums

DEFINITION 6 (ISOLATION RATIO). A complex disc A has an isola-
tion ratio p > 1 for a polynomial p or equivalently is p-isolated if
Z(%A) = Z(pA).

CoroLLARY 7. Forp > 1,0 := 1/p, and an integer h such that
0 < h < q let the disc A = D(0, 1) be p-isolated and contain dp roots
of p. Then
dpy0THh & (d — dp)eah 0
T . ©)
REMARK 8. The corollary does not imply Theorem 4. In [20] Schon-
hage proved the corollary and applied it to deflation of p, ignoring the
case of h = 0 and root-counting problem and bypassing the theorem.

Is, = sul<

Proof of Corollary 7: Let {a1, ..., a4, } be the roots of p in A and

{@g,+1-- - -, aq} be the roots of p outside A. First combine (5) with
(3) to obtain
da (qu+h d a]h
*
Sh—shzzl q+ Z 1 q (10)
J=L AT jeda+l T
Recall that 0 = 1/p < 1. For 1 < j < dp, one has
(X‘.ﬁh pa+h
—_— 11
1—a?|” 1-04 ()
J
Fordp +1 < j < d, it holds that 1/a; < 6 and
h h-q —h
% 7l ajq < 19‘1 o (12)
1- a; 1/aj -1 -
Combining (10), (11) and (12) implies inequality (9). O

3 COUNTING THE NUMBER OF ROOTS IN A
WELL-ISOLATED DISC

Given p > 1, a black box polynomial p, and p-isolated disc D(0, 1),
Corollary 7 suggests the following recipe for counting the roots of
p in D(0, 1): first choose g such that |s; — so| is less than 1/4 and
then compute s of (4), at the overall cost of the evaluation of p and
p’ at ¢ = O(log(d)) points and O(g) additional arithmetic operations.
Clearly a unique integer in the disc D(s, 1/4) is the number of
roots in D(0, 1). In this section we extend this recipe to P*-test for
counting the roots of a black box polynomial p in any p-isolated
disc A = D(c,r) for p > 1.

When A has isolation ratio 2 and p has degree 500, our test
amounts to evaluating p and p” on g = 11 points.

If p and p’ can be evaluated at a low computational cost, e.g. if p
is sparse or defined by a recurrence as the Mandelbrot polynomial
(see [3, Eq. (16)]), our P*-test can be dramatically simplified.

3.1 Approximation of the 0-th Power Sum of
the Roots in any Disc

Let A = D(c, r) and sp be the 0-th power sum of the roots of p in A,
as defined in Def. 3. For a positive integer g, define

r G gpert)

Ta &t e o)

(13)

252

Rémi Imbach and Victor Y. Pan

where { is a primitive g-th root of unity.

COROLLARY 9. Let A have isolation ratio p, and 6 = 1/p. Then
ded

Isg — so|s —0q (14)

Fixe > 0.Ifq = [logg( )] then |s; — sol< e (15)

Proof of Corollary 9: Let pa(z) be the polynomlal p(c +rz). Then
pA(z) = rp’(c + rz) and Eq. (13) rewrites s; = {9 pA(é;g; In ad-

dition, the unit disc D(0, 1) has isolation ratio p for pa and contains
so roots of pa. Then apply Thm. 7 to pa(z) to obtain (14). (15) is a
direct consequence of (14).
]

Remark that in (15), the required number q of evaluation points
increases as the logarithm of p: if A has isolation ratio /p (resp.
p?) instead of p, then %q (resp. 2q) evaluation points are required.
Thus doubling the number of evaluation points has the same effect
as root squaring operations.

Our test uses the following bound.

LEmMMA 10. Suppose that A = D(c,r) has isolation ratio p > 1,
z € C, |z|= 1, and g is an integer. Then

ri(p - 1)

lp(c + rz9)|> lcf(p) pd (16)

Proof of Lem. 10. Suppose that p has dp non-necessarily distinct

roots ag,...,aq, in A and d — da roots ag, .1, . ..,aq outside A.
Since A has isolation ratio p, it follows that
-1
|c+rzg—0(,~|2r—1:MwhenisdA,and (17)
p
>pr—r=r(p—1)wheni>dy+1 (18)
Write
dp d
plc +rz9) = Icf(p) I_I(c +1r29 — aj) ﬂ (c+rz9 —aj)
i=1 i=dp+1
and deduce from inequalities (17) and (18) that
rip-1) ( 1)d
e + ralz Teflp)( =)o~ 1) = ef(p) T
Bound (16) follows since p > 1. O

3.2 Black Box for Evaluating a Polynomial on
an Oracle Number

Our P*-test deals with oracle numbers, the black boxes for arbitrary
precision approximation of complex numbers. Such oracle numbers
can be implemented through arbitrary precision interval arithmetic
or ball arithmetic. Let [IC be the set of complex intervals. If [la €
[IC, then w([la) is the maximum width of real and imaginary parts
of Ua.

For a number a € C, we call oracle for a a function O, : N — [JC
such that a € O4(L) and w(Og4(L)) < 27L for any L. Let O be the set
of oracle numbers which can be computed with a Turing machine.

For a polynomial p € C[z], we call evaluation oracle for p a
function 7, : (O¢,N) — UC, such that if O, is an oracle for a and
L € N, then p(a) € I(Oq, L) and w(Z(Oq, L)) < 27L.
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Algorithm 2 P*(Ip, Iy, A, p)

Input: I, I,y evaluation oracles for p and p’, A = D(c,r), p > 1.p
is monic and has degree d.
Output: an integer in {-1,0,...,d}
1: Le—53,we1le«1/4
20— 1/p,q « [ogy(z5)]
3 0 —rd(p-1)/p?
4: while w > 1/2 do

5 forg=0,...,q—1do

6: Compute intervals 7p(O¢.rr9, L) and Ly (O, L)
7: if [7p(Ocyrr9, L)< € then

8: return -1

-1
9 Compute interval [Is; as % ZZ:,O Ogg(L)%
w — w(lsg)
L« 2L
12: Uso « Osg + [—e, e] +i[—e, €]
: if sy contains a unique integer k then
return k
15: return —1

Consider evaluation oracles I, and I}y for p and its derivative
p’. If p is given by d + 1 oracles for its coefficients, one can easily
construct 7, and Iy by using, for instance, Horner’s rule. However
for some polynomials defined by a procedure, one can construct
fast evaluation oracles I, and Z, from procedural definition.

3.3 The P*-test

In Algo. 2 we describe our counter of the roots of a monic poly-
nomial p in a disc A = D(c, r). Its input is made up of evaluation
oracles for p and p’, A, and a fixed isolation ratio p > 1 for A. It
may fail and return —1 only if A is not p-isolated for p > 1. In the
latter case its correctness cannot be guaranteed. The termination
of Algo. 2 amounts to the termination of the while loop in step 4.

First suppose that 0 < g < g for an integer g, a disc A is p-isolated
for p > 1, and |p(c + r{9)|> € > 0 (cf. (16)). Thus for 2L < £, none
of the Ip(Oﬁrgg, L) can contain 0, and the width of the interval
Usy computed in step 9 strictly decreases with L (see, e.g., [18, Sec.
5] and in particular Eq. (5.10) and (5.11) that directly extend to C).

Now suppose that the disc A is not p-isolated for a fixed p > 1. If
one of the evaluation points ¢ + r{9 isaroot of p or if p(c +r{9) < I
then condition in step 7 is satisfied for 27L < ¢, and the test returns
—1. Otherwise p(c + r{9) > £forallg = 0,...,q — 1, and then the
interval [s; computed in step 9 has width that strictly decreases
with L.

This proves the termination of Algo. 2 when p is monic. One can
easily write a terminating algorithm for non-monic polynomials
assuming a lower bound on the leading coefficient of p.

The correctness of Algo. 2 is stated in the following proposition:

PrRoOPOSITION 11. Let A be p-isolated. Then p has k roots in A if
and only if P*(1p, Iy, A, p) returns k.

Proof of Prop. 11. Since A is p-isolated Lemma 10 implies that
the condition in step 7 is never reached. By virtue of Corollary 9,
the interval [Isy computed in step 12 of Algo. 2 has width less than
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1 and contains a unique integer so, the number of roots of p in A
counted with multiplicity. O

4 AN ALMOST SURE EXCLUSION TEST

The P*-test of sec. 3 counts the roots in A using no Taylor’s shift
but just evaluates p at O(log(d)) points on the contour of A, which
is a major benefit versus [1]. However, we cannot ensure its success
unless we know that A is p-isolated for p noticeably exceeding 1,
and this disqualifies its use as an exclusion test within a subdivision
framework of [1]. Our alternative version of the P*-test in [7] works
in the case where p is not known, and we used it as an exclusion
test while confirming its output with the T*-test.

Here we define an exclusion test based on the computation of
approximations of the first k power sums (for a small k > 0). For a
disk with a fixed isolation ratio one can compute an interval [Isg
containing a unique integer s as in Algo. 2. However, if the isolation
ratio is smaller, then s may differ from sy. In the test described
below, we verify further necessary conditions that s = sp. Namely,
we compute the k first power sums of the roots of pa in D(0, 1) for
a small k: for h less that k, p contains no root in A only if the h-th
powers of the roots of p in A sum to 0, which in turn happens only
if the h-th powers of the roots of pa in D(0, 1) sum to 0.

Subsec. 4.1 extends Corollary 9 to the approximation of the
h-th power sum of the roots of pp in D(0, 1). In Subsec. 4.2, we
define our exclusion test and give a sufficient condition in terms
of the distances of the roots to a box B for our test to exclude
B. In Subsec. 4.3 we provide experimental results confirming our
heuristic.

4.1 Approximation of h-th power sum

For a positive integer g and 0 < h < g, define

o r S e P e+ g9
" a;}gg ple+1r9) 9

By replacing h by 0, (19) directly extends (13), and likewise bound
(20) below directly extends (9).

COROLLARY 12 (OF THEOREM 7). Let A = D(c,r) have isolation
ratio p, and 6 = 1/p. Let p have degree d and dp roots in A. Then

dpA0TH 4 (d — dp)e9h

|sh —spl < 104 (20)
. dga—"
|Sh—sh|5 1-09 (21)
. e %
Fixe > 0.1Ifq = [loge(mﬂ +h, then|s, —sp|<e (22)

Proof of (21) and (22) in Corollary 12: We deduce (21) from
(20) by noticing that 0 < 1 and da09*" < dp09~". (22) is a direct
consequence of (21). O

4.2 The P°-test

We describe our PO-test in Algo. 3 in the case where p is monic. At
the first stage, we rely on eq. (19) and for 0 < h < k, compute the
interval Dsz, containing s} and having width less than 1/2. At the
second stage, for 0 < h < k, we obtain the interval [sj from [Is}
by adding the errors bounded in (21). sy, contains sy, for all A if A
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. 0 “ “ T*-tests “ POtests, k = 0 “ PO-tests, k = 1 “ POtests, k = 2
Algorithm 3 P (IP’IP” A, p, k) d || n J[t/te [[#in s [[#IN e || #IN P 2t
. 100 monic random dense polynomials per degree

Input: I, I,y evaluation oracles for p and p’, A = D(c,r), p > 1.p TR 572 T 7 L yml E 5 g TR i
is monic and has degree d. k > 0 is an integer. 128 || 227842 90.5 6417 21 9935 0 12972 0 599
. . 191 || 340348 92.0 8850 26 13770 1 18004 0 455

Output: an lnteger mn {_17 O} Bernoulli polynomials
t Le53,we1,0<1/p 64 1566 875 32 0 42 0 60 0 336
e 128 2954 88.4 49 0 65 0 87 0 578
2 e 1/4,q « flogg(mﬂ +k 191 4026 88.7 100 0 163 0 212 0 462

. d d.d 100 monic random sparse (10 monomials) polynomials per degree

3 L=rip-1)%p 64 115850 86.2 3628 10 5430 0 6986 0 981
4: while w > 1/2 do 128 || 226266 91.3 6471 11 9660 0 1255 0 .403
) £ -0 —1d 191 || 331966 92.1 8690 11 13425 2 17452 0 280

5 org=>9,...,q9 o Mignotte polynomials
Compute intervals [p(()c”gg, L) and Ip’(oc+r§9 ,L) 64 1196 85.7 30 0 48 0 63 0 1.00
if | 7,(0 )< ¢ th 128 2296 92.9 63 0 93 0 129 0 298
if | p\Uciras en 191 3218 924 70 2 109 0 154 0 264

6

7

8: return -1

9 forh=0,...,kdo

q-1 I,,(0 L)
: i *as L o Lerd9 )
10: Compute interval [Is; as 7 g§0 Orgne (L) 1 Ocrrs9.D)
11: w e maxpog . x w(lsy)
12: Le—2xL

13: forh=0,...,kdo

1 ey — (dOTM) /(1 - 09)

15: Usp < Osp + [~en, ep] +il—ep, ex]
16: if 0 ¢ [Isy, then

17: return -1

18: return 0

has isolation ratio p > 1. We have chosen g such that [Is;, contains
at most one integer for all h and we arrive at

PROPOSITION 13. If A has isolation ratio p then fork > 0,
PO(Ip,Ipr, A, p, k) returns 0 if and only if A contains no root of p.

One proves the termination of Algo. 3 with the same arguments
as for Algo. 2, and the same remark about the assumption that p
is monic holds. For a box B that contains no root of p, we give a
sufficient condition for our test to return 0:

PRrROPOSITION 14. Let a disc A(B) contain a box B. If 2B contains
no root of p then P*(Ip, Iy, A(B), 4/3, k) returns 0 for any k > 0.

Proof of Prop. 14. Let B have center ¢ and width w. Recall that
A(B) = D(c, 3w), thus $A(B) = D(c, w). Now, D(c,w) C 2B and
if 2B contains no roots of p, then so does D(c, w) as well. Thus
A(B) has isolation ratio > %. In this case, by virtue of Lemma 10,
plc+rf9) > Cforallg =0,...,9— 1. As a consequence, after the
while loop of Algo. 3, each interval Ds,’; has width strictly less than

1/2, and contains s’;l. Now, one has the following bounds:

. doa-h  qp9k

|5h —spl< 199 < 1-07 <1/4
The first inequality comes from (21). The inequality in the middle
holds since 0 < 1 and h < k < g. The right-hand side inequality is
a consequence of (22) and the choice of e. Thus [Isj, computed in
step 15 of Algo. 3 contains sp, which is 0, and contains a unique
integer since it has width strictly less than 1. ]

(23)

4.3 On the success of the P’-test

Here we give experimental evidences that for a given disc A, if
PO(IP,IPI, A, p, k) with p = 4/3 and k = 2 returns 0, then A is very
likely to contain no roots of p.
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Table 1: True negatives and false positives when using the
P*-test with p =4/3and k = 0,1, 2.

We run Algo. 1 implemented in Ccluster for dense and sparse
polynomials, random and taken from literature; each time Ccluster
applies exclusion test based on T*-test for a box B, we also apply
P°(Iy, Iy, A(B), §, k) with values 0, 1, 2 for k.

The false positives are the cases where for a disc A(B), the T*-
test returns a positive number of roots or cannot decide whether
PO(IP, Ip/, A, 2, k) returns 0. For the polynomials we tested, when
k = 2, there was no such false positives.

The true negatives, i.e. cases where a disc contains no root ac-
cording to the T*-test but PO(IP, J:D/, A, 2, k) returns —1, shows how
less efficacious than the T*-test is our test.

4.3.1 Testing suite. For each degree d € {64,128, 191}, we gen-
erated 100 random monic dense polynomials whose coefficients
are rational numbers 5£ where c is an integer chosen uniformly in
[-256, 256]. We also generated for each degree above 100 random
monic sparse polynomials as follows: choose 8 distinct random
integers dy, . . ., ds in the range [1,d — 1], and let the coefficients of
monomials of degrees 0,dq, .. ., dg be rational numbers ﬁ for a
random integer chosen uniformly in [-256, 256].

We also consider Bernoulli and Mignotte polynomials. The Ber-
noulli polynomial of degree d is B;(z) = Zgzo (g)bd_kzk where
the b;’s are the Bernoulli numbers. It has about d/2 non-zero coef-
ficients. The Mignotte polynomial of degree d and parameter a = 8
is My(z) = 24 = 2(297 — 1)2.

4.3.2  Results. For a polynomial in our testing suite, let n be the
number of exclusion tests performed by Ccluster, t be the running
time of Ccluster and fy be the time spent in exclusion T*-test. For
each exclusion test, we also applied three times our P%-test with
isolation ratio p = 4/3 and k = 0, 1, 2. We denote by #TN the number
of true negatives, #FP the number of false positives and tg the total
time spent in the PO-test with k = 2. We report in Table 1 the
values n, ty/t, #TN, #FP and tg /t for each degree and each family
of polynomials. For random dense and sparse polynomials, these
values represented overall count over the 100 polynomials.

As expected, the number of false positives decreased when k
increased, and we had no such false positives when we used k = 2.
As a counterpart, the number of true negatives increased with k.
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5 AFAST AND ALMOST SURE ROOT
CLUSTERING ALGORITHM

In this section we present a fast root clustering algorithm based on
Algo. 1 and on exclusion and counting tests defined as:

cf:(A) = PZ(IP, Iy, A, 4/3,2) (24)
C*(A) == T*(A)

Notice that the exclusion test is performed while assuming an
isolation ratio 4/3 for A, condition that cannot be ensured when A is
the containing disc of the boxes of a subdivision tree constructed by
Algo. 1. As a consequence, exclusion tests defined in (24) may return
wrong results. Although very unlikely, as we show in Subsec. 4.3,
this would compromise correctness of the process (termination is
ensured by Prop. 14).

In Subsec. 5.1, we describe how we modified Algo. 1 to obtain a
root clustering algorithm using C° and C*-tests of (24) that always
terminates and has a failure mode. When it succeeds, its result is cor-
rect. This procedure has been implemented in C within Ccluster,
and we call it CclusterF below.

In Subsec. 5.2 we show experimental results on using Ccluster
and CclusterF for clustering the roots of a bunch of polynomials.
CclusterF never failed in the experiments we carried out. More-
over by comparing running times of both procedures, we show that
using C%-tests of (24) can lead to important improvement, which
grow with degree and sparsity of considered polynomials.

5.1 Description of our algorithm

We give an informal description of how we modified Algo. 1 to deal
with uncertainty of the result of the exclusion test P°.
First, in addition to a list of clusters, our algorithm returns a flag
in {fail, success} indicating whether its result is reliable.
Second, we replace steps 6 to 10 in Algo. 1 with steps 6 to 12
below:
6: if C is compact and C is separated from Q then
7: k — C*(2A(C), p)
8: if d >k >0 then

9: R.push((C, k))
10: break
11: if k ==-1 then
12: return fail, R

Third, we replace the return statement in step 17 in Algo. 1 with
the following simple routine:
17:
18:
19:
20:
21:

sum the number of roots in the components in R
if itisequaltod then

return success, R
else

return fail, R

Notice that step 14 of Algo. 1 also involves the C%-test which
has to be understood here as defined in (24). Recall that for a box B,
C%(A(B)) returns -1 when 2B contains a root (see Prop. 14); however
when it returns 0, B may contain a root.

To see that our algorithm terminates, consider Prop. 14: it implies
that after a finite number of subdivision steps, boxes in the subdivi-
sion tree form separated and compact connected components, at
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most one per root. Then for each of these connected components C
our algorithm enters step 6 above and terminates.

When our algorithm returns the flag success, its output is cor-
rect, i.e. the components in R solve the root clustering problem.
This is a direct consequence of the fact that T*(A, p) returns k > 0
only if A contains k roots of p.

Our algorithm returns the flag fail only if an exclusion test
returns a wrong result, i.e. excludes a box of the subdivision tree
that contains a root. Assume the opposite: no exclusion test returns
a wrong result. Then Rem. 1 holds; in particular 2A(C) has isolation
ratio 2 and from Rem. 2, C*(2A(C),p) in step 7 above returns k
positive. Moreover, each root lies in a box in a component in R
before the step 17 above, and our algorithm returns success.

5.2 Experimental results

5.2.1 Test polynomials. In addition to the test polynomials of
Subsec. 4.3, we consider the following ones.

(i) T4(z), the Chebyshev polynomial (of the first kind) of degree
d:To(z) = 1, T1i(z) = zand Ty, 1(z) = 22T4(z) — Ty_1(2), d = 2,3, . ..

(ii) L 4(2), the Legendre polynomial of degree d: Lo(z) = 1, L1(z) =
zand Ly(2) = 2520 4(2) - 5Ly 1(2).d = 2,3,

(iii) For an integer n > 0, we define polynomials with (2n + 1) X
(2n + 1) roots on the nodes of a regular grid centered in 0 as

l_[ (z—a+1ib)

-n<a,b<n

Pansx@n+1)(2) =

(iv) Letting My(z) = z and My (z) = zM_1(2)? + 1, we define the
Mandelbrot’s polynomial My (z) of degree 2K — 1.

Bernoulli, Chebyshev and Legendre polynomials of degree d
have about d/2 nonzero coefficients. Polynomials with roots on
a grid of degree d have about d/4 nonzero coefficients. Mignotte
polynomials have 4 nonzero coefficients. Mandelbrot polynomials
have no zero coefficients, but can be evaluated very fast by a straight
line program.

5.2.2  Results. We computed clusters of roots of each polynomial
of our testing set by using both Ccluster and CclusterF.In Table 2
we report for both solvers the size of the subdivision tree (columns
TS) and the sequential running time in seconds on Intel(R) Core(TM)
i7-8700 CPU @ 3.20GHz machine with Linux (columns ¢ and t”).
In Table 2 we also report the number of failures of CclusterF
(column #Fails) and the ratio ¢/t in percents. Column ¢;/t" shows
percents of time spent on evaluating oracle polynomials in the
PV-test. Column t;/t" shows percents of time spent on applying
T*-tests in CclusterF. As in Subsec. 4.3, the Table 2 displays the
average data for random dense and sparse polynomials over the
100 polynomials of the family.

Remarks: (i) There was no occurrence of a failure of CclusterF
for all the polynomials we tested.

(ii) The running time of CclusterF decreased as the degree
and the sparsity of the polynomial increased. For random sparse
polynomials and Mignotte polynomials, of degree 191, this was a
3-fold speed-up. The speed-up was more dramatic for polynomials
evaluated very fast such as Mandelbrot polynomials. Except for
the latter cases, CclusterF spent most of its computational time
on evaluating oracle polynomials and checking correctness of the
results.
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|| ccluster || CclusterF
d || 1S ] t || #Fails TS t’ HACEAMOEID)
100 monic random dense polynomials per degree

64 127100 31.5 0 155992 41.2 130 76.8 1.72

128 250928 222 0 300696 149 67.3 83.2 4.52

191 361340 665 0 447628 340 51.1 85.1 5.96
Bernoulli polynomials

64 1884 0.46 0 2148 0.49 106 73.4 2.04

128 3596 3.24 0 3932 1.86 57.4 85.4 2.15

191 4684 9.17 0 5476 4.84 52.7 84.2 5.99

Chebyshev polynomials

64 2532 0.74 0 2980 0.79 106 82.2 1.26

128 4708 5.62 0 5188 3.33 59.2 84.9 900

191 7268 17.0 0 8108 8.86 519 86.9 1.01
Legendre polynomials

64 2676 0.75 0 2940 0.81 108 77.7 0.0

128 4836 5.76 0 5244 3.73 64.7 86.8 1.60

191 6996 16.4 0 7732 9.61 58.3 88.7 1.45

Polynomials with roots on a regular grid

225 3412 8.74 0 3580 2.62 29.9 76.3 15.2

289 4548 17.0 0 5304 5.40 31.6 74.8 15.5

361 6276 30.9 0 7588 8.52 27.5 76.5 17.8

100 monic random sparse (10 monomials) polynomials per degree

64 127220 27.9 0 159972 31.7 113 70.8 1.57

128 251196 216 0 303260 100 46.3 75.5 5.65

191 374872 638 0 457084 209 32.7 76.4 8.80
Mignotte polynomials

64 1572 0.30 0 1856 0.31 103 74.1 0.0

128 2572 2.24 0 3564 0.95 42.4 74.7 4.21

191 3640 5.99 0 4228 1.79 29.8 72.6 10.0

Mandelbrot polynomials

127 2852 3.46 0 3424 0.56 16.1 42.8 10.7

255 4968 18.4 0 5952 179 9.70 335 413

511 9632 118 0 11556 7.61 6.42 19.5 66.3

Table 2: Runs of Ccluster and CclusterF on polynomials of
our testing suite.

In all the examples we tested, the depth of the subdivision tree
constructed by CclusterF was at most one plus the depth of the
tree constructed by Ccluster. Columns TS in Table 2 suggest that
CclusterfF tends to construct a slightly wider subdivision tree than
Ccluster, which shows that the P%-test is slightly less efficacious
than the T*-test for box exclusion.

6 CONCLUSION

We presented our exclusion test with doubling the number ¢ of eval-
uation points as heuristic, but actually it has already probabilistic
and even deterministic support; moreover even our root-counting
has probabilistic support. Namely, by virtue of [13, Thm. 29 and
Remark 30], based on our Theorem 4, if sé‘ is within a specified dis-
tance from an integer k, then k = sp with a high probability (whp)
under the random root model and under no assumption about iso-
lation of the disc. Furthermore by virtue of [13, Corollary 4.7] a
disc contains no roots whp under a random coefficient model and
again under no assumption about isolation of the disc as long as
2r2d% < 1for 72 = ZZ:;LSZ —sp|? and g > 2. For ¢ > d under
this bound the disc definitely contains no roots by virtue of [13,
Corollary 4.6]. Notice that we can compute s}*l forh=0,1,...,q-1
at the cost of computing just s; and in addition performing discrete
Fourier transform at g points.

Our initial but extensive experiments showed significant accel-
eration of the known subdivision root finders, which is particularly
strong for sparse inputs. Moreover they suggest that the latter re-
sult of [13] is overly pessimistic because exclusion test was always
correct in these experiments already for ¢ much smaller than d.
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