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Abstract—Neural network has been applied into MIMO detec-
tion problem and has achieved the state-of-the-art performance.
However, it is hard to deploy these large and deep neural network
models to resource constrained platforms. In this paper, we
impose the circulant structure inside neural network to generate
a low complexity model for MIMO detection. This method can
train the circulant structured network from scratch or convert
from an existing dense neural network model. Experiments show
that this algorithm can achieve half the model size with negligible
performance drop.

Index Terms—MIMO detection, neural network, circulant

I. INTRODUCTION

With the prevalence of cellphones and tablets, mobile data
transmission amount has been increasing in recent years [1].
However, due to lack of favorable radio spectrum frequency
allocation, the wireless communication systems nowadays are
constrained to support the huge data traffic [2]. In modern
communication channels, it is now common to see the multiple
input multiple output (MIMO) technology because of its
high performance in terms of its spectral [3] and energy [4]
efficiency.

This technology utilizes many antennas at transmitter and
receiver side. As shown in Fig. 1, inputs with multiple symbols
are transmitted simultaneously through the channel. Although
there is usually some noise during the communication, receiver
is required to detect or estimate the correct transmitted sym-
bols. Each symbol can be detected individually or multiple
symbols can be detected jointly. Joint detection is usually bet-
ter in practice, but it involves higher computation complexity
than individual symbol detection [2].

The optimal MIMO detection turns out to be NP-hard [5]
which means the complexity of the problem can increase
exponentially. For example, the maximum likelihood detector
is optimal by minimizing the joint probability of detection
errors. But its large computational complexity makes it hard to
deploy in practice [6]. Therefore, there are many sub-optimal
methods proposed for MIMO detection. One typical solution
is using linear receivers, for example matched filters and
zero forcing. Advanced methods include approximate message
passing (AMP) [7], semi-definite relaxation [8] and so on.
Particularly, AMP has been used in many scenarios, because
it is simple and cheap to deploy while also providing a near
optimal detection accuracy.

Machine learning has been found out to be effective in
many applications such as computer vision [9] and traffic
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Fig. 1. Brief illustration of MIMO detection.

prediction [10]. Particularly, neural network is becoming an
important approach to automatically learn from input by
capturing hidden features of given data. This saves a lot of
human efforts, especially the feature engineering work. The
essential idea of neural network is to simulate neurons by
activating nodes in the network and stacking multiple layers
of such nodes. As activation goes through these layers, the
input data is also transformed gradually into a high level
representation. Eventually these representations or features can
be used to solve some practical problems such as classification
or regression.

Neural network has also been proposed to address the
MIMO detection problem and has achieved the state of the art
performance [6]. Nowadays there is a trend towards making
neural networks deeper with more and more layers, which
usually achieves better performance in many applications such
as ResNet [9]. It is found that deep neural networks are
difficult to deploy in resource constrained platforms due to
their large space and computation complexity [11]. After all,
there can be millions of parameters within a neural network.

This paper aims at providing a low complexity neural
network for MIMO detection problem. The essential idea is
imposing the circulant structure for given neural network as
in [12] to achieve a small and compact model. Deep neural
network with circulant structure has been proven with the
same theoretical guarantee as general neural network, i.e.,
the universal approximation property. More importantly, such
structure is deployment friendly [13]. Because of its strong
structure, the memory access has a strong pattern to follow.
Moreover, note that matrix multiplication is one of the core
computation inside deep neural network. The circulant struc-
ture can also speed up the general matrix multiplication with
Fast Fourier Transform (FFT) when it comes to deployment
in practice.
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II. BACKGROUND

A. MIMO Detection

Generally speaking, the MIMO detection problem can be
formulated as a linear system mapping n input to m output
with some random noise. The input and output can take either
real or complex values. Given that any linear mapping can be
represented in a matrix form, the MIMO detection problem
usually describes with channel matrix H as shown in Fig. 1.

A standard MIMO detection model can be described as
following:

y = Hx + w, (D)

where y € C™ is a vector of received signals, H € C™*" is
channel matrix, x € S™ is the transmitted vector of identically
independent distributed symbols from some constellation such
as PSK. The w € C™ is a vector of noise following the
standard Gaussian distribution. The goal of MIMO detection
is to estimate input x given the received y, which is described
as x’ as in in Fig. 1.

It is assumed that we have the perfect channel state in-
formation (CSI) so the channel matrix H is already known.
Although channel matrix is given, there is a difference between
fixed channel and varying channel. Fixed channel means that
H is always given as a constant matrix. Varying channel means
that we only know the distribution of H. A random channel
matrix will be generated for transmitted symbols each time
we detect. Thus, varying channel scenario is harder than fixed
channel. In this paper, we mainly deal with varying channel.

B. Neural Network

Neural network contains multiple layers of neurons associ-
ated with activation functions. Typically nodes at each layer
are only connected to nodes at the layer before and the layer
after. Input is at the first layer, which will be passed to next
layer after linear transform together with a nonlinear activation
function. Following formulation presents a layer of neural
network:

y = f(6x +b), @)

where y € R™ is the activation results of current layer, f(-)
is the activation function, 8 € R™*" is a weight matrix
representing the linear transform and b € R is a bias vector.
Note that a neural network can stack multiple layers so as to
become deeper. Last layer of the neural network presents the
output.

Neural network training is often a supervised training pro-
cess. All model parameters are learned from given data during
training. Loss is computed between the network output and
given ground truth results. The loss shall be minimized after
the training phase, which is by using certain optimization
method such as gradient descent. Therefore, usually the loss
function is smooth and differentiable.

For example, the well-known back-propagation method [14]
utilizes the first derivative of weight parameters and has been

demonstrated effective in many applications. Its main idea is
based on chain rule and gradient descent method:

oL
08;’

where € is a scalar, L(-) is the loss function and i is the
iteration number. To compute gradient of weight parameters
between different layers, the chain rule will result in prop-
agating gradients from a layer to its next layer. Since it is
from the output layer to the input layer, it is then called back-
propagation.
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C. Neural Network for MIMO Detection

In this paper, we adopt the neural network structure as in
[6] for MIMO detection problem, which is called DetNet.
The network architecture is inspired by the projected gra-
dient descent method and has achieved the state-of-the-art
performance in MIMO detection. Projected gradient descent
algorithm always chooses the closest projection after updating
with gradient descent. The DetNet repeats this process with
features at different layers. More specifically, the network is
formulated as following:

Qi =x;1 — 01, H 'y + 6, H ' Hx; 4

z; = [(Wy; [V?LJ +bi,)

x; = g(Wa ,2z; +ba ;) 4)
vi = W3z, + bs

x9 =0

vog =0

where i indicates the i-th layer, f(-) is an activation function,
g(+) is an one-hot encoding function and model parameters
include Wl,i7 Wg’i, Wgﬂ;, bl,i, bg’i, b377;. The 61’1‘ and (52_’13
are pre-defined step size. The output of the network is xj,
where L is the last layer number.

III. RELATED WORK

Neural network has been found out with much redundancy
in its weight parameters [15]. The difficulty of deploying
large neural network intrigued many researchers. As a result,
there are many methods for generating low complexity neural
network, including pruning, low rank representation, regular-
ization and structure transform based methods.

Pruning based methods essentially removes weight param-
eters from the network. For example, setting threshold [16]
over the magnitude of parameters can effectively reduce the
model size. Quantization is another method to compress neural
networks, such as product quantization, residual quantization
[17]. On the other hand, it is interesting to see that pruning
weight parameters in frequency domain also works well in
practice [18]. Although pruning based methods are simple
and effective, the compressed neural network models are
usually not deployment friendly due to their irregular weight
distributions. More specifically, the memory access pattern is
often random after using such methods.
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Given that weight parameters of neural network are often
found in the form of matrix or even tensor, a natural way to
make a low complexity model is via low rank representation.
Matrix decomposition methods like singular value decompo-
sition (SVD) are useful in compressing neural networks [19].
Similarly, advanced tensor decomposition methods have also
been applied to compress neural networks, such as tensor train
[20] and Tucker decomposition [21]. These methods may reach
high compression ratio but they require a long fine-tuning
process to recover the model performance after compression.

Since training neural network is an optimization process,
regularization is another straightforward approach to achieve
small network models. Group lasso regularization [22] can
make groups of weight parameters as zeros. This can avoid
the disadvantage of random access as in pruning methods
to some degree. Alternating direction method of multipliers
(ADMM) is known as a powerful optimization algorithm. [23]
proposes to replace Ly norm with pruning and express in the
ADMM form, which has achieved the state-of-the-art result.
But this method takes a long training process since ADMM
has multiple sub-problems to optimize.

Unlike methods aforementioned, it has been proven that
enforcing structure to weight parameters can also approximate
any continuous functions as general neural network [24].
This theoretical result gives a strong guarantee for structure
matrix based methods. These methods turn out able to achieve
high compression ratio in practice as well [25]. Imposing the
structure matrix, it now has a regular pattern and is also with
low space storage requirement. Moreover, structure matrix
multiplication like circulant matrix can be accelerated via the
Fast Fourier Transform.

IV. METHODOLOGY

In this section, we introduce the detailed circulant matrix
based neural network as in [13]. This method is implemented
and applied in our experiment, and turns out to be effective
for MIMO detection problem.

A. Circulant Matrix Based Neural Network

A circulant matrix W € R™*"™ is defined by a vector w =

(w1, wa, ..., wy,) as following:
w1 Wn, e w3 W2
w2 w1 Wn w3
W = : wa w1 . : . 5)
Wn—1 i oWy
Wy, Wp—-1 - wo W1

It can be seen that values on diagonals are the same. Thus, the
space complexity is linear O(n) rather than O(n?) for general
dense matrix. Moreover, the circulant matrix multiplication
can be represented via FFT:

a = Wx = IFFT(FFT(w) o FFT(x)), (6)

where a € R™ is the multiplication result, and x € R”
is the input vector. The o stands for component-wise mul-
tiplication between two vectors. The computation complexity

is now reduced to O(nlogn). In summary, circulant matrix
representation of weight matrix can lead to low complexity in
terms of both space storage and computation time.

Given that most neural network training methods require
first derivative of weight parameters, we present the calculation
for the first derivative of circulant matrix:

oL 0L Oa
il 7
ow  Oaow’ )
where L is the loss function of the neural network and g—; S

R™*™ is a Jacobian matrix. Fortunately, it is found that because
of circulant structured weight matrix, this computation can also
be accelerated via Fast Fourier Transform [13]:

oL oL
—— = IFFT(FFT(=—) o FFT(x’ 8
o = IFFT(FFT(5 /) 0 FFT(x), ®)
where X' = (21, Tn, Tn-1,.-.,%2).

According to the back-propagation algorithm [14], we also
provide the first derivative of vector a so that it can be used
for gradient computation of the other layer:

OL 0L Oa

Ox  dadx’
where % € R™*™ is also an Jacobian matrix. Similarly, this
can also be accelerated via Fast Fourier Transform [13]:

(€))

oL oL /
oy = IFFT(FET(% ) o FET(w')), (10)
where W' = (w1, W, Wn—1,- .., Wa).

B. Block Circulant Based Neural Network

Note that circulant matrix is always a square matrix. In prac-
tice, neural network layer size can be arbitrarily determined
according to different applications. Therefore, weight matrices
are often not square as desired. To fit with a general setting
of weight matrix W € R"*" a straightforward design is to
split weight matrix into square blocks. These blocks are set to
be circulant matrix, and the entire matrix is then called block
circulant matrix [13].

Let b be the block size and there are %+ x 7 blocks in

b

total. Denote these block with C; ; € R®? for i =1,..., %

and j = 1,...,%. Then weight matrix multiplication is
reformulated as below:
Cia C1,% a
a=Wx=| : C o x= ™, ap
Cia Cyz amn

where a;, € R? is a column vector. Since each C;jis a
circulant matrix, we define w;; as the vector determining
the matrix. Similarly, a; can also be computed via FFT as
aforementioned:

n/b n/b
a; =Y _Ci;x; =IFFT(Y_FFT(w; ;) o FFT(x;)), (12)
j=1 j=1

where x; € R? is a slice of vector x corresponding to the
block CL 'E

292

Authorized licensed use limited to: Rutgers University. Downloaded on August 13,2020 at 21:19:47 UTC from IEEE Xplore. Restrictions apply.



Moreover, the first derivative of block circulant matrix is
provided as follows:

oL OL Oa; oL /
dwi, = Day dw,, IFFT(FFT(5 ) 0 FFT())),  (13)
’i/:b oL da
8XJ 0a; 0x;
. ) (14)
m/b oL
= IFFT() | FFT(; ) o FFT(w] ;))

i=1 9a;
where w/ ; € R® and x € R? are defined similarly as in Eq.
8 and Eq lO respectlvely

In summary, block circulant matrix takes “3* number of
parameters and the multiplication complexity is O(";"* logb).
We also present the corresponding pseudocode for matrix
multiplication and derivative computation as follows. The
forward propagation algorithm is for block circulant matrix
multiplication. The backward propagation algorithm is for
computing the first derviative of block circulant matrix and
the input vector.

mn

Algorithm 1: Forward Propagation

Input: W, x

Output: a

partition x into n/b vectors, x1,...,X, /b
partition a into m/b vectors, ai, ..., Ay /15

for i < 1 until m/b do
a; 0;
for j < 1 until n/b do
a; < a; + FFT(w; ;) o FFT(x;));
end
a; «+ IFFT(a;);
end
return a;

Algorithm 2: Backward Propagation

PR ox0 oW
partition x into n/b vectors, X1, ..., Xy
oL oL oL
partition 8 into m /b vectors, Dar’ " Damys

for j e 1 until n/b do
ax — 0
for i « 1 until m/b do
L IFFT(FFT( L) o FFT(x)));
a—L «— 2L +FFT( L) o FFT(W] ;));
end
ng eIFFT(a—L)
end

return 2% 9L

0x’ OW >

C. Circulant Approximation

Although we have described the training algorithm for
circulant matrix based neural network, this requires training
the entire network from scratch. In this section, we introduce
another training option, i.e., converting from an existing dense
neural network model to a circulant structured neural network
model. Compared with training from scratch, this method can
provide a warm up initialization which can converge faster
than random initialization.

The essential idea is based on the circulant approximation
algorithm as in [11]. For a dense matrix W & R™*", let
w € R”" be the vector for its closest circulant matrix. The
optimal w can be found via following:

AL
k= ZZWU X I[W’?J}i—j mod n=k’

i=1 j=1

(15)

where wy, € w for k = 1,...,n, and ]l[ ] is an indicator
function. Here optimal is achieved under the Frobenius norm
of the difference of given dense matrix and the approximated
circulant matrix. Moreover, for the block circulant matrix, it
is applicable to each block to achieve the approximation. The
approximation algorithm is also summarized in pseudocode as
below.

Algorithm 3: Circulant Approximation
Input: W
Output: w
initialize w as a zero vector;
for i + 1 until n do
for j < 1 until n/b do
k + (i — 7) mod n;
Wg < Wk + Wi, s
end
end
for i < 1 until n do
w; — w;/n;
end
return w;

Instead of using an indicator function, it is easier to directly
accumulate over the target weight parameter. Thus, using for
loops to sweep over all possible indices can also give the
circulant approximation. This algorithm can be applied to
weight matrices inside a given pre-trained dense model and
generate weight matrices for the target circulant structured
model. As a result, this naive algorithm design has the O(n?)
computation complexity.

D. Imposing Circulant Structure into DetNet

The DetNet architecture is mainly composed of fully con-
nected layers, which is as described in Eq. 2. Thus, the
circulant structure can be imposed into each weight matrix
at each fully connected layer. More specifically, as shown in
Eq. 4, all weight matrices including W ;, Wy ;, W3 ; can
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Fig. 2. QPSK model performance with different block size settings.

be with circulant structure. The compression ratio of a weight
matrix can be adjusted simply by block size setting. However,
note that there is a trade off between the compression ratio
and the performance of the model with circulant structure.

V. EXPERIMENT

In this section, we provide experiment results with block
circulant neural network over the MIMO detection model. We
adopt the same model architecture as in [6] and apply the
circulant structure to weight matrices. More specifically, all
layers inside the neural network are set with the same block
size in our experiment. We use the same re-parameterization
method to handle complex variables with real values. The
detection accuracy of hard decision output is evaluated under
different signal-to-noise ratios (SNRs).

We adopt the varying channels settings as [6] in our
experiment, including a 20 x 30 complex channel for QPSK
and a 30 x 60 real channel for BPSK. The block size settings
are 2, 4 and 8. The algorithm is implemented with Tensorflow
[26] and runs in Ubuntu 16.04 with Intel(R) Xeon(R) CPU E5-
2640 and Nvidia Tesla P100 GPU. We use the adam optimizer
[27] in experiment with learning rate 0.0003, batch size 50,
and 400K iterations.

Fig. 2 shows the result of QPSK performance for different
settings. The baseline is the dense model performance. Block
size settings with 2, 4 and 8 are found that with larger block
size, the symbol error rate (SER) goes higher. As discussed
in section IV, model size is linear to the block size. For
example, model with block size 2 is half the size as baseline
model. This indicates that with smaller model, the performance
may get worse. It can also be seen that when SNR is small,
performance of block size 2 and block size 4 are close but
not block size 8. As SNR goes from small to large value, the
performance discrepancy among different block size settings
increase. The block size 2 is almost identical to the baseline
under all SNRs.

Fig. 3 presents the result of BPSK performance under differ-
ent block size settings. It is also found that larger compression
ratio will result in worse model performance. When SNR is
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Fig. 3. BPSK model performance with different block size settings.

as small as 8, the model performance is always close to each
other no matter the compression ratio. As SNR goes from
small to large value, the performance discrepancy between
baseline line and block size 2 slightly increase, so does the
discrepancy between block size 4 and block size 8. However,
the performance discrepancy between block size 2 and block
size 4 will increase. As shown in the figure, when block size is
2, the model performance drop is negligible to the performance
of baseline model.

VI. CONCLUSION

In this paper, we investigate the circulant structure network
for MIMO detection problem. The algorithm is flexible to
train from scratch or train from existing models. The block
size setting can directly control the compressed model size.
We explore different compression ratios to find the trade off
between detection accuracy and model size. Experiment turns
out that for QPSK we can achieve half the model size while
maintaining almost identical performance. For BPSK, half the
model size comes with a negligible accuracy drop.
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