
High-performance Hardware Architecture for
Tensor Singular Value Decomposition

(Invited paper)

Chunhua Deng1, Miao Yin1, Xiao-Yang Liu2, Xiaodong Wang2, Bo Yuan1
1Department of Electrical and Computer Engineering, Rutgers University

2Department of Electrical Engineering, Columbia University
{chunhua.deng, miao.yin}@rutgers.edu; {xl2427, xw2008}@columbia.edu; bo.yuan@soe.rutgers.edu

Abstract—Tensor provides a brief and natural representation
for large-scale multidimensional data by way of appropriate low-
rank approximations, thus we can discover significant latent
structures of complex data and generalize data representation.
To date, tensor has gained tremendous success in various science
and technology fields, especially in machine learning and big
data applications. However, tensor computation, especially tensor
decomposition, is usually expensive due to the inherent large-size
characteristic of tensors, and hence would potentially hinder their
future wide deployment. In this paper, we develop a hardware
architecture to accelerate tensor singular value decomposition (t-
SVD), which is a new tensor decomposition technique that has
been successfully applied to high-dimensional data classification
and video recovery. Specifically, design consideration of each key
computing unit is analyzed and discussed. Then, the proposed
t-SVD hardware architecture is implemented and synthesized
using CMOS 28nm technology. Comparison with real-world
CPU-based implementations shows that the proposed hardware
accelerator is expected to provide average 14× speedup on
various t-SVD workloads.

Index Terms—Tensor decomposition, t-SVD, hardware archi-
tecture.

I. INTRODUCTION

As the dimensionality of data grows in the big data era,
tensor becomes a cornerstone data structure in computational
neuroscience, neuroinformatics, pattern recognition, signal
processing and machine learning. On account of the superior
representation power, tensor has been successfully applied in
many practical applications, such as action recognition [1],
[2], facial recognition [3], anomaly detection [4], collaborative
recommendation [5], videos denoising [6], seismic data super-
resolution [7] and compressive sensing [8].

The current success of tensor in various applications highly
depends on a set of tensor-specific algorithms. In particular,
tensor decomposition, as a class of algorithms that factorize a
tensor as the product of latent tensors, has played an important
role in enabling the adoption of tensor into various domains,
such as numerical linear algebra, computer vision, graph anal-
ysis etc. This is because, theoretically, tensor decomposition
can aid to find inherent approximate low-rank representation of
data, and hence facilitates the solutions of multilinear problems
in many real-world tasks. For instance, various types of tensor
decomposition approaches, such as CP [9], [10], Tucker [11],
tensor train [12] and tensor ring [13], have been widely used in

the neural network model compression task [14]–[18], which
is a currently very active research topic in the deep learning
community.

Among various types of tensor decomposition approaches,
tensor singular value decomposition (t-SVD) [19] is a type of
new technique that can factorize the input tensor in a matrix
SVD-like way. Such a unique characteristic of t-SVD leads to
many useful properties of the latent tensors, hence enabling
the adoption of t-SVD in various practical applications, such
as object classification [20], videos recovery [21] and indoor
localization [22].

Despite the current success of tensor decomposition, from
the perspective of computing, tensor decomposition is facing
severe challenges. In general, tensor decomposition is very
computation intensive. Although there have already been sev-
eral optimized software packages available for performing
tensor decomposition, the executing time, no matter on CPU
or GPU, is still relatively quite long and cannot meet the real-
time requirement in many scenarios. Consequently, to date
the adoption of tensor decomposition in those time-sensitive
applications, especially in mobile and embedded system, is
still very limited.

In this paper, we investigate the computing procedure of
t-SVD and develop a high-performance hardware architecture
to accelerate this computation-intensive tensor decomposition
method. Specifically, the design consideration of each key
component is carefully discussed and analyzed. A design
example of t-SVD hardware architecture is implemented and
synthesized using CMOS 28nm technology. Evaluation re-
sults show that the proposed t-SVD hardware architecture is
expected to deliver an average 14× speedup over different
t-SVD workloads as compared with optimized CPU-based
implementation.

The rest of this paper is organized as follows. Section II
introduces the background of tensor, tensor operations and t-
SVD algorithm. The hardware architecture of the proposed
t-SVD design is described in Section III. Section IV presents
the evaluation setting and comparison results with software
implementation. The conclusion is drawn in Section V.

(a) Column fibers (b) Row fibers (c) Tube fibers

Fig. 1: Fibers of a third-order tensor.

(a) Horizontal slices (b) Lateral slices (c) Frontal slices

Fig. 2: Slices of a third-order tensor.

II. BACKGROUND: TENSOR AND T-SVD

In this section, we introduce the necessary background
information for tensor and t-SVD.

A. Tensor and Related Operations

Notation. We use boldface calligraphic script letters, bold-
face capital letters, and boldface lower-case letters to repre-
sent tensors, matrices, and vectors, respectively. Specifically,
a third-order tensor of size n1 × n2 × n3 is denoted as
A ∈ Rn1×n2×n3 .

Fiber and Slice. Fiber is defined as a one-dimensional array
obtained from a tensor via fixing all indices but one. Column,
row, and tube fibers of a third-order tensor A are denoted as
a:jk, ai:k and aij: (see Fig. 1). Different from fiber, slice is
defined as a two-dimensional matrices obtained from a tensor
via fixing all but two indices. Horizontal, lateral, and frontal
slices of a third-order tensor A are denoted as Ai::, A:j: and
A::k (see Fig. 2). Moreover, A(`) represents the `-th frontal
slice A(:, :, `) which is a matrix.

t-DFT. Ã is defined as the frequency-domain representation
of A. Such time-to-frequency transformation can be obtained
by performing discrete Fourier transform (DFT) along the last
dimension of A. In practice, fast Fourier transform (FFT) is
used here for fast computation.

t-transpose. A> ∈ Rn2×n1×n3 is defined as the transpose
tensor of A. A> is obtained by transposing each of the frontal
slices of A and then reversing the order of transposed frontal
slices 2 through n3.

Tensor Operations. We next introduce several tensor opera-
tions that will be used to give a rigid definition of t-SVD. First,
the operation unfold(A) is defined to take an n1×n2×n3

Fig. 3: unfold operation and the block circulant matrix of a
third-order tensor.

tensor and returns a block n1n3 × n2 matrix (see Fig. 3).
Correspondingly, the fold undoes the operation:

unfold(A) =


A(1)

A(2)

...
A(n)

 , (1)

fold(unfold(A)) = A. (2)

In addition, the block circulant matrix of tensor A ∈
Rn1×n2×n3 , which will be used in defining the key t-product
operation, is an n1n3 × n2n3 matrix (see Fig. 3) defined as
follows:

bcirc(A) =


A(1) A(n3) A(n3−1) · · · A(2)

A(2) A(1) A(n3) · · · A(3)

...
...

...
. . .

...
A(n3) A(n3−1) · · · A(2) A(1)

 .
(3)

Next we describe the definition and fast computing method
of t-product, as the key tensor operation for t-SVD.

Definition 1. [19] t-product. For A ∈ Rn1×n2×n3 and B ∈
Rn2×n4×n3 , their t-product A ∗B is an n1 × n4 × n3 tensor
defined as:

A ∗B = fold(bcirc(A) · unfold(B)). (4)

It should be noted that for practical application the t-product
C = A ∗ B can be calculated efficiently in the frequency
domain. Algorithm 1 describes such fast computing procedure
using t-DFT. Here C̃, as the frequency-domain representation
of C, can be obtained via the multiplications of the each frontal
slices of Ã and B̃. After that, the t-product C can be finally
calculated by taking the inverse Fourier transform along the
last dimension of C̃.

Algorithm 1 Computing the t-product in the frequency domain

Input: Tensor A ∈ Rn1×n2×n3 and tensor B ∈ Rn2×n4×n3 ;
Output: Tensor C ∈ Rn1×n4×n3 ;

1: Ã = fft(A, [], 3), B̃ = fft(B, [], 3);
2: for i = 1 to n3 do
3: C̃(:, :, i) = Ã(:, :, i)B̃(:, :, i);
4: end for
5: C = ifft(C̃);

=

Fig. 4: The t-SVD of an n1 × n2 × n3 tensor.

B. Tensor Singular Value Decomposition (t-SVD)

In this subsection we describe the definition of t-SVD and
the computing procedure. To prepare the rigid definition of
t-SVD, three types of special structured tensors need to be
described first:

Definition 2. [19] Identity tensor. The identity tensor I ∈
Rn1×n1×n3 is a tensor whose first frontal slice is the n1×n1
identity matrix and all other frontal slices are zero.

Definition 3. [19] f-diagonal tensor. A tensor is called f-
diagonal if each frontal slice is a diagonal matrix.

Definition 4. [19] Orthogonal tensor. A tensor Q ∈
Rn1×n1×n3 is orthogonal if

Q> ∗Q = Q ∗Q> = I. (5)

Then, the tensor singular value decomposition of an input
tensor can be defined as follows:

Definition 5. [19] t-SVD. For A ∈ Rn1×n2×n3 , the tensor
singular value decomposition (t-SVD) of A is defined as

A = U ∗ S ∗ V>,

where U and V are orthogonal tensors of size n1×n1×n3 and
n2 × n2 × n3, respectively, and S is a rectangular f-diagonal
tensor of size n1 × n2 × n3.

Fig. 4 illustrates the t-SVD of a third-order tensor. From
this figure it is seen that t-SVD can be viewed as the general-
ization and extension of conventional matrix SVD in the high
dimension scenario.

Because t-product is a basic component operation for defin-
ing t-SVD, the computation procedure of t-SVD can also be
efficiently performed in the frequency domain. Algorithm 2
describes the overall computing steps for performing t-SVD
on a third-order tensor. Here SVD means the matrix SVD and
conj returns the conjugate element in MATLAB notation.

Algorithm 2 Computing Procedure of t-SVD

Input: Tensor A ∈ Rn1×n2×n3 ;
Output: U ∈ Rn1×n1×n3 , S ∈ Rn1×n2×n3 and V ∈

Rn2×n2×n3 ;
1: Ã = fft(A, [], 3);
2: for i = 1 to dn3+1

2 e do
3: [U ,S,V] = SVD(Ã(:, :, i));
4: Ũ(:, :, i) = U ;
5: S̃(:, :, i) = S;
6: Ṽ(:, :, i) = V ;
7: end for
8: for i = dn3+1

2 e+ 1 to n3 do
9: Ũ(:, :, i) = conj(Ũ(:, :, n3 − i+ 2));

10: S̃(:, :, i) = S̃(:, :, n3 − i+ 2);
11: Ṽ(:, :, i) = conj(Ṽ(:, :, n3 − i+ 2));
12: end for
13: U = ifft(Ũ , [], 3);
14: S = ifft(S̃, [], 3);
15: V = ifft(Ṽ , [], 3);

Specifically, for a tensor A ∈ Rn1×n2×n3 , the first step of
t-SVD is to calculate the frequency-domain representation Ã
by taking discrete Fourier transform along the third dimension.
Then, the second step is to decompose the first dn3+1

2 e frontal
slices via matrix SVD. Notice that here the SVD for the rest
part can be automatically obtained by using the conjugate
symmetry property. Finally, the t-SVD component tensors can
be calculated by performing inverse fast Fourier transform to
recover the representation in the time domain.

III. HARDWARE ARCHITECTURE

In this section, we develop a hardware architecture for t-
SVD to map the computing procedure described in Algorithm
2 to hardware computing fabric.

A. Overall Hardware Architecture

Fig. 5 shows the overall architecture of the proposed design.
Here the input tensor that needs to be decomposed is stored
in the working memory, which contains multiple memory
banks. The number of the memory banks N is identical to the
maximum setting of n3. Such memory partition arrangement
is to improve data access parallelism for the tube fiber that
is to be processed. After the current tube fiber has been read
from the memory, it is sent to 1D FFT module to perform
domain transform. Notice that here the FFT is performed in
an in-place style that its output will be written back to the
working memory. Once all the tube fibers are transformed to
the frequency domain, they will be read again from working
memory to the SVD module for executing the SVD operation.
Notice that according to Algorithm 2, each frontal slice of
the transformed tensor needs to be decomposed; hence the
proposed SVD module is equipped with multiple SVD com-
puting units (SCUs) for parallel processing. Also, as it will be
analyzed in Section III-C, the computation of t-SVD involves

Fig.5:Theoverallhardwarearchitecture.

withthecontinuousupdateofthefinalresults;therefore,
besidesextensivelycommunicatingwiththeworkingmemory,
theSVD moduleisalsodesignedtointeract withresult
memoryaswell.Finally,allthetubefibersoftheresult
tensorsaretransformedbacktothetimedomainviaan1D
IFFTmoduleandstoredbacktotheresultmemory.Next,we
describethedetailsofeachcomponentmoduleofthehardware
architecture.

B.TheFFTModule

AsdescribedinAlgorithm2,thet-SVDalgorithmperforms
FFToperationonthetubefibersoftheinputtensor.Fig.
6showsanexampletransformprocedurefora2×2×4
tensor.Herethematrices,nomatterinthetimeorfrequency
domain,representthefrontalslicesthatarephysicallystored
indifferentmemorybanksindividually.Also,acrossdifferent
frontalslices,thevalueswiththesamecolorrepresentthe
entriesbelongingtothesametubefiber.
ItshouldbenotedthatintheproposeddesigntheFFTis

computedinanin-placestyle.Specifically,becauseonlya
singleFFThardwareisallocatedastheunderlyingcomputing
fabric,eachtimeonlyonetubefiberisreadfromtheworking
memoryandistransformed.AftereachtimeofFFT,the
calculatedfrequency-domainrepresentationisstoredbackto
theaddresseswherethetime-domainrepresentationstores.
NoticethatasshowninFig.6,sincetheinputtensorisreal-
valued,thetransformedtubefiberinthefrequencydomain
exhibitsconjugatesymmetry,therebyremainingthesame
memoryrequirementthoughthetransformedtubefiberis
complex-valuednow.Forinstance,forthetubefiber[0346],
itsfrequency-domainrepresentationcontainsaconjugatepair
(−4+3i, −4−3i).Accordingly,forthephysicaldata
allocation,aspecificmemoryaddresscalculatorisdesigned
toensurethattherealandimaginarypartsofeachcalculated
complexnumberarestoredintheadjacentmemorybanks.
Thiswell-designedaddresscalculatoralsoensuresthateach
complexnumberwillbecorrectlyreconstructedfrommulti-
plememorybankswhendemandedinthesubsequentSVD
operation.
Besides,tosupportdifferentshapesofinputtensor,the

FFThardwareisdesignedinareconfigurablewaytobe
compatiblewithdifferentshapesofinputtensor.Tofacilitate
thisreconfigurabledesign,theFFThardwareisimplemented
inapurelyserialway,whereonlyonecomplexmultiplieris

Fig.6:Exampleof1D-FFTfort-SVDacross4memorybanks.

allocatedasthecomputingresource.Noticethatbecausethe
SVDcomputationisthebottleneckfortheoverallcomputing
procedure,suchserialdesignonFFTdoesnotaffectthe
overalltimingperformancesignificantly.

C.TheSVDModule

AsshowninFig.5,thecomponentunitofSVDmodule
isSCUthatperformsSVDoperationononematrix(Line
3inAlgorithm2).Considertheinherentparallelismexisted
inthe multipleexecutionsofLine3; multipleSCUsare
allocatedintheSVDtodecomposedifferentmatrices,namely
thefrontalslicesoftheinputtensor,independently.Fig.7
showstheinnerarchitectureofeachSCUunit.HeretheSVD
computationintheproposedSCUisbasedontheone-sided
JacobianSVD(JSVD)[23],whichcontainsfourcomputation
steps.Accordingly,theproposedSCUcontainsfourcomputing
blocks,namelyinnerproductunit(IPU),trigonometricunit
(TRU),Rotatorandpost-processingunit(PPU).
InnerProductUnit(IPU).InthefirststepofSVD,three
parameters,α,βandγ,needtobecalculatedforanytwo
columnsoftheto-be-decomposedmatrixAasfollows:

α =AT:,iA:,i

β =AT:,jA:,j (6)

γ =AT:,iA:,j.

Tosupportsuchcomputation,IPUisusedtocalculate
theinnerproductoftwocolumnvectors.Besidesthismajor
function,IPUisalsousedtodeterminewhetherthetwo
columnvectorsarealreadyorthogonalornot.Ifso,thereis
noneedtouseTRUandRotatortomakethesetwocolumns
becomeorthogonalagain.Ingeneral,suchdecisionisbased
onthecomparisonbetween|γ|and

√
αβ,whereistheerror

toleranceparameterthatisusedtocontrolthetradeoffbetween
decompositionaccuracyandcomputationalcost.InIPU,if

|γ|issmallerthan
√
αβ,thenitmeansthatthecurrenttwo

columnsreadfrommemorybanksarealreadyorthogonal,and
hencethecomputationsinTRUandRotatorcanbeskipped.
TrigonometricUnit(TRU).Whenthevaluesof γdonot

satisfytherequirementsoftheaforementionedearlystopping,
TRUisusedtoperformthediagonalizationofthetwocur-
rentlybeingprocessedcolumns.Specifically,thetargetofTRU
istofindanangleθwhichsatisfies:

cosθ sinθ
−sinθ cosθ

T
α γ
γ β

cosθ sinθ
−sinθ cosθ

=
d11

d22
.

(7)
Accordingto[24],θcanbecalculatedasfollows:

ρ=
β−α

2γ

t=
sign(ρ)

|ρ|+ 1+ρ2

cosθ=
1

√
1+t2

sinθ=tcosθ.

(8)

InordertoexecuteEqn.(8),onemultiplierandonedivider
areusedinTRUtoperformnecessaryarithmeticoperations.
Moreimportantly,aCORDIChardware[25]isusedhere
forcalculatingthesquareroot.Noticethatthoughdivision
andsquarerootingarecomputation-expensiveoperations,their
correspondinglatencyisstillrelativelyshortascomparedwith
thetime-consumingmatrixmultiplicationintheRotator.
Rotator.AfterTRUsendsthecalculatedsinθandcosθto
theRotator,theRotatorfirstconstructsarotationmatrixB
withrotationangleθasfollows:

B=









I
cosθ sinθ

I
−sinθ cosθ

I








. (9)

Then,wecanrotatematrixAbysimplymultiplyingrotation
matrixB:

A=AB. (10)

Besides,RotatoralsorotatesoneoutputmatrixVwiththe
similarway:

V=VB, (11)

whereV isinitializedasidentitymatrixI.Noticethathere
thematrixmultiplication-basedrotationsforbothB andV
areperformedforeachcalculatedθ.Therefore,thisprocedure
isverytimeconsumingandisthemostcomputation-intensive
partoftheentiret-SVDcomputationinAlgorithm2.
Post-ProcessingUnit(PPU).AftertheRotatorfinishesthe

rotationofA,thePPUutilizestheupdatedAtocalculatethe
outputmatricesSandUasfollows:

Si,i= A:,i2
U:,i= A:,i/Si,i,

(12)

Fig.7:ThehardwarearchitectureofSVDcomputingunit.

whereSi,iisthei-thdiagonalelementofdiagonalmatrixS.
NoticethatasshowninFig.5andFig.7,theoutputmatrices
U,SandV arestoredintheresultmemoryconsistingof
individualmemorysMEMU,MEMSandMEMV,respec-
tively.Considerthatthecalculationofthesethreematrices
alsoneedstheinformationofrotatedmatrixA;PPU,similar
totheRotator,communicateswithbothworkingmemoryand
resultmemory.

D.TheIFFTModule

TheIFFTmoduletransformsthefrequency-domainslices,
intheformatof matricesU,SandV,backtothetime
domain,andthenoutputsthethreeresulttensorsU,S,
andV.HeresimilartoFig.6,theIFFTmoduleisa1D
versionandperformsonthetubefibersofthetensor.Also,
considerthecomputationalsimilaritybetweenFFTandIFFT;
theIFFTmodulehasthesamehardwarearchitecturetothe
FFTmodulewithextracomponentsforinputreorderingand
outputnormalization.

IV.EVALUATIONRESULTS

HardwareConfiguration.Basedontheproposedhardware
architecture,wedesignanexamplet-SVDhardwareaccel-
erator.ThisexampledesigncansupporttheinputtensorA
withsizeupto64×64×32.Fortheoveralldesign,SRAMis
themostresource-consumingpart.Specifically,324096×32
SRAMsareusedtostoretheinputtensorA.Theoutput
tensorsU andV arestoredin644096×32SRAMsina
distributedway.Inaddition,sinceS,asthefrontalsliceof
theoutputtensorS,isadiagonalmatrix,theentireSis
storedintoasmallerSRAMwithsize2048×32.Therefore,
with32-bitfixed-pointquantizationscheme,theentireSRAM
consumptionis1.51MB.
EDAToolsandSynthesisResults.Basedontheadopted

hardwareconfiguration,wethendevelopanRTLmodeland
synthesizeitat1GHzclockfrequencyusingSynopsysDesign
CompilerwithCMOS28nmlibrarytoobtaintheareaand
powerreports.Inoverall,theareaconsumptionandpower
consumptionoftheentiredesignare3.47mm2and319.4
mW,respectively.
ComparisonwithSoftwareImplementation.Wefurther

investigatethepotentialaccelerationoftheproposedhard-
waredesignoversoftwareimplementation.Herethebaseline
softwareimplementationisbasedontheoptimizedMATLAB
t-SVDcode.Forfaircomparison,weusemany MATLAB
internalfunctionstomaximizethespeedofsoftwaresolution.

Fig. 8: The runtime comparison between software and hard-
ware implementations when fixing n3 = 32.

Fig. 9: The runtime comparison between software and hard-
ware implementations when fixing n1 = n2 = 64.

For instance, for SVD computation we use MATLAB built-
in function instead of our own Jacobian-based SVD code,
which is 10 times slower than MATLAB’s official optimized
function. In overall, the entire MATLAB implementation runs
on the computer equipped with 22nm 2.5GHz Intel Core i7-
4710HQ CPU with 6MB cache and 8GB main memory.

Fig. 8 and Fig. 9 show the comparisons between the real-
world runtime for MATLAB implementation and estimated
runtime for our hardware accelerator with different n1, n2
and n3. Here without loss of generality we set n1 = n2 in our
experiments. From these two figures it is seen that the hard-
ware accelerator is estimated to provide a significant speedup
(7× ∼ 28×) over software implementation on different t-
SVD tasks. In average, the proposed hardware accelerator is
expected to provide around 14× speedup as compared with
the CPU-based implementation.

V. CONCLUSION

This paper proposes a high-performance hardware architec-
ture for t-SVD. The design consideration of each key compu-
tation component is discussed and analyzed. Compared with
CPU-based software implementation, the proposed hardware
architecture is expected to provide average 14× speedup on
different shapes of input tensor.

REFERENCES

[1] P. Koniusz, A. Cherian, and F. Porikli, “Tensor representations via kernel
linearization for action recognition from 3d skeletons,” in European
Conference on Computer Vision. Springer, 2016.

[2] C. Jia and Y. Fu, “Low-rank tensor subspace learning for rgb-d action
recognition,” IEEE Transactions on Image Processing, vol. 25, 2016.

[3] D. Tao, Y. Guo, Y. Li, and X. Gao, “Tensor rank preserving discriminant
analysis for facial recognition,” IEEE Transactions on Image Processing,
vol. 27, 2017.

[4] S. Li, W. Wang, H. Qi, B. Ayhan, C. Kwan, and S. Vance, “Low-
rank tensor decomposition based anomaly detection for hyperspectral
imagery,” in International Conference on Image Processing (ICIP).
IEEE, 2015.

[5] Y. Hu, X. Yi, and L. S. Davis, “Collaborative fashion recommendation:
A functional tensor factorization approach,” in Proceedings of the 23rd
ACM International Conference on Multimedia. ACM, 2015.

[6] F. Jiang, X.-Y. Liu, H. Lu, and R. Shen, “Efficient multi-dimensional
tensor sparse coding using t-linear combination,” in Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[7] S. Liao, X.-Y. Liu, F. Qian, M. Yin, and G.-M. Hu, “Tensor super-
resolution for seismic data,” in International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2019.

[8] L.-H. Lim and P. Comon, “Multiarray signal processing: Tensor decom-
position meets compressed sensing,” Comptes Rendus Mecanique, vol.
338, 2010.

[9] R. A. Harshman et al., “Foundations of the parafac procedure: Models
and conditions for an” explanatory” multimodal factor analysis,” 1970.

[10] J. D. Carroll and J.-J. Chang, “Analysis of individual differences in
multidimensional scaling via an n-way generalization of eckart-young
decomposition,” Psychometrika, vol. 35, 1970.

[11] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, 1966.

[12] I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scien-
tific Computing, vol. 33, 2011.

[13] Q. Zhao, G. Zhou, S. Xie, L. Zhang, and A. Cichocki, “Tensor ring
decomposition,” arXiv preprint arXiv:1606.05535, 2016.

[14] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempit-
sky, “Speeding-up convolutional neural networks using fine-tuned cp-
decomposition,” arXiv preprint arXiv:1412.6553, 2014.

[15] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Compression
of deep convolutional neural networks for fast and low power mobile
applications,” arXiv preprint arXiv:1511.06530, 2015.

[16] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov, “Tensoriz-
ing neural networks,” in Advances in Neural Information Processing
Systems, 2015.

[17] W. Wang, Y. Sun, B. Eriksson, W. Wang, and V. Aggarwal, “Wide
compression: Tensor ring nets,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018.

[18] Y. Yang, D. Krompass, and V. Tresp, “Tensor-train recurrent neural net-
works for video classification,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR, 2017.

[19] M. E. Kilmer and C. D. Martin, “Factorization strategies for third-order
tensors,” Linear Algebra and its Applications, vol. 435, 2011.

[20] M. E. Kilmer, K. Braman, N. Hao, and R. C. Hoover, “Third-order
tensors as operators on matrices: A theoretical and computational
framework with applications in imaging,” SIAM Journal on Matrix
Analysis and Applications, vol. 34, 2013.

[21] Z. Zhang, G. Ely, S. Aeron, N. Hao, and M. Kilmer, “Novel methods
for multilinear data completion and de-noising based on tensor-svd,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2014.

[22] X.-Y. Liu, S. Aeron, V. Aggarwal, X. Wang, and M.-Y. Wu, “Adaptive
sampling of rf fingerprints for fine-grained indoor localization,” IEEE
Transactions on Mobile Computing, vol. 15, 2015.

[23] J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, and
I. Yamazaki, “The singular value decomposition: Anatomy of optimizing
an algorithm for extreme scale,” SIAM Review, vol. 60, 2018.

[24] R. P. Brent, F. T. Luk, and C. Van Loan, “Computation of the singular
value decomposition using mesh-connected processors,” Cornell Univer-
sity, Tech. Rep., 1982.

[25] J. R. Cavallaro and F. T. Luk, “Cordic arithmetic for an svd processor,”
Journal of Parallel and Distributed Computing, vol. 5, 1988.

