High-performance Hardware Architecture for

Tensor Singular Value Decomposition
(Invited paper)

Chunhua Deng!, Miao Yin!, Xiao-Yang Liu?, Xiaodong Wang?, Bo Yuan!
!Department of Electrical and Computer Engineering, Rutgers University
2Department of Electrical Engineering, Columbia University
{chunhua.deng, miao.yin} @rutgers.edu; {x12427, xw2008} @columbia.edu; bo.yuan@soe.rutgers.edu

Abstract—Tensor provides a brief and natural representation
for large-scale multidimensional data by way of appropriate low-
rank approximations, thus we can discover significant latent
structures of complex data and generalize data representation.
To date, tensor has gained tremendous success in various science
and technology fields, especially in machine learning and big
data applications. However, tensor computation, especially tensor
decomposition, is usually expensive due to the inherent large-size
characteristic of tensors, and hence would potentially hinder their
future wide deployment. In this paper, we develop a hardware
architecture to accelerate tensor singular value decomposition (t-
SVD), which is a new tensor decomposition technique that has
been successfully applied to high-dimensional data classification
and video recovery. Specifically, design consideration of each key
computing unit is analyzed and discussed. Then, the proposed
t-SVD hardware architecture is implemented and synthesized
using CMOS 28nm technology. Comparison with real-world
CPU-based implementations shows that the proposed hardware
accelerator is expected to provide average 14x speedup on
various t-SVD workloads.

Index Terms—Tensor decomposition, t-SVD, hardware archi-
tecture.

I. INTRODUCTION

As the dimensionality of data grows in the big data era,
tensor becomes a cornerstone data structure in computational
neuroscience, neuroinformatics, pattern recognition, signal
processing and machine learning. On account of the superior
representation power, tensor has been successfully applied in
many practical applications, such as action recognition [1],
[2], facial recognition [3], anomaly detection [4], collaborative
recommendation [5], videos denoising [6], seismic data super-
resolution [7] and compressive sensing [8].

The current success of tensor in various applications highly
depends on a set of tensor-specific algorithms. In particular,
tensor decomposition, as a class of algorithms that factorize a
tensor as the product of latent tensors, has played an important
role in enabling the adoption of tensor into various domains,
such as numerical linear algebra, computer vision, graph anal-
ysis etc. This is because, theoretically, tensor decomposition
can aid to find inherent approximate low-rank representation of
data, and hence facilitates the solutions of multilinear problems
in many real-world tasks. For instance, various types of tensor
decomposition approaches, such as CP [9], [10], Tucker [11],
tensor train [12] and tensor ring [13], have been widely used in

the neural network model compression task [14]-[18], which
is a currently very active research topic in the deep learning
community.

Among various types of tensor decomposition approaches,
tensor singular value decomposition (t-SVD) [19] is a type of
new technique that can factorize the input tensor in a matrix
SVD-like way. Such a unique characteristic of t-SVD leads to
many useful properties of the latent tensors, hence enabling
the adoption of t-SVD in various practical applications, such
as object classification [20], videos recovery [21] and indoor
localization [22].

Despite the current success of tensor decomposition, from
the perspective of computing, tensor decomposition is facing
severe challenges. In general, tensor decomposition is very
computation intensive. Although there have already been sev-
eral optimized software packages available for performing
tensor decomposition, the executing time, no matter on CPU
or GPU, is still relatively quite long and cannot meet the real-
time requirement in many scenarios. Consequently, to date
the adoption of tensor decomposition in those time-sensitive
applications, especially in mobile and embedded system, is
still very limited.

In this paper, we investigate the computing procedure of
t-SVD and develop a high-performance hardware architecture
to accelerate this computation-intensive tensor decomposition
method. Specifically, the design consideration of each key
component is carefully discussed and analyzed. A design
example of t-SVD hardware architecture is implemented and
synthesized using CMOS 28nm technology. Evaluation re-
sults show that the proposed t-SVD hardware architecture is
expected to deliver an average 14X speedup over different
t-SVD workloads as compared with optimized CPU-based
implementation.

The rest of this paper is organized as follows. Section II
introduces the background of tensor, tensor operations and t-
SVD algorithm. The hardware architecture of the proposed
t-SVD design is described in Section III. Section IV presents
the evaluation setting and comparison results with software
implementation. The conclusion is drawn in Section V.

(a) Column fibers (b) Row fibers (c) Tube fibers

Fig. 1: Fibers of a third-order tensor.

(a) Horizontal slices

(b) Lateral slices

(c) Frontal slices

Fig. 2: Slices of a third-order tensor.

II. BACKGROUND: TENSOR AND T-SVD

In this section, we introduce the necessary background
information for tensor and t-SVD.

A. Tensor and Related Operations

Notation. We use boldface calligraphic script letters, bold-
face capital letters, and boldface lower-case letters to repre-
sent tensors, matrices, and vectors, respectively. Specifically,
a third-order tensor of size n; X ng X ns3 is denoted as
A c Rnl Xng ><n3.

Fiber and Slice. Fiber is defined as a one-dimensional array
obtained from a tensor via fixing all indices but one. Column,
row, and tube fibers of a third-order tensor A are denoted as
a.ji, a;), and a;;. (see Fig. 1). Different from fiber, slice is
defined as a two-dimensional matrices obtained from a tensor
via fixing all but two indices. Horizontal, lateral, and frontal
slices of a third-order tensor .A are denoted as A;.., A.;. and
A..; (see Fig. 2). Moreover, A represents the ¢-th frontal
slice \A(:,:,¢) which is a matrix.

t-DFT. A is defined as the frequency-domain representation
of \A. Such time-to-frequency transformation can be obtained
by performing discrete Fourier transform (DFT) along the last
dimension of \A. In practice, fast Fourier transform (FFT) is
used here for fast computation.

t-transpose. A € R™*X"1 %15 i defined as the transpose
tensor of A. A" is obtained by transposing each of the frontal
slices of A and then reversing the order of transposed frontal
slices 2 through ng.

Tensor Operations. We next introduce several tensor opera-
tions that will be used to give a rigid definition of t-SVD. First,
the operation unfold(.A) is defined to take an ny X ny X N3

5 6 7
unfold(A) =
9 10 11 12
13 14 15 16
1 2 3 4 9 10 11 12
5 7 13 14 15 16
becirc(A) =
9 10 11 12 1 3
13 14 15 16 ‘ 5 7 8

Fig. 3: unfold operation and the block circulant matrix of a
third-order tensor.

tensor and returns a block nins X ne matrix (see Fig. 3).
Correspondingly, the fold undoes the operation:

A
A

unfold(A) =) , ()
Ain)

fold(unfold(A)) = A. ()

In addition, the block circulant matrix of tensor A €
R xm2xn3 - which will be used in defining the key t-product
operation, is an njng X ngng matrix (see Fig. 3) defined as
follows:

A Alns) A(na—1) A®)
A®) A A3) ABG)
bcirc(A) =
Alna) gna=1) A A0
(3)

Next we describe the definition and fast computing method
of t-product, as the key tensor operation for t-SVD.

Definition 1. [19] t-product. For A € R"1*"2*"s gqnd B €
R72X"4XN3 - their t-product A * B is an ny X ng X ng tensor
defined as:

AxB= fold(bcirc(A)-unfold(B)). “4)

It should be noted that for practical application the t-product
C = A x B can be calculated efficiently in the frequency
domain. Algorithm 1 describes such fast computing procedure
using t-DFT. Here C, as the frequency-domain representation
of C, can be obtaiged via the multiplications of the each frontal
slices of A and B. After that, the t-product C can be finally
calculated by taking the inverse Fourier transform along the
last dimension of C.

Algorithm 1 Computing the t-product in the frequency domain

Algorithm 2 Computing Procedure of t-SVD

Input: Tensor A € R"*"2%"3 gnd tensor B € R"2*"4xns;
Output: Tensor C € R™ XnaXmg,

1. A=f£ft(A,[],3), B==£fft(B,[],3);
2: for i =1 to n3 do _

3: C(:yi) = A(: 5 0)B(, 1)

4: end for

5: C=1ifft(C);

ny ni

Ny

n2 ny

Fig. 4: The t-SVD of an n; X ny X ng tensor.

B. Tensor Singular Value Decomposition (t-SVD)

In this subsection we describe the definition of t-SVD and
the computing procedure. To prepare the rigid definition of
t-SVD, three types of special structured tensors need to be
described first:

Definition 2. []/9] Identity tensor. The identity tensor L €
R™MX™MXn3 4o q tensor whose first frontal slice is the ny X ny
identity matrix and all other frontal slices are zero.

Definition 3. [19] f-diagonal tensor. A tensor is called f-
diagonal if each frontal slice is a diagonal matrix.

Definition 4. [19] Orthogonal tensor. A tensor Q €
RM*m1Xn3 jg orthogonal if

Q'+x9=0xQ" =T (5)

Then, the tensor singular value decomposition of an input
tensor can be defined as follows:

Definition 5. [19] t-SVD. For A € R™M*"2X"3 the tensor
singular value decomposition (t-SVD) of A is defined as

A=Ux8xV,

where U and V are orthogonal tensors of size n; Xny Xng and
ng X ng X ng, respectively, and S is a rectangular f-diagonal
tensor of size n1 X N X Ng.

Fig. 4 illustrates the t-SVD of a third-order tensor. From
this figure it is seen that t-SVD can be viewed as the general-
ization and extension of conventional matrix SVD in the high
dimension scenario.

Because t-product is a basic component operation for defin-
ing t-SVD, the computation procedure of t-SVD can also be
efficiently performed in the frequency domain. Algorithm 2
describes the overall computing steps for performing t-SVD
on a third-order tensor. Here SVD means the matrix SVD and
conj returns the conjugate element in MATLAB notation.

Input: Tensor A € R *n2xns;
Output: U € RMmxmxns § ¢ R™MX12X13 apd Y €

RngXTLQX’rL;;.
s

1 A=fft(A]],3);

2: for i =1to [2H] do

3 [U,S,V]=SVD(A(,:4));

4 Uu,:i) =U;

5: S(:,5,1) = S,

6 V(i) =V;

7: end for

8: for i = ["H7] + 1 tony do

9: lz{(:,:,i) :gonj(a(:,:,ng—i+2));
10: S(:,5,1) =80, 5,n3 —i+2);

11 V(i) =conj(V(;,,,ng —i+2));
12: end for _

13: U =1ffet(U,[],3);

14: 8 = ifft(S,[],3);

15: V=1ifft(V,[],3);

Specifically, for a tensor A € R™*"2*"3_the first step of
t-SVD is to calculate the frequency-domain representation A
by taking discrete Fourier transform along the third dimension.
Then, the second step is to decompose the first [%ﬂ] frontal
slices via matrix SVD. Notice that here the SVD for the rest
part can be automatically obtained by using the conjugate
symmetry property. Finally, the t-SVD component tensors can
be calculated by performing inverse fast Fourier transform to
recover the representation in the time domain.

III. HARDWARE ARCHITECTURE

In this section, we develop a hardware architecture for t-
SVD to map the computing procedure described in Algorithm
2 to hardware computing fabric.

A. Overall Hardware Architecture

Fig. 5 shows the overall architecture of the proposed design.
Here the input tensor that needs to be decomposed is stored
in the working memory, which contains multiple memory
banks. The number of the memory banks NNV is identical to the
maximum setting of ns. Such memory partition arrangement
is to improve data access parallelism for the tube fiber that
is to be processed. After the current tube fiber has been read
from the memory, it is sent to 1D FFT module to perform
domain transform. Notice that here the FFT is performed in
an in-place style that its output will be written back to the
working memory. Once all the tube fibers are transformed to
the frequency domain, they will be read again from working
memory to the SVD module for executing the SVD operation.
Notice that according to Algorithm 2, each frontal slice of
the transformed tensor needs to be decomposed; hence the
proposed SVD module is equipped with multiple SVD com-
puting units (SCUs) for parallel processing. Also, as it will be
analyzed in Section III-C, the computation of t-SVD involves

SVD Module
[scu] [scu]....| scu |
['scu] [scu| |Sl;U|

* SRAM SRAM SRAM
i | Bank #1 Bank#2| 7 Bank #N

Fig. 5: The overall hardware architecture.

with the continuous update of the final results; therefore,
besides extensively communicating with the working memory,
the SVD module is also designed to interact with result
memory as well. Finally, all the tube fibers of the result
tensors are transformed back to the time domain via an 1D
IFFT module and stored back to the result memory. Next, we
describe the details of each component module of the hardware
architecture.

B. The FFT Module

As described in Algorithm 2, the t-SVD algorithm performs
FFT operation on the tube fibers of the input tensor. Fig.
6 shows an example transform procedure for a 2 x 2 x 4
tensor. Here the matrices, no matter in the time or frequency
domain, represent the frontal slices that are physically stored
in different memory banks individually. Also, across different
frontal slices, the values with the same color represent the
entries belonging to the same tube fiber.

It should be noted that in the proposed design the FFT is
computed in an in-place style. Specifically, because only a
single FFT hardware is allocated as the underlying computing
fabric, each time only one tube fiber is read from the working
memory and is transformed. After each time of FFT, the
calculated frequency-domain representation is stored back to
the addresses where the time-domain representation stores.
Notice that as shown in Fig. 6, since the input tensor is real-
valued, the transformed tube fiber in the frequency domain
exhibits conjugate symmetry, thereby remaining the same
memory requirement though the transformed tube fiber is
complex-valued now. For instance, for the tube fiber [0 3 4 6],
its frequency-domain representation contains a conjugate pair
(—4 + 3i, — 4 — 3i). Accordingly, for the physical data
allocation, a specific memory address calculator is designed
to ensure that the real and imaginary parts of each calculated
complex number are stored in the adjacent memory banks.
This well-designed address calculator also ensures that each
complex number will be correctly reconstructed from multi-
ple memory banks when demanded in the subsequent SVD
operation.

Besides, to support different shapes of input tensor, the
FFT hardware is designed in a reconfigurable way to be
compatible with different shapes of input tensor. To facilitate
this reconfigurable design, the FFT hardware is implemented
in a purely serial way, where only one complex multiplier is

Time Domain Freq. Domain Data Allocation

A
A(:,:,0) A(:,:,0)
0 1 #t(0,3,4,6) Bl _ 13 | 15 SRAM
4 | 3 [F113,-443i54-3i) o | Lo " 10| 13 | Bank#1
A
A{:a:nll A :,:,1]
3|2 (1.25.7) -4+3i[-445i . 4| -4 SRAM
0 5 [=(15, -4+5i,-3,-4-5 7i|-6-4i ‘.. h 4 | 6 Bank #2
N *. J'
A2 RN A2) N
4 | 5 5| -3 el 3|5
fft(4,0,8,7) . SRAM
8 | 9 I=(19,-4+7i,5,4-7)] 5 | 6 \".‘ Y 7 | -a| Bank#3
A "\ #
Al:33) A(::,3) s A
6 | 7 |ff(3,5,9,1) 431451l o 5| 3| spam
=(18, -6-4i,6,-6+4i
7|1 [-4-7i|-6+4i 5 | 6 | Bank#4

Fig. 6: Example of 1D-FFT for t-SVD across 4 memory banks.

allocated as the computing resource. Notice that because the
SVD computation is the bottleneck for the overall computing
procedure, such serial design on FFT does not affect the
overall timing performance significantly.

C. The SVD Module

As shown in Fig. 5, the component unit of SVD module
is SCU that performs SVD operation on one matrix (Line
3 in Algorithm 2). Consider the inherent parallelism existed
in the multiple executions of Line 3; multiple SCUs are
allocated in the SVD to decompose different matrices, namely
the frontal slices of the input tensor, independently. Fig. 7
shows the inner architecture of each SCU unit. Here the SVD
computation in the proposed SCU is based on the one-sided
Jacobian SVD (JSVD) [23], which contains four computation
steps. Accordingly, the proposed SCU contains four computing
blocks, namely inner product unit (IPU), trigonometric unit
(TRU), Rotator and post-processing unit (PPU).

Inner Product Unit (IPU). In the first step of SVD, three
parameters, «, 3 and -, need to be calculated for any two
columns of the to-be-decomposed matrix A as follows:

(a3 = A?:E-A;,g
B =AT,A (6)
T = A?;.A:,J-.

To support such computation, IPU is used to calculate
the inner product of two column vectors. Besides this major
function, IPU is also used to determine whether the two
column vectors are already orthogonal or not. If so, there is
no need to use TRU and Rotator to make these two columns
become orthogonal again. In general, such decision is based
on the comparison between |y| and ey/a3, where ¢ is the error
tolerance parameter that is used to control the tradeoff between
decomposition accuracy and computational cost. In IPU, if

|| is smaller than ey/a/3, then it means that the current two
columns read from memory banks are already orthogonal, and
hence the computations in TRU and Rotator can be skipped.

Trigonometric Unit (TRU). When the values of v do not
satisfy the requirements of the aforementioned early stopping,
TRU is used to perform the diagonalization of the two cur-
rently being processed columns. Specifically, the target of TRU
is to find an angle # which satisfies:

cosf sinf T la ¥| | cosf sin@| |dn1
—sinfl cosf v Bl |—sind cosf| daa|
()
According to [24], @ can be calculated as follows:
_B-a
;. sien(p)
lpl + /14 p? ®)
1
6039 = ﬁ

sinfl = tcos#f.

In order to execute Eqn. (8), one multiplier and one divider
are used in TRU to perform necessary arithmetic operations.
More importantly, a CORDIC hardware [25] is used here
for calculating the square root. Notice that though division
and square rooting are computation-expensive operations, their
corresponding latency is still relatively short as compared with
the time-consuming matrix multiplication in the Rotator.

Rotator. After TRU sends the calculated sinf and cosfl to
the Rotator, the Rotator first constructs a rotation matrix B
with rotation angle @ as follows:

I
cosf sinf
B = I . (9)
—sinf cosf)

I

Then, we can rotate matrix A by simply multiplying rotation
matrix B:

A=AB. (10)

Besides, Rotator also rotates one output matrix V' with the
similar way:

V = VB, (11)

where V is initialized as identity matrix I. Notice that here
the matrix multiplication-based rotations for both B and V'
are performed for each calculated 6. Therefore, this procedure
is very time consuming and is the most computation-intensive
part of the entire t-SVD computation in Algorithm 2.

Post-Processing Unit (PPU). After the Rotator finishes the
rotation of A, the PPU utilizes the updated A to calculate the
output matrices S and U as follows:

Sm‘ =
U.; =

Al

12
A:i/Sig, 2

SVD Computing Unit {SCU)

TRU
(CORDIC)

g
E
R
=
m
3
=]
2

Asowapy ynsay

Fig. 7: The hardware architecture of SVD computing unit.

where S; ; is the i-th diagonal element of diagonal matrix S.
Notice that as shown in Fig. 5 and Fig. 7, the output matrices
U,S and V are stored in the result memory consisting of
individual memorys MEM_U, MEM_S and MEM_V, respec-
tively. Consider that the calculation of these three matrices
also needs the information of rotated matrix A; PPU, similar
to the Rotator, communicates with both working memory and
result memory.

D. The IFFT Module

The IFFT module transforms the frequency-domain slices,
in the format of matrices U,S and V, back to the time
domain, and then outputs the three result tensors U, S,
and V. Here similar to Fig. 6, the IFFT module is a 1D
version and performs on the tube fibers of the tensor. Also,
consider the computational similarity between FFT and IFFT;
the IFFT module has the same hardware architecture to the
FFT module with extra components for input reordering and
output normalization.

IV. EVALUATION RESULTS

Hardware Configuration. Based on the proposed hardware
architecture, we design an example t-SVD hardware accel-
erator. This example design can support the input tensor .4
with size up to 64x64x32. For the overall design, SRAM is
the most resource-consuming part. Specifically, 32 4096x32
SRAMs are used to store the input tensor .A. The output
tensors U and V are stored in 64 4096x32 SRAMs in a
distributed way. In addition, since S, as the frontal slice of
the output tensor &, is a diagonal matrix, the entire & is
stored into a smaller SRAM with size 2048x32. Therefore,
with 32-bit fixed-point quantization scheme, the entire SRAM
consumption is 1.51MB.

EDA Tools and Synthesis Results. Based on the adopted
hardware configuration, we then develop an RTL model and
synthesize it at 1GHz clock frequency using Synopsys Design
Compiler with CMOS 28nm library to obtain the area and
power reports. In overall, the area consumption and power
consumption of the entire design are 3.47 mm? and 319.4
mW, respectively.

Comparison with Software Implementation. We further
investigate the potential acceleration of the proposed hard-
ware design over software implementation. Here the baseline
software implementation is based on the optimized MATLAB
t-SVD code. For fair comparison, we use many MATLAB
internal functions to maximize the speed of software solution.

W Software M Hardware

=]
o

71.687

g o N
o © O

39.966

Runtime (ms)
w B
(=T]

15.849

N
(=]

5.564

=
o

3.719

2.49
0.133
|

0.821

o

15 30 45 60

ny(=n,)

Fig. 8: The runtime comparison between software and hard-
ware implementations when fixing nz = 32.

m Software M Hardware

100
90 86.771
80

w 70

_g 60 56.752

[

E 50 41.464 45.435

‘g’ 40

2 30
20
10 .052 .118 .282 .675
o - | [|

4 8 16 32

n3

Fig. 9: The runtime comparison between software and hard-
ware implementations when fixing n; = ng = 64.

For instance, for SVD computation we use MATLAB built-
in function instead of our own Jacobian-based SVD code,
which is 10 times slower than MATLAB’s official optimized
function. In overall, the entire MATLAB implementation runs
on the computer equipped with 22nm 2.5GHz Intel Core i7-
4710HQ CPU with 6MB cache and 8GB main memory.

Fig. 8 and Fig. 9 show the comparisons between the real-
world runtime for MATLAB implementation and estimated
runtime for our hardware accelerator with different ny, no
and ng. Here without loss of generality we set n; = ny in our
experiments. From these two figures it is seen that the hard-
ware accelerator is estimated to provide a significant speedup
(7Tx ~ 28x) over software implementation on different t-
SVD tasks. In average, the proposed hardware accelerator is
expected to provide around 14X speedup as compared with
the CPU-based implementation.

V. CONCLUSION

This paper proposes a high-performance hardware architec-
ture for t-SVD. The design consideration of each key compu-
tation component is discussed and analyzed. Compared with
CPU-based software implementation, the proposed hardware
architecture is expected to provide average 14x speedup on
different shapes of input tensor.

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

(1]
[12]
[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

REFERENCES

P. Koniusz, A. Cherian, and F. Porikli, “Tensor representations via kernel
linearization for action recognition from 3d skeletons,” in European
Conference on Computer Vision. Springer, 2016.

C. Jia and Y. Fu, “Low-rank tensor subspace learning for rgb-d action
recognition,” IEEE Transactions on Image Processing, vol. 25, 2016.
D. Tao, Y. Guo, Y. Li, and X. Gao, “Tensor rank preserving discriminant
analysis for facial recognition,” IEEE Transactions on Image Processing,
vol. 27, 2017.

S. Li, W. Wang, H. Qi, B. Ayhan, C. Kwan, and S. Vance, “Low-
rank tensor decomposition based anomaly detection for hyperspectral
imagery,” in International Conference on Image Processing (ICIP).
IEEE, 2015.

Y. Hu, X. Yi, and L. S. Davis, “Collaborative fashion recommendation:
A functional tensor factorization approach,” in Proceedings of the 23rd
ACM International Conference on Multimedia. ACM, 2015.

F. Jiang, X.-Y. Liu, H. Lu, and R. Shen, “Efficient multi-dimensional
tensor sparse coding using t-linear combination,” in Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

S. Liao, X.-Y. Liu, F. Qian, M. Yin, and G.-M. Hu, “Tensor super-
resolution for seismic data,” in International Conference on Acoustics,
Speech and Signal Processing (ICASSP). 1EEE, 2019.

L.-H. Lim and P. Comon, “Multiarray signal processing: Tensor decom-
position meets compressed sensing,” Comptes Rendus Mecanique, vol.
338, 2010.

R. A. Harshman et al., “Foundations of the parafac procedure: Models
and conditions for an” explanatory” multimodal factor analysis,” 1970.
J. D. Carroll and J.-J. Chang, “Analysis of individual differences in
multidimensional scaling via an n-way generalization of eckart-young
decomposition,” Psychometrika, vol. 35, 1970.

L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, 1966.

I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scien-
tific Computing, vol. 33, 2011.

Q. Zhao, G. Zhou, S. Xie, L. Zhang, and A. Cichocki, “Tensor ring
decomposition,” arXiv preprint arXiv:1606.05535, 2016.

V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempit-
sky, “Speeding-up convolutional neural networks using fine-tuned cp-
decomposition,” arXiv preprint arXiv:1412.6553, 2014.

Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Compression
of deep convolutional neural networks for fast and low power mobile
applications,” arXiv preprint arXiv:1511.06530, 2015.

A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov, “Tensoriz-
ing neural networks,” in Advances in Neural Information Processing
Systems, 2015.

W. Wang, Y. Sun, B. Eriksson, W. Wang, and V. Aggarwal, “Wide
compression: Tensor ring nets,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018.

Y. Yang, D. Krompass, and V. Tresp, “Tensor-train recurrent neural net-
works for video classification,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR, 2017.

M. E. Kilmer and C. D. Martin, “Factorization strategies for third-order
tensors,” Linear Algebra and its Applications, vol. 435, 2011.

M. E. Kilmer, K. Braman, N. Hao, and R. C. Hoover, “Third-order
tensors as operators on matrices: A theoretical and computational
framework with applications in imaging,” SIAM Journal on Matrix
Analysis and Applications, vol. 34, 2013.

Z. Zhang, G. Ely, S. Aeron, N. Hao, and M. Kilmer, “Novel methods
for multilinear data completion and de-noising based on tensor-svd,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2014.

X.-Y. Liu, S. Aeron, V. Aggarwal, X. Wang, and M.-Y. Wu, “Adaptive
sampling of rf fingerprints for fine-grained indoor localization,” IEEE
Transactions on Mobile Computing, vol. 15, 2015.

J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, and
I. Yamazaki, “The singular value decomposition: Anatomy of optimizing
an algorithm for extreme scale,” SIAM Review, vol. 60, 2018.

R. P. Brent, F. T. Luk, and C. Van Loan, “Computation of the singular
value decomposition using mesh-connected processors,” Cornell Univer-
sity, Tech. Rep., 1982.

J. R. Cavallaro and F. T. Luk, “Cordic arithmetic for an svd processor,”
Journal of Parallel and Distributed Computing, vol. 5, 1988.

